WO2014174699A1 - リサイクル原料のサンプリング方法及びサンプリング装置、リサイクル原料の分析用サンプル、並びにリサイクル原料の評価方法 - Google Patents

リサイクル原料のサンプリング方法及びサンプリング装置、リサイクル原料の分析用サンプル、並びにリサイクル原料の評価方法 Download PDF

Info

Publication number
WO2014174699A1
WO2014174699A1 PCT/JP2013/074845 JP2013074845W WO2014174699A1 WO 2014174699 A1 WO2014174699 A1 WO 2014174699A1 JP 2013074845 W JP2013074845 W JP 2013074845W WO 2014174699 A1 WO2014174699 A1 WO 2014174699A1
Authority
WO
WIPO (PCT)
Prior art keywords
scrap
waste
recycled
primary
raw material
Prior art date
Application number
PCT/JP2013/074845
Other languages
English (en)
French (fr)
Inventor
信博 小隈
真言 高木
栄治 和島
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CA2873724A priority Critical patent/CA2873724C/en
Priority to EP13882888.4A priority patent/EP2837925B1/en
Priority to MX2014013974A priority patent/MX363486B/es
Priority to CN201380025018.0A priority patent/CN104797919B/zh
Priority to US14/400,726 priority patent/US9329105B2/en
Priority to IN9535DEN2014 priority patent/IN2014DN09535A/en
Priority to KR1020147031962A priority patent/KR101533210B1/ko
Publication of WO2014174699A1 publication Critical patent/WO2014174699A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a recycled material containing valuable metals other than iron (Fe) and aluminum (Al), such as gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd) and the like.
  • the present invention relates to a sampling method and a sampling apparatus for a recycled material, a sample for analyzing the recycled material, and a method for evaluating the recycled material.
  • Electronic boards, flexible boards, IC chips, mobile phones and the like used for electronic devices contain gold, silver, copper, palladium and the like. Further, photographic film, movie film, X-ray film, photographic paper and the like contain silver. It has been proposed to reuse waste such as electronic substrates, IC chips, mobile phones, flexible substrates, films, and photographic paper as recycled materials. For example, the above-mentioned waste is burned in a rotary kiln furnace or the like to form combustion ash, and the combustion ash is put into a copper smelting furnace or the like, and the above-mentioned valuable metals are recovered in the process of copper smelting.
  • the transaction price is determined by the content of valuable metals contained in the recycled materials.
  • human beings manually collect analytical samples from recycled materials, separate the portions where valuable metals are concentrated or parts that do not contain valuable metals when collecting analytical samples. As a result, recycling materials could not be evaluated correctly. Therefore, there is a possibility that a difference occurs between the evaluation on the side of delivering the recycled material and the evaluation on the side of receiving the recycled material.
  • Patent Document 1 discloses a step of crushing recycled raw materials, a primary mixing step of stirring and mixing the crushed material, a primary reduction step of reducing the stirred and mixed crushed material, and a reduced crushing A pulverized product after the secondary reduction step, comprising: a pulverization step for further pulverizing the product; a secondary mixing step for stirring and mixing the pulverized product; and a secondary reduction step for reducing the stirred and mixed pulverized product.
  • a method for sampling a recycled material using as a sample for analysis is disclosed.
  • Patent Document 2 the recycled raw material is crushed with a crusher to obtain a primary crushed material, and the primary crushed material is further crushed with a crusher to obtain a secondary crushed material.
  • a method has been proposed in which a crushed material having a size of 30 mm or less is collected as a sample by separating the crushed material larger than 30 mm and crushing the crushed material again with a crusher.
  • the recycled raw material section other than Fe scrap and Al scrap is pulverized. It was hoped that.
  • the recycled raw materials are mixed with recycled raw material portions other than Fe scrap and Al scrap, and highly malleable Fe scrap and Al scrap. It was not possible to fully meet the demand for miniaturization of industrial samples.
  • Fe scrap and Al scrap are extremely unevenly distributed in the recycled material, and even if sampling is performed in an unevenly distributed state, the influence of segregation is inevitable and there is a limit to homogenization of the sample for analysis. .
  • the recycled raw material can be finely pulverized even in a state where Fe scrap and Al scrap are mixed.
  • the impact type pulverizer has a very small amount of recycled raw material, and is not suitable for automatically obtaining a sample for analysis from the recycled raw material.
  • the present invention provides a sampling method and a sampling apparatus for a recycled material that can collect a homogeneous analysis sample and can perform an accurate evaluation, and an analysis sample.
  • the method of sampling a recycled material includes a step of primary crushing a recycled material and a material after the primary crushing as “Fe scrap”, “Al scrap”, “Fe scrap and Al scrap”
  • Three types of “recycled raw materials other than Fe waste and Al waste” after the next reduction are used as samples for analysis.
  • a sample obtained by pulverizing “recycled raw materials other than Fe scrap and Al scrap” without being influenced by “Fe scrap” and “Al scrap” can be collected, and “Fe scrap” and Samples of “recycled raw materials other than Fe scrap and Al scrap” can be obtained without being affected by the uneven distribution of “Al scrap”, and the homogeneity of each of the three types of samples can be improved.
  • the sampling method of the recycling raw material which concerns on the 2nd aspect of this invention WHEREIN:
  • the process which carries out the primary crushing of the recycling raw material, and the raw material after the primary crushing are "Fe waste”, “Al waste”, “Fe waste and The step of separating into three types of “recycled raw materials other than Al waste”, the step of firstly reducing “recycled raw materials other than Fe waste and Al waste” separated after at least primary crushing, and after the primary reduction
  • the “recycled raw materials other than Fe scrap and Al scrap” the step of secondary crushing more finely than the primary crushing and the secondary reduction, and the “Fe scrap”, “Al scrap” after the primary crushing
  • the process of determining the weight ratio of three kinds of “recycled raw materials other than Fe scrap and Al scrap”, and the mixing ratio corresponding to the weight ratio determined in the process, the “Fe scrap” and “Al scrap”, and the 2 "Recycled raw materials other than Fe scrap and Al scrap” after the next reduction Comprising a mixing step of mixing, the
  • “recycled raw materials other than Fe scrap and Al scrap” can be finely pulverized without being influenced by “Fe scrap” and “Al scrap”.
  • a homogeneous sample for evaluation can be collected without being affected by the uneven distribution of “Fe scrap” and “Al scrap”.
  • the sampling method of the recycling raw material which concerns on the 3rd aspect of this invention WHEREIN:
  • the process which carries out the primary crushing of the recycling raw material, and the raw material after the primary crushing are "Fe waste”, “Al waste”, “Fe waste and The step of separating into three kinds of “recycled raw materials other than Al waste” and performing primary shrinkage, respectively, and the “recycled raw materials other than Fe waste and Al waste” after the primary shrinkage are finer than the primary shredding.
  • a step of measuring the total weight of the recycled material later a step of measuring each weight of “Fe scrap” and “Al scrap” separated after the primary crushing, and a weight of “Fe scrap” from the total weight of the recycled material
  • the weight of “Al scrap” is subtracted to calculate the weight of “recycled raw materials other than Fe scrap and Al scrap”, and the calculated results and the weights of the measured “Fe scrap” and “Al scrap” From the above, it is also preferable to perform a step of obtaining three weight ratios of “Fe scrap”, “Al scrap”, and “recycled raw materials other than Fe scrap and Al scrap”. According to this, measurement of "recycled raw materials other than Fe scrap and Al scrap" after the primary crushing can be omitted.
  • the recycled material is preferably crushed to 20 mm or less. According to this, the burden of the subsequent secondary crushing can be reduced. Moreover, the homogeneity of the sample for analysis can be improved by miniaturizing the “Fe scrap” and the “Al scrap”.
  • the crushing of the recycled material to 20 mm or less means that the recycled material is crushed until it has a size that can pass through a sieve having an opening of 20 mm. The same applies when crushing to a size other than 20 mm.
  • the secondary crushing step it is preferable to crush “recycled raw materials other than Fe scrap and Al scrap” to 5 mm or less. According to this, the homogeneity of the sample for analysis can be improved.
  • the recycling raw material sampling apparatus of the present invention includes a primary crusher for primary crushing of the recycled raw material, an Fe fractionator for separating "Fe scrap” from the raw material after the primary crushing, and after the primary crushing
  • An Al separator that separates “Al scrap” from the raw materials of the above, and “recycled raw materials other than Fe scrap and Al scrap” in which “Fe scrap” and “Al scrap” are excluded by the Fe separator and Al separator Recycled raw material primary fractionator other than Fe waste and Al waste to be reduced, and "Recycled raw material other than Fe waste and Al waste” reduced by the recycled raw material primary fractionator other than Fe waste and Al waste
  • a secondary crusher that performs secondary crushing more finely than the primary crusher, and a secondary crusher that secondarily crushes "recycled raw materials other than Fe scrap and Al scrap” crushed by the secondary crusher; It is characterized by having. According to this, the sampling method of the first aspect of the present invention can be realized.
  • the weight ratio measuring means for measuring three weight ratios of “Fe scrap”, “Al scrap”, “recycled raw materials other than Fe scrap and Al scrap” separated from the raw material after the primary crushing, Mixing means for mixing "Fe scrap”, “Al scrap”, “recycled raw materials other than Fe scrap and Al scrap” at a predetermined mixing ratio set according to the result of the weight ratio measuring means; Is preferred. According to this, the sampling method of the second present invention can be realized.
  • an Fe waste primary fractionator for primary fractionation of “Fe waste” fractionated by the Fe fractionator and an Al waste primary fractionator for primary fractionation of “Al waste” fractionated by the Al separator. It is preferable to further comprise. According to this, the sampling method of the third aspect of the present invention can be realized.
  • Fe separator is a magnetic separator and the Al separator is an eddy current separator. According to this, "Fe waste” and “Al waste” can be separated from the raw material after primary crushing by electrical means.
  • the analysis sample of the recycled material according to one embodiment of the present invention is characterized by being sampled by the above-described sampling method. According to this analytical sample, it is possible to accurately evaluate the recycled raw material.
  • the evaluation method of the recycling raw material of one aspect of the present invention is a mixture of “Fe waste”, “Al waste” and “recycling raw material other than Fe waste and Al waste” obtained by the sampling method of the recycling raw material.
  • the “recycled raw material other than Fe waste and Al waste”, which is the remaining raw material obtained by removing “Fe waste” and “Al waste” from the recycled raw material after primary crushing, is primarily reduced. After being divided, it is further shredded and then secondarily shrunk so that it is not affected by highly malleable “Fe scrap” or “Al scrap”, and “recycles other than Fe scrap and Al scrap”
  • a sample obtained by pulverizing the “raw material” can be collected.
  • “Fe scrap” and “Al scrap” are separately separated from the remaining “recycled raw materials other than Fe scrap and Al scrap”, they are affected by the uneven distribution of “Fe scrap” and “Al scrap”.
  • a sample of “recycled raw materials other than Fe scrap and Al scrap” can be obtained. Therefore, the homogeneity can be improved for each of the three types of samples, and an accurate evaluation can be performed.
  • the “raw material” can be pulverized.
  • the weight ratio of the three types of “Fe waste”, “Al waste”, “recycled raw materials other than Fe waste and Al waste” in the recycled materials the “Fe waste” and “Al waste” separated earlier. Is mixed with “recycled raw materials other than Fe waste and Al waste” after secondary reduction, so that a uniform evaluation sample is collected without being affected by the uneven distribution of “Fe waste” and “Al waste”. It is possible to make an accurate evaluation.
  • the raw material after the primary crushing is classified into three types of “Fe waste”, “Al waste”, and “recycled raw materials other than Fe waste and Al waste”, and each primary shrinkage. Therefore, the homogeneity can be further improved.
  • the weight ratio is determined by weighing three kinds of weights of “Fe scrap”, “Al scrap”, and “recycled raw materials other than Fe scrap and Al scrap” after primary crushing. Since it is determined, the weight ratio can be easily determined.
  • the primary crushing step crushes to 20 mm or less, so that the burden of the subsequent secondary crushing can be reduced. Moreover, the homogeneity of the sample for analysis can be improved by miniaturizing the “Fe scrap” and the “Al scrap”.
  • the sample in the secondary crushing step, is crushed to 5 mm or less. Can increase the sex.
  • the sampling method of the invention of claim 1 can be realized.
  • the sampling method of the invention of claim 2 can be realized.
  • the sampling method of the invention of claim 3 can be realized.
  • the recycling raw material can be evaluated correctly.
  • content of a valuable metal can be correctly evaluated about a recycled raw material.
  • FIG. 1 is an explanatory diagram of a sampling method and apparatus according to an embodiment.
  • examples of the recycled raw material processed in the sampling method and apparatus of the present embodiment include a printed board, a flexible board, an IC chip, a mobile phone, a film, and photographic paper.
  • These recycled raw materials contain valuable metals such as gold, silver, and copper, and the value of the recycled raw materials themselves is determined by the content of the valuable metals.
  • a sampling method and a sampling apparatus will be described with reference to FIG.
  • the total weight of the recycled material is weighed by a weighing device (S1).
  • a quantitative supply device for example, a vibration feeder
  • the size is 20 mm or less with a primary crusher (for example, a biaxial crusher) for rough crushing.
  • Primary crushing of the recycled material is performed (S3).
  • Fe scrap is separated by an Fe separator (for example, a magnetic separator) (S4).
  • the sorted “Fe scrap” is weighed by a weighing device (S21), and is firstly shrunk by a primary shredder (S22).
  • Al waste is separated from the recycled raw material after the “Fe waste” is removed by an Al separator (for example, an eddy current separator) (S5).
  • Al separator for example, an eddy current separator
  • the separated “Al scrap” is weighed by a weighing device (S31), and then is firstly shrunk by a primary shredder (S32).
  • “recycled raw materials other than Fe waste and Al waste” are quantitatively fed by a quantitative supply device (for example, a vibration feeder) (S6), primary reduction First, the volume is reduced to 1/10 by a divider (for example, a rotary divider) (S7).
  • the “recycled raw material other than Fe scrap and Al scrap” after the primary reduction is secondary shredded to a size of 5 mm or less smaller than the primary shredder using a secondary crusher (for example, a single crusher) (S8).
  • the secondary crushed material is secondarily reduced to 1/10 volume by a secondary reducer (for example, a rotary divider) while being quantitatively fed by a fixed amount supply device (for example, a vibration feeder) (S9) (S10). ).
  • the total weight of the recycled material is weighed before the primary crushing, and the weights of “Fe waste” and “Al waste” separated after the primary crushing are weighed. Subtract the weight of "Fe scrap” and the weight of "Al scrap” to calculate the weight of "recycled raw materials other than Fe scrap and Al scrap", the calculation result and the "Fe scrap” weighed earlier From the respective weights of “Al waste”, three weight ratios of “Fe waste”, “Al waste”, and “recycled raw materials other than Fe waste and Al waste” are obtained (S11).
  • FIG. 2 is a system diagram showing a specific configuration of the sampling apparatus according to the embodiment
  • FIG. 3 is an explanatory diagram of a rotary divider used in the sampling apparatus.
  • the sampling apparatus shown in FIG. 2 has a primary crusher 1 that performs primary crushing upon receipt of a recycled material M.
  • the biaxial crusher used as the primary crusher 1 crushes the raw material to 20 mm or less.
  • the primary crushed raw material is transported to the receiving hopper 2 by the transport conveyor 101.
  • the receiving hopper 2 is also charged with a recycled material M that does not require primary crushing.
  • a vibration feeder (quantitative supply device) 3 is provided at the discharge port of the receiving hopper 2, and the vibration feeder 3 supplies a raw material to the conveyer 102 in a fixed amount.
  • the raw material supplied to the conveyor 102 is put into an aluminum separator (Al separator) 4 with a drum type magnetic separator (Fe separator), where “Fe scrap” A and “Al scrap” B are recycled from the raw material. Sort.
  • “Recycled raw materials other than Fe waste and Al waste” C from which “Fe waste” A and “Al waste” B are removed by passing through the aluminum separator 4 with drum type magnetic separator, After passing through the vibration feeder 104A, it is put into the rotary divider 5 which is a primary reducer.
  • the rotary divider 5 is provided with a rotating chute 53 having a receiving port 52 at the upper end inside the container main body 51, and by rotating the rotating chute 53 while charging the raw material, One part is reduced and discharged from the divider discharge port 55, and the rest is discharged from the unnecessary portion discharge port 56. It is to be noted that this kind of rotary is also used when the “Fe waste” A and the “Al waste” separated after the primary destruction in the S (step) 22 and S (step) 32 are primarily reduced.
  • a divider 5 is used.
  • the “recycled raw material other than Fe scrap and Al scrap” C which is primarily shrunk by the rotary divider 5, is supplied to the secondary crusher 6 by the conveyor 105.
  • the uniaxial crusher used as the secondary crusher 6 crushes “recycled raw materials other than Fe waste and Al waste” C to 5 mm or less.
  • the crushed raw material is sent to a vibratory feeder (quantitative supply device) 8 through transport conveyors 106 and 107, and is fed into a rotary divider 9 which is a secondary contractor while being quantitatively supplied.
  • the “recycled raw material other than Fe scrap and Al scrap” C which has been reduced to 1/10 volume by the rotary divider 9, is stored in the drum 10.
  • this sampling device is provided with a weighing device 20, and when weighing the total weight of the recycled raw material before the primary crushing, the “Fe waste” and “Al waste” separated after the primary crushing. It is used when weighing each of the above. If the total weight of the recycled material, the weight of “Fe scrap” A, and the weight of “Al scrap” B are known, the weight of “Fe scrap” A and the weight of “Al scrap” B from the total weight of the recycled material The weight of “recycled raw material other than Fe scrap and Al scrap” C can be calculated.
  • the raw materials made unnecessary by the rotary dividers 5 and 9 are sent to the waste ore yard 11 by the discharge conveyors 108 and 109.
  • “recycled raw material other than Fe waste and Al waste” which is the remaining raw material obtained by removing“ Fe waste ”and“ Al waste ”from the recycled raw material after primary crushing Is first shrunk, and then it is further shredded and then shrunk. For this reason, it is not affected by highly malleable “Fe scrap” or “Al scrap”, and “recycled raw materials other than Fe scrap and Al scrap” are not special shredders such as impact type crushers. For example, even when an ordinary pulverizer used when pulverizing a recycled raw material such as a uniaxial shear crusher is used, it can be finely pulverized to 5 mm or less.
  • the raw material after the primary crushing is classified into three types of “Fe waste”, “Al waste”, “recycled raw materials other than Fe waste and Al waste” and primary reduction, respectively. More homogeneity can be achieved.
  • the weight ratio may be obtained by weighing three kinds of weight of “Al scrap” and “Recycled raw materials other than Fe scrap and Al scrap”.
  • This electronic board is an electronic board in which an IC chip, an integrated circuit, a capacitor, a heat sink, and the like are mounted on a printed board.
  • each recycled raw material was crushed to 20 mm or less with a primary crusher, and then shrunk to a volume of 10% with a primary crusher, without using a magnetic separator or eddy current separator (Fe scrap and Al After separating the recycled materials with a secondary crusher so that the final crushing particle size is 10 mm or less, collect multiple (3) samples for analysis that have been crushed with a secondary crusher.
  • the valuable metals Au, Ag, Cu, Pd
  • a sample for analysis evaluation was collected using the recycling raw material sampling apparatus of the embodiment, and the valuable metal was analyzed and evaluated. Specifically, 0.5 to 1 ton of the same recycled material used in the comparative example was weighed and then crushed to 20 mm or less using a biaxial shear crusher (primary crusher). Thereafter, Fe scraps were removed using a drum type magnetic separator with a magnetic flux density of 0.1 T (Tesla). Further, Al scrap was removed from recycled raw materials other than Fe scrap using a 0.2 T (Tesla) magnetic rotor type eddy current separator.
  • recycled raw materials other than Fe scrap and Al scrap were crushed to 5 mm or less using a uniaxial shear crusher (secondary crusher) and then shrunk using a secondary reducer.
  • a plurality (three) of samples for analysis were collected by mixing at a mixing ratio calculated from the weight ratio of the original raw material, Fe scrap, and Al scrap, and valuable metals were analyzed and evaluated.
  • each of the samples 1 to 5 was classified into three types of “Fe waste”, “Al waste”, and “recycled raw materials other than Fe waste and Al waste”.
  • Table 1 shows the results of weighing each of the three types. Samples 1 to 5 contained 8 to 20% by weight of “Fe scrap” and “Al scrap”, respectively.
  • the present invention after the primary reduction of the “recycled raw material other than Fe waste and Al waste”, which is the remaining raw material obtained by removing “Fe waste” and “Al waste” from the recycled material after primary crushing, Since it is secondarily shredded after being further finely crushed, it is possible to refine “recycled raw materials other than Fe scrap and Al scrap” without being affected by highly malleable “Fe scrap” and “Al scrap”. A ground sample can be collected.
  • “Fe scrap” and “Al scrap” are separately separated from the remaining “recycled raw materials other than Fe scrap and Al scrap”, they are affected by the uneven distribution of “Fe scrap” and “Al scrap”.
  • a sample of “recycled raw materials other than Fe scrap and Al scrap” can be obtained. Therefore, the homogeneity can be improved for each of the three types of samples, and an accurate evaluation can be performed. Therefore, it has industrial applicability.
  • Recycled raw materials A “Fe waste” B “Al waste” C “Recycled raw materials other than Fe waste and Al waste” 1st primary crusher 4 Aluminum separator with drum type magnetic separator (Fe separator, Al separator) 5 Rotary Dividers (recycled raw material primary fractionator other than Fe scrap and Al scrap) 6, secondary crusher 9, rotary divider (secondary fractionator) 20 metering device 40 stirring and mixing device (mixing means)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

リサイクル原料を1次破砕する工程(S3)と、1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別し1次縮分する工程(S4~S7)と、1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を2次破砕し2次縮分する工程(S8~S10)と、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比に対応した混合比で、「Fe屑」及び「Al屑」と、2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」とを混合する混合工程(S12)と、を備え、混合工程で混合したものを分析用サンプルとする。

Description

リサイクル原料のサンプリング方法及びサンプリング装置、リサイクル原料の分析用サンプル、並びにリサイクル原料の評価方法
 本発明は、鉄(Fe)やアルミ(Al)以外の有価金属、例えば、金(Au)、銀(Ag)、銅(Cu)、プラチナ(Pt)、パラジウム(Pd)等を含有したリサイクル原料の分析評価を行う際に用いられるリサイクル原料のサンプリング方法及びサンプリング装置、リサイクル原料の分析用サンプル、並びにリサイクル原料の評価方法に関する。
 本願は、2013年4月26日に日本に出願された特願2013-094734号に基づき優先権を主張し、その内容をここに援用する。
 電子機器等に使用される電子基板、フレキシブル基板、ICチップ、携帯電話等には、金、銀、銅、パラジウム等が含有されている。また、写真用フィルム、映画用フィルム、レントゲンフィルム及び印画紙等には、銀が含まれている。これら電子基板、ICチップ、携帯電話、フレキシブル基板、フィルム及び印画紙等の廃棄物をリサイクル原料として再利用することが提案されている。例えば、前述の廃棄物をロータリーキルン炉等において燃焼して燃焼灰とし、この燃焼灰を銅製錬炉等に投入し、銅製錬の過程で、前述の有価金属を回収することが行われている。
 電子基板、ICチップ、携帯電話、フレキシブル基板、フィルム及び印画紙等のリサイクル原料においては、リサイクル原料中に含まれる有価金属の含有量によって取引価格が決定される。リサイクル原料から分析用サンプルを採取する作業を人間が手作業で行った場合には、分析用サンプルを採取する際に有価金属が濃化した部分や有価金属を含まない部分を分別して採取することにより、リサイクル原料を正しく評価できないことがあった。よって、リサイクル原料を納品する側の評価と、リサイクル原料を受け入れる側の評価とに乖離が生じてしまうおそれがあった。
 そこで、リサイクル原料から自動的に分析用サンプルを得るためのサンプリング装置やサンプリング方法が提案されている。例えば、特許文献1には、リサイクル原料を破砕する工程と、破砕物を攪拌混合する1次混合工程と、攪拌混合された破砕物を縮分する1次縮分工程と、縮分された破砕物を更に粉砕する粉砕工程と、粉砕物を攪拌混合する2次混合工程と、攪拌混合された粉砕物を縮分する2次縮分工程と、を備え、2次縮分工程後の粉砕物を分析用サンプルとするリサイクル原料のサンプリング方法が開示されている。
 また、特許文献2には、リサイクル原料を破砕機で破砕して1次破砕物とし、この1次破砕物をさらに破砕機で破砕して二次破砕物とし、この二次破砕物を篩に掛けて30mmより大きい破砕物を分別し、この破砕物を再度破砕機で破砕することによって、30mm以下の破砕物をサンプルとして採取する方法が提案されている。
日本国特開2010-223905号公報 日本国特開2008-249437号公報
 ところで、リサイクル原料内には、例えば電子基板上には集積回路やコンデンサー、ヒートシンクなど、展性の高いFe屑やAl屑がそれぞれ1~25%程度混在している。このため、例えば、ダブルロールクラッシャや、ロータリークラッシャ等のように、リサイクル原料を粉砕する際に用いられる通常の粉砕機では、展性の高いFe屑やAl屑を微粉砕することが困難であるため、Fe屑やAl屑が混在している状態では、Fe屑及びAl屑以外のリサイクル原料部を微粉砕することも困難であった。一方、Fe屑及びAl屑以外の有価金属は、Fe屑及びAl屑以外のリサイクル原料部に多くが存在するので、サンプル作成としては、Fe屑及びAl屑以外のリサイクル原料部を微粉砕化することが望まれていた。しかし、前述のようにリサイクル原料には、Fe屑及びAl屑以外のリサイクル原料部と共に展性の高いFe屑やAl屑が混在する関係で、上述した通常の粉砕機を用いる限りにおいては、分析用サンプルの微細化の要請に十分応えることができなかった。また、Fe屑やAl屑は、リサイクル原料内に極端に偏在しており、偏在した状態でサンプリングを実施しても、偏析の影響は免れず、分析用サンプルの均質化にも限界があった。
 なお、ターボミルあるいはジェットミル等のような衝撃式の粉砕機を用いれば、Fe屑やAl屑が混在している状態であっても、リサイクル原料を微粉砕することは可能である。しかし、衝撃式の粉砕機は、リサイクル原料の処理量が極めて少なく、リサイクル原料から自動的に分析用サンプルを得るためには適さない。
 このように、従来では、Fe屑及びAl屑以外のリサイクル原料部を、前述の通常の粉砕機を用いて微粉砕化するのに限界があると共に、Fe屑及びAl屑の偏在の影響が分析用サンプルに出やすいために、分析用サンプルの均質化に限界があった。このことは、特許文献1及び2に記載のサンプリング方法によっても解決が困難な課題であった。
 本発明は、均質な分析用サンプルを採取することができて、正確な評価を行うことが可能なリサイクル原料のサンプリング方法及びサンプリング装置、並びに、分析用サンプルを提供する。
 本発明の第1の態様に係るリサイクル原料のサンプリング方法は、リサイクル原料を1次破砕する工程と、1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別する工程と、少なくとも1次破砕後に分別された「Fe屑及びAl屑以外のリサイクル原料」を1次縮分する工程と、前記1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕よりも細かく2次破砕すると共に2次縮分する工程と、を備え、前記「Fe屑」、「Al屑」、並びに、前記2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」の3種を分析用サンプルとすることを特徴としている。
 これによれば、「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を微粉砕したサンプルを採取することができると共に、「Fe屑」及び「Al屑」の偏在の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」のサンプルを得ることができ、3種のサンプルそれぞれについて均質性を高めることができる。
 また、本発明の第2の態様に係るリサイクル原料のサンプリング方法は、リサイクル原料を1次破砕する工程と、1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別する工程と、少なくとも1次破砕後に分別された「Fe屑及びAl屑以外のリサイクル原料」を1次縮分する工程と、前記1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕よりも細かく2次破砕すると共に2次縮分する工程と、前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程と、該工程で求めた重量比に対応した混合比で、前記「Fe屑」及び「Al屑」と、前記2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」とを混合する混合工程と、を備え、前記混合工程で混合したものを分析用サンプルとすることを特徴としている。
 これによれば、「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を微粉砕することができる。また、「Fe屑」及び「Al屑」の偏在の影響を受けずに、均質な評価用サンプルを採取することができる。
 また、本発明の第3の態様に係るリサイクル原料のサンプリング方法は、リサイクル原料を1次破砕する工程と、1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別すると共にそれぞれ1次縮分する工程と、前記1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕よりも細かく2次破砕すると共に2次縮分する工程と、前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程と、該工程で求めた重量比に対応した混合比で、前記1次縮分後の「Fe屑」及び「Al屑」と、前記2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」とを混合する混合工程と、を備え、前記混合工程で混合したものを分析用サンプルとすることを特徴とする。
 これによれば、より均質性を高めることができる。
 ここで、前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程では、前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量をそれぞれに計量して重量比を求めるのが好ましい。
 これによれば、1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量をそれぞれに計量して重量比を求めるので、簡単に重量比を割り出すことができる。
 また、別のやり方として、前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程では、1次破砕前または後にリサイクル原料の全重量を計量する工程と、1次破砕後に分別した「Fe屑」、「Al屑」の各重量を計量する工程と、前記リサイクル原料の全重量から「Fe屑」の重量と「Al屑」の重量とを引き算して、「Fe屑及びAl屑以外のリサイクル原料」の重量を算出し、その算出結果と、前記計量した「Fe屑」、「Al屑」の各重量とから、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程と、を行うことも好ましい。
 これによれば、1次破砕後の「Fe屑及びAl屑以外のリサイクル原料」の計量を省くことができる。
 また、前記1次破砕の工程において、前記リサイクル原料を20mm以下に破砕することが好ましい。
 これによれば、後段の2次破砕の負担を軽減することができる。また、「Fe屑」及び「Al屑」の微細化により、分析用サンプルの均質性を高めることができる。
 なお、本発明においてリサイクル原料を20mm以下に破砕するとは、目開きが20mmである篩を通過可能な大きさになるまでリサイクル原料を破砕することを意味する。また、20mm以外の他の大きさに破砕する場合も同様である。
 また、前記2次破砕の工程において、「Fe屑及びAl屑以外のリサイクル原料」を5mm以下に破砕することが好ましい。
 これによれば、分析用サンプルの均質性を高めることができる。
 本発明のリサイクル原料のサンプリング装置は、リサイクル原料を1次破砕するための1次破砕機と、前記1次破砕後の原料から「Fe屑」を分別するFe分別機と、前記1次破砕後の原料から「Al屑」を分別するAl分別機と、前記Fe分別機及びAl分別機により「Fe屑」と「Al屑」とが除外された「Fe屑及びAl屑以外のリサイクル原料」を縮分するFe屑及びAl屑以外のリサイクル原料1次縮分機と、前記Fe屑及びAl屑以外のリサイクル原料1次縮分機で縮分された「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕機よりも細かく2次破砕する2次破砕機と、前記2次破砕機で破砕された「Fe屑及びAl屑以外のリサイクル原料」を2次縮分する2次縮分機と、を有することを特徴としている。
 これによれば、第1の本発明のサンプリング方法を実現することができる。
 ここで、前記1次破砕後の原料から分別した「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を測定する重量比測定手段と、前記「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」を、前記重量比測定手段の結果に応じて設定した所定の混合比で混合する混合手段と、を更に備えることが好ましい。
 これによれば、第2の本発明のサンプリング方法を実現することができる。
 また、前記Fe分別機で分別した「Fe屑」を1次縮分するFe屑1次縮分機と、前記Al分別機で分別した「Al屑」を1次縮分するAl屑1次縮分機と、を更に備えることが好ましい。
 これによれば、第3の本発明のサンプリング方法を実現することができる。
 また、前記Fe分別機が磁選機であり、前記Al分別機が渦電流分別機であることが好ましい。
 これによれば、電気的な手段により、1次破砕後の原料から「Fe屑」と「Al屑」とを分別することができる。
 また、本発明の一態様のリサイクル原料の分析用サンプルは、前述のサンプリング方法によりサンプリングされたことを特徴としている。
 この分析用サンプルによれば、リサイクル原料の正確な評価を行うことができる。
 また、本発明の一態様のリサイクル原料の評価方法は、リサイクル原料のサンプリング方法により得られた「Fe屑」、「Al屑」及び「Fe屑及びAl屑以外のリサイクル原料」を、混合して分析用サンプルを得る工程と、前記分析用サンプルの元素分析を行って、一定数のサンプルに対して有価金属の含有量を測定する工程と、を有する。
 これによれば、リサイクル原料における有価金属の含有量の評価を正確且つ安定して行うことができる。
 請求項1に係る発明によれば、1次破砕後のリサイクル原料から「Fe屑」及び「Al屑」を除去した残りの原料である「Fe屑及びAl屑以外のリサイクル原料」を1次縮分した後、それを更に細かく2次破砕した上で2次縮分するので、展性の高い「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を微粉砕したサンプルを採取することができる。また、「Fe屑」及び「Al屑」を、残りの「Fe屑及びAl屑以外のリサイクル原料」とは別に予め分別しておくので、「Fe屑」及び「Al屑」の偏在の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」のサンプルを得ることができる。従って、3種のサンプルそれぞれについて、均質性を高めることができ、正確な評価を行うことが可能になる。
 請求項2に係る発明によれば、1次破砕後のリサイクル原料から「Fe屑」及び「Al屑」を除去した残りの原料である「Fe屑及びAl屑以外のリサイクル原料」を1次縮分した後、それを更に細かく2次破砕した上で2次縮分するので、展性の高い「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を微粉砕することができる。また、リサイクル原料中の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比に応じて、先に分別した「Fe屑」及び「Al屑」と2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」とを混合するので、「Fe屑」及び「Al屑」の偏在の影響を受けずに、均質な評価用サンプルを採取することができて、正確な評価を行うことが可能になる。
 請求項3に係る発明によれば、1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別すると共にそれぞれ1次縮分するので、より均質性を高めることができる。
 請求項4に係る発明によれば、1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量をそれぞれに計量して重量比を求めるので、簡単に重量比を割り出すことができる。
 請求項5に係る発明によれば、全体重量と「Fe屑」及び「Al屑」の各重量とから、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求めるので、1次破砕後の「Fe屑及びAl屑以外のリサイクル原料」の計量を省くことができる。
 請求項6に係る発明によれば、1次破砕の工程において、20mm以下に破砕するので、後段の2次破砕の負担を軽減することができる。また、「Fe屑」及び「Al屑」の微細化により、分析用サンプルの均質性を高めることができる。
 請求項7に係る発明によれば、2次破砕の工程において、5mm以下に破砕するので、有価金属を多く含む「Fe屑及びAl屑以外のリサイクル原料」の微細化により、分析用サンプルの均質性を高めることができる。
 請求項8に係る発明によれば、請求項1の発明のサンプリング方法を実現することができる。
 請求項9に係る発明によれば、請求項2の発明のサンプリング方法を実現することができる。
 請求項10に係る発明によれば、請求項3の発明のサンプリング方法を実現することができる。
 請求項11に係る発明によれば、Fe分別機として磁選機を用い、Al分別機として渦電流分別機を用いるので、電気的な手段により、1次破砕後の原料から「Fe屑」と「Al屑」とを分別することができる。
 請求項12に係る発明によれば、リサイクル原料の正確な評価を行うことができる。
 請求項13に係る発明によれば、リサイクル原料について有価金属の含有量を正確に評価することができる。
本発明の実施形態のサンプリング方法及び装置の説明図である。 実施形態のサンプリング装置のより具体的な構成を示す系統図である。 実施形態のサンプリング装置で用いるロータリデバイダの説明図である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1は実施形態のサンプリング方法及び装置の説明図である。
 ここで、本実施形態のサンプリング方法及び装置において処理されるリサイクル原料としては、例えば、プリント基板、フレキシブル基板、ICチップ、携帯電話、フィルム、印画紙等が挙げられる。これらのリサイクル原料は、金、銀、銅等の有価金属を含有しており、有価金属の含有量によってリサイクル原料自体の価値が決定される。
 図1を用いてサンプリング方法とサンプリング装置について述べる。本実施形態のサンプリング方法では、まず、計量装置により、リサイクル原料の全重量の計量を行う(S1)。
 次に定量供給装置(例えば、振動フィーダ)により、リサイクル原料を定量送りしながら(S2)、粗破砕用の1次破砕機(例えば、2軸破砕機)により20mm以下の大きさになるようにリサイクル原料の1次破砕を行う(S3)。
 1次破砕を行った後は、Fe分別機(例えば、磁選機)により「Fe屑」を分別する(S4)。分別した「Fe屑」は、計量装置で計量(S21)した後、1次縮分機により1次縮分する(S22)。
 また、「Fe屑」を除去した後のリサイクル原料から、Al分別機(例えば、渦電流分別機)により「Al屑」を分別する(S5)。分別した「Al屑」は、計量装置で計量(S31)した後、1次縮分機により1次縮分する(S32)。
 次に「Fe屑」と「Al屑」とが除外された「Fe屑及びAl屑以外のリサイクル原料」を、定量供給装置(例えば、振動フィーダ)により定量送りしながら(S6)、1次縮分機(例えば、ロータリデバイダ)により1/10の体積に1次縮分する(S7)。1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」は、2次破砕機(例えば、1軸破砕機)で、1次破砕機よりも細かい5mm以下に2次破砕し(S8)、2次破砕したものは、定量供給装置(例えば、振動フィーダ)により定量送りしながら(S9)、2次縮分機(例えば、ロータリデバイダ)により1/10の体積に2次縮分する(S10)。
 一方、1次破砕前にリサイクル原料の全重量を計量してあり、更に、1次破砕後に分別した「Fe屑」、「Al屑」の各重量を計量してあるので、リサイクル原料の全重量から「Fe屑」の重量と「Al屑」の重量とを引き算して、「Fe屑及びAl屑以外のリサイクル原料」の重量を算出し、その算出結果と、先に計量した「Fe屑」、「Al屑」の各重量とから、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める(S11)。そして、1次縮分後の「Fe屑」A、「Al屑」B、及び2次破砕及び2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」Cを、算出した重量比相当の混合比で混合(量比混合)し、混合したものを分析用サンプルとする(S12)。
 図2は実施形態のサンプリング装置の具体的な構成を示す系統図、図3は同サンプリング装置で用いるロータリデバイダの説明図である。
 図2に示すサンプリング装置は、リサイクル原料Mの投入を受けて1次破砕する1次破砕機1を有している。1次破砕機1として用いられる2軸破砕機は、原料を20mm以下に破砕する。1次破砕した原料は、搬送コンベア101により受入ホッパ2に搬送される。受入ホッパ2には、1次破砕の不要なリサイクル原料Mも投入される。受入ホッパ2の排出口には振動フィーダ(定量供給装置)3が設けられており、振動フィーダ3は原料を搬送コンベア102に定量供給する。搬送コンベア102に供給された原料は、ドラム型磁選機(Fe分別機)付きアルミ分別機(Al分別機)4に投入され、ここでリサイクル原料から「Fe屑」A及び「Al屑」Bを分別する。
 ドラム型磁選機付きアルミ分別機4を通過することで、「Fe屑」A及び「Al屑」Bが除去された「Fe屑及びAl屑以外のリサイクル原料」Cは、搬送コンベア103、104及び振動フィーダ104Aを通過した後、1次縮分機であるロータリデバイダ5に投入される。ロータリデバイダ5は、図3に示すように、容器本体51の内部に、上端に受入口52を有する回転シュート53を設け、原料を投入しながら回転シュート53を回転させることにより、投入原料の何分の一かを縮分してデバイダ排出口55から排出し、残りを不要分排出口56から排出する。
 なお、前記S(ステップ)22及びS(ステップ)32で、一次破壊された後のそれぞれ分別された「Fe屑」A及び「Al屑」を1次縮分する場合にも、この種のロータリデバイダ5が用いられる。
 ロータリデバイダ5で1次縮分された「Fe屑及びAl屑以外のリサイクル原料」Cは、搬送コンベア105で2次破砕機6に供給される。2次破砕機6として用いられる1軸破砕機は、「Fe屑及びAl屑以外のリサイクル原料」Cを5mm以下に破砕する。破砕した原料は、搬送コンベア106、107を経て振動フィーダ(定量供給装置)8に送られ、定量供給されながら2次縮分機であるロータリデバイダ9に投入される。ロータリデバイダ9で1/10の体積に縮分された「Fe屑及びAl屑以外のリサイクル原料」Cはドラム缶10に貯められる。
 また、このサンプリング装置には計量装置20が備わっており、計量装置20は、1次破砕前にリサイクル原料の全重量を計量する際、1次破砕後に分別した「Fe屑」、「Al屑」の各重量を計量する際に用いられる。リサイクル原料の全重量と、「Fe屑」Aの重量と、「Al屑」Bの重量とが分かれば、リサイクル原料の全重量から「Fe屑」Aの重量と「Al屑」Bの重量とを引き算することで、「Fe屑及びAl屑以外のリサイクル原料」Cの重量を算出することができる。
 従って、その算出結果と、先に計量した「Fe屑」、「Al屑」の各重量とから、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求めることができる。そして、1次縮分後の「Fe屑」A、「Al屑」B、及び2次破砕及び2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」Cを、算出した重量比相当の混合比で撹拌混合装置40に投入して混合することにより、混合したものを分析用サンプルとすることができる。
 なお、このサンプリング装置では、ロータリデバイダ5、9で不要化された原料を、排出コンベア108、109で廃鉱ヤード11に送るようになっている。
 以上説明した本実施形態のサンプリング方法及び装置によれば、1次破砕後のリサイクル原料から「Fe屑」及び「Al屑」を除去した残りの原料である「Fe屑及びAl屑以外のリサイクル原料」を1次縮分した後、それを更に細かく2次破砕した上で2次縮分する。このため、展性の高い「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を、衝撃式の粉砕機のような特殊な破砕機ではなく例えば1軸剪断破砕機のようにリサイクル原料を粉砕する際に用いられる通常の粉砕機を用いる場合であっても、5mm以下に細かく微粉砕することができる。
 また、リサイクル原料中の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比に応じて、先に分別した「Fe屑」A及び「Al屑」Bと2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」Cとを混合するので、「Fe屑」及び「Al屑」の偏在の影響を受けずに、均質な分析用サンプルを採取することができて、リサイクル原料の正確な評価を行うことが可能になる。
 また、1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別すると共にそれぞれ1次縮分するようにすることで、より均質性を高めることができる。
 また、本実施形態では、計量装置で計量したリサイクル原料の全体重量と「Fe屑」及び「Al屑」の各重量とから、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求めるので、1次破砕後の「Fe屑及びAl屑以外のリサイクル原料」の計量を省くことができる。
 また、本実施形態では、1次破砕の工程において、20mm以下に破砕するので、後段の2次破砕の負担を軽減することができると共に、「Fe屑」及び「Al屑」の微細化により、分析用サンプルの均質性を高めることができる。また、2次破砕の工程において、5mm以下に破砕するので、有価金属を多く含む「Fe屑及びAl屑以外のリサイクル原料」の微細化により、分析用サンプルの均質性を高めることができる。また、Fe分別機として磁選機を用い、Al分別機として渦電流分別機を用いるので、電気的な手段により、1次破砕後の原料から「Fe屑」と「Al屑」とを自動分別することができる。
 なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程では、1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量をそれぞれに計量して重量比を求めてもよい。
 また、「Fe屑」、「Al屑」の1次縮分は必ずしもしなくてもよい。
 また、上記実施形態では、「Fe屑」、「Al屑」、並びに、2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を重量比で混合したものを分析用サンプルとしているが、「Fe屑」A、「Al屑」B、2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」Cの3種を、個別の分析用サンプルとして採用してもよい。
 その場合においても、1次破砕後のリサイクル原料から「Fe屑」及び「Al屑」を除去した残りの原料である「Fe屑及びAl屑以外のリサイクル原料」を1次縮分した後、それを更に細かく2次破砕した上で2次縮分するので、展性の高い「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を微粉砕したサンプルを採取することができる。また、「Fe屑」及び「Al屑」を、残りの「Fe屑及びAl屑以外のリサイクル原料」とは別に予め分別しておくので、「Fe屑」及び「Al屑」の偏在の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」のサンプルを得ることができる。従って、3種のサンプルそれぞれについて、均質性を高めることができ、正確な評価を行うことが可能になる。
 次に本発明の効果を確認するために行った確認実験の結果について説明する。
 この確認実験では、リサイクル原料として、有価金属の品位が比較的高い電子基板5種類(試料1~5)を準備した。この電子基板は、プリント基板上にICチップ、集積回路、コンデンサー、ヒートシンク等が実装された電子基板である。
 比較例として、リサイクル原料をそれぞれ1次破砕機で20mm以下に破砕した後、1次縮分機で10%の体積に縮分し、磁選機、渦電流分別機を用いずに(Fe屑及びAl屑の分別をせず)、最終破砕粒度が10mm以下になるように2次破砕機でリサイクル原料を破砕した後、2次縮分機で縮分した複数(3ヶ)の分析用サンプルを採取し、有価金属(Au、Ag、Cu、Pd)について分析評価した。
 また、本発明の実施例としては、実施形態のリサイクル原料のサンプリング装置を用いて、分析評価用のサンプルを採取し、有価金属について分析評価した。即ち、比較例で使用したものと同じリサイクル原料0.5~1トンについて全重量を計量した後、2軸剪断破砕機(1次破砕機)を用いて20mm以下に破砕した。その後、磁束密度0.1T(テスラ)のドラム式磁力選別機を用いてFe屑を除去した。更に、Fe屑以外のリサイクル原料を0.2T(テスラ)の磁気ロータ式渦電流分別機を用いてAl屑を除去した。その後、Fe屑及びAl屑以外のリサイクル原料を、1軸剪断破砕機(2次破砕機)を用いて5mm以下に破砕した後、2次縮分機を用いて縮分した。元原料、Fe屑、Al屑の重量比から算出される混合比で混合して複数(3ヶ)の分析用サンプルを採取し、有価金属について分析評価した。
 本発明の実施例による確認実験において、試料1~5それぞれを、「Fe屑」及び「Al屑」及び「Fe屑及びAl屑以外のリサイクル原料」の3種類に分別した。3種類それぞれを計量した結果を表1に示す。試料1~5は、「Fe屑」及び「Al屑」をそれぞれ8~20重量%含有していた。
Figure JPOXMLDOC01-appb-T000001
 
 それぞれの重量から算出される混合比(Fe屑重量:Al屑重量:Fe屑及びAl屑以外のリサイクル原料の重量)でこれら3種を混合して分析用サンプルを作成した後、有価金属(Au、Ag、Cu、Pd)の分析評価を行った。詳細には、プラズマ発光分光分析法によりAu、Ag、Pdの測定を行い、滴定法によりCuの測定を行った。その分析評価結果及び重量比から、リサイクル原料の分析値(リサイクル原料全体中のAu,Ag,Cu,Pdの各含有量(質量%))を算出した。各リサイクル原料(試料1~5)の分析値の変動係数CV値の結果を、実施例、比較例とともに下表2に示す。変動係数CV値(%)=(標準偏差n/分析平均値n)×100である。
 なお、標準偏差及び分析平均値とは、試料1~5それぞれについて上述の通り採取した3ヶの分析用サンプルについて算出したものである。
Figure JPOXMLDOC01-appb-T000002
 
 表2から分かるように、本発明の実施例では、比較例に対して変動係数が全て低く、バラツキが小さく分析値が安定していることが確認された。
 本発明によれば、1次破砕後のリサイクル原料から「Fe屑」及び「Al屑」を除去した残りの原料である「Fe屑及びAl屑以外のリサイクル原料」を1次縮分した後、それを更に細かく2次破砕した上で2次縮分するので、展性の高い「Fe屑」や「Al屑」の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」を微粉砕したサンプルを採取することができる。また、「Fe屑」及び「Al屑」を、残りの「Fe屑及びAl屑以外のリサイクル原料」とは別に予め分別しておくので、「Fe屑」及び「Al屑」の偏在の影響を受けずに、「Fe屑及びAl屑以外のリサイクル原料」のサンプルを得ることができる。従って、3種のサンプルそれぞれについて、均質性を高めることができ、正確な評価を行うことが可能になる。従って、産業上の利用可能性を有する。
 M リサイクル原料 A 「Fe屑」 B 「Al屑」 C 「Fe屑及びAl屑以外のリサイクル原料」 1 1次破砕機 4 ドラム型磁選機付きアルミ分別機(Fe分別機、Al分別機) 5 ロータリデバイダ(Fe屑及びAl屑以外のリサイクル原料1次縮分機) 6 2次破砕機 9 ロータリデバイダ(2次縮分機) 20 計量装置 40 撹拌混合装置(混合手段)

Claims (13)

  1.  リサイクル原料を1次破砕する工程と、
     1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別する工程と、
     少なくとも1次破砕後に分別された「Fe屑及びAl屑以外のリサイクル原料」を1次縮分する工程と、
     前記1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕よりも細かく2次破砕すると共に2次縮分する工程と、
     を備え、
     前記「Fe屑」、「Al屑」、並びに、前記2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」の3種を分析用サンプルとすることを特徴とするリサイクル原料のサンプリング方法。
  2.  リサイクル原料を1次破砕する工程と、
     1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別する工程と、
     少なくとも1次破砕後に分別された「Fe屑及びAl屑以外のリサイクル原料」を1次縮分する工程と、
     前記1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕よりも細かく2次破砕すると共に2次縮分する工程と、
     前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程と、
     該工程で求めた重量比に対応した混合比で、前記「Fe屑」及び「Al屑」と、前記2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」とを混合する混合工程と、
     を備え、
     前記混合工程で混合したものを分析用サンプルとすることを特徴とするリサイクル原料のサンプリング方法。
  3.  リサイクル原料を1次破砕する工程と、
     1次破砕後の原料を、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種に分別すると共にそれぞれ1次縮分する工程と、
     前記1次縮分後の「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕よりも細かく2次破砕すると共に2次縮分する工程と、
     前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程と、
     該工程で求めた重量比に対応した混合比で、前記1次縮分後の「Fe屑」及び「Al屑」と、前記2次縮分後の「Fe屑及びAl屑以外のリサイクル原料」とを混合する混合工程と、
     を備え、
     前記混合工程で混合したものを分析用サンプルとすることを特徴とするリサイクル原料のサンプリング方法。
  4.  前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程では、
     前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量をそれぞれに計量して重量比を求めることを特徴とする請求項2または3に記載のリサイクル原料のサンプリング方法。
  5.  前記1次破砕後の「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程では、
     1次破砕前または後にリサイクル原料の全重量を計量する工程と、
     1次破砕後に分別した「Fe屑」、「Al屑」の各重量を計量する工程と、
     前記リサイクル原料の全重量から「Fe屑」の重量と「Al屑」の重量とを引き算して、「Fe屑及びAl屑以外のリサイクル原料」の重量を算出し、その算出結果と、前記計量した「Fe屑」、「Al屑」の各重量とから、「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を求める工程と、
     を行うことを特徴とする請求項2または3に記載のリサイクル原料のサンプリング方法。
  6.  前記1次破砕の工程において、前記リサイクル原料を20mm以下に破砕することを特徴とする請求項1~5のいずれか1項に記載のリサイクル原料のサンプリング方法。
  7.  前記2次破砕の工程において、「Fe屑及びAl屑以外のリサイクル原料」を5mm以下に破砕することを特徴とする請求項1~6のいずれか1項に記載のリサイクル原料のサンプリング方法。
  8.  リサイクル原料を1次破砕するための1次破砕機と、
     前記1次破砕後の原料から「Fe屑」を分別するFe分別機と、
     前記1次破砕後の原料から「Al屑」を分別するAl分別機と、
     前記Fe分別機及びAl分別機により「Fe屑」と「Al屑」とが除外された「Fe屑及びAl屑以外のリサイクル原料」を縮分するFe屑及びAl屑以外のリサイクル原料1次縮分機と、
     前記Fe屑及びAl屑以外のリサイクル原料1次縮分機で縮分された「Fe屑及びAl屑以外のリサイクル原料」を、前記1次破砕機よりも細かく2次破砕する2次破砕機と、
     前記2次破砕機で破砕された「Fe屑及びAl屑以外のリサイクル原料」を2次縮分する2次縮分機と、
     を有することを特徴とするリサイクル原料のサンプリング装置。
  9.  前記1次破砕後の原料から分別した「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」の3種の重量比を測定する重量比測定手段と、
     前記「Fe屑」、「Al屑」、「Fe屑及びAl屑以外のリサイクル原料」を、前記重量比測定手段の結果に応じて設定した所定の混合比で混合する混合手段と、
     を更に備えることを特徴とする請求項8に記載のリサイクル原料のサンプリング装置。
  10.  前記Fe分別機で分別した「Fe屑」を1次縮分するFe屑1次縮分機と、
     前記Al分別機で分別した「Al屑」を1次縮分するAl屑1次縮分機と、
     を更に備えることを特徴とする請求項9に記載のリサイクル原料のサンプリング装置。
  11.  前記Fe分別機が磁選機であり、前記Al分別機が渦電流分別機であることを特徴とする請求項8~10のいずれか1項に記載のリサイクル原料のサンプリング装置。
  12.  請求項1~7のいずれか1項に記載のリサイクル原料のサンプリング方法によりサンプリングされたことを特徴とするリサイクル原料の分析用サンプル。
  13.  請求項1~7のいずれか1項に記載のリサイクル原料のサンプリング方法により得られた「Fe屑」、「Al屑」及び「Fe屑及びAl屑以外のリサイクル原料」を混合して分析用サンプルを得る工程と、
     前記分析用サンプルの元素分析を行って、一定数のサンプルに対して有価金属の含有量を測定する工程と、
     を有するリサイクル原料の評価方法。
PCT/JP2013/074845 2013-04-26 2013-09-13 リサイクル原料のサンプリング方法及びサンプリング装置、リサイクル原料の分析用サンプル、並びにリサイクル原料の評価方法 WO2014174699A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2873724A CA2873724C (en) 2013-04-26 2013-09-13 Sampling method and sampling device of recycled raw material, analysis sample of recycled raw material, and evaluation method of recycled raw material
EP13882888.4A EP2837925B1 (en) 2013-04-26 2013-09-13 Method and device for sampling recycled raw material, analysis sample of recycled raw material, and method for evaluating recycled raw material
MX2014013974A MX363486B (es) 2013-04-26 2013-09-13 Metodo de muestreo y dispositivo de muestreo de materia prima reciclada, muestra de analisis de materia prima reciclada, y metodo de evaluacion de materia prima reciclada.
CN201380025018.0A CN104797919B (zh) 2013-04-26 2013-09-13 再利用原料的采样法及装置、其分析用样品以及评价法
US14/400,726 US9329105B2 (en) 2013-04-26 2013-09-13 Sampling method and sampling device of recycled raw material, analysis sample of recycled raw material, and evaluation method of recycled raw material
IN9535DEN2014 IN2014DN09535A (ja) 2013-04-26 2013-09-13
KR1020147031962A KR101533210B1 (ko) 2013-04-26 2013-09-13 리사이클 원료의 샘플링 방법 및 샘플링 장치, 리사이클 원료의 분석용 샘플, 그리고 리사이클 원료의 평가 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013094734A JP6201403B2 (ja) 2013-04-26 2013-04-26 リサイクル原料のサンプリング方法及びサンプリング装置
JP2013-094734 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014174699A1 true WO2014174699A1 (ja) 2014-10-30

Family

ID=51791297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074845 WO2014174699A1 (ja) 2013-04-26 2013-09-13 リサイクル原料のサンプリング方法及びサンプリング装置、リサイクル原料の分析用サンプル、並びにリサイクル原料の評価方法

Country Status (10)

Country Link
US (1) US9329105B2 (ja)
EP (1) EP2837925B1 (ja)
JP (1) JP6201403B2 (ja)
KR (1) KR101533210B1 (ja)
CN (1) CN104797919B (ja)
CA (1) CA2873724C (ja)
IN (1) IN2014DN09535A (ja)
MX (1) MX363486B (ja)
PE (1) PE20150158A1 (ja)
WO (1) WO2014174699A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215256A (ja) * 2013-04-26 2014-11-17 三菱マテリアル株式会社 リサイクル原料のサンプリング方法及びサンプリング装置、並びに、リサイクル原料の分析用サンプル
CN104391100A (zh) * 2014-11-04 2015-03-04 江西瑞林稀贵金属科技有限公司 废电路板取制样方法和确定废电路板中有价金属平均含量的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709644B2 (ja) * 2016-03-14 2020-06-17 パンパシフィック・カッパー株式会社 分析用試料の調整方法
JP7411612B2 (ja) * 2020-09-01 2024-01-11 Jx金属株式会社 サンプリング装置、有価金属を含むスクラップの受入システム、サンプリング方法及び有価金属を含むスクラップの振り分け方法
JP7461919B2 (ja) 2021-11-18 2024-04-04 Jx金属株式会社 分析用サンプルの調製方法
CN114235529B (zh) * 2021-12-15 2024-09-27 无锡能之汇环保科技有限公司 一种多种类固废的缩分制样方法
WO2023161864A1 (de) * 2022-02-25 2023-08-31 Flsmidth A/S VORRICHTUNG ZUR ZERKLEINERUNG UND MENGENMÄßIGEN REDUZIERUNG MINERALISCHER PROBEN
LU102915B1 (de) * 2022-02-25 2023-08-25 Smidth As F L Vorrichtung zur Zerkleinerung und mengenmäßigen Reduzierung mineralischer Proben

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010706A (ja) * 1999-05-31 2003-01-14 Matsushita Electric Ind Co Ltd 破砕装置、破砕方法、分解方法、有価物を回収する方法
JP2006142129A (ja) * 2004-11-16 2006-06-08 Koji Shibata 廃棄製品のリサイクル処理方法
JP2008249437A (ja) 2007-03-29 2008-10-16 Nikko Kinzoku Kk サンプリング方法及びサンプリング設備
JP2010223905A (ja) 2009-03-25 2010-10-07 Mitsubishi Materials Corp リサイクル原料のサンプリング装置、リサイクル原料のサンプリング方法及びリサイクル原料の評価用サンプル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332826B2 (ja) * 1997-10-31 2002-10-07 ミサワホーム株式会社 木質様成形品及びその製造方法
CN1120053C (zh) * 1999-03-10 2003-09-03 沈志刚 废印刷电路板的粉碎分离回收工艺及其所用设备
JP2003106962A (ja) * 2001-09-28 2003-04-09 Dowa Mining Co Ltd リサイクル原料の分析用サンプルおよびその調製法
JP3969048B2 (ja) * 2001-10-09 2007-08-29 松下電器産業株式会社 廃家電製品の再資源化処理方法
JP3553924B2 (ja) * 2002-07-15 2004-08-11 同和鉱業株式会社 複合材料から有価物を分離回収する方法
CN1247326C (zh) * 2003-04-11 2006-03-29 中国矿业大学 电子废弃物板卡上有价成份的干法物理回收工艺
CN1313208C (zh) * 2005-02-03 2007-05-02 上海交通大学 废旧印刷电路板的破碎及高压静电分离方法
CN101704012A (zh) * 2009-07-17 2010-05-12 惠州市鼎晨实业发展有限公司 一种干法回收分离pcb方法
JP6201403B2 (ja) * 2013-04-26 2017-09-27 三菱マテリアル株式会社 リサイクル原料のサンプリング方法及びサンプリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010706A (ja) * 1999-05-31 2003-01-14 Matsushita Electric Ind Co Ltd 破砕装置、破砕方法、分解方法、有価物を回収する方法
JP2006142129A (ja) * 2004-11-16 2006-06-08 Koji Shibata 廃棄製品のリサイクル処理方法
JP2008249437A (ja) 2007-03-29 2008-10-16 Nikko Kinzoku Kk サンプリング方法及びサンプリング設備
JP2010223905A (ja) 2009-03-25 2010-10-07 Mitsubishi Materials Corp リサイクル原料のサンプリング装置、リサイクル原料のサンプリング方法及びリサイクル原料の評価用サンプル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2837925A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215256A (ja) * 2013-04-26 2014-11-17 三菱マテリアル株式会社 リサイクル原料のサンプリング方法及びサンプリング装置、並びに、リサイクル原料の分析用サンプル
CN104391100A (zh) * 2014-11-04 2015-03-04 江西瑞林稀贵金属科技有限公司 废电路板取制样方法和确定废电路板中有价金属平均含量的方法

Also Published As

Publication number Publication date
CN104797919A (zh) 2015-07-22
CN104797919B (zh) 2017-05-24
EP2837925A4 (en) 2016-01-20
KR20140142752A (ko) 2014-12-12
CA2873724C (en) 2015-10-06
MX2014013974A (es) 2015-04-28
IN2014DN09535A (ja) 2015-07-17
MX363486B (es) 2019-03-25
CA2873724A1 (en) 2014-10-30
PE20150158A1 (es) 2015-02-14
EP2837925B1 (en) 2017-03-22
EP2837925A1 (en) 2015-02-18
JP6201403B2 (ja) 2017-09-27
US20150128731A1 (en) 2015-05-14
KR101533210B1 (ko) 2015-07-01
JP2014215256A (ja) 2014-11-17
US9329105B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP6201403B2 (ja) リサイクル原料のサンプリング方法及びサンプリング装置
JP2008249437A (ja) サンプリング方法及びサンプリング設備
Wang et al. Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels
Zhang et al. Mechanical separation-oriented characterization of electronic scrap
Morrell Predicting the overall specific energy requirement of crushing, high pressure grinding roll and tumbling mill circuits
Bachér et al. Mechanical pre-treatment of mobile phones and its effect on the Printed Circuit Assemblies (PCAs)
Van Der Meer et al. High pressure grinding moving ahead in copper, iron, and gold processing
Jankovic et al. Evaluation of dry grinding using HPGR in closed circuit with an air classifier
JP5201047B2 (ja) リサイクル原料のサンプリング装置、リサイクル原料のサンプリング方法及びリサイクル原料の評価用サンプル
Pfandl et al. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties
Rodrigues et al. Comparing strategies for grinding itabirite iron ores in autogenous and semi-autogenous pilot-scale mills
Priya et al. Characterization of particle size-based deportment of metals in various waste printed circuit boards towards metal recovery
Bachér et al. The effect of crusher type on printed circuit board assemblies’ liberation and dust generation from waste mobile phones
JP6605378B2 (ja) 竪型粉砕装置及び竪型粉砕装置の操業方法
JP2010119915A (ja) 電子機器の粉砕方法
Tripathy et al. Performance optimization of an industrial ball mill for chromite processing
WO2010055906A1 (ja) 電子機器粉砕物
Roy et al. Metal enrichment of finely ground electronic waste using eddy current separation
JPH09103745A (ja) 砕砂の製造方法
JP5976485B2 (ja) リサイクル原料のサンプル作製装置、及びリサイクル原料のサンプル作製方法
RU51349U1 (ru) Установка для переработки отвальных металлургических шлаков, в частности феррованадиевых шлаков
Maleki-Moghaddam et al. Investigating the chamber filling effect on the jaw crusher, cone crusher and HPGR performance
MOURA et al. Study of the physical properties of aluminothermic slags for the recovery of uranium and thorium
UA13755U (en) Installation for processing of dump metallurgical slags, in particular, ferrovanadium slags
JP2022147685A (ja) リサイクル原料の破砕縮分装置及びこれを用いた破砕縮分方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013882888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14400726

Country of ref document: US

Ref document number: 2013882888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201407036

Country of ref document: ID

Ref document number: 002017-2014

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2873724

Country of ref document: CA

Ref document number: 20147031962

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/013974

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE