WO2014173044A1 - 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法 - Google Patents

一种制备3-氨甲基-3,5,5-三甲基环己胺的方法 Download PDF

Info

Publication number
WO2014173044A1
WO2014173044A1 PCT/CN2013/081555 CN2013081555W WO2014173044A1 WO 2014173044 A1 WO2014173044 A1 WO 2014173044A1 CN 2013081555 W CN2013081555 W CN 2013081555W WO 2014173044 A1 WO2014173044 A1 WO 2014173044A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cyano
reaction
ammonia
pressure
Prior art date
Application number
PCT/CN2013/081555
Other languages
English (en)
French (fr)
Inventor
李付国
姜进科
陈忠英
王静
崔娇英
陈长生
李昂
吕成戈
丁可
黎源
Original Assignee
万华化学集团股份有限公司
宁波万华聚氨酯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 宁波万华聚氨酯有限公司 filed Critical 万华化学集团股份有限公司
Publication of WO2014173044A1 publication Critical patent/WO2014173044A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the invention relates to a method for preparing an aliphatic amine, in particular to ammonia hydrogenation of 3-cyano-3,5,5-trimethylcyclohexanone to prepare 3-aminomethyl-3, 5, 5-tri A method of methylcyclohexylamine.
  • IPDA 3-aminomethyl-3,5,5-trimethylcyclohexylamine
  • IPDA isophoronediamine
  • a raw material of an isocyanate isophorone diisocyanate, abbreviated as IPDI
  • a polyamide or the like, which can also be used as a curing agent for an epoxy resin.
  • IPDA IPDA
  • the temperature of the imidization reactor is 50 ° C
  • the hydrogenation reactor is 100 ° C
  • the pressure is controlled at 252 bar
  • the aminonitrile content is 0.18%; although the above patents can obtain IPDA in high yield (greater than 96%), the high operating pressure leads to an increase in investment costs and equipment maintenance costs.
  • the process of preparing IPDA by one-step method is described in the earlier patent US3352913. IPN, liquid ammonia and hydrogen are put into the reaction vessel, and heating at 12 CTC, 15 Mpa for 2 h, can obtain a yield of 81.4%, although the pressure is relative to the upper one.
  • the two Chinese patent documents were reduced, but the IPDA yield was low, and more by-product 3-aminomethyl-3,5,5-trimethylcyclohexanol (9.4%) was produced.
  • the existing methods for preparing PDA have the following drawbacks: In order to obtain a good yield of IPDA, the operating pressure will be high, and at a lower pressure, the yield is not high, and there are many by-products.
  • the processing capacity of the catalyst in the IPDA manufacturing process is directly proportional to the operating pressure, specifically, proportional to the hydrogen partial pressure.
  • a process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine comprising the steps of: a) 3-cyano-3,5,5-trimethylcyclohexane The ketone is reacted with a raw material liquid formed of ammonia to form an imidization reaction liquid containing 3-cyano-3,5,5-trimethylcyclohexylimine;
  • step b) imidization reaction of 3-cyano-3,5,5-trimethylcyclohexylimine obtained in step a)
  • the liquid is subjected to a hydrogenation reaction in the presence of hydrogen, ammonia and a hydrogenation catalyst to obtain a reaction liquid containing 3 cyano-3,5,5-trimethylcyclohexylamine;
  • reaction liquid after the ammonia separation in the step c) is subjected to a second hydrogenation reaction in the presence of hydrogen and a hydrogenation catalyst to obtain 3-aminomethyl-3,5,5-trimethylcyclohexylamine.
  • ammonia described in the present invention may be in the form of liquid ammonia or ammonia or any ammonia-containing solution.
  • step a) is carried out at a temperature of from 20 to 10 CTC and a pressure of from 0.5 to 10 MPa, preferably at a temperature of 20 70 D C and a pressure of from 1 to 10 MPa, more preferably from 40 to 60 ° C.
  • the temperature is carried out under a pressure of 2 - 5 MPa.
  • the catalyst in step a), 3-cyano-3,5,5-trimethylcyclohexanone (IPIO is imidized with ammonia, the catalyst may or may not be used in the reaction process) If a catalyst is used, the catalyst may be an acidic metal oxide, an inorganic ion exchange resin or an organic ion exchange resin such as alumina, titania, zirconia, silica, zeolite or the like.
  • the volumetric space velocity of the raw material liquid is 0.05 lOOmL / (ml of catalyst ⁇ hour), preferably 0.1 to 40 mL (ml of catalyst ⁇ hour), more preferably 1 - 30 mL / (ml of catalyst ⁇ hour).
  • the molar ratio of ammonia to 3-cyano-3,5,5-trimethylcyclohexanone is from 5:1 to 200:1, preferably from 10:1 to 100. :1, more preferably 20: 1-80: 1.
  • the imidization reaction in the step a) may be carried out under a hydrogen atmosphere or in the absence of hydrogen, preferably under a hydrogen atmosphere, and the molar ratio of hydrogen to IPN is 3:1. -1000:1, preferably 4:1 to 500:1, more preferably 10:1 to 400:1, still more preferably 15:1 to 300:1, particularly preferably 20:1 to 100:1.
  • the IPN in step a) may be in the form of a solution dissolved in a solvent. Participate in the reaction, for example in alcohol or ether, such as methanol, dioxane or tetrahydrofuran. It can also be carried out in the form of no solvent. It is preferred to participate in the reaction as a solution dissolved in a solvent. If it does not contain solvents,
  • the mass concentration of the IPN contained in the IPN solution in the step a) is from 0.1% to 50%, more preferably from 5% to 30%; further, the reaction after the step a )
  • the liquid may be added or removed before the reaction step b), preferably without any treatment.
  • the imidization reaction in step a) is preferably carried out continuously, usually in a pressure vessel, preferably using a tubular reactor, more preferably a fixed bed reactor, which reactor is included for formation A catalyst for imines.
  • the IPN and ammonia are preferably fed from below the reactor and discharged above.
  • the reaction material 3-cyano-3,5,5-trimethylcyclohexanone and ammonia in step a) can be subjected to optimized mass transfer heat transfer before entering the imidization reactor.
  • Equipment these are chemical equipment familiar to the chemical industry, such as mixers, mixers, etc., more specifically static mixers.
  • step b) is carried out at a temperature of from 50 to 130 Torr and a pressure of from 4 to 14 MPa, preferably at a temperature of from 60 to 100 ° C and a pressure of from 2 to 5 MPa.
  • the molar ratio of hydrogen to 3-cyano-3,5,5 trimethylcycloheximide described in step b) is from 3:1 to 1000:1, preferably 4:1. -500:1, more preferably 10:1-500:1, further preferably 15:1-300:1, particularly preferably 20:1-100:1.
  • the molar ratio of ammonia to 3-cyano-3,5,5-trimethylcycloheximide is from 5:1 to 200:1, preferably from 10:1 to 100:1, more preferably from 20:1 to 80. : 1.
  • the reaction in step b) is carried out continuously in a pressure vessel, for example in a hydrogenation reactor, preferably in a tubular reactor, more preferably in a fixed bed reactor.
  • the hydrogenation reactor can be a thermostated reactor or a temperature-changing reactor, such as a reactor in an adiabatic form.
  • the hydrogenation catalyst in step b) is a hydrogenation catalyst in which cobalt or nickel is an active component, such as a supported cobalt/nickel catalyst or a framework cobalt/nickel catalyst, preferably supported/skeletal type. Cobalt catalyst.
  • the volumetric space velocity of the first step of the hydrogenation reaction in step b) is from 0.05 to 100 mL / (ml of catalyst ⁇ hour), preferably 0. L-40 mL (ml of catalyst ⁇ hour), more preferably 1 30 mL / (ml of catalyst ⁇ hour).
  • the reaction liquid containing 3-cyano-3,5,5-trimethylcyclohexylamine obtained in the step b) is mainly an aminonitrile (IPAN) and a 3-aminomethyl-3, 5 , 5-trimethylcyclohexylamine (IPDA), also contains a small amount of IPDA dimerization or polymerization products.
  • IPAN aminonitrile
  • IPDA 3-aminomethyl-3, 5 , 5-trimethylcyclohexylamine
  • the content of the aminonitrile (IPAN) in the product obtained in the step b) is from 0.01 to 99% by weight, preferably from 5 to 80% by weight, more preferably from 40 to 60% by weight (solvent is excluded, the same applies hereinafter); O. 001-2wt%, preferably 0.
  • the content of the IPDA is 0. 001-2wt%, preferably 0. 001-2wt%, preferably 0. 001-2wt%, preferably 0. 01 ⁇ I. 01. 0wt% of the imine ( ⁇ ).
  • the reaction liquid after the step b) may be added or removed a part of the solvent before entering the step c), and preferably the reaction liquid is not subjected to any treatment.
  • the method of separating ammonia in step c) is usually carried out by a method known to those skilled in the art, such as a method of simmering or distilling.
  • the process for the separation of ammonia is preferably carried out by distillation in a stepwise manner.
  • the operating pressure is preferably 1. 5-5 MPa, more preferably 1. 8-2. 5 MPa.
  • the purity of the ammonia separated in step c) is preferably greater than 90%, more preferably greater than 95%, particularly preferably greater than 99%, and the separated ammonia is preferably recycled through the pump back to the system.
  • the inorganic ammonia content in the reaction liquid after the step c) is preferably from 10 ppm to 5 wt%, preferably from 100 ppm to 1 wt%.
  • the reaction liquid after the step c) can be added before the step d) A part of the solvent is added or removed, and preferably the reaction liquid is not subjected to any treatment.
  • step d) is carried out at a temperature of from 50 to 130 ° C and a pressure of from 2 to 10 MPa, preferably at a temperature of from 100 to 13 CTC and a pressure of from 3 to 7 MPa.
  • the molar ratio of hydrogen to 3-cyano-3,5,5-trimethylcyclohexylamine in step d) is from 3:1 to 1000:1, preferably 4:1. From -500:1, more preferably from 10:1 to 500:1, further preferably from 15:1 to 300:1, particularly preferably from 20:1 to 100:1.
  • the reaction in step d) is carried out continuously in a pressure vessel, for example in a hydrogenation reactor, preferably in a fluidized bed, a stirred reactor, a tubular reactor, more preferably It is carried out in a trickle bed reactor or a fixed bed reactor or a continuously stirred reactor.
  • the hydrogenation reactor can be a thermostated reactor or a temperature-changing reactor, such as a reactor in an adiabatic form.
  • the hydrogenation catalyst in step d) is a hydrogenation catalyst in which cobalt or nickel is an active component, such as a supported cobalt/nickel catalyst or a skeleton type cobalt/nickel catalyst, preferably a supported type/skeletal type. Cobalt catalyst.
  • the volumetric space velocity in the second hydrogenation reaction of the reaction solution after the separation of ammonia is 0.05-100mL / (ml catalyst ⁇ hour), preferably 0. l-40mL (ml) Catalyst ⁇ hour), more preferably 1-30 mL/(ml of catalyst ⁇ hour).
  • Suitable basic compounds include basic metal compounds such as oxides, hydroxides or carbonates of alkali metals, oxides, hydroxides or carbonates of alkaline earth metals, or oxides or hydroxides of rare earth metals. Or a carbonate; preferably an oxide, hydroxide or carbonate of an alkali metal, or an oxide, hydroxide or carbonate of an alkaline earth metal; more preferably LiOH, NaOH or hydrazine.
  • IPNI imine
  • IPA 3-cyano-3,5,5-trimethylcyclohexylamine
  • aminonitrile 3-cyano-3,5,5-trimethylcyclohexylamine
  • the conventional process is a two-step reaction in the presence of ammonia, carried out in one reactor or two reactors having different temperature gradients, and the second step of hydrogenation of the aminonitrile is promoted by means of increasing the reaction temperature.
  • the reaction temperature is generally between 100 and 130 ° C
  • the vapor pressure of ammonia at this temperature is 6. 2-11. 2M P a
  • the reaction pressure is generally above 20 MPa.
  • the first step of hydrogenating the imine to the aminonitrile does not require too high a partial pressure of hydrogen, which can be carried out at a lower reaction temperature, and the process must have ammonia present to suppress
  • the imine is hydrolyzed to a side reaction of IPN; after the imine is substantially completely converted to the aminonitrile, a higher temperature is required to effect the nitrile group hydrogenation, and the process does not require ammonia to participate, so the present invention removes ammonia, so that The two-step hydrogenation reaction does not need to overcome the higher partial pressure of ammonia.
  • the operating pressure of the system is the pressure of hydrogen. Hydrogenation can be achieved below lOMpa.
  • the inventors have also found that the rate of hydrogenation of the second step reaction increases as the concentration of the aminonitrile in the system increases (hydrogenation of aminonitrile is a reaction with a reaction order greater than one), and by-products 1, 3, 3 are formed.
  • a reaction of trimethylbicyclo[3.2.1]octane-7-amine (bicyclic secondary amine) to a zero-order reaction (see reaction formula 1), with an aminonitrile thick Degree has nothing to do.
  • the concentration of aminonitrile in the second step is required, and the mass concentration of aminonitrile can be increased by removing ammonia from the system. It has a positive significance for reducing the production of by-products.
  • the ammonia in the reaction solution is removed, so that the second step of aminonitrile hydrogenation can be catalytically hydrogenated in a pure hydrogen atmosphere, because it is not required to overcome the high temperature.
  • the high partial pressure of ammonia will inevitably reduce the reaction operating pressure.
  • the operating pressure before the separation of ammonia is usually above 25Mpa.
  • the operating pressure can be reduced to 2-10Mp a with the same catalyst treatment capacity. Preferably 3- 7Mpa;
  • the concentration of aminonitrile is increased due to the absence of dilution of liquid ammonia, which accelerates the main reaction process and reduces the production of by-product bicyclic secondary amine. 5% ⁇ The amount of the aminonitrile is between 0.1% and 0.1%.
  • FIG. 1 is a schematic flow chart of a specific embodiment of the method of the present invention.
  • FIG. 2 is a graph showing the IPDA content in the reaction liquid of Example 1 versus time.
  • Figure 3 is a graph of the IPDA content in the reaction solution of the comparative example versus time.
  • Inlet temperature 280 ° C ;
  • the process of the present invention is: after the IPN is dissolved or melted, the imidization reaction is carried out in the imidization reactor by a high pressure pump and liquid ammonia, and the imidization reaction liquid is subjected to a hydrogenation reaction.
  • the imine reacts with hydrogen in the presence of a catalyst to form a hydrogenation reaction liquid containing an aminonitrile, and then passes through a deamination system, and the removed ammonia is returned to the imidization reactor for recycling, and the deamination reaction liquid enters the second stage.
  • a fixed bed reactor was used as the imidization reactor, a one-stage hydrogenation and a two-stage hydrogenation reactor.
  • the pressure of the imidization reaction was controlled at 2. 5 MPa, the imidization temperature was controlled at 6 CTC, and the feed was 2 (1% IPN methanol solution, keeping the IPN feed rate per hour 300 kg, liquid ammonia (3 ⁇ 4)
  • the feed rate is 600k g / h, the reaction solution passing through the imidization reactor enters a hydrogenation reactor, and the reaction is carried out in the presence of hydrogen.
  • the hydrogen flow rate is 1100 standard / h, and the hydrogenation temperature is controlled at 100 ° C.
  • the reaction pressure is 7Mpa; after a period of hydrogenation, the content of aminonitrile (IPAN) in the reaction liquid is 55. 21wt%, the IPDA content is 40. 93wt%, the imine is not detected, and the rest is IPN decomposition hydrogenation product and IPDA.
  • IPAN aminonitrile
  • the reaction solution enters the ammonia removal column (filler distillation column), the number of theoretical plates of the removal column is 12, the temperature at the bottom of the column is 180 degrees Celsius, and the pressure at the top of the column is maintained at 2. ⁇
  • the bicyclic secondary amine is 0. 19wt%
  • the IPAN content is 0. 06wt%
  • the bicyclic secondary amine is 0. 19wt
  • the reaction temperature is 130 ° C
  • the hydrogen pressure is 7Mpa % (gas chromatography)
  • the space velocity on the catalyst and catalyst in each reactor is as follows:
  • a fixed bed reactor was used as the imidization reactor, a one-stage hydrogenation and a two-stage hydrogenation reactor.
  • the imidization reaction pressure is controlled at 7 MPa
  • the imidization temperature is controlled at 40 ⁇
  • the 20% IPN methanol solution is used to maintain the IPN feed rate per hour is 300 kg
  • the liquid ammonia (H 3 ) feed rate is 600k g / h
  • the reaction solution passing through the imidization reactor enters a hydrogenation reactor, and the reaction is carried out in the presence of hydrogen.
  • the hydrogen flow rate is 1100 standard / h
  • the hydrogenation temperature is controlled at 60 ° C.
  • the reaction pressure is lOMpa; After a period of hydrogenation, the content of aminonitrile (IPA) in the reaction solution is 41.29wt%, the content of IPDA is 48.75wt%, the imine is not detected, and the rest is IPN decomposition hydrogenation product and IPDA dimerization or more 8M P a, The pressure of the top of the tower is maintained at 1. 8M P a, the temperature of the bottom of the tower is maintained at 1. 8M P a, After the deamination of the reaction liquid, the inorganic ammonia content was determined to be 160 ppm ; the purity of the liquid ammonia recovered from the top of the ammonia removal column was 99. 2 wt%, and returned to the imidization reactor for recycling.
  • IPA aminonitrile
  • reaction solution after deamination is subjected to a second hydrogenation in the presence of hydrogen, the reaction temperature is 10 (TC, hydrogen pressure 3 Mpa, after 12 hours of operation, sampling and analysis, the IPDA content in the reaction liquid is gradually increased to 96.07 wt%, IPAN The content is 0. 09wt%, bicyclic secondary amine 0. 18wt% (gas chromatography analysis), the space velocity on the catalyst in each reactor is as follows:
  • Example 2 Same as in Example 1, except that the imidization reaction pressure is controlled at 4 MPa, the imidization temperature is controlled at 50 ° C ; the stage hydrogenation temperature is controlled at 80 ° C, and the reaction pressure is 8 MPa; after a period of hydrogenation,
  • the content of the aminonitrile (IPA) in the reaction liquid was 54. 00 wt%, the IPDA content was 39, 87 wt%, and the imine was 0.2 wt%; the remainder was the IPN decomposition hydrogenation product and the IPDA dimerization or polymerization product.
  • the reaction liquid enters the ammonia removal tower, the number of theoretical plates of the removal tower is 12, the temperature at the bottom of the column is 190 ° C, the pressure at the top of the column is maintained at 2.
  • the inorganic ammonia content is determined to be 120 ppm;
  • the purity of the liquid ammonia recovered at the top of the column was 99.2% by weight, and was returned to the imidization reactor for recycling.
  • the reaction solution is subjected to a second hydrogenation in the presence of hydrogen, the reaction temperature is 115 Torr, and the hydrogen pressure is 5 M P a.
  • the IPDA content in the reaction liquid is 96.
  • 03 wt% and the IPAN content is 0. 03wt%, bicyclic secondary amine 0. 15wt% (gas chromatography analysis), the space velocity on the catalyst in each reactor is as follows:
  • the content of the aminonitrile (IPAN) in the reaction liquid is 51. 02wt%, and the IPDA content is 43.
  • the difference is that the hydrogenation temperature is controlled at 90 ° C and the reaction pressure is 9 Mp a . 16 wt%, imine 0.12 wt% ; the balance is an IPN decomposition hydrogenation product and an IPDA dimerization or polymerization product.
  • the reaction liquid enters the ammonia removal tower, and the number of theoretical plates of the removal tower is 12 pieces, and the bottom temperature is 190 degrees Celsius. 2 ⁇ %, return to the imidization reactor recycling.
  • the purity of the liquid ammonia is 99. 2wt%, and the return to the imidization reactor is recycled.
  • the purity of the liquid ammonia is from the top of the chlorination tower. .
  • the content of the IPA content is 96. 10wt%, and the IPA content is the reaction.
  • the reaction temperature is 120 ° C, the hydrogen pressure is 4 MPa, and the reaction is carried out for 12 hours.
  • 0. 03wt%, bicyclic secondary amine 0. 14wt% (gas chromatography), the space velocity on the catalyst in each reactor is as follows:
  • Example 2 Same as in Example 1, except that the imidization reaction pressure is controlled at 3 MPa, the imidization temperature is controlled at 50 ° C; the hydrogenation temperature is controlled at 105 ° C, and the reaction pressure is 7 MPa ; after a period of hydrogenation, the reaction
  • the liquid aminonitrile (IPAN) content was 52.17 wt%, the IPDA content was 41.93 wt%, the imine was not detected; the remainder was the IPN decomposition hydrogenation product and the IPDA dimerization or polymerization product.
  • the reaction liquid enters the ammonia removal tower, and the number of theoretical plates of the removal tower is 12, the temperature at the bottom of the column is 190 ° C, the pressure at the top of the column is maintained at 2.
  • the content of inorganic ammonia is 120 ppm after deamination of the reaction liquid ;
  • the purity of the liquid ammonia recovered from the top of the column in the ammonia removal column is 99. 3 wt%, and is returned to the imidization reactor for recycling.
  • the reaction solution after deamination is subjected to secondary hydrogenation in the presence of hydrogen, the reaction temperature is 123 ° C, the hydrogen pressure is 4 M P a , and after 12 hours of stabilization, sampling and analysis, the IPDA content in the reaction liquid is 95, 98 wt %,
  • the content of IPAN is 0. 03wt%, bicyclic secondary amine 0. 14wt% (Gas chromatographic analysis), the space velocity on the catalyst in each reactor is as follows:
  • a fixed bed reactor was used as the imidization reactor, a one-stage hydrogenation and a two-stage hydrogenation reactor.
  • the imidization reaction pressure is controlled at 2. 5 MPa, the imidization temperature is controlled at 6 CTC; the stage hydrogenation temperature is controlled at 100 ° C, and the reaction pressure is 7 MPa.
  • the liquid IPN is used to keep the IPN feed rate of 300 kg per hour.
  • the amount of the aminonitrile (IPA) in the reaction solution is 60. 34wt%, after a period of hydrogenation, the amount of the aminonitrile (IPA) in the reaction liquid is 60. 34wt%,
  • the content of IPDA is 35. 27wt%, the imine is not detected, and the rest is IPN decomposition hydrogenation product and IPDA dimerization or polymerization product (gas chromatography analysis); the reaction liquid enters the ammonia removal tower (filler distillation column), off Except the tower's theoretical plate number is 12, the bottom temperature is 180 degrees Celsius, the top pressure is maintained at 2.
  • the ammonia in the ammonia removal column is 99. lwt%, and is returned to the imidization reactor for recycling; after the deamination step, methanol is added, according to the deamination reaction solution and The methanol mass ratio is added in a ratio of 1:3, and enters the second-stage hydrogenation reactor in the presence of hydrogen to carry out secondary hydrogenation at a reaction temperature of After the reaction is carried out for 12 hours, the hydrogen pressure is 7 MPa, and the reaction is carried out for 12 hours.
  • the IPDA content is 95.45 wt%, the IPA content is 0.07 wt%, the bicyclic secondary amine is 0. 19 wt% (gas chromatography), each reaction
  • the space velocity on the catalyst and catalyst in the reactor is as follows -
  • the reaction process is the same as that in the first embodiment, except that the reaction liquid after passing through a hydrogenation reactor is directly subjected to deamination into the second-stage hydrogenation reactor, and after 12 hours of operation, the reaction liquid contains chloro-nitrile (IPAN).
  • IPAN chloro-nitrile
  • the content is 0. 21wt%
  • IPDA content is 95. 07wt%
  • the activity of the catalyst decreased significantly, from 96% at the beginning to about 95%.

Abstract

本发明公开了一种制备3-氨甲基-3,5,5-三甲基环己胺的方法,首先使3-氰基-3,5,5-三甲基环己酮与氨反应,生成3-氰基-3,5,5-三甲基环己基亚胺,3-氰基-3,5,5-三甲基环己基亚胺继续与氢气、氨在加氢催化剂存在下进行一段加氢反应转化成3-氰基-3,5,5-三甲基环己胺,脱去反应液中的氨后,再将含3-氰基-3,5,5-三甲基环己胺的反应液在氢气和加氢催化剂存在下进行二次加氢反应生成3-氨甲基-3,5,5-三甲基环己胺。本方法降低了反应压力,减少了投资成本,极大的降低了高压液氨泄露所带来的风险。

Description

一种制备 3-氨甲基 -3, 5, 5-三甲基环己胺的方法 技术领域
本发明涉及一种脂肪族胺的制备方法, 具体涉及对 3-氰基 -3, 5, 5-三甲基 环己酮氨化加氢制备 3-氨甲基 -3, 5, 5-三甲基环己胺的方法。
背景技术
3 -氨甲基 -3, 5, 5-三甲基环己胺 (异佛尔酮二胺, 简称 IPDA) 是制备 3- 异氰酸酯基亚甲基 -3, 5, 5-三甲基环己基异氰酸酯 (异佛尔酮二异氰酸酯, 简 称 IPDI)、聚酰胺等的原料, 其还可以用作环氧树脂的固化剂。在工业规模上, 3-氨甲基 -3, 5, 5-三甲基环己胺是通过 3-氰基 -3, 5, 5-三甲基环己酮(异佛尔酮 腈, 简称 IPN) 与氨反应形成 3-氰基 -3, 5, 5-三甲基环己基亚胺 (异佛尔酮腈 亚胺, 简称亚胺, IPNI ), IPNI随后与氢气在氨的存在下以催化方式进行还原 胺化反应制得的。 其反应流程如下-
Figure imgf000003_0001
现有技术公开的专利文献中介绍了其巳有的制备方法。 如 CN200780047535. 2中介绍了一种制备 IPDA的方法, 采用 5段反应器, 其中前 两段反应器为亚胺化反应器, 反应温度 70°C , 反应压力 230bar; 后三段为加 氢反应器, 反应温度分别为 70°C、 80°C、 120°C , 操作压力均为 230bar, IPDA 收率最高可达 93. 3%- 97%, 3-氰基 -3, 5, 5-三甲基环己胺 (简称氨基腈, IPAN) 含量 0. 12%-0. 4%, 1, 3, 3-三甲基 -6-氮杂双环 [3. 2. 1]辛垸(简称双环仲胺)含 量 0. 9%-2. 1%; CN200810082485. 8中介绍了一种制备 IPDA的方法, 采用亚胺 化和加氢两个反应器, 亚胺化反应器温度 50°C, 氢化反应器为 100°C, 压力控 制在 252bar, 氨基腈含量 0. 18%; 上述专利虽然均能够高收率 (大于 96%) 的 得到 IPDA,但是高的操作压力导致了投资成本以及设备维护费用的增加,较早 的专利 US3352913中介绍了采用一步法制备 IPDA的过程, 将 IPN、液氨、氢气 投入反应釜内, 12CTC , 15Mpa下加热 2h, 可以得到 81. 4%的收率, 虽然压力相 对于上两篇中国专利文献有所降低, 但是 IPDA收率低, 且产生较多的副产物 3-氨甲基 -3, 5, 5-三甲基环己醇 (9. 4%)。 目前已有的制备工 PDA的方法均存在 下述缺陷: 要想使 IPDA存在较好的收率, 操作压力会较高, 在较低的压力下, 收率不高,副产物多。 IPDA制造过程中催化剂的处理能力与操作压力成正比关 系, 确切的讲, 与氢气分压成正比。 但是因为反应体系中的有氨存在, 在反应 温度下, 具有较高的蒸汽压 (125°C时 10Mpa), 导致了操作压力较高, 设备投 资增加; 另外, 因为无法提供较高的氢气分压, 氨基腈含量普遍较高(0. 1%以 上), 而氨基腈与 IPDA通过简单的精馏无法分离, 直接影响最终产品 IPDA的 质量。
发明内容
本发明的目的在于提供一种 3-氨甲基 -3, 5, 5-三甲基环己胺的制备方法。 在相对较低的压力下, 可以实现较高的收率, 降低副产, 同时减少设备投资。
为实现本发明目的, 本发明的技术方案如下:
一种 3-氨甲基 -3, 5, 5-三甲基环己胺的制备方法,所述方法包括如下步骤: a)将 3-氰基 -3, 5, 5-三甲基环己酮与氨形成的原料液进行反应,生成含有 3-氰基- 3, 5, 5-三甲基环己基亚胺的亚胺化反应液;
b)将步骤 a)中所得含有 3-氰基- 3, 5, 5-三甲基环己基亚胺的亚胺化反应 液在氢气、氨和加氢催化剂的存在下进行一段加氢反应,得到含 3 氰基 -3, 5, 5- 三甲基环己胺的反应液;
c) 分离得自步骤 b)中的所述含 3-氰基 -3, 5, 5-三甲基环己胺的反应液中 的氨;
d) 将经过步骤 c)分离氨后的反应液在氢气和加氢催化剂的存在下进行二 次加氢反应, 得到 3-氨甲基 -3, 5, 5-三甲基环己胺。
本发明中所述的 "氨"可以是液氨或氨气或任何含氨溶液的形式。
根据本发明所述方法, 步骤 a)在 20- 10CTC的温度和 0.5-lOMPa的压力下 进行, 优选在 20 70DC的温度和 l-10MPa的压力下进行, 更优选在 40- 60 °C的 温度和 2- 5MPa的压力下进行。
根据本发明所述方法, 步骤 a) 中, 3-氰基 -3, 5, 5-三甲基环己酮 (IPIO 与氨进行亚胺化反应, 反应过程可以使用催化剂, 也可以不使用催化剂。 如果 使用催化剂, 所述催化剂可以是酸性金属氧化物、无机离子交换树脂或者有机 离子交换树脂, 例如氧化铝、 二氧化钛、 二氧化锆、 二氧化硅、 沸石等。
在步骤 a) 中, 原料液的体积空速为 0.05 lOOmL/ (毫升催化剂 ·小时), 优选 0. l-40mL (毫升催化剂 ·小时), 更优选 1- 30mL/ (毫升催化剂 ·小时)。
根据本发明所述方法, 步骤 a) 中, 氨与 3-氰基 -3, 5, 5-三甲基环己酮的 摩尔比为 5:1-200:1, 优选为 10:1-100:1, 更优选为 20: 1-80: 1。
根据本发明所述方法, 步骤 a) 中的亚胺化反应可以在氢气氛围下进行, 也可以在没有氢气的情况下进行, 优选在氢气氛围下进行, 氢气与 IPN的摩尔 比为 3:1-1000:1, 优选为 4:1-500:1, 更优选为 10:1-400:1, 进一步优选为 15:1-300:1, 特别优选为 20:1- 100:1。
根据本发明所述方法, 步骤 a) 中的 IPN可以以溶于溶剂中的溶液形式 参加反应, 例如溶于醇或者醚中, 例如甲醇、 二恶垸或四氢呋喃。 也可以以不 含溶剂的形式进行。 优选以溶于溶剂中的溶液形式参加反应。 如果不含溶剂,
3 -氰基 -3, 5, 5-三甲基环己酮在熔融状态下以高压泵注入。
在 IPN以溶液形式参加反应的情况下, 优选步骤 a) 中的 IPN溶液中所含 IPN的质量浓度为 0.1%-50%, 更优选为 5% 30%; 此外, 经过步骤 a) 后的反应 液在进入反应步骤 b) 前可以添加或移除部分溶剂, 优选对反应液不经过任何 处理。
根据本发明所述方法, 步骤 a) 中的亚胺化反应优选连续地进行, 通常在 压力容器中进行, 优选使用管式反应器, 更优选固定床反应器, 该反应器内含 用于形成亚胺的催化剂。 IPN与氨优选地从反应器的下方进料, 上方出料。
根据本发明所述方法, 步骤 a) 中的反应物料 3-氰基 -3, 5, 5-三甲基环己 酮与氨在进入亚胺化反应器之前, 可以经过优化传质传热的设备, 这些都是化 工领域熟悉的化工设备, 如混合器、 搅拌器等, 更具体的如静态混合器。
根据本发明所述方法, 歩骤 b)在 50-130Ό的温度和 4-14MPa的压力下进 行, 优选在 60- 100C的温度和 2-5MPa的压力下进行。
根据本发明所述方法, 步骤 b) 中所述的氢气与 3-氰基 -3, 5, 5 三甲基环 己亚胺的摩尔比为 3:1-1000:1, 优选为 4:1-500:1, 更优选为 10:1-500:1, 进 一步优选为 15:1-300:1,特别优选为 20:1-100:1。氨与 3-氰基- 3, 5, 5-三甲基 环己亚胺的摩尔比为 5:1- 200:1, 优选为 10:1- 100:1, 更优选为 20: 1-80: 1。
根据本发明所述方法, 步骤 b) 中的反应是在压力容器中连续地进行, 例 如在加氢反应器中进行, 优选在管式反应器中进行, 更优选在固定床反应器中 进行。 加氢反应器可以是恒温的反应器, 也可以是变温的反应器, 如绝热形式 的反应器。 根据本发明所述方法, 步骤 b) 中所述加氢催化剂为钴或镍为活性组分的 加氢催化剂, 例如负载型钴 /镍催化剂或骨架型钴 /镍催化剂, 优选负载型 /骨 架型钴催化剂。
根据本发明所述方法, 步骤 a) 所得的亚胺化反应液在步骤 b) 所述的一 段加氢反应中的体积空速为 0. 05-100mL/ (毫升催化剂 ·小时),优选 0. l-40mL (毫升催化剂 ·小时), 更优选 1 30mL/ (毫升催化剂 ·小时)。
根据本发明所述方法, 步骤 b) 所得含 3-氰基- 3, 5, 5-三甲基环己胺的反 应液中主要为氨基腈(IPAN)和 3-氨甲基 -3, 5, 5-三甲基环己胺(IPDA), 还含 有少量 IPDA二聚或多聚产物。 优选地, 步骤 b) 中所得产物中氨基腈 (IPAN) 的含量为 0. 01- 99wt%, 优选 5_80wt%, 更优选 40- 60wt% (溶剂不计, 下同); 步骤 b) 中所得产物中 IPDA 的含量为 O. CU-99wt%, 优选 5- 75wt%, 更优选 30-50wt% (溶剂不计);此外,步骤 b)所得产物中还可能含有含量为 0. 001-2wt%, 优选 0. 01-lwt%, 特别优选 0. 0卜 0. 5wt%的亚胺 (匪)。
根据本发明所述方法, 经过步骤 b)后的反应液在进入步骤 c)前可以添 加或移除部分溶剂, 优选对反应液不经过任何处理。
根据本发明所述方法, 步骤 c) 中分离氨的方法通常通过本领域熟练技术 人员已知的方法进行, 如精镏或蒸馏的方法。 步骤 c) 中分离氨的过程优选采 用精馏方式分离其中的氨, 操作压力优选在 1. 5-5Mpa, 更优选 1. 8-2. 5Mpa。
根据本发明所述方法, 步骤 c) 分离出的氨纯度优选大于 90%, 更优选大 于 95%, 特别优选大于 99%, 分离出的氨优选通过泵打回系统中循环使用。
根据本发明所述方法, 步骤 c) 分离氨后的反应液中的无机氨含量优选为 10ppm-5wt%, 优选 lOOppm- lwt%。
根据本发明所述方法, 经过步骤 c)后的反应液在进入步骤 d)前可以添 加或移除部分溶剂, 优选对反应液不经过任何处理。
根据本发明所述方法, 步骤 d)在 50-130°C的温度和 2-lOMPa的压力下进 行, 优选在 100-13CTC的温度和 3-7MPa的压力下进行。
根据本发明所述方法, 步骤 d) 中所述的氢气与 3-氰基 -3, 5, 5-三甲基环 己胺的摩尔比为 3:1-1000:1,优选为 4:1-500:1, 更优选为 10:1-500:1,进一 歩优选为 15:1-300:1, 特别优选为 20:1-100:1。
根据本发明所述方法, 步骤 d) 中的反应是在压力容器中连续地进行的, 例如在加氢反应器中进行, 优选流化床、 搅拌反应釜、 管式反应器中进行, 更 优选在滴流床反应器或固定床反应器或连续搅拌反应釜中进行。加氢反应器可 以是恒温的反应器, 也可以是变温的反应器, 如绝热形式的反应器。
根据本发明所述方法, 步骤 d) 中所述加氢催化剂为钴或镍为活性组分的 加氢催化剂, 例如负载型钴 /镍催化剂或骨架型钴 /镍催化剂, 优选负载型 /骨 架型钴催化剂。
根据本发明所述方法, 步骤 d) 中所述分离氨后的反应液二次加氢反应中 的体积空速为 0.05-100mL/ (毫升催化剂 ·小时), 优选为 0. l-40mL (毫升催 化剂 ·小时), 更优选为 l-30mL/ (毫升催化剂 ·小时)。
根据本发明所述方法, 当在步骤 b) 和步骤 d) 中添加碱性化合物后, 可 以提高反应的速率和加氢产物的选择性。合适的碱性化合物包括碱性金属化合 物, 如碱金属的氧化物、 氢氧化物或碳酸盐, 碱土金属的氧化物、 氢氧化物或 碳酸盐,或者稀土金属的氧化物、氢氧化物或碳酸盐;优选为碱金属的氧化物、 氢氧化物或碳酸盐,或者碱土金属的氧化物、氢氧化物或碳酸盐;更优选 LiOH、 NaOH或匪。
亚胺化产物 3-氰基 -3, 5, 5-三甲基环己基亚胺加氢制备 IPDA过程分为以 下两个步骤 (如反应式 1所示):
Figure imgf000009_0001
双环仲胺
反应式 1
亚胺(IPNI)加氢制备 3-氰基- 3, 5, 5-三甲基环己胺(IPA , 简称氨基腈) 的过程必须在氨存在条件下进行,加氢所需的氢气分压不高;氨基腈加氢过程, 不需要氨的参与, 氢气分压相对较高。 传统工艺是两步反应于氨存在下, 在一 个反应器内进行或是采用两个温度梯度不同的反应器,通过提高反应温度的手 段来促进第二步氨基腈的加氢。 无论哪种方法, 反应温度一般在 100-130°C, 氨在此温度下的蒸汽压为 6. 2-11. 2MPa, 为了获得更高的氢气分压, 势必需要 提高反应压力, 所以传统工艺中反应压力一般在 20Mpa以上。
本发明人发现, 两段加氢过程, 第一步亚胺加氢为氨基腈不需要太高的氢 气分压, 可以在较低的反应温度下进行, 并且此过程必须有氨存在, 以抑制亚 胺水解为 IPN的副反应; 当亚胺基本上完全转化成氨基腈后, 需要更高的温度 来实现腈基加氢, 并且此过程不需要氨参与, 因此本发明将氨除去, 使得第二 步加氢反应不需要克服较高的氨分压, 体系的操作压力即是氢气的压力, 在 lOMpa以下就可以实现加氢转化。
本发明人还发现,第二步反应的加氢速率随体系中氨基腈的浓度增加而升 高 (氨基腈加氢是反应级数大于 1的反应), 而生成副产物 1, 3, 3, -三甲基双环 [3. 2. 1]辛烷 -7-胺(双环仲胺)的反应为零级反应(见反应式 1 ), 与氨基腈浓 度无关。 为了抑制产生双环仲胺的副反应, 加快氨基腈加氢这一主反应, 要求 第二步反应过程中氨基腈浓度越高越好, 通过移走体系中的氨, 可以提高氨基 腈的质量浓度, 对降低副产物的产生具有积极的意义。
本发明的积极效果在于:
1 ) 在第一步加氢过程完全后, 将反应液中的氨移走, 使第二步氨基 腈加氢能够在纯氢气环境下进行催化加氢, 因为不需要克服温度 高而带来的高的氨分压, 必然会降低反应操作压力, 未分离氨前 操作压力通常为 25Mpa以上, 当分离出氨后, 在催化剂处理能力 不变的情况下, 操作压力可以降低至 2-10Mpa , 优选 3- 7Mpa;
2) 第二步加氢过程中不存在氨,杜绝了无机氨泄露而对设备的腐蚀, 降低了维修和使用成本, 如不需要特殊的高压耐氨压力表; 同时 也杜绝了无机氨对催化剂的毒化作用, 催化剂使用寿命更长, 反 应装置稳定运行 300小时以上未见催化剂活性降低。
3) 在第二步加氢时, 由于没有了液氨的稀释, 使得氨基腈的浓度增 大, 加快了主反应进程, 降低了副产物双环仲胺的产生。 副产物 双环仲胺在反应液中的含量为 0. 1%-0. 2%, 氨基腈在 0. 01%-0. 1% 之间。
4) 因为第二步加氢温度较第一步髙, 将氨在第一步加氢后移走, 所 以不需要额外的热量将这部分不参与反应的氨升高至较高的反应 温度, 从而降低了能耗。
附图说明
图 1为本发明方法的一个具体实施方式的流程示意图。
图 2为实施例 1的反应液中 IPDA含量与时间的曲线。 图 3为对比例的反应液中 IPDA含量与时间的曲线。
图 4为本发明方法的另一个具体实施方式的流程示意图。 具体实施方式
现通过以下实施例对本发明做更进一步的说明, 但本发明并不受限于此。 本发明中 3-氰基 -3, 5, 5-三甲基环己基亚胺、 3-氨甲基 -3, 5, 5-三甲基环 己胺及氨基腈的定量分析均是采用气相色谱面积归一化法进行的,气相色谱分 析条件如下:
色谱柱: 安捷伦 HP- 5 (规格为 30mX 0. 32mmX0. 25mra);
进样口温度: 280°C ;
分流比: 30 : 1 ;
柱流量: L 5mL/min;
柱温: 100°C 0. 5min
15。C/min 升高到 260°C, 保持 8min;
捡测器温度: 280°C, H2流量: 35mL/min;
空气流量: 350mL/mino
如图 1和图 4所示, 本发明的工艺流程为: IPN溶解或瑢融后经过高压泵 与液氨在亚胺化反应器内进行亚胺化反应, 亚胺化反应液经过一段加氢反应 器, 在催化剂存在下亚胺与氢气发生反应, 生成含有氨基腈的加氢反应液, 再 经过脱氨系统, 除去的氨返回亚胺化反应器循环利用, 脱氨反应液进入二段加 氢反应器, 在催化剂存在下, 氨基腈与氢气进行反应生成异佛尔酮二胺, 最后 含有异佛尔酮二胺的反应液进入后段精制工序精制后得到产品。 实施例 1:
采用固定床反应器作为亚胺化反应器、一段加氢和二段加氢的反应器。亚 胺化反应压力控制在 2. 5MPa,亚胺化温度控制在 6CTC ;釆用 2(^1%的 IPN甲醇 溶液进料,保持 IPN每小时进料量为 300kg,液氨( ¾)的进料速度为 600kg/h, 经过亚胺化反应器的反应液进入一段加氢反应器, 在氢气存在下进行反应, 氢 气流量为 1100标方 /h, —段加氢温度控制在 100°C, 反应压力为 7Mpa; 经过 一段加氢后,反应液中氨基腈(IPAN)含量为 55. 21wt%, IPDA含量为 40. 93wt%, 亚胺未检出, 其余为 IPN分解加氢产物和 IPDA二聚或多聚产物 (气相色谱分 析); 反应液进入氨脱除塔 (填料精馏塔), 脱除塔的理论塔板数 12块, 塔底 温度 180摄氏度,塔顶压力维持在 2. OMpa,塔底取样检测其中的无机氨含量为 115ppm (氮气吹提, 稀盐酸吸收后, 酸碱滴定测定其中的氨); 从氨脱除塔中 塔顶采出的液氨纯度为 99. lwt%, 重新返回亚胺化反应器循环利用; 将脱氨后 的反应液在氢气存在下进行二次加氢, 反应温度为 130°C, 氢气压力 7Mpa, 运 行 12h 稳定后, 取样分析, 反应液中 IPDA含量为 96. 79wt%, IPAN含量为 0. 06wt%, 双环仲胺 0. 19wt% (气相色谱分析), 各个反应器内的催化剂及催化 剂上的空速如下:
Figure imgf000012_0001
参见图 2, 反应装置运行了 344h, 未见催化剂活性降低, 反应液中 IPDA 实施例 2
采用固定床反应器作为亚胺化反应器、一段加氢和二段加氢的反应器。亚 胺化反应压力均控制在 7MPa,亚胺化温度控制在 40Ό ;采用 20^%的 IPN甲醇 溶液进料,保持 IPN每小时进料量为 300kg,液氨( H3)的进料速度为 600kg/h, 经过亚胺化反应器的反应液进入一段加氢反应器, 在氢气存在下进行反应, 氢 气流量为 1100标方 /h, 一段加氢温度控制在 60 °C, 反应压力为 lOMpa; 经过 一段加氢后,反应液中氨基腈(IPA )含量为 41. 29wt%, IPDA含量为 48. 75wt%, 亚胺未检出, 其余为 IPN分解加氢产物和 IPDA二聚或多聚产物 (气相色谱分 析); 反应液进入氨脱除塔 (填料精馏塔), 脱除塔的理论塔板数 12块, 塔底 温度 180摄氏度, 塔顶压力维持在 1. 8MPa, 反应液脱氨后, 测定无机氨含量为 160ppm; 从氨脱除塔中塔顶采出的液氨纯度为 99. 2wt%, 重新返回亚胺化反应 器循环利用。 将脱氨后的反应液在氢气存在下进行二次加氢, 反应温度为 10(TC, 氢气压力 3Mpa, 运行 12h后, 取样分析, 反应液中 IPDA含量逐步上升 至为 96. 07wt%, IPAN含量为 0. 09wt%, 双环仲胺 0. 18wt% (气相色谱分析), 各个反应器内催化剂上的空速如下:
Figure imgf000013_0001
反应装置运行了 300h, 未见催化剂活性降低, 反应液中 IPDA含量基本保持不 变。 实施例 3
同实施例 1, 不同的是亚胺化反应压力均控制在 4MPa, 亚胺化温度控制在 50°C ; —段加氢温度控制在 80°C, 反应压力为 8Mpa; 经过一段加氢后, 反应 液中氨基腈 (IPA ) 含量为 54. 00wt%, IPDA含量为 39, 87wt%, 亚胺 0. 2wt%; 其余为 IPN分解加氢产物和 IPDA二聚或多聚产物。 反应液进入氨脱除塔, 脱 除塔的理论塔板数 12块, 塔底温度 190摄氏度, 塔顶压力维持在 2. 5Mpa, 反 应液脱氨后,测定无机氨含量为 120ppm;从氨脱除塔中塔顶采出的液氨纯度为 99. 2wt%, 重新返回亚胺化反应器循环利用。 将脱氨后的反应液在氢气存在下 进行二次加氢, 反应温度为 115Ό, 氢气压力 5MPa, 运行 12h稳定后, 取样分 析,反应液中 IPDA含量为 96. 03wt%, IPAN含量为 0. 03wt%,双环仲胺 0. 15wt% (气相色谱分析), 各个反应器内催化剂上的空速如下:
Figure imgf000014_0001
反应装置运行了 320h, 未见催化剂活性降低, 反应液中 IPDA含量基本保 持不变。
实施例 4
同实施例 1, 不同的是一段加氢温度控制在 90°C, 反应压力为 9Mpa; 经 过一段加氢后, 反应液中氨基腈 (IPAN) 含量为 51. 02wt%, IPDA 含量为 43. 16wt%, 亚胺 0. 12wt%; 其余为 IPN分解加氢产物和 IPDA二聚或多聚产物。 反应液进入氨脱除塔, 脱除塔的理论塔板数 12块, 塔底温度 190摄氏度, 塔 顶压力维持在 2. 5Mpa, 反应液脱氨后, 测定无机氨含量为 120ppm; 从氯脱除 塔中塔顶采出的液氨纯度为 99. 2wt%, 重新返回亚胺化反应器循环利用。 将脱 氨后的反应液在氢气存在下进行二次加氢,反应温度为 120°C,氢气压力 4Mpa, 运行 12h稳定后, 取样分析, 反应液中 IPDA含量为 96. 10wt%, IPA 含量为 0. 03wt%, 双环仲胺 0. 14wt% (气相色谱分析), 各个反应器内催化剂上的空速 如下:
Figure imgf000015_0001
反应装置运行了 200h, 未见催化剂活性降低, 反应液中 IPDA含量基本保 持不变。
实施例 5
同实施例 1, 不同的是亚胺化反应压力均控制在 3MPa, 亚胺化温度控制在 50°C ; 一段加氢温度控制在 105 °C, 反应压力为 7Mpa; 经过一段加氢后, 反应 液中氨基腈 ( IPAN) 含量为 52. 17wt%, IPDA含量为 41. 93wt%, 亚胺未检出; 其余为 IPN分解加氢产物和 IPDA二聚或多聚产物。 反应液进入氨脱除塔, 脱 除塔的理论塔板数 12块, 塔底温度 190摄氏度, 塔顶压力维持在 2. 5MPa, 反 应液脱氨后,测定无机氨含量为 120ppm;从氨脱除塔中塔顶采出的液氨纯度为 99. 3wt%, 重新返回亚胺化反应器循环利用。 将脱氨后的反应液在氫气存在下 进行二次加氢, 反应温度为 123°C, 氢气压力 4MPa, 运行 12h稳定后, 取样分 析,反应液中 IPDA含量为 95, 98wt%, IPAN含量为 0. 03wt%,双环仲胺 0. 14wt% (气相色谱分析), 各个反应器内催化剂上的空速如下:
Figure imgf000016_0001
反应装置运行了 200h, 未见催化剂活性降低, 反应液中 IPM含量基本保 持不变。
实施例 6
采用固定床反应器作为亚胺化反应器、一段加氢和二段加氢的反应器。亚 胺化反应压力控制在 2. 5MPa, 亚胺化温度控制在 6CTC ; —段加氢温度控制在 100°C, 反应压力为 7Mpa。 将 IPN熔化后, 以液态 IPN迸料, 保持 IPN每小时 进料量为 300kg, 与另外一路液氨经过静态混合器混合后进入亚胺化反应器, 保持液氨的进料速度为 600kg/h。 (具体流程见图 4所示)。
经过亚胺化反应器的反应液在氢气存在下进入一段加氢反应器,氢气流量 为 1100标方 /h, 经过一段加氢后, 反应液中氨基腈(IPA )含量为 60. 34wt%, IPDA含量为 35. 27wt%, 亚胺未检出, 其余为 IPN分解加氢产物和 IPDA二聚或 多聚产物(气相色谱分析); 反应液进入氨脱除塔(填料精馏塔), 脱除塔的理 论塔板数 12块, 塔底温度 180摄氏度, 塔顶压力维持在 2. OMpa, 塔底取样检 测其中的无机氨含量为 llSppm (氮气吹提,稀盐酸吸收后, 酸碱滴定测定其中 的氨);从氨脱除塔中塔顶采出的液氨纯度为 99. lwt%,重新返回亚胺化反应器 循环利用; 在脱氨步骤后, 添加甲醇, 按照脱氨反应液与甲醇质量比 1 : 3的 比例添加, 在氢气存在下进入二段加氢反应器, 进行二次加氢, 反应温度为 130°C, 氢气压力 7Mpa, 运行 12h稳定后, 取样分析, 反应液中 IPDA含量为 95. 45wt%, IPA 含量为 0. 07wt%, 双环仲胺 0. 19wt% (气相色谱分析), 各个反 应器内的催化剂及催化剂上的空速如下 -
Figure imgf000017_0001
反应装置运行了 200h, 未见催化剂活性降低, 反应液中 IPDA含量基本保 持不变。 对比例:
反应工艺同实施例 1, 不同之处在于经过一段加氢反应器后的反应液未经 过脱氨直接进入到二段加氢反应器中,运行 12h后,反应液中含氯基腈(IPAN) 含量为 0. 21wt%, IPDA含量为 95. 07wt%, 双环仲胺◦. 44wt% (气相色谱分析)。 参加图 3装置运行了 250h, 催化剂活性出现了明显的降低, 由开始时的 96%降 低至 95%左右。

Claims

权利要求书
1、一种制备 3-氨甲基 -3, 5, 5-三甲基环己胺的方法,该方法包括如下步骤: a)将 3-氰基 -3, 5, 5-三甲基环己酮与氨形成的原料液进行反应,生成含有 3 -氰基 3, 5, 5 三甲基环己基亚胺的亚胺化反应液;
b )步骤 a)中所得含有 3-氰基 3, 5, 5三甲基环己基亚胺的亚胺化反应液 在氢气、氨和加氢催化剂的存在下进行一段加氢反应, 得到含 3-氰基 -3, 5, 5 - 三甲基环己胺的反应液;
c) 分离得自步骤 b)的所述含 3-氰基 -3, 5, 5-三甲基环己胺的反应液中的 氨;
d) 将经过步骤 c)分离氨后的反应液在氢气和加氢催化剂的存在下进行二 次加氢反应, 得到 3-氨甲基 -3, 5, 5 三甲基环己胺。
2、 根据权利要求 1所述的方法, 其特征在于, 步骤 a) 在 20-100°C的温 度和 0· 5-10MPa的压力下进行, 优选在 20- 70°C的温度和 1 lOMPa的压力下进 行, 更优选在 40 6(TC的温度和 2-5MPa的压力下进行。
3、根据权利要求 2所述的方法, 其特征在于, 步骤 a)中原料液的体积空 速为 0. 05-100mL/ (毫升催化剂 ·小时),优选为 0. 1- 40mL / (毫升催化剂 ·小 时), 更优选为 l-30mL I (毫升催化剂 ·小时)。
4、 根据权利要求 3所述的方法, 其特征在于, 步骤 a) 中所述的氨与 3- 氰基- 3, 5, 5-三甲基环己酮的摩尔比为 5 : 1-200 : 1, 优选为 10 : 1-100 : 1, 更优 选为 20 : 1-80 : 1。
5、 根据权利要求 4所述的方法, 其特征在于, 步骤 a) 中 3-氰基 -3, 5, 5- 三甲基环己酮以溶于溶剂中的溶液形式参加反应, 所述溶剂为醇或者醚; 优选 为甲醇、 二恶烷或四氢呋喃; 所述 3-氰基 -3, 5, 5-三甲基环己酮的溶液中 3-氰 基 3, 5, 5-三甲基环己酮的质量浓度为 0.1%-50%, 优选为 5%-30%。
6、根据权利要求 1至 5任一项所述的方法, 其特征在于, 步骤 a)在氢气 的存在下进行, 所述的氢气与 3-氰基 -3,5,5-三甲基环己酮的摩尔比为 3:1-1000:1, 优选为 4:卜 500:1, 更优选为 10:1-400:1, 进一步优选为 15:1-300:1, 特别优选为 20:1- 100:1。
7、根据权利要求 1至 5任一项所述的方法, 其特征在于, 步骤 a)在催化 剂的存在下进行, 所述催化剂为酸性金属氧化物、无机离子交换树脂或者有机 离子交换树脂, 优选为氧化铝、 二氧化钛、 二氧化锆、 二氧化硅或沸石。
8、根据权利要求 1至 7任一项所述的方法, 其特征在于, 步骤 a)所得的 亚胺化反应液在步骤 b)所述的一段加氢反应中的体积空速为 0.05-100mL/ (毫 升催化剂 ·小时), 优选为 0. l-40mL (毫升催化剂 ·小时), 更优选为 1- 30mL/
(毫升催化剂 ·小时)。
9、 根据权利要求 8的方法, 其特征在于, 步骤 b) 在 50- 130C的温度和 4-14MPa的压力下进行, 优选在 60- 10CTC的温度和 5-lOMPa的压力下进行。
10、 根据权利要求 9所述的方法, 其特征在于, 在步骤 b) 中, 所述氢气 与 3-氰基 -3, 5, 5-三甲基环己亚胺的摩尔比为 3: 1-1000: 1,优选为 4: 1-500: 1, 更优选为 10:1-500:1, 进一步优选为 15:1-300:1, 特别优选为 20: 1-100: 1.
11、 根据权利要求 10所述的方法, 其特征在于, 在步骤 b)中, 所述氨与 3-氰基 -3, 5, 5-三甲基环己亚胺的摩尔比为 5:1-200:1, 优选为 10:1-100:1, 更优选为 20:1-80:1。
12、 根据权利要求 11所述的方法, 其特征在于, 步骤 b)及步骤 d) 中所 述加氢催化剂为钴或镍为活性组分的加氢催化剂; 优选负载型钴 /镍催化剂或 骨架型钴 /镍催化剂, 更优选负载型 /骨架型钴催化剂。
13、根据权利要求 8至 12任一项所述的方法, 其特征在于, 步骤 b)所得 含 3-氰基 -3, 5, 5-三甲基环己胺的反应液中 3-氰基- 3, 5, 5_三甲基环己胺的含 量为 0. 01-99wt , 优选为 5-80wt%, 更优选为 40- 60wt%。
14、根据权利要求 1至 13任一项所述的方法, 其特征在于, 步骤 c)所述 的分离采用蒸馏或精馏方式分离得自步骤 b)的含 3-氰基 -3, 5, 5-三甲基环己胺 的反应液中的氨, 且操作压力在 1. 5-5Mpa, 优选为 1. 8 2. 5Mpa0
15、根据权利要求 14所述的方法, 其特征在于, 步骤 c)分离氨后的反应 液中的无机氨含量为 10ppnr5wt%, 优选为 100Ppm_lwt%。
16、根据权利要求 1至 15任一项所述的方法, 其特征在于, 步骤 d)中所 述分离氨后的反应液在二次加氢反应中的体积空速为 0. 05-100mL/ (毫升催化 剂 ·小时), 优选为 0. l-40mL (毫升催化剂 ·小时), 更优选为 l-30mL/ (毫升 催化剂 ·小时)。
17、 根据权利要求 16所述的方法, 其特征在于, 步骤 d) 在 50- 13CTC的 温度和 2-10MPa的压力下进行,优选在 100- 130°C的温度和 3- 7MPa的压力下进 行。
18、 根据权利要求 17所述的方法, 其特征在于, 步骤 d) 中所述氢气与 3-氰基 -3, 5, 5-三甲基环己胺的摩尔比为 3 : 1-1000 : 1, 优选为 4: 1-500 : 1, 更 优选为 10 : 1- 500 : 1, 进一步优选为 15 : 1- 300 : 1, 特别优选为 20 : 1-100 : 1。
19、 根据权利要求 1-18任一项所述的方法, 其特征在于, 在步骤 b) 和 步骤 d) 中加入碱性化合物; 所述碱性化合物选自碱金属的氧化物、 氢氧化物 或碳酸盐, 或者碱土金属的氧化物、 氢氧化物或碳酸盐; 优选所述碱性化合物 为 LiOH、 NaOH或 K0H。
PCT/CN2013/081555 2013-04-27 2013-08-15 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法 WO2014173044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310150811.5A CN104119233B (zh) 2013-04-27 2013-04-27 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN201310150811.5 2013-04-27

Publications (1)

Publication Number Publication Date
WO2014173044A1 true WO2014173044A1 (zh) 2014-10-30

Family

ID=51764903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081555 WO2014173044A1 (zh) 2013-04-27 2013-08-15 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法

Country Status (2)

Country Link
CN (1) CN104119233B (zh)
WO (1) WO2014173044A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108017547B (zh) 2017-12-22 2019-07-02 浙江新和成股份有限公司 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304110C (zh) * 2001-08-31 2007-03-14 巴斯福股份公司 异佛尔酮二胺(ipda,3-氨甲基-3,5,5-三甲基环己胺)的制备方法
CN101768084A (zh) * 2010-01-19 2010-07-07 烟台万华聚氨酯股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN102531917A (zh) * 2010-12-08 2012-07-04 赢创德固赛有限责任公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN102976956A (zh) * 2013-01-07 2013-03-20 烟台万华聚氨酯股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065030A1 (de) * 2000-12-23 2002-07-04 Degussa Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin
DE102007011483A1 (de) * 2007-03-07 2008-09-18 Evonik Degussa Gmbh Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304110C (zh) * 2001-08-31 2007-03-14 巴斯福股份公司 异佛尔酮二胺(ipda,3-氨甲基-3,5,5-三甲基环己胺)的制备方法
CN101768084A (zh) * 2010-01-19 2010-07-07 烟台万华聚氨酯股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN102531917A (zh) * 2010-12-08 2012-07-04 赢创德固赛有限责任公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN102976956A (zh) * 2013-01-07 2013-03-20 烟台万华聚氨酯股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法

Also Published As

Publication number Publication date
CN104119233B (zh) 2016-08-31
CN104119233A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN107428673B (zh) 制备3-氨基甲基-3,5,5-三甲基环己胺的方法
JP6033231B2 (ja) 3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミンの製造法
US11008279B2 (en) Method for purifying 1,5-pentanediamine and the 1,5-pentanediamine prepared thereby
JP5818988B2 (ja) 3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミンの調製方法
CN104230721B (zh) 3-氨甲基-3,5,5-三甲基环己胺的制备方法
WO2011014752A2 (en) A process for the conversion of aliphatic cyclic amines to aliphatic diamines
TW411327B (en) Process for the production of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
EP3901133A1 (en) Method for preparing isophorone diisocyanate
EP1674448B1 (en) Process for producing cyclohexanone oxime
CN113620813A (zh) 一种n,n-二甲基-1,3-丙二胺的制备方法
JP6074689B2 (ja) 3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミンを調製するための方法
US6881864B2 (en) Production method of xylylenediamine
CN111804324B (zh) 一种改性金属负载催化剂、二氨基二环己基甲烷产品及其制备方法和应用
CN110078627B (zh) 一种高收率合成h6mda的方法
WO2014173044A1 (zh) 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN108203386A (zh) 一种制备1,3-环己基二甲胺的方法
EP2459514B1 (en) Cycloaliphatic diamines and method of making the same
EP3677566B1 (en) Method for preparing isophorone diamine by means of hydrogenation reduction of isophorone nitrile imine
EP2628736B1 (en) Refining method for crude propylene oxide product and preparation method for propylene oxide
JP5911468B2 (ja) 気相中での非対称第二級tert−ブチルアミンの製造方法
CN114516802B (zh) 一种甲苯二胺精制的方法
WO2012018310A1 (en) Process for the production of highly pure dicyclohexylamine from by-products resulting from the producton of cyclohexylamine
JP2009508909A (ja) キシリレンジアミンの製造方法
CN117534571A (zh) 一种制造3-氨甲基-3,5,5-三甲基环己胺的方法
CN116867764A (zh) 异佛尔酮二胺的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882666

Country of ref document: EP

Kind code of ref document: A1