WO2014173131A1 - Méthode d'évaluation quantitative intégrée en ligne de situation générale de grand réseau électrique en fonction de la réponse - Google Patents

Méthode d'évaluation quantitative intégrée en ligne de situation générale de grand réseau électrique en fonction de la réponse Download PDF

Info

Publication number
WO2014173131A1
WO2014173131A1 PCT/CN2013/088404 CN2013088404W WO2014173131A1 WO 2014173131 A1 WO2014173131 A1 WO 2014173131A1 CN 2013088404 W CN2013088404 W CN 2013088404W WO 2014173131 A1 WO2014173131 A1 WO 2014173131A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
grid
stability
transient
node
Prior art date
Application number
PCT/CN2013/088404
Other languages
English (en)
Chinese (zh)
Inventor
刘道伟
李柏青
马世英
侯俊贤
孙华东
王虹富
董毅峰
王毅
张志强
Original Assignee
国家电网公司
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院 filed Critical 国家电网公司
Publication of WO2014173131A1 publication Critical patent/WO2014173131A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/242Arrangements for preventing or reducing oscillations of power in networks using phasor measuring units [PMU]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention relates to the field of online safety monitoring and early warning of large power grids, and particularly relates to a method for quantitatively evaluating and integrating the full-scale integrated line of large power grids based on response.
  • the grid online safety assessment mainly adopts the traditional network modeling and simulation form, although the grid safety assessment based on modeling and simulation is the grid planning and operation. Indispensable important tools, but this method is restricted by factors such as grid model, parameters and numerical calculations. It is difficult to adapt to the real-time monitoring requirements of the grid in terms of application scale, speed and matching with real grid conditions. New ideas and faster solutions; 2 blackouts are often caused by unforeseen cascading failures or random disturbances.
  • WAMS Wide Area Measurement System
  • Smart Grid which combines advanced measurement sensing technology, control technology, communication technology, computer technology and other cutting-edge technologies, has become the only way for the development of the modern power industry.
  • One of the important functions of the smart grid is to improve the visualization and early warning capabilities of the grid, and ultimately achieve intelligent closed-loop control to make the grid operation safer, more reliable and more economical.
  • Intelligent scheduling is the core content of smart grid construction. Intelligent dispatching technology support system should have the function of “distributing the thinking mode of the dispatcher, using the visual interface as the functional module and interactive computing as the core of the system”.
  • Smart grid is a grand system engineering to realize online security assessment and early warning of large power grid. It combines the current mature WAMS system and SCADA (Supervisory Control And Data Acquisition) ⁇ EMS
  • the data fusion processing mechanism establishes an online security assessment system based on the combination of the current state and the expected state of the large grid based on the multi-response information source.
  • the invention relates to an online integrated quantitative evaluation method for a full-scale potential of a large power grid based on response, comprising:
  • Step S1 obtaining grid topology information from the SCADA system and the EMS system, and establishing a power with the WAMS system Correspondence of network elements;
  • Step S2 Obtain current power flow data of the power system from the SCADA system, the EMS system, or the WAMS system, or obtain various expected power flow or transient fault time domain data from the DSA system;
  • Step S3 Perform static static situation assessment on the grid in an online node-oriented manner, and perform transient stability situation assessment on the grid in a line-oriented pairwise manner;
  • the static stability situation assessment of the power grid includes: generator stability margin index, line stability margin index, node stability margin index, generator thermal stability pass rate, line thermal stability pass rate, node voltage pass rate, Load node power factor pass rate, static steady state comprehensive index and node reactive power compensation level indicator;
  • transient stability situation assessment of the power grid includes: transient stability margin index, transient stability prediction index, node voltage retention rate, node stability margin index, line thermal stability pass rate and transient stability situation comprehensive index .
  • various grid static response data include predicted state offline power flow, N-l, N-2 power flow convergence calculation result, SCADA ⁇ EMS system state estimation result, and PMU measurement information;
  • the response data of various grid transient transition processes include various expected transient fault set time domain simulation results, and WAMS real-time measured grid disturbance process information;
  • the rationality prediction or filtering process is performed according to the change of the PMU measurement data at the previous moment or the surrounding PMU;
  • N-l and N-2 expected faults are allocated according to the number of parallel machines.
  • step S3 when the static stable situation assessment and the transient stability situation assessment are performed on the power grid in step S3, all nodes of the power grid are allocated according to the number of parallel machines;
  • the equivalent transmission power of each node is obtained according to the active flow direction.
  • the tracking parameter identification method based on local measurement is used to identify the equivalent transmission model parameters of the current state of each node of the power grid.
  • the equivalent transmission model parameters include the equivalent power supply potential, the equivalent branch impedance mode, and the impedance angle.
  • the node-equivalent transmission model inverse mapping based on the current operating state of the grid is realized.
  • the method for obtaining the generator stability margin index, the line stability margin indicator, and the node stability margin indicator of the power grid in the step S3 is:
  • the method for obtaining the thermal stability rate of the generator and the thermal stability rate of the connection line of the power grid in the step S3 includes:
  • G N respectively the total number of generators of the grid
  • G QN respectively are the number of generators and tie lines that meet the thermal stability constraints of their respective operations
  • the method for obtaining the node voltage pass rate and the load node power factor pass rate of the power grid in the step S3 includes: the node voltage and the load node power factor qualified range upper and lower limits given according to the normal operation mode of the power grid, and the statistical power grid node voltage is qualified. Rate, load node power factor pass rate ⁇ ⁇
  • the method for obtaining the static stability rate of the power grid includes:
  • L N and N N are respectively the total number of contact lines and the number of nodes in the system, and L CN and N CN are respectively the number of contact lines and the number of nodes greater than &c.
  • the method for obtaining the overall static stability situation comprehensive index of the power grid in the step S3 includes:
  • is the weight coefficient of the grid according to thermal stability constraints, operating electrical quantity constraints and static stability constraints, and flexible configuration according to experience or analysis, A, meets:
  • is the overall thermal stability rate of the grid
  • ⁇ calculation formula is: R QR —
  • is the overall static stability rate of the grid, ⁇ calculation formula is: S s.
  • the method of virtual reactive power change is used in the step S3 to determine the reactive power required to minimize the active loss of the equivalent power transmission model, and the current operating mode of each node is obtained.
  • the method of compensation level indicator is:
  • the corresponding reactive power value of A corresponding to A is the minimum value, and then the equivalent power transmission reactive power of the node and the obtained node is compared, and the current running party compensation deficiency indicator a of the respective nodes is obtained as:
  • a>o indicates that the reactive power is not compensated
  • a ⁇ o indicates that the reactive power is over-compensated.
  • the time domain data of the grid transient process trajectory is obtained from the WAMS system or various expected transient fault sets, and the method envelope of the severely disturbed crew pair is directly used.
  • the transient behavior of the power grid is obtained, and the transient stability margin indicator of the power grid is obtained, which includes steps S101 to S103:
  • Step S101 according to the inertia time constant M of each generator and its angular velocity ", power angle, machine side bus voltage phase angle
  • the number X can be artificially set according to needs, and the range of X is 5 ⁇ x ⁇ 10;
  • Step S102 calculating a generator set and a generator for any one of the lead and lag unit pairs in the set ⁇ -
  • the difference between the power angles between the genset and the genset ' represents the mechanical power function between the genset i and the genset j and the intersection of the electromagnetic active power ⁇ ⁇ is virtual stable Flat Balance operating point;
  • the method for calculating includes the step S1021 - step S1023: Step S1021, the equivalent single-machine rotor inertia time constant between the genset and the genset ' is MM.
  • step S1022 calculating electromagnetic active power between the genset and the genset '
  • the present invention provides a ninth preferred embodiment ⁇ M: For any leading and lagging of the unit within the set ⁇ , the unit according to the calculated power P Meq equivalent mechanical and electromagnetic active power P Eeq change trajectory by curve fitting
  • the technology constructs the transient stability prediction index from the energy point of view, and specifically includes step S201 - step S203:
  • x. , Xl is the fitting sine function coefficient to be obtained, indicating the equivalent ⁇ ⁇ of the generator set ;
  • Step S202 calculating a transient stability prediction index T SEIy between the generator set i and the generator set j;
  • the calculating the transient stability estimation index between the genset and the generator set ' in the step S202 includes the step S2021 - the step S2023:
  • Step S2022 the transient kinetic energy of the pair of units at the time of the fault removal is:
  • V TB ⁇ [ ⁇ ⁇ P Meq ⁇ ]i ⁇ ..
  • the unit power angle difference between the fault occurrence time and the fault removal time is indicated respectively.
  • the method for obtaining the grid node voltage retention rate in the step S3 includes:
  • the method for obtaining the thermal stability rate of the line in the power grid in the step S3 includes: determining the static stability margin index and the line thermal stability of the node during the transient process: the node static stability margin limit & c , the line heat The stability limit ⁇ « and the duration r c , the number of nodes that the statistical grid meets the static and sustainable range ⁇ , the number of lines satisfying the thermal stability and sustainable range 1 ⁇ 2w, calculate the static stability of the node and the thermal stability of the line during the transient process
  • the invention provides a response-based large-scale grid full-scale integrated online quantitative evaluation method, and the beneficial effects include:
  • the invention provides a method for online quantitative integration assessment of the full-state potential of a large power grid based on the response, which can realize the static and transient states of the large power grid for real-time measurement of the current state of the power grid or various simulation data under the expected state.
  • the overall situation of typical operational scenarios is online and quantitatively evaluated. That is to say, the situation assessment under the current state of the power grid is realized, and the existing DSA expected simulation advantage is fully realized to realize the situation assessment of the predicted state, which is beneficial to the dispatching operation personnel to timely understand the current operating situation of the power grid and the potential system risk of the power grid.
  • the method can be indirectly applied to various offline prediction methods or post-stage intelligent evaluation of fault set time domain simulation data, which greatly reduces the workload of planners or mode developers.
  • the core methods used in the present invention are based on grid response data, and have strong independence, and the full situation assessment method and algorithm are direct and simple, and can quickly identify weak nodes or weak areas in any operation mode of the power grid for operation or planning personnel reference. , prevent problems before they occur, reduce or avoid voltage stability accidents, suitable for online engineering applications.
  • the invention can gradually transform the previous "modeling simulation” prevention and control mode into the "track mining" response control mode, which is an extension of the traditional power grid prevention and control ideas and methods, and can effectively improve the online intelligent assessment and early warning level of the large power grid.
  • the impedance model is used to evaluate the static steady state potential, and the impedance mode method is applied to the generator branch, transmission line and node equivalent transmission model.
  • the impedance mode method is suitable for fast online calculation and can effectively identify weak units, critical lines and weak nodes in the current operating mode.
  • the thermal stability rate under the current operation mode of the power grid can be counted, and the overload components can be screened quickly and effectively, which is also in line with the habit of visual evaluation of conventional power flow mode.
  • the electrical quantity qualification rate under the current operation mode of the power grid can be statistically evaluated, and the current operating mode voltage and power factor qualification level can be quickly and effectively evaluated, which is also in line with the conventional power flow mode power quality assessment requirements.
  • the impedance model is used to achieve static stability rate statistics.
  • the virtual reactive power required to minimize the active loss when the node is currently active can be obtained, and then the reactive power compensation level evaluation of all nodes in the grid under the current operating mode can be realized.
  • the unit's transient stability margin index is obtained through simple algebraic calculation, and the minimum unit pair in the set ⁇ is taken as this time.
  • the transient stability margin indicator STM of the time domain data is used to quantitatively evaluate the transient stability margin of the current transient trajectory.
  • the voltage drop tolerance and duration are used to measure the node voltage holding capacity and the pass rate in a given transient process.
  • the comprehensive transient stability situation assessment indicators from the energy system energy conservation, transient voltage retention capability, node static stability and line thermal stability are realized, and the weights are flexibly selected according to the actual dynamic trajectory and the evaluation focus. Calculate the corresponding faults and achieve their severity ranking, improve the on-line analysis efficiency of the expected fault set, effectively quantify the stable situation of multiple transient faults and facilitate the screening of severe transient faults.
  • FIG. 1 is a flow chart of an online integrated quantitative evaluation of a full-scale potential based on a response according to the present invention
  • FIG. 2 is a diagram showing the elements of the comprehensive indicator system provided by the present invention.
  • FIG. 3 is a schematic diagram of a local node of a power grid provided by the present invention.
  • FIG. 4 is a schematic diagram of a node equivalent power transmission model provided by the present invention.
  • FIG. 5 is a schematic diagram of a maximum transmission power boundary impedance mode provided by the present invention.
  • FIG. 6 is a schematic diagram of a node reactive power compensation level evaluation provided by the present invention.
  • FIG. 7 is a schematic diagram of a pair of power grid units provided by the present invention.
  • FIG. 8 is a schematic diagram showing the fitting of the equivalent power angle curve of the unit provided by the present invention.
  • FIG. 9 is a schematic diagram of an energy type transient stability prediction index provided by the present invention.
  • FIG. 10 is a flow chart of the online integrated quantitative evaluation of the full-state potential of the large-scale power grid based on the response provided by the present invention. detailed description
  • the invention provides an online integrated quantitative evaluation method for a full-scale potential of a large power grid based on a response.
  • the present invention provides a global flow-based quantitative evaluation data flow diagram of a full-state potential based on a response.
  • the evaluation method includes:
  • Step Sl Obtain the topology information of the power grid from the SCADA system and the EMS system, and establish a correspondence relationship with the components of the WAMS system.
  • Step S2 Obtain current power flow data of the power system from the SCADA system, the EMS system, or the WAMS system, or obtain various expected power flow or transient fault time domain data from the DSA system.
  • Step S3 Perform static static situation assessment on the grid in an online node-oriented manner, and perform transient stability posture assessment on the grid in a line-oriented pairwise manner.
  • Figure 2 shows the element of the comprehensive index system provided by the present invention.
  • the static stability situation assessment of the power grid includes: generator stability margin index, line stability margin index, node stability margin index, generator thermal stability pass rate, line thermal stability pass rate, node voltage pass rate, Load node power factor pass rate, static steady state comprehensive index and node reactive power compensation level indicator.
  • transient stability situation assessment of the power grid includes: transient stability margin index, transient stability prediction index, node voltage retention rate, node stability margin index, line thermal stability pass rate and transient stability situation comprehensive index .
  • the static response data of various power grids include predictive state offline power flow, Nl, N-2 power flow convergence calculation result, SCADA ⁇ EMS system state estimation result, PMU measurement information; various power grid transient transition process response data including various expected temporary State-of-the-art fault set time domain simulation results, WAMS real-time measurement of grid disturbance process information; PMU measurement information based on its previous time or surrounding PMU measurement data changes for rationality prediction or filtering; For Nl, N-2 anticipation Fault, assigned according to the number of parallel machines.
  • step S3 when the static stability situation assessment and the transient stability situation assessment are performed on the power grid, all the nodes of the power grid are allocated according to the number of parallel machines, as shown in FIG. 3 is a schematic diagram of the local node of the power grid provided by the present invention, and the node may be coupled with the generator. , load, capacitor, circuit and other components are connected.
  • the equivalent power transmission power of each node is obtained according to the active flow direction.
  • P E + jQ E is a schematic diagram of the node equivalent transmission model.
  • the tracking parameter identification method based on local measurement is used to identify the equivalent transmission model parameters of the current state of each node of the grid, including the equivalent power supply potential E £ , the equivalent branch impedance mode, and the impedance angle.
  • the node of the operational state is inversely mapped by the equivalent transmission model.
  • the impedance mode index of the maximum power transmission idea as shown in FIG. 5 is used as the static stability margin index.
  • the static stability margin index corresponding to the current running mode of the generator branch, the tie line branch or the node is calculated as:
  • ZL can represent the equivalent load impedance of the generator branch, contact line or node, respectively, and can be obtained according to the terminal voltage and power.
  • i Measure the size of each generator branch, transmission line load and node static stability margin, and can be used to locate weak units, critical lines and weak nodes.
  • the static stability margin index of all nodes is averaged, and the average static stability margin index of the current operating mode can be obtained.
  • the calculation formula is:
  • the method for obtaining the thermal stability rate of the generator of the power grid and the thermal stability rate of the tie line in step S3 includes:
  • the thermal stability rate of the generator is calculated ⁇ and the line heat
  • the stable pass rate of £ PR is:
  • G N respectively the total number of generators of the grid
  • G QN respectively, the number of generators and tie lines that meet the respective thermal stability constraints.
  • the method for obtaining the node voltage pass rate and the load node power factor pass rate of the power grid in step S3 includes: determining the node voltage and the load node power factor qualified range upper and lower limits according to the normal operation mode of the power grid, and calculating the grid node voltage pass rate, load Node power factor pass rate ⁇
  • the total number of nodes and the number of load nodes are respectively V QN and P e are the number of nodes satisfying the voltage range and the number of load nodes satisfying the power factor range.
  • the method for obtaining the static stability rate of the power grid includes:
  • L N and N N are the total number of contact lines and the number of nodes, respectively, and L CN and N CN are respectively the number of tie lines and the number of nodes greater than c.
  • ⁇ ⁇ is the weight coefficient of the grid according to thermal stability constraints, operating electrical quantity constraints and static stability constraints, which can be flexibly configured according to experience or analysis needs.
  • is the overall thermal stability rate of the grid, ⁇ calculation formula is: H QR
  • is the electrical capacity pass rate of the overall operation of the grid
  • the formula is: Q R ⁇ N + P ⁇ is the overall static stability rate of the grid
  • step S3 the virtual reactive power change method is used to obtain the reactive power required to minimize the active power loss of the equivalent power transmission model.
  • the schematic diagram of the node reactive power compensation level evaluation is shown in Figure 6, and the current operating mode of each node is obtained.
  • the methods of compensation level indicators include:
  • the reactive power value required for the minimum active loss corresponding to the flow A under the node equivalent model can be obtained. Then the equivalent transmission and reactive power are compared with the obtained node.
  • step S3 the time domain data of the grid transient process trajectory is obtained from the WAMS system or various expected transient fault sets, and the transient behavior analysis of the envelope network is directly adopted by the method of the severely disturbed crew pair, as shown in FIG.
  • the schematic diagram obtains a transient stability margin indicator of the power grid, including steps S101-S103:
  • Step S101 according to the inertia time constant M of each generator and its angular velocity, the power angle, the phase voltage S of the bus voltage of the machine end, and the change of the electromagnetic power of the machine end 3 ⁇ 4 E , quickly identify the most advanced X station. And the most delayed X-stage generator, which constitutes the most severely affected unit set.
  • the number X can be artificially set according to needs, and the range of X is 5 ⁇ x ⁇ 10.
  • S seq is the virtual stable equilibrium operating point of the intersection between the mechanical power function ⁇ and the electromagnetic active power P Eeq between the genset i and the genset j.
  • the method of calculating 5 seq includes steps S1021 - S1023:
  • Step S1022 calculating electromagnetic active power between the genset and the generator set j
  • phase voltage of the terminal bus voltage f,. Uj . ⁇ Xi respectively represents the amplitude, phase angle and equivalent internal reactance of the generator bus voltage of the generator set and generator set _/.
  • Step S103 sequentially calculating the transient stability margin index between any lead and lag generator sets and the generator set ' in the set ⁇ with the minimum unit pair? ⁇ as the transient stability margin index of the current time domain data.
  • ie STsi min ⁇ r s/ , , 0
  • the positioning of the weak unit can be achieved by the S TSI of the smallest unit pair.
  • the method for obtaining the transient stability prediction index of the power grid in step S3 includes: using any calculated lead and lag unit pairs in the set ⁇ , according to the calculated genset pair equivalent mechanical power ⁇ and electromagnetic active power change trajectory, utilizing The curve fitting technique constructs the transient stability prediction index from the energy point of view. As shown in Fig. 8, the unit fits the equivalent power angle curve.
  • the method for obtaining the transient stability estimation index of the power grid specifically includes the steps S201 to S203:
  • x. , Xl is the fitted sine function coefficient to be determined, which represents the equivalent of the generator set ⁇ .
  • Step S202 calculating a transient stability estimation index between the generator set and the generator set 3 ⁇ 4 ⁇ , including step S2021 - step S2023:
  • Step S2021 according to the ⁇ variation trajectory fitting function ⁇ , obtain the unstable equilibrium point a after the fault removal, ⁇ is calculated as: ⁇ -arctan ⁇ - transient kinetic energy (acceleration area) ⁇ is:
  • the unit power angle difference between the fault occurrence time and the fault removal time is indicated respectively.
  • the method for obtaining the grid node voltage holding rate in step S3 includes:
  • the number of nodes in the statistical system that meets the acceptable range of voltage levels in the transient process is calculated, and the node voltage is calculated in the transient process.
  • the method for obtaining the thermal stability rate of the line in the power grid in step S3 includes: the static stability margin index and the line thermal stability of the given transient process: the node static stability margin c , the line thermal stability limit ⁇ ⁇ ⁇ and duration, the number of nodes sustainable statistical power grid to meet the static stability range of ⁇ meet sustainable stability range of the number of hot line 1 ⁇ 2w, compute nodes static stability and thermal stability of the line S ra passing rate of the transient process,
  • the formula for Ra is: S "" +L
  • S TI can comprehensively measure the transient transient situation level of the current transient process information, and effectively quantify the stable situation of multiple transient faults.

Abstract

L'invention concerne une méthode d'évaluation quantitative intégrée en ligne de situation générale de grand réseau électrique en fonction d'une réponse. La méthode comprend les étapes suivantes : étape S1, acquérir des informations structurelles de topologie de réseau électrique d'un système SCADA et d'un système EMS et établir une correspondance entre les informations structurelles de topologie de réseau électrique et un composant de réseau électrique de système WAMS ; étape S2, acquérir des données de tendance d'une méthode d'exploitation actuelle du réseau électrique à partir du système SCADA ou du système EMS ou d'un système WAMS ou acquérir différentes tendances préconçues ou données de domaine temporel d'un défaut transitoire à partir d'un système DSA ; et étape S3, grouper, à partir de l'aspect de traces, des données de réponse en un scénario d'exploitation stable (ou quasi-stable) et un scénario d'exploitation transitoire (ou dynamique), l'évaluation de situation de stabilisation statique étant effectuée sur un réseau électrique selon une méthode en ligne orientée sur les nœuds, et une évaluation de situation de stabilisation transitoire étant effectuée sur le réseau électrique selon une méthode en ligne orientée sur les unités. Des indicateurs d'évaluation complète statique et transitoire sont construits en fonction de la thermostabilisation au niveau des composants, d'une plage acceptable de paramètres électriques, et d'une stabilisation au niveau du système, la complétude et la vraisemblance des indicateurs d'évaluation de la situation générale sont améliorées, et l'efficacité de l'évaluation intégrée de la situation générale est améliorée en utilisant la méthode au lieu d'effectuer des tâches simultanément.
PCT/CN2013/088404 2013-04-23 2013-12-03 Méthode d'évaluation quantitative intégrée en ligne de situation générale de grand réseau électrique en fonction de la réponse WO2014173131A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310142071.0A CN103279638B (zh) 2013-04-23 2013-04-23 一种基于响应的大电网全态势在线一体化量化评估方法
CN201310142071.0 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014173131A1 true WO2014173131A1 (fr) 2014-10-30

Family

ID=49062153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088404 WO2014173131A1 (fr) 2013-04-23 2013-12-03 Méthode d'évaluation quantitative intégrée en ligne de situation générale de grand réseau électrique en fonction de la réponse

Country Status (2)

Country Link
CN (1) CN103279638B (fr)
WO (1) WO2014173131A1 (fr)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777597A (zh) * 2016-12-01 2017-05-31 国家电网公司 一种通道型电磁环网解环判据方法
CN106777701A (zh) * 2016-12-19 2017-05-31 中国电力科学研究院 一种多场景应用的移相变压器仿真分析方法
CN107503805A (zh) * 2017-07-25 2017-12-22 杭州华电半山发电有限公司 F级单轴燃气蒸汽联合循环热系统及发电机组经济指标体系
CN107895947A (zh) * 2017-12-20 2018-04-10 广东电网有限责任公司惠州供电局 一种配电网脆弱线路辨识方法
CN108256178A (zh) * 2017-12-29 2018-07-06 国网天津市电力公司电力科学研究院 一种配电网合环电流在线计算方法
CN108268671A (zh) * 2016-12-30 2018-07-10 中国电力科学研究院 一种在线安全分析模型数据质量评价体系及其评价方法
CN109711563A (zh) * 2018-12-06 2019-05-03 安徽凯川电力保护设备有限公司 一种用于电力设备的运行状态评估方法
CN109858842A (zh) * 2019-03-19 2019-06-07 广东电网有限责任公司 一种区域电网合环可行性的评估方法、装置和设备
CN109934284A (zh) * 2019-03-11 2019-06-25 长沙理工大学 一种基于故障耦合传播过程的综合能源系统负荷安全域交互特性生成方法
CN110020506A (zh) * 2019-03-08 2019-07-16 东南大学 基于电热型综合能源系统运行优化的差分格式选择方法
CN110083644A (zh) * 2019-03-04 2019-08-02 广东电网有限责任公司 一种配网线路重大停电事件预警方法及系统
CN110165664A (zh) * 2019-05-14 2019-08-23 武汉理工大学 一种分布式潮流控制器分段投资建设的决策方法
CN110276558A (zh) * 2019-06-27 2019-09-24 广东电网有限责任公司 一种电网的维护方法、系统及计算机可读存储介质
CN110429583A (zh) * 2019-07-08 2019-11-08 三峡大学 一种基于虚拟故障域的区域电网行波定位单元优化配置方法
CN110460116A (zh) * 2019-08-29 2019-11-15 国电南瑞科技股份有限公司 新能源参与暂态功角稳定紧急控制的方法及系统
CN110489729A (zh) * 2019-08-08 2019-11-22 国网湖南省电力有限公司 D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法及系统
CN110555786A (zh) * 2019-09-10 2019-12-10 国家电网有限公司 基于数据驱动和情景分析法的电网网源承载力评估方法
CN111242802A (zh) * 2019-12-31 2020-06-05 国网北京市电力公司 评估供电能力的方法和装置
CN111242420A (zh) * 2019-12-30 2020-06-05 湖南大学 一种综合性能多维度评估方法
CN111276967A (zh) * 2020-02-20 2020-06-12 中国电力科学研究院有限公司 一种电力系统的弹性能力评估方法和装置
CN111369388A (zh) * 2020-03-09 2020-07-03 华北电力大学 用于城市电网的对抗脆弱性评估方法及系统
CN111476455A (zh) * 2020-03-03 2020-07-31 中国南方电网有限责任公司 基于两级结构的电网运行断面特征选择与在线生成方法
CN111488695A (zh) * 2020-04-16 2020-08-04 中国南方电网有限责任公司 一种电网线路保护的最优概率整定计算方法
CN111523245A (zh) * 2020-04-30 2020-08-11 广东电网有限责任公司东莞供电局 一种高压配网短路电流计算模型的建立方法、装置及设备
CN111628501A (zh) * 2020-06-18 2020-09-04 国网山东省电力公司济南供电公司 一种交直流大电网暂态电压稳定评估方法及系统
CN111651878A (zh) * 2020-05-28 2020-09-11 山东大学 计及态势评估的大电网静态电压稳定优化决策方法及系统
CN111652478A (zh) * 2020-05-19 2020-09-11 三峡大学 基于伞式算法的电力系统电压稳定评估误分类约束方法
CN111680894A (zh) * 2020-05-26 2020-09-18 国网宁夏电力有限公司 电网安全稳定评价方法、装置及系统
CN111934317A (zh) * 2020-08-11 2020-11-13 广东电网有限责任公司 一种强台风情况下重点区域电网保底电网优化方法
CN111967736A (zh) * 2020-07-30 2020-11-20 许继集团有限公司 一种基于大数据平台的变电站倒负荷控制方法及系统
CN111985068A (zh) * 2020-08-10 2020-11-24 国网湖北省电力有限公司电力科学研究院 一种针对emtdc/pscad仿真环境的基于pi环节的发电机状态初始化方法
CN112072715A (zh) * 2020-09-17 2020-12-11 国电南瑞科技股份有限公司 考虑暂态电压约束的电网新能源接纳能力确定方法和装置
CN112115582A (zh) * 2020-08-14 2020-12-22 国网宁夏电力有限公司中卫供电公司 煤制油生产线受电压暂降影响的评估方法、介质及系统
CN112234598A (zh) * 2020-08-28 2021-01-15 国网天津市电力公司电力科学研究院 一种电磁暂态仿真初始化方法
CN112329231A (zh) * 2020-11-03 2021-02-05 江苏省电力试验研究院有限公司 一种适用于交直流混联受端电网的电压弹性力评估方法
CN112434936A (zh) * 2020-11-23 2021-03-02 湖南大学 一种电力系统惯量安全域评估方法、系统、电子设备及可读存储介质
CN112436502A (zh) * 2020-11-19 2021-03-02 华北电力大学(保定) 一种基于暂态电量的直流电网电压稳定控制方法
CN112600260A (zh) * 2020-12-21 2021-04-02 国网上海市电力公司 基于暂态电压灵敏度排序的机组调差系数优化方法及设备
CN112668875A (zh) * 2020-12-25 2021-04-16 国家电网公司东北分部 基于无功裕度的多通道受电系统最大受电比例评估方法
CN112751418A (zh) * 2020-12-31 2021-05-04 国网山东省电力公司青岛供电公司 智能配电网区域态势要素感知方法及系统
CN112784475A (zh) * 2020-12-28 2021-05-11 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112800683A (zh) * 2021-03-10 2021-05-14 广东电网有限责任公司电力调度控制中心 基于卷积神经网络的系统短路电流水平评估方法及系统
CN112819648A (zh) * 2020-12-29 2021-05-18 湖南大学 电力调度操作指令安全校验方法及系统
CN113193598A (zh) * 2021-05-31 2021-07-30 重庆大学 一种新能源并网逆变器暂态稳定裕度评估方法
CN113221375A (zh) * 2021-05-31 2021-08-06 山东建筑大学 一种考虑线路覆冰与绝缘子闪络的电力系统仿真方法
CN113381432A (zh) * 2021-06-01 2021-09-10 山东电力研究院 一种评估同步调相机故障对特高压直流输电影响的方法
CN113392536A (zh) * 2021-06-30 2021-09-14 中国南方电网有限责任公司 电力通信网络仿真评估方法、装置、计算机设备和介质
CN113406537A (zh) * 2020-03-16 2021-09-17 上海长庚信息技术股份有限公司 一种电力设备故障程度的定量评估方法
CN113705138A (zh) * 2021-08-30 2021-11-26 国网上海市电力公司 一种大规模交直流电网在线安全评估方法
CN113708368A (zh) * 2021-08-25 2021-11-26 华东交通大学 一种基于蜂拥算法的智能电网暂态稳定控制方法
CN113725877A (zh) * 2021-08-30 2021-11-30 国网江苏省电力有限公司 一种区域自治电网模式保障可靠供电经济性评估分析方法
CN113746104A (zh) * 2021-09-02 2021-12-03 云南电网有限责任公司 一种柴储供电模式的配电网协调控制方法及系统
CN113937762A (zh) * 2021-10-12 2022-01-14 湖南大学 基于长短期记忆网络的微电网暂态稳定评估方法
CN113988558A (zh) * 2021-10-20 2022-01-28 山东大学 基于盲区识别和电气坐标系扩展的电网动态安全评估方法
CN114142456A (zh) * 2021-10-19 2022-03-04 国网内蒙古东部电力有限公司经济技术研究院 特高压交直流电网稳定性同质化评估方法
CN114172165A (zh) * 2021-12-06 2022-03-11 国网浙江省电力有限公司舟山供电公司 基于电缆入地场景下配置svg的配电网降损方法
CN114243711A (zh) * 2021-12-23 2022-03-25 福州大学 基于变化支路影响域的大型电网电压暂降评估方法
CN114614470A (zh) * 2022-01-10 2022-06-10 国网内蒙古东部电力有限公司检修分公司 基于参数识别的特高压交直流电网运行控制方法
CN114881390A (zh) * 2022-03-03 2022-08-09 国网湖北省电力有限公司电力科学研究院 一种计及电网安全约束的变电站主接线风险评估方法
CN114937994A (zh) * 2022-03-24 2022-08-23 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置
CN115333103A (zh) * 2022-10-17 2022-11-11 国网浙江省电力有限公司宁波供电公司 一种基于气象特征的电网电压控制参数自适应整定方法
CN116029618A (zh) * 2023-03-28 2023-04-28 山东大学 一种电力系统动态安全分区评估方法及系统
CN116050701A (zh) * 2022-11-16 2023-05-02 华北电力大学 一种计及碳流的电力系统节点重要度评估方法
CN116545039A (zh) * 2023-07-03 2023-08-04 华北电力大学 一种直驱风机等效综合惯量确定方法、系统及电子设备
CN117200460A (zh) * 2023-11-06 2023-12-08 国网湖北省电力有限公司经济技术研究院 一种有源配电网量测优化配置方法及系统
CN117574116A (zh) * 2024-01-15 2024-02-20 湖南大学 一种海底直流系统暂态稳定评估的混合特征选择方法
CN117595331A (zh) * 2024-01-18 2024-02-23 中国科学院电工研究所 一种重力储能多机组功率柔性补偿方法
CN114881390B (zh) * 2022-03-03 2024-05-14 国网湖北省电力有限公司电力科学研究院 一种计及电网安全约束的变电站主接线风险评估方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279638B (zh) * 2013-04-23 2017-02-08 国家电网公司 一种基于响应的大电网全态势在线一体化量化评估方法
CN103997041B (zh) * 2013-11-13 2016-03-02 国家电网公司 一种交直流混联系统的在线电压稳定判别系统
CN105098763B (zh) * 2014-05-16 2018-01-19 国家电网公司 一种基于wams和ems的暂态电压稳定在线评估方法
CN104156543B (zh) * 2014-08-28 2017-02-22 国家电网公司 适用于全过程仿真的电网严重故障相继开断扰动设置方法
US9829880B2 (en) 2014-11-20 2017-11-28 General Electric Company System and method for modelling load in an electrical power network
CN108268670B (zh) * 2016-12-30 2023-07-21 中国电力科学研究院 一种不依赖系统扰动轨迹的电网稳定态势评估方法及系统
WO2018190793A1 (fr) 2017-04-10 2018-10-18 General Electric Company Systèmes et procédés permettant de faire fonctionner des générateurs sur la base de limites de stabilité d'état stable de générateur
CN109885361B (zh) * 2017-12-26 2020-09-25 广东电网有限责任公司电力调度控制中心 一种机组状态统计时序图可视化展示方法
CN108400588A (zh) * 2018-03-06 2018-08-14 竺炜 一种主网在线安全态势及运行经验的获取方法
CN108471147B (zh) * 2018-03-30 2021-03-12 天津大学 含双馈风机的动态安全域优化算法
CN109034653B (zh) * 2018-08-16 2022-02-15 广东电网有限责任公司 一种电源规划方案综合评价方法
CN109004679B (zh) * 2018-09-06 2021-08-20 国网安徽省电力有限公司芜湖供电公司 一种可再生能源接入的电网安全稳定监控方法
CN109412147B (zh) * 2018-10-17 2021-10-22 中国电力科学研究院有限公司 一种识别预想多重故障后的电网薄弱断面的方法和系统
CN109301842B (zh) * 2018-10-23 2022-04-22 国网吉林省电力有限公司 一种基于负阻尼贡献的风电场次同步振荡切除方法
CN109473996A (zh) * 2018-11-30 2019-03-15 中国电力科学研究院有限公司 一种获取计划方式下输电断面稳定裕度的方法及系统
CN110059356A (zh) * 2019-03-18 2019-07-26 中国电力科学研究院有限公司 一种基于大数据和人工智能的大电网智能调控系统和方法
CN111125880B (zh) * 2019-11-25 2022-07-22 国网四川省电力公司电力科学研究院 一种暂态稳定视角下电力系统仿真数据生成方法
CN113837625B (zh) * 2021-09-27 2024-04-02 内蒙古电力(集团)有限责任公司电力调度控制分公司 电网连锁故障的风险定量评估方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299539A (zh) * 2007-11-08 2008-11-05 国网南京自动化研究院 基于静态和暂态安全稳定模式的大电网在线预防控制方法
CN102521677A (zh) * 2011-12-15 2012-06-27 中国电力科学研究院 基于单pmu量测段面的节点等效输电参数优化辨识方法
CN103279638A (zh) * 2013-04-23 2013-09-04 国家电网公司 一种基于响应的大电网全态势在线一体化量化评估方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684187B (zh) * 2012-04-24 2015-08-05 南京南瑞集团公司 一种基于wams和在线仿真数据的电网静态稳定分析方法
CN102709953B (zh) * 2012-05-17 2016-05-25 中国电力科学研究院 一种基于wams及机组对的电网暂态稳定在线量化评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299539A (zh) * 2007-11-08 2008-11-05 国网南京自动化研究院 基于静态和暂态安全稳定模式的大电网在线预防控制方法
CN102521677A (zh) * 2011-12-15 2012-06-27 中国电力科学研究院 基于单pmu量测段面的节点等效输电参数优化辨识方法
CN103279638A (zh) * 2013-04-23 2013-09-04 国家电网公司 一种基于响应的大电网全态势在线一体化量化评估方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, DAOWEI ET AL.: "Quantitative Method for On-line Power System Transient Stability Assessment Based on Response Information", PROCEEDINGS OF THE CSEE, vol. 33, no. 4, 5 February 2013 (2013-02-05), pages 85 - 95 *

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777597A (zh) * 2016-12-01 2017-05-31 国家电网公司 一种通道型电磁环网解环判据方法
CN106777701A (zh) * 2016-12-19 2017-05-31 中国电力科学研究院 一种多场景应用的移相变压器仿真分析方法
CN106777701B (zh) * 2016-12-19 2023-11-14 中国电力科学研究院 一种多场景应用的移相变压器仿真分析方法
CN108268671A (zh) * 2016-12-30 2018-07-10 中国电力科学研究院 一种在线安全分析模型数据质量评价体系及其评价方法
CN107503805A (zh) * 2017-07-25 2017-12-22 杭州华电半山发电有限公司 F级单轴燃气蒸汽联合循环热系统及发电机组经济指标体系
CN107503805B (zh) * 2017-07-25 2023-06-30 杭州华电半山发电有限公司 基于f级单轴燃气蒸汽联合循环发电机组的经济指标分析方法
CN107895947A (zh) * 2017-12-20 2018-04-10 广东电网有限责任公司惠州供电局 一种配电网脆弱线路辨识方法
CN107895947B (zh) * 2017-12-20 2023-07-07 广东电网有限责任公司惠州供电局 一种配电网脆弱线路辨识方法
CN108256178A (zh) * 2017-12-29 2018-07-06 国网天津市电力公司电力科学研究院 一种配电网合环电流在线计算方法
CN109711563A (zh) * 2018-12-06 2019-05-03 安徽凯川电力保护设备有限公司 一种用于电力设备的运行状态评估方法
CN110083644A (zh) * 2019-03-04 2019-08-02 广东电网有限责任公司 一种配网线路重大停电事件预警方法及系统
CN110083644B (zh) * 2019-03-04 2023-04-28 广东电网有限责任公司 一种配网线路重大停电事件预警方法及系统
CN110020506A (zh) * 2019-03-08 2019-07-16 东南大学 基于电热型综合能源系统运行优化的差分格式选择方法
CN110020506B (zh) * 2019-03-08 2023-04-07 东南大学 基于电热型综合能源系统运行优化的差分格式选择方法
CN109934284A (zh) * 2019-03-11 2019-06-25 长沙理工大学 一种基于故障耦合传播过程的综合能源系统负荷安全域交互特性生成方法
CN109858842B (zh) * 2019-03-19 2023-08-08 广东电网有限责任公司 一种区域电网合环可行性的评估方法、装置和设备
CN109858842A (zh) * 2019-03-19 2019-06-07 广东电网有限责任公司 一种区域电网合环可行性的评估方法、装置和设备
CN110165664B (zh) * 2019-05-14 2023-01-03 武汉理工大学 一种分布式潮流控制器分段投资建设的决策方法
CN110165664A (zh) * 2019-05-14 2019-08-23 武汉理工大学 一种分布式潮流控制器分段投资建设的决策方法
CN110276558A (zh) * 2019-06-27 2019-09-24 广东电网有限责任公司 一种电网的维护方法、系统及计算机可读存储介质
CN110429583B (zh) * 2019-07-08 2023-01-31 三峡大学 一种基于虚拟故障域的区域电网行波定位单元优化配置方法
CN110429583A (zh) * 2019-07-08 2019-11-08 三峡大学 一种基于虚拟故障域的区域电网行波定位单元优化配置方法
CN110489729A (zh) * 2019-08-08 2019-11-22 国网湖南省电力有限公司 D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法及系统
CN110489729B (zh) * 2019-08-08 2022-12-06 国网湖南省电力有限公司 D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法及系统
CN110460116B (zh) * 2019-08-29 2022-08-19 国电南瑞科技股份有限公司 新能源参与暂态功角稳定紧急控制的方法及系统
CN110460116A (zh) * 2019-08-29 2019-11-15 国电南瑞科技股份有限公司 新能源参与暂态功角稳定紧急控制的方法及系统
CN110555786A (zh) * 2019-09-10 2019-12-10 国家电网有限公司 基于数据驱动和情景分析法的电网网源承载力评估方法
CN110555786B (zh) * 2019-09-10 2023-08-11 国网安徽省电力公司滁州供电公司 基于数据驱动和情景分析法的电网网源承载力评估方法
CN111242420A (zh) * 2019-12-30 2020-06-05 湖南大学 一种综合性能多维度评估方法
CN111242420B (zh) * 2019-12-30 2023-11-28 湖南大学 一种综合性能多维度评估方法
CN111242802A (zh) * 2019-12-31 2020-06-05 国网北京市电力公司 评估供电能力的方法和装置
CN111276967B (zh) * 2020-02-20 2022-07-01 中国电力科学研究院有限公司 一种电力系统的弹性能力评估方法和装置
CN111276967A (zh) * 2020-02-20 2020-06-12 中国电力科学研究院有限公司 一种电力系统的弹性能力评估方法和装置
CN111476455A (zh) * 2020-03-03 2020-07-31 中国南方电网有限责任公司 基于两级结构的电网运行断面特征选择与在线生成方法
CN111369388A (zh) * 2020-03-09 2020-07-03 华北电力大学 用于城市电网的对抗脆弱性评估方法及系统
CN111369388B (zh) * 2020-03-09 2024-01-26 华北电力大学 用于城市电网的对抗脆弱性评估方法及系统
CN113406537B (zh) * 2020-03-16 2024-05-07 上海长庚信息技术股份有限公司 一种电力设备故障程度的定量评估方法
CN113406537A (zh) * 2020-03-16 2021-09-17 上海长庚信息技术股份有限公司 一种电力设备故障程度的定量评估方法
CN111488695A (zh) * 2020-04-16 2020-08-04 中国南方电网有限责任公司 一种电网线路保护的最优概率整定计算方法
CN111523245A (zh) * 2020-04-30 2020-08-11 广东电网有限责任公司东莞供电局 一种高压配网短路电流计算模型的建立方法、装置及设备
CN111652478A (zh) * 2020-05-19 2020-09-11 三峡大学 基于伞式算法的电力系统电压稳定评估误分类约束方法
CN111680894B (zh) * 2020-05-26 2023-04-07 国网宁夏电力有限公司 电网安全稳定评价方法、装置及系统
CN111680894A (zh) * 2020-05-26 2020-09-18 国网宁夏电力有限公司 电网安全稳定评价方法、装置及系统
CN111651878B (zh) * 2020-05-28 2023-05-23 山东大学 计及态势评估的大电网静态电压稳定优化决策方法及系统
CN111651878A (zh) * 2020-05-28 2020-09-11 山东大学 计及态势评估的大电网静态电压稳定优化决策方法及系统
CN111628501B (zh) * 2020-06-18 2023-04-18 国网山东省电力公司济南供电公司 一种交直流大电网暂态电压稳定评估方法及系统
CN111628501A (zh) * 2020-06-18 2020-09-04 国网山东省电力公司济南供电公司 一种交直流大电网暂态电压稳定评估方法及系统
CN111967736A (zh) * 2020-07-30 2020-11-20 许继集团有限公司 一种基于大数据平台的变电站倒负荷控制方法及系统
CN111985068B (zh) * 2020-08-10 2022-07-12 国网湖北省电力有限公司电力科学研究院 一种针对emtdc/pscad仿真环境的基于pi环节的发电机状态初始化方法
CN111985068A (zh) * 2020-08-10 2020-11-24 国网湖北省电力有限公司电力科学研究院 一种针对emtdc/pscad仿真环境的基于pi环节的发电机状态初始化方法
CN111934317A (zh) * 2020-08-11 2020-11-13 广东电网有限责任公司 一种强台风情况下重点区域电网保底电网优化方法
CN112115582A (zh) * 2020-08-14 2020-12-22 国网宁夏电力有限公司中卫供电公司 煤制油生产线受电压暂降影响的评估方法、介质及系统
CN112234598A (zh) * 2020-08-28 2021-01-15 国网天津市电力公司电力科学研究院 一种电磁暂态仿真初始化方法
CN112234598B (zh) * 2020-08-28 2024-04-23 国网天津市电力公司电力科学研究院 一种电磁暂态仿真初始化方法
CN112072715A (zh) * 2020-09-17 2020-12-11 国电南瑞科技股份有限公司 考虑暂态电压约束的电网新能源接纳能力确定方法和装置
CN112329231A (zh) * 2020-11-03 2021-02-05 江苏省电力试验研究院有限公司 一种适用于交直流混联受端电网的电压弹性力评估方法
CN112436502A (zh) * 2020-11-19 2021-03-02 华北电力大学(保定) 一种基于暂态电量的直流电网电压稳定控制方法
CN112436502B (zh) * 2020-11-19 2022-06-24 华北电力大学(保定) 一种基于暂态电量的直流电网电压稳定控制方法
CN112434936A (zh) * 2020-11-23 2021-03-02 湖南大学 一种电力系统惯量安全域评估方法、系统、电子设备及可读存储介质
CN112600260A (zh) * 2020-12-21 2021-04-02 国网上海市电力公司 基于暂态电压灵敏度排序的机组调差系数优化方法及设备
CN112668875A (zh) * 2020-12-25 2021-04-16 国家电网公司东北分部 基于无功裕度的多通道受电系统最大受电比例评估方法
CN112784475B (zh) * 2020-12-28 2023-08-18 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112784475A (zh) * 2020-12-28 2021-05-11 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112819648B (zh) * 2020-12-29 2024-02-13 湖南大学 电力调度操作指令安全校验方法及系统
CN112819648A (zh) * 2020-12-29 2021-05-18 湖南大学 电力调度操作指令安全校验方法及系统
CN112751418A (zh) * 2020-12-31 2021-05-04 国网山东省电力公司青岛供电公司 智能配电网区域态势要素感知方法及系统
CN112800683A (zh) * 2021-03-10 2021-05-14 广东电网有限责任公司电力调度控制中心 基于卷积神经网络的系统短路电流水平评估方法及系统
CN113193598B (zh) * 2021-05-31 2022-09-30 重庆大学 一种新能源并网逆变器暂态稳定裕度评估方法
CN113193598A (zh) * 2021-05-31 2021-07-30 重庆大学 一种新能源并网逆变器暂态稳定裕度评估方法
CN113221375B (zh) * 2021-05-31 2023-08-04 山东建筑大学 一种考虑线路覆冰与绝缘子闪络的电力系统仿真方法
CN113221375A (zh) * 2021-05-31 2021-08-06 山东建筑大学 一种考虑线路覆冰与绝缘子闪络的电力系统仿真方法
CN113381432B (zh) * 2021-06-01 2022-07-08 国网山东省电力公司电力科学研究院 一种评估同步调相机故障对特高压直流输电影响的方法
CN113381432A (zh) * 2021-06-01 2021-09-10 山东电力研究院 一种评估同步调相机故障对特高压直流输电影响的方法
CN113392536A (zh) * 2021-06-30 2021-09-14 中国南方电网有限责任公司 电力通信网络仿真评估方法、装置、计算机设备和介质
CN113392536B (zh) * 2021-06-30 2024-01-30 中国南方电网有限责任公司 电力通信网络仿真评估方法、装置、计算机设备和介质
CN113708368A (zh) * 2021-08-25 2021-11-26 华东交通大学 一种基于蜂拥算法的智能电网暂态稳定控制方法
CN113725877B (zh) * 2021-08-30 2024-01-30 国网江苏省电力有限公司 一种区域自治电网模式保障可靠供电经济性评估分析方法
CN113705138A (zh) * 2021-08-30 2021-11-26 国网上海市电力公司 一种大规模交直流电网在线安全评估方法
CN113725877A (zh) * 2021-08-30 2021-11-30 国网江苏省电力有限公司 一种区域自治电网模式保障可靠供电经济性评估分析方法
CN113746104A (zh) * 2021-09-02 2021-12-03 云南电网有限责任公司 一种柴储供电模式的配电网协调控制方法及系统
CN113746104B (zh) * 2021-09-02 2023-08-22 云南电网有限责任公司 一种柴储供电模式的配电网协调控制方法及系统
CN113937762A (zh) * 2021-10-12 2022-01-14 湖南大学 基于长短期记忆网络的微电网暂态稳定评估方法
CN113937762B (zh) * 2021-10-12 2023-06-27 湖南大学 基于长短期记忆网络的微电网暂态稳定评估方法
CN114142456A (zh) * 2021-10-19 2022-03-04 国网内蒙古东部电力有限公司经济技术研究院 特高压交直流电网稳定性同质化评估方法
CN113988558A (zh) * 2021-10-20 2022-01-28 山东大学 基于盲区识别和电气坐标系扩展的电网动态安全评估方法
CN114172165A (zh) * 2021-12-06 2022-03-11 国网浙江省电力有限公司舟山供电公司 基于电缆入地场景下配置svg的配电网降损方法
CN114172165B (zh) * 2021-12-06 2023-10-20 国网浙江省电力有限公司舟山供电公司 基于电缆入地场景下配置svg的配电网降损方法
CN114243711A (zh) * 2021-12-23 2022-03-25 福州大学 基于变化支路影响域的大型电网电压暂降评估方法
CN114614470A (zh) * 2022-01-10 2022-06-10 国网内蒙古东部电力有限公司检修分公司 基于参数识别的特高压交直流电网运行控制方法
CN114881390B (zh) * 2022-03-03 2024-05-14 国网湖北省电力有限公司电力科学研究院 一种计及电网安全约束的变电站主接线风险评估方法
CN114881390A (zh) * 2022-03-03 2022-08-09 国网湖北省电力有限公司电力科学研究院 一种计及电网安全约束的变电站主接线风险评估方法
CN114937994A (zh) * 2022-03-24 2022-08-23 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置
CN115333103A (zh) * 2022-10-17 2022-11-11 国网浙江省电力有限公司宁波供电公司 一种基于气象特征的电网电压控制参数自适应整定方法
CN115333103B (zh) * 2022-10-17 2023-01-31 国网浙江省电力有限公司宁波供电公司 一种基于气象特征的电网电压控制参数自适应整定方法
CN116050701B (zh) * 2022-11-16 2023-12-15 华北电力大学 一种计及碳流的电力系统节点重要度评估方法
CN116050701A (zh) * 2022-11-16 2023-05-02 华北电力大学 一种计及碳流的电力系统节点重要度评估方法
CN116029618A (zh) * 2023-03-28 2023-04-28 山东大学 一种电力系统动态安全分区评估方法及系统
CN116029618B (zh) * 2023-03-28 2023-06-16 山东大学 一种电力系统动态安全分区评估方法及系统
CN116545039B (zh) * 2023-07-03 2023-09-22 华北电力大学 一种直驱风机等效综合惯量确定方法、系统及电子设备
CN116545039A (zh) * 2023-07-03 2023-08-04 华北电力大学 一种直驱风机等效综合惯量确定方法、系统及电子设备
CN117200460B (zh) * 2023-11-06 2024-01-23 国网湖北省电力有限公司经济技术研究院 一种有源配电网量测优化配置方法及系统
CN117200460A (zh) * 2023-11-06 2023-12-08 国网湖北省电力有限公司经济技术研究院 一种有源配电网量测优化配置方法及系统
CN117574116B (zh) * 2024-01-15 2024-04-19 湖南大学 一种海底直流系统暂态稳定评估的混合特征选择方法
CN117574116A (zh) * 2024-01-15 2024-02-20 湖南大学 一种海底直流系统暂态稳定评估的混合特征选择方法
CN117595331B (zh) * 2024-01-18 2024-03-22 中国科学院电工研究所 一种重力储能多机组功率柔性补偿方法
CN117595331A (zh) * 2024-01-18 2024-02-23 中国科学院电工研究所 一种重力储能多机组功率柔性补偿方法

Also Published As

Publication number Publication date
CN103279638B (zh) 2017-02-08
CN103279638A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2014173131A1 (fr) Méthode d'évaluation quantitative intégrée en ligne de situation générale de grand réseau électrique en fonction de la réponse
US11378994B2 (en) Systems and methods for grid operating systems in electric power systems
Bell et al. Economic and technical criteria for designing future off-shore HVDC grids
Muscas et al. Smart electric energy measurements in power distribution grids
Ali et al. Wide area smart grid architectural model and control: A survey
Manbachi et al. Smart grid adaptive volt-VAR optimization: Challenges for sustainable future grids
CN102593829A (zh) 计及关键支路的输电断面确定方法与装置
Santos et al. A new real-time multi-agent system for under frequency load shedding in a smart grid context
Brosinsky et al. A new development platform for the next generation of power system control center functionalities for hybrid AC-HVDC transmission systems
Shi et al. Enhancing event-driven load shedding by corrective switching with transient security and overload constraints
Xiang et al. IoT and edge computing based direct load control for fast adaptive frequency regulation
Çinar et al. Self-healing in smart grid: a review
Bo et al. Substation cloud computing for secondary auxiliary equipment
Xiang et al. Distributed frequency emergency control with coordinated edge intelligence
Tholomier et al. Phasor measurement units: Functionality and applications
Bani-Ahmed et al. Design and development of a true decentralized control architecture for microgrid
Sufyan et al. Analysis of effectiveness of PMU based wide area monitoring system in Indian power grid
Yan Wide-area protection and control system with WAMS based
Balasubramaniam et al. Cellular neural network based situational awareness system for power grids
Cepeda et al. Real-time adaptive load shedding based on probabilistic overload estimation
Rahman et al. Agent based power system transient stability enhancement
Wang et al. PMU-based angle constraint active management on 33kV distribution network
RU2812195C1 (ru) Способ интеллектуального управления нагрузкой в изолированных энергосистемах в аварийных режимах и устройство для его осуществления
Heyde et al. Optimal bottleneck prevention in transmission systems using dynamic security assessment
CN108599196A (zh) 改善单通道互联电网暂态功角稳定性的紧急控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882842

Country of ref document: EP

Kind code of ref document: A1