WO2014173177A1 - 一种利用自组装细胞芯片转染蛋白质或化合物的方法 - Google Patents

一种利用自组装细胞芯片转染蛋白质或化合物的方法 Download PDF

Info

Publication number
WO2014173177A1
WO2014173177A1 PCT/CN2014/000424 CN2014000424W WO2014173177A1 WO 2014173177 A1 WO2014173177 A1 WO 2014173177A1 CN 2014000424 W CN2014000424 W CN 2014000424W WO 2014173177 A1 WO2014173177 A1 WO 2014173177A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
compound
transfected
gelatin
chip
Prior art date
Application number
PCT/CN2014/000424
Other languages
English (en)
French (fr)
Inventor
张函槊
庄峰锋
李绍路
李娟�
Original Assignee
苏州吉诺瑞生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州吉诺瑞生物科技有限公司 filed Critical 苏州吉诺瑞生物科技有限公司
Publication of WO2014173177A1 publication Critical patent/WO2014173177A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Definitions

  • This invention relates to the field of biotechnology, and more particularly to a method of transfecting a protein or compound using a self-assembling cell chip.
  • Ziauddin et al first invented the reverse transfection technique, and placed a plasmid capable of expressing a reporter gene on a glass slide. After the complex was air-dried, the cells were cultured thereon, and the transfection effect was observed two days later.
  • This chip-based reverse transfection technique has several advantages: (1) Because the amount of reverse transfection reagents and nucleic acids is extremely low, the cost is greatly reduced;
  • SAMcel l chip Self-assembled Ce l l Microarray, self-assembled cell chip
  • the main core of the technology is: (1) the application of reverse transfection technology; (2) the use of a polymer that can be dissolved in water at low temperatures to solve the problem of positioning. This polymer is called PolyN-i sopropylacrylamide (PNI).
  • PNI PolyN-i sopropylacrylamide
  • the PNI is first placed on a chip in a dry environment, dried, and then etched by a plasma etching machine until the PNI film is etched through.
  • the size of the etch can be controlled by a mold and etched.
  • the local cells can grow on it.
  • the reverse-transfected complex is spotted on the above, and then the cells are cultured thereon.
  • the temperature is lowered to below 32 ° C, and the PNI membrane is dissolved and detached, and a cell island is formed after washing.
  • This technology has many advantages. First of all, by using micro-machining technology, the error of the circular area can be controlled in less than one ten-thousandth, so that the chip can be controlled very accurately. Secondly, during the experiment, all the cell islands are under the same culture conditions. Incubate, so all experimental groups are comparable; third, since all cell islands are on the same chip, so after During the processing, the operation is simple and the cost is low. It is foreseeable that this technology has a very broad application prospect in future biological research. SAMcel l chip technology has become a powerful assistant for biologists in the study of gene function, but it is currently used for transfection of nucleic acids, and has not been studied for transfection of other substances such as proteins.
  • the self-assembling cell chip provided by the present invention for transfecting a protein or a compound; the self-assembling cell chip comprising a substrate, wherein a region for immobilizing the protein or compound is provided on the substrate; Other regions outside the region for immobilizing the protein or compound cover the poly-N-isopropylacrylamide membrane which inhibits cell growth.
  • the protein is epidermal growth factor or transforming growth factor ⁇ ; and the compound is G418.
  • Another object of the invention is to provide a method of site-directed transfection of a protein or compound.
  • the method provided by the invention comprises the following steps:
  • the transfection substance is encapsulated by gelatin to obtain a transfection complex
  • the substance to be transfected is a protein or a compound
  • the self-assembling cell chip includes a substrate on which a region for immobilizing the transfected protein or compound is provided; and other regions on the substrate other than the region for immobilizing the transfected protein or compound Covering a poly-N-isopropylacrylamide membrane that inhibits cell growth;
  • the method for obtaining the transfection complex by encapsulating the substance to be transfected by gelatin comprises the following steps: mixing the solution of the substance to be transfected with the gelatin solution, incubating, and obtaining the transfection complex;
  • step 2) the method of immobilizing the transfection complex onto a self-assembling cell chip comprises the steps of: first spotting the transfection complex on the self-assembling cell chip for immobilization The area to which the protein or compound is transfected is dried.
  • the substance to be transfected is a protein or a compound
  • the solution of the substance to be transfected is an aqueous solution of the substance to be transfected
  • the gelatin solution is composed of gelatin, fibronectin and water, wherein the mass percentage of gelatin in the solution is 0.4%, and the mass percentage of fibronectin in the solution is 0.01%.
  • step 1) the mass ratio of the protein to the gelatin is 1: 1 X 10 6 -1 X 10 8 , and the mass ratio of the protein to the gelatin is specifically 1:4 ⁇ 10 6 ;
  • the mass ratio of the compound to the gelatin is 1:3-5, and the mass ratio of the compound to the gelatin is specifically 1:4;
  • the ratio of the target cell to the protein is 1 X 10 4 -1 X 10 7 : 1 ng, and the ratio of the target cell to the protein is specifically 4 ⁇ 10 6 : 1 ⁇ ;
  • the ratio of the target cell to the compound is 10-1 ⁇ 10 7 : 1 ng, and the ratio of the target cell to the compound is specifically 20: 1 ng.
  • the incubation temperature is 25-28 ° C, the incubation time is 5 min-30 min ; the incubation temperature is specifically 25 ° C, the incubation time is specifically 5 min;
  • step 2) the drying time is 2-20 h; the drying time is specifically 12 h; in step 3), the culture temperature is 34-45 ° C; the culture time is 12-48 hours. The temperature of the culture is specifically 37 ° C; the culture time is specifically 24 hours.
  • the protein is epidermal growth factor or transforming growth factor beta;
  • the compound is G418;
  • the target cell is Hela cells or Hela cells containing GFP protein expression, wherein in the embodiment of the present invention, Hela cells containing GFP protein expression are Hela-H2B-GFP.
  • FIG 1 shows the results of transfection of proteins using self-assembled cell chips.
  • Figure 2 is a statistical diagram of the results of transfection of proteins using self-assembled cell chips.
  • Figure 3 is a graph showing the results of transfection of compounds using self-assembled cell chips.
  • Figure 4 is a statistical diagram of the results of transfection of compounds using self-assembled cell chips.
  • the SAMcell chip used in the following examples includes a substrate on which a region for immobilizing the transfected protein or compound is provided, and a substrate for immobilizing the transfected protein or compound. Other regions outside the region covered the poly-N-isopropylacrylamide membrane (PNI membrane) that inhibits cell growth; the specific construction methods are as follows:
  • Hela-H2B-GFP cells used in the following examples are described in B. Neumann, et al., "Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes," Nature, vol. 464 , pp. 721-7, Apr 1 2010, the public is available from Suzhou Ginorui Biotechnology Co., Ltd.
  • EGF Epidermal growth factor
  • TGF transforming growth factor beta
  • the EGF solution is a solution obtained by dissolving epidermal growth factor (EGF) in high-purity water
  • the TGF solution is a solution obtained by dissolving transforming growth factor (TGF) ⁇ in high-purity water.
  • the content is 0.01%); the mass ratio of protein EGF or TFG to gelatin All were 1: 4 X 1 0 6 ; Mix well and incubate for 5 minutes at room temperature (25 ° C) to obtain a mixture of reverse-transfected protein EGF complex and reverse-transfected protein TGF complex.
  • the reverse-transfected protein EGF complex and the reverse-transfected protein TGF complex were interleaved in a part of the SAMcell chip for immobilization of the protein, and the rest were not used as a control, and dried overnight. (room temperature, greater than 12h), to obtain a chip for immobilizing protein;
  • the chip transfected with the protein was allowed to stand at room temperature (25 ° C) for 5 minutes, and the PNI membrane was detached, and then washed three times with an aqueous PBS solution (pH 7.4) to obtain a chip to be detected containing the island of the transfected protein. Since the protein is spotted only at certain positions on the chip, the rest does not point to any substance as a control; therefore, on the same chip, there are both cell islands transfected with protein and cells with untransfected proteins. Island (control group, Mock).
  • the chip to be tested was placed under an inverted fluorescence microscope (Nikon, LH-M100CB), and green fluorescence was observed under a 10x objective lens. Cell islands that were not transfected with protein were used as negative controls.
  • the results are shown in Figure 1.
  • the green color in the figure represents the nucleus of Hela-H2B-GFP cells; it can be seen that epidermal growth factor (EGF) and transforming growth factor (TGF) can significantly promote cell growth, and there are two corresponding At the position of the growth factor, the growth rate of the cells was significantly faster than that of the control group.
  • EGF epidermal growth factor
  • TGF transforming growth factor
  • the number of relative cells in the remaining islands is the number of cells in the remaining islands / negative control (Mock) cell islands.
  • the relative number of cells transfected with epidermal growth factor (EGF) cell is 3. 8 ;
  • TGF transforming growth factor
  • the number of relative cells in the cell wall of the negative control (Mock) was 1. 0.
  • G418 Cellgrog, Cat. No. 30-234-CI
  • G418 is an antibiotic, also known as geneticin.
  • G418 is commonly used for stable cell lines containing specific resistance genes. Screening, normal cells do not have this resistance gene, so it has a lethal effect on ordinary cells.
  • G418 solution G418 was dissolved in PBS aqueous solution (pH 7.4) to obtain a G418 solution, and the final concentration of G418 in G418 solution was 1 mg/mL.
  • the transfected G418 complex (mixed solution) was staggered in the area of the SAMcell chip for immobilization of the compound, and dried overnight (12 h) to obtain a chip immobilized with G418;
  • Hela-H2B-GFP cells were seeded on a chip immobilized with G418 (the ratio of cells to G418: 20 cells/1 ng), and cultured at 37 ° C for 48 h. A chip transfected with G418 was obtained; G418 was transfected into Hela-H2B-GFP cells, wherein the ratio of gelatin, G418 and cells was IX 1 0 5 ng: 2.5 ⁇ 1 0 4 ng: 5 ⁇ 10 5 ;
  • the chip transfected with G418 was allowed to stand at room temperature (25 ° C) for 5 minutes, the PNI membrane was detached, and then washed 3 times with an aqueous PBS solution (pH 7.4) to obtain a chip to be detected containing a small island of transfected G418 cells.
  • G418 was not added as a negative control. Because only at certain locations on the chip The object was spotted, and the rest was not subjected to any substance as a control; therefore, on the same chip, there were both cell islands transfected with the compound and cell islands without the transfected compound (control group, Mock).
  • the chip to be tested was placed under an inverted fluorescence microscope (Nikon, LH-M100CB), and green fluorescence was observed under a 10x objective lens. Cell islands with untransfected compounds were used as negative controls (Mock);
  • the number of relative cells transfected into the small island of G418 cells was 0.1 (the ordinate on the ordinate is the relative number of cells);
  • Negative control The number of relative cells in the cell island is 1. 0 (the ordinate on the ordinate is the number of relative cells).
  • the amount of compound used is very small, only microgram level, which greatly saves the dosage, and the effect obtained is very significant.
  • the transfection reagent was not used in the experiment to help transfection, and the compound can work well and effect, greatly reducing the cost.
  • transfection system based on SAMcell chip technology, and found that this transfection system can be applied to the fields of transfection, plasmids, proteins or peptides and chemicals, thus becoming nucleic acids and proteins.
  • the chip is more integrated as a carrier, so that the amount of protein or compound is greatly reduced;
  • the chip is an open system. During the post-processing, the operation is simple and the cost is low.
  • the protein or compound is more likely to enter the cell or directly on the cell surface, so no transfection reagent is needed, and the cost is greatly reduced;
  • Proteins or compounds are more effective than nucleic acids, so the phenotype can usually be observed after 24 hours, without waiting for 48 or 96 hours, shortening the experimental period.
  • the present invention finds that the SAMcell chip can be used for site-directed transfection of proteins or compounds. This method is organically combined with cell chip technology and site-directed transfection technology, and can be effectively applied to large-scale screening studies of proteins or compounds.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种利用自组装细胞芯片转染蛋白质或化合物的方法及自组装细胞芯片在转染蛋白质或化合物中的应用。自组装细胞芯片包括基底,在基底上设有固定蛋白质或化合物的区域,在基底上除用于固定蛋白质或化合物的区域外的其他区域覆盖抑制细胞生长的聚-N-异丙基丙烯酰胺膜。

Description

一种利用自组装细胞芯片转染蛋白质或化合物的方法 技术领域
本发明涉及生物技术领域, 尤其涉及一种利用自组装细胞芯片转染蛋 白质或化合物的方法。
背景技术
2001年 Ziauddin等人首先发明了反向转染技术, 将可以表达报告基 因的质粒点在玻璃片上, 待复合物晾干之后, 在上面培养细胞, 两天以后 观察转染效果。 这种技术的出现让生物学家们有机会抛弃孔板技术而改用 芯片技术来进行高通量的筛选工作。 这种基于芯片的反向转染技术有几大 优点: (1 ) 因为反向转染转染试剂和核酸用量极低, 大大降低了成本;
( 2 ) 所有细胞都在一个培养皿中, 所以它们具有可比性, 这样实验重复 性高; (3 ) 下游操作简单, 比如细胞染色等等, 只需将芯片统一处理即 可。 但这种方法还有一个缺点, 就是只有在最后进行荧光拍照的时候才知 道哪个位置点了核酸, 也就是定位的问题。
目前, 已经发明了一种 SAMcel l 芯片 ( Se lf- assembled Ce l l Microarray , 自组装细胞芯片) 技术。 该技术的主要核心是: (1 ) 应用 反向转染技术; (2 ) 利用一种在低温下可以溶解在水中的高聚物的特性 来解决定位的问题。 这种高聚物叫做聚 -N-异丙基丙烯酰胺 ( PolyN-i sopropylacrylamide , PNI )。当它在水中被加热到 32 °C以上时, 它会萎缩脱水, 只剩自身体积的 10%左右, 而这个过程是可逆的。 它的另 一特性是细胞不能在其表面生长。 利用了 PNI的特性, 首先在干燥环境中 把 PNI铺在芯片上, 晾干, 然后用等离子刻蚀机刻蚀, 直到把 PNI膜刻穿, 刻蚀的大小可以用模具来控制, 经过刻蚀的地方细胞就可以在上面生长。 其后在上面点上反向转染的复合物, 接下来在上面培养细胞, 细胞贴壁之 后, 把温度降到 32 °C以下, PNI膜就会溶解脱落, 洗涤之后就会形成细胞 岛。
这种技术有很多优点。 首先, 应用微细加工技术, 圆形区域的误差可 以控制在不到万分之一, 这样就可以对芯片进行十分精确的控制; 其次, 实验过程中, 所有的细胞岛都在相同的培养条件下孵育, 所以所有的实验 组都是可以比较的; 第三, 由于所有的细胞岛在同一张芯片上, 这样在后 期处理过程中, 操作简便而且成本较低。 可以预见, 这种技术在未来的生 物研究中具有十分广阔的应用前景。 SAMcel l芯片技术已经成为了生物学 家们在研究基因功能时的得力助手, 但目前都是应用于转染核酸, 对于转 染其他物质如蛋白等未有研究。
发明公开
本发明的一个目的是提供自组装细胞芯片的应用。
本发明提供的自组装细胞芯片在转染蛋白质或化合物中的应用; 所述 自组装细胞芯片包括基底, 在所述基底上设有用于固定所述蛋白质或化合 物的区域; 在所述基底上除用于固定所述蛋白质或化合物的区域外的其他 区域覆盖抑制细胞生长的聚 -N-异丙基丙烯酰胺膜。
上述应用中, 所述蛋白质为表皮生长因子或转化生长因子 β; 所述化 合物为 G418。
本发明的另一个目的是提供一种定点转染蛋白质或化合物的方法。 本发明提供的方法, 包括如下步骤:
1 ) 将待转染物质通过明胶包裹得到转染复合物;
所述待转染物质为蛋白质或化合物;
2 ) 将所述转染复合物固定到自组装细胞芯片上, 得到固定待转染物 质的芯片;
所述自组装细胞芯片包括基底, 在所述基底上设有用于固定所述转染 蛋白质或化合物的区域; 在所述基底上除用于固定所述转染蛋白质或化合 物的区域外的其他区域覆盖抑制细胞生长的聚 -N-异丙基丙烯酰胺膜;
3 ) 将目的细胞接种到所述固定待转染物质的芯片上, 培养; 实现所 述待转染物质转染到所述目的细胞中。
上述方法中,
步骤 1 ) 中, 所述将待转染物质通过明胶包裹得到转染复合物的方法 包括如下步骤: 将待转染物质溶液与明胶溶液混匀, 孵育, 得到转染复合 物;
步骤 2 ) 中, 所述将所述转染复合物固定到自组装细胞芯片上的方法 包括如下步骤: 先将所述转染复合物点样在所述自组装细胞芯片上的用于 固定所述转染蛋白质或化合物的区域, 再进行干燥。 上述方法中,
所述待转染物质为蛋白质或化合物;
所述待转染物质溶液为待转染物质水溶液;
所述明胶溶液由明胶、 纤维连接蛋白和水组成, 其中明胶在溶液中的 质量百分含量为 0.4%, 纤维连接蛋白在溶液中的质量百分含量为 0.01%。
上述方法中,
步骤 1) 中, 所述蛋白质与所述明胶的质量比为 1 : 1 X 106-1 X 108, 所述蛋白质与所述明胶的质量比具体为 1:4X106;
所述化合物与所述明胶的质量比为 1:3-5, 所述化合物与所述明胶的 质量比具体为 1:4;
步骤 3) 中, 所述目的细胞和所述蛋白质的配比为 1 X 104-1 X 107个: 1纳克, 所述目的细胞和所述蛋白质的配比具体为 4X106个: 1纳克; 所述目的细胞和所述化合物的配比为 10-1X107个: 1纳克,所述目的 细胞和所述化合物的配比具体为 20个: 1纳克。
上述方法中,
步骤 1 ) 中, 所述孵育的温度为 25-28 °C, 所述孵育的时间为 5min-30min; 所述孵育的温度具体为 25°C, 所述孵育的时间具体为 5min;
步骤 2) 中, 所述干燥的时间为 2-20h; 所述干燥的时间具体为 12h; 步骤 3) 中, 所述培养的温度为 34-45°C; 所述培养时间为 12-48小 时; 所述培养的温度具体为 37°C; 所述培养时间具体为 24小时。
上述方法中,
所述蛋白质为表皮生长因子或转化生长因子 β;
所述化合物为 G418;
所述目标细胞为 Hela细胞或含有 GFP蛋白表达的 Hela细胞, 其中在 本发明的实施例中, 含有 GFP蛋白表达的 Hela细胞为 Hela-H2B-GFP。 附图说明
图 1为利用自组装细胞芯片转染蛋白质结果图
图 2为利用自组装细胞芯片转染蛋白质结果统计图
图 3为利用自组装细胞芯片转染化合物结果图
图 4为利用自组装细胞芯片转染化合物结果统计图
实施发明的最佳方式 下述实施例中所使用的实验方法如无特殊说明, 均为常规方法。
下述实施例中所用的材料、 试剂等, 如无特殊说明, 均可从商业途径 得到。
下述实施例中所用的 SAMcell芯片 (自组装细胞芯片) 包括基底, 在 基底上设有用于固定所述转染蛋白质或化合物的区域; 在基底上除用于固 定所述转染蛋白质或化合物的区域外的其他区域覆盖抑制细胞生长的聚 -N-异丙基丙烯酰胺膜 (PNI膜) ; 具体构建方法如下:
用去垢剂和超纯水清洗实验室常用的玻片 (25毫米 *25毫米) 表面。 在其表面滴一层聚合物薄膜, 使用 65 微升 6% ( W/V) 的 Poly (N-isopropylacrylamide) 乙醇溶液, 干燥后, 在室温保存 12小时。 根 据实验室要求制备硅片掩模, 利用微加工技术可在其上刻出微孔, 得到 SAMcell芯片 (自组装细胞芯片) , 该方法也在专利申请 200910210565.1 中公开。
下述实施例中所用的 Hela-H2B-GFP 细胞记载在如下文献中, B. Neumann, et al. , "Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes, " Nature, vol. 464, pp. 721-7, Apr 1 2010, 公众可从苏州吉诺瑞生物科技有限公司获 得。
实施例 1、 利用 SAMcell芯片技术转染蛋白质
在现代生物领域, 科学家们对蛋白质以及多肽的功能尤其关注, 本研 究中试图将 SAMcell芯片技术应用在筛选蛋白质以及多肽的领域。
表皮生长因子(EGF)(SinoBio 公司,货号 C029A)和转化生长因子(TGF) β (Cell Signaling Technology公司, 货号 5154LC)
EGF溶液为将表皮生长因子 (EGF) 溶解在高纯水中得到的溶液; TGF液为将转化生长因子 (TGF) β 溶解在高纯水中得到的溶液。
1、取 lOul浓度为 Ing/mL的 EGF溶液和 10ul浓度为 Ing/mL的 TGF溶液 分别加入 96孔板的每个孔中; 再向上述处理后的每个孔中加入 lOul明胶溶 液(该溶液由明胶(Sigma公司、货号 G- 9391)、纤维连接蛋白(Sigma公司、 货号 F0895) 和水组成, 其中明胶在溶液中的质量百分含量为 0.4%, 纤维连 接蛋白在溶液中的质量百分含量为 0.01%); 蛋白 EGF或 TFG与明胶的质量比 均为 1 : 4 X 1 0 6 ; 充分混匀, 室温 (25°C ) 孵育 5分钟, 得到混合液即为 反向转染蛋白质 EGF复合物和反向转染蛋白质 TGF复合物。
2、 利用点样仪将反向转染蛋白质 EGF复合物和反向转染蛋白质 TGF复 合物分别交错地点在 SAMcell芯片的用于固定蛋白质的部分区域, 其余部分 不点任何物质作为对照, 干燥过夜 (室温, 大于 12h), 得到固定蛋白质的芯 片;
3、 将 Hela-H2B-GFP细胞消化并吹打均匀, 然后接种于固定蛋白质的芯 片上 (细胞和蛋白质的配比为 4 X 1 0 6个: 1纳克), 37 °C温度培养 24h, 得到转染蛋白质的芯片; 实现蛋白质转染到 Hela-H2B-GFP 细胞中, 其中, EGF/TFG、 明胶、 细胞的配比为 0. 025ng : I X 1 0 5ng: I X 1 0 5个;
4、 将转染蛋白质的芯片在室温 (25°C ) 放置 5分钟, PNI膜脱落, 然后 使用 PBS水溶液(pH7. 4)清洗 3次, 得到含有转染蛋白质细胞小岛的待检测 芯片。 由于只在芯片上的某些位置上进行蛋白质点样, 其余部分不点任何物 质作为对照; 因此, 同一张芯片上既有转染了蛋白质的细胞小岛, 又有未转 染蛋白质的细胞小岛 (对照组, Mock)。
将待检测芯片置于倒置荧光显微镜 (Nikon, LH-M100CB) 下检测, 在 10 倍物镜下观察绿色荧光。 以未转染蛋白质的细胞小岛为阴性对照 (mock)。
结果如图 1所示, 图中的绿色代表 Hela-H2B-GFP细胞的细胞核; 可以 看出, 表皮生长因子 (EGF) 和转化生长因子 (TGF) 可以显著促进细胞的生 长, 在对应含有两种生长因子的位置上, 细胞的生长速度明显快于对照组。
统计每个小岛内的细胞个数, 结果如图 2所示。
以阴性对照 (Mock ) 细胞小岛的作为 1, 其余各小岛中的相对细胞个 数为其余各小岛中的细胞个数 /阴性对照 (Mock ) 细胞小岛。
转染表皮生长因子 (EGF ) 细胞小岛的相对细胞个数为 3. 8 ;
转染转化生长因子 (TGF ) 细胞小岛的相对细胞个数为 2. 7 ;
阴性对照 (Mock ) 细胞小岛的相对细胞个数为 1. 0。
从此实验结果可以得出以下结论:
1、 在芯片上点有 EGF或者 TGF的区域细胞明显生长旺盛, 而没有点 蛋白的区域 (对照组) 生长较慢。 说明 SAMcel l芯片技术可以有效应用于 转染蛋白质, 并且不会干扰到相邻的位点。 2、 蛋白的使用量非常小, 只有纳克级别, 大大节约了用量, 而得到 的效果是非常显著的。
3、 实验过程中并没有使用转染试剂帮助转染, 而蛋白可以很好的作 用并起到效果, 大大降低了成本。
4、 接种细胞后 24小时就可以看到明显的效果, 缩短了实验周期。
5、 从图 1和图 2可以看出, 同一张芯片上平行的三组复孔平行性很 好。
实施例 2、 利用 SAMcell芯片技术转染化合物 G418
目前通过筛选化学物质对细胞各种表型的影响, 来确定该化学物质是否 可以成为化合物, SAMcell芯片技术应用于化合物筛选。 实验中选取 G418 (Cellgrog公司, 货号 30-234-CI) 作为测试化合物, G418是一种抗生素, 它也被称作遗传霉素, G418—般用于对含有特定抗性基因的稳定细胞株的筛 选, 普通的细胞没有该抗性基因, 所以它对普通的细胞具有致死效果。
G418溶液: 将 G418溶于 PBS水溶液 (pH7.4) 中, 得到 G418溶液, G418在 G418溶液中的终浓度为 lmg/mL。
1、 取 lOul 浓度为 lmg/mL的 G418溶液加入 96孔板的每个孔中; 再 向上述处理后的每个孔中加入 lOul明胶溶液(该溶液由明胶(Sigma公司、 货号 G-9391) 、 纤维连接蛋白 (Sigma公司、 货号 F0895) 和水组成, 其 中明胶在溶液中的质量百分含量为 0.4%,纤维连接蛋白在溶液中的质量百 分含量为 0.01%),且 G418和明胶的质量比为 1:4,充分混匀;室温(25°C ) 孵育 5分钟, 得到混合液即为转染 G418复合物;
2、 利用点样仪将转染 G418复合物 (混合液) 交错地点在 SAMcell芯片 的用于固定化合物的区域, 干燥过夜 (12h), 得到固定 G418的芯片;
3、 将 Hela-H2B-GFP细胞接种到固定 G418的芯片上 (细胞和 G418的配 比: 20个细胞 /1纳克), 37°C温度培养 48h。得到转染 G418的芯片;实现 G418 转染到 Hela-H2B-GFP细胞中,其中,明胶、 G418和细胞的配比为 IX 1 05ng: 2.5X 1 04ng: 5X 1 05个;
4、 将转染 G418的芯片在室温 (25°C) 放置 5分钟, PNI膜脱落, 然后 使用 PBS水溶液 (pH7.4) 清洗 3次, 得到含有转染 G418细胞小岛的待检测 芯片。其中未加入 G418为阴性对照。 由于只在芯片上的某些位置上进行化合 物点样, 其余部分不点任何物质作为对照; 因此, 同一张芯片上既有转染了 化合物的细胞小岛, 又有未转染化合物的细胞小岛 (对照组, Mock)。
将待检测芯片置于倒置荧光显微镜 (Nikon, LH-M100CB) 下检测, 在 10 倍物镜下观察绿色荧光。 以未转染化合物的细胞小岛为阴性对照 (Mock) ;
结果如图 3所示 (其中左图为点样示意图, 右图为荧光照片) , 左图 中白色代表转染 G418混合物,黑色代表没有加入 G418的阴性对照(Mock); 从图中可以看出, 含有 G418 的位置, 细胞生存数量相对对照组很少, 而 没有 G418的细胞就生长得很好,说明了 SAMcell芯片可以有效地转染 G418 这种化学物质, 而且基本上没有交叉污染的情况出现。
统计每个小岛内的细胞个数, 结果如图 4所示。
转染 G418细胞小岛的相对细胞个数为 0. 1 (图中纵坐标为相对细胞个 数) ;
阴性对照 (Mock) 细胞小岛的相对细胞个数为 1. 0 (图中纵坐标为相 对细胞个数) 。
从此实验结果可以得出以下结论:
1、 在芯片上点有 G418 的区域细胞明显死亡率高, 而没有点 G418 的 区域 (对照组) 生长状态良好。 说明 SAMcell芯片技术可以有效应用于转 染化合物, 并且不会干扰到相邻的位点。
2、 化合物的使用量非常小, 只有微克级别, 大大节约了用量, 而得 到的效果是非常显著的。
3、 实验过程中并没有使用转染试剂帮助转染, 而化合物可以很好的 作用并起到效果, 大大降低了成本。
4、 从图 3和图 4可以看出, 同一张芯片上平行的副孔之间平行性很 好。
综上所述, 对以 SAMcell芯片技术为基础的转染体系进行开发, 并发 现这一转染体系可以应用于转染 s i謹、 质粒、 蛋白质或多肽和化学物质 等领域, 从而成为核酸、 蛋白质与多肽和生物化学等诸多领域中进行高通 量筛选的有力工具。
工业应用 本发明的实验证明, SAMcell 芯片可以作为蛋白质或化合物的有效载 体而实现定点转染, 相对于传统的利用多孔板的方法有以下优点:
1、 采用聚合物包裹蛋白质或化合物, 使得这些分子有控制地释放到周 围的溶液中, 而不对相邻的点阵造成交叉污染, 达到定点释放的目的;
2、 蛋白质或化合物在点制的区域集中作用细胞, 作用效果明显;
3、 所有的细胞都在相同的培养条件下孵育, 实验组的平行性会非常好;
4、 芯片作为载体更加集成化, 使得蛋白质或者化合物的用量大大降低;
5、 芯片是一个开放性体系, 后期处理过程中, 操作简便而且成本较低。
SAMcell 芯片转染蛋白质或化合物的方法相对于之前的核酸芯片具有 如下优点:
1、 蛋白质或化合物更容易进入细胞或者直接作用于细胞表面, 所以不 需要用转染试剂, 成本大大降低;
2、 由于该种方法不需要使用转染试剂, 可以采用更加低温进行储存, 比如 -20度, 延长了保存期;
3、蛋白质或化合物比核酸见效快, 因此通常 24小时后就可以观测表型, 而不用等到 48或 96小时后, 缩短了实验周期。
总之, 本发明发现 SAMcell芯片可以用来定点转染蛋白质或化合物, 该 方法有机结合了细胞芯片技术和定点转染技术, 可以有效的应用于蛋白质或 化合物的大规模筛选研究。

Claims

权利要求
1、 自组装细胞芯片在转染蛋白质或化合物中的应用; 所述自组装细 胞芯片包括基底, 在所述基底上设有用于固定所述蛋白质或化合物的区 域; 在所述基底上除用于固定所述蛋白质或化合物的区域外的其他区域覆 盖抑制细胞生长的聚 -N-异丙基丙烯酰胺膜。
2、 根据权利要求 1 所述的应用, 其特征在于: 所述蛋白质为表皮生 长因子或转化生长因子 β ; 所述化合物为 G418。
3、 一种定点转染蛋白质或化合物的方法, 包括如下步骤:
1 ) 将待转染物质通过明胶包裹得到转染复合物;
所述待转染物质为蛋白质或化合物;
2 ) 将所述转染复合物固定到自组装细胞芯片上, 得到固定待转染物 质的芯片;
所述自组装细胞芯片包括基底, 在所述基底上设有用于固定所述转染 蛋白质或化合物的区域; 在所述基底上除用于固定所述转染蛋白质或化合 物的区域外的其他区域覆盖抑制细胞生长的聚 -N-异丙基丙烯酰胺膜;
3 ) 将目的细胞接种到所述固定待转染物质的芯片上, 培养; 实现所 述待转染物质转染到所述目的细胞中。
4、 根据权利要求 3所述的方法, 其特征在于:
步骤 1 ) 中, 所述将待转染物质通过明胶包裹得到转染复合物的方法 包括如下步骤: 将待转染物质溶液与明胶溶液混匀, 孵育, 得到转染复合 物;
步骤 2 ) 中, 所述将所述转染复合物固定到自组装细胞芯片上的方法 包括如下步骤: 先将所述转染复合物点样在所述自组装细胞芯片上的用于 固定所述转染蛋白质或化合物的区域, 再进行干燥。
5、 根据权利要求 4所述的方法, 其特征在于:
所述待转染物质为蛋白质或化合物;
所述待转染物质溶液为待转染物质水溶液;
所述明胶溶液由明胶、 纤维连接蛋白和水组成, 其中明胶在溶液中的 质量百分含量为 0. 4%, 纤维连接蛋白在溶液中的质量百分含量为 0. 01%。
6、 根据权利要求 5所述的方法, 其特征在于:
步骤 1) 中, 所述蛋白质与所述明胶的质量比为 1 : 1 X 106-1 X 108, 所述蛋白质与所述明胶的质量比具体为 1:4X106;
所述化合物与所述明胶的质量比为 1:3-5, 所述化合物与所述明胶的 质量比具体为 1:4;
步骤 3) 中, 所述目的细胞和所述蛋白质的配比为 1 X 104-1 X 107个: 1纳克, 所述目的细胞和所述蛋白质的配比具体为 4X106个: 1纳克; 所述目的细胞和所述化合物的配比为 10-1X107个: 1纳克,所述目的 细胞和所述化合物的配比具体为 20个: 1纳克。
7、 根据权利要求 4-6中任一所述的方法, 其特征在于:
步骤 1 ) 中, 所述孵育的温度为 25-28 °C, 所述孵育的时间为 5min-30min; 所述孵育的温度具体为 25°C, 所述孵育的时间具体为 5min;
步骤 2) 中, 所述干燥的时间为 2-20h; 所述干燥的时间具体为 12h; 步骤 3) 中, 所述培养的温度为 34-45°C; 所述培养时间为 12-48小 时; 所述培养的温度具体为 37°C; 所述培养时间具体为 24小时。
8、 根据权利要求 4-7中任一所述的方法, 其特征在于:
所述蛋白质为表皮生长因子或转化生长因子 β;
所述化合物为 G418;
所述目标细胞为 Hela细胞或含有 GFP蛋白表达的 Hela细胞。
PCT/CN2014/000424 2013-04-25 2014-04-18 一种利用自组装细胞芯片转染蛋白质或化合物的方法 WO2014173177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310149406 2013-04-25
CN201310149406.1 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014173177A1 true WO2014173177A1 (zh) 2014-10-30

Family

ID=51236163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000424 WO2014173177A1 (zh) 2013-04-25 2014-04-18 一种利用自组装细胞芯片转染蛋白质或化合物的方法

Country Status (2)

Country Link
CN (1) CN103966155B (zh)
WO (1) WO2014173177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463119A (zh) * 2016-01-18 2016-04-06 苏州吉诺瑞生物科技有限公司 利用SAMcell芯片检测物质对细胞增殖影响的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108899A2 (en) * 2003-06-04 2004-12-16 The Government Of The United States As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Pni microarray and uses
CN101696449A (zh) * 2009-11-10 2010-04-21 北京大学 核酸芯片、其制备方法及用途
CN102539777A (zh) * 2010-12-10 2012-07-04 国家纳米科学中心 一种超分子自组装生物芯片及其制备方法和应用
WO2013029118A1 (en) * 2011-09-01 2013-03-07 University Of South Australia Patterning method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814895B1 (en) * 2004-11-22 2011-08-10 Dharmacon, Inc. Apparatus and system having dry control gene silencing compositions
CN101550406B (zh) * 2008-04-03 2016-02-10 北京大学 制备多潜能干细胞的方法,试剂盒及用途
CN101787375B (zh) * 2010-02-10 2012-08-22 浙江大学 一种反向非病毒载体基因转染的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108899A2 (en) * 2003-06-04 2004-12-16 The Government Of The United States As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Pni microarray and uses
CN101696449A (zh) * 2009-11-10 2010-04-21 北京大学 核酸芯片、其制备方法及用途
CN102539777A (zh) * 2010-12-10 2012-07-04 国家纳米科学中心 一种超分子自组装生物芯片及其制备方法和应用
WO2013029118A1 (en) * 2011-09-01 2013-03-07 University Of South Australia Patterning method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AI, RUNNA ET AL.: "Self-assembling Protein Microarray-a New Tool for Functional Proteomics", CHINESE BULLETIN OF LIFE SCIENCE, vol. 10, no. 22, 31 October 2010 (2010-10-31) *
ZHANG, HANSHUO ET AL.: "Genome-wide Functional Screening of MiR-23b as a Pleiotropic Modulator Suppressing Cancer Metastasis", NATURE COMMUNICATIONS, vol. 2, no. 554, 22 November 2011 (2011-11-22) *

Also Published As

Publication number Publication date
CN103966155A (zh) 2014-08-06
CN103966155B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CA2788575C (en) Hanging drop devices, systems and/or methods
JP4862146B2 (ja) 細胞アレイとその使用
JP4479960B2 (ja) 細胞中へのタンパク質送達のための方法および器具
US20100047790A1 (en) Sample analyser
Golshadi et al. High‐Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays
US8021877B2 (en) Particle patterning chip
Chien et al. Photostick: a method for selective isolation of target cells from culture
EP2481794B1 (en) Patterned substrates for cell applications
US9469869B2 (en) Solution microarrays and uses thereof
Chen et al. MEMS microwell and microcolumn arrays: novel methods for high-throughput cell-based assays
WO2011057467A1 (zh) 核酸芯片、其制备方法及用途
WO2014173177A1 (zh) 一种利用自组装细胞芯片转染蛋白质或化合物的方法
Alamdari et al. Micropatterning of ECM proteins on glass substrates to regulate cell attachment and proliferation
CN111774110A (zh) 一种可实现细胞捕获与固定的生物分析芯片
US20190344265A1 (en) Networked Cell Holder Chip
CN108165475B (zh) 一种高通量单细胞捕获和排列芯片及方法
US10378054B2 (en) Sol-gel chip using porous substrate for entrapping small molecules and screening method of small molecules specific material using thereof
CN105463119A (zh) 利用SAMcell芯片检测物质对细胞增殖影响的方法
KR20080075379A (ko) 세포의 고정화를 위한 기판의 표면 처리 방법
Vidic et al. PREDECT protocols for complex 2D/3D cultures
US20220348859A1 (en) Lithographic masking for spatially localized biochemical stimulus delivery
CN114883195B (zh) 一种检测目标dna的二维材料半导体器件及其制备方法
US20170362557A1 (en) Systems, devices, kits and methods for seeding cells or sets of molecules in an array on a substrate
CN116286785A (zh) 玻片表面种植长片段dna的方法
Le et al. An Effective Surface Passivation Assay for Single-Molecule Studies of Chromatin and Topoisomerase II

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788780

Country of ref document: EP

Kind code of ref document: A1