WO2014171463A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2014171463A1
WO2014171463A1 PCT/JP2014/060758 JP2014060758W WO2014171463A1 WO 2014171463 A1 WO2014171463 A1 WO 2014171463A1 JP 2014060758 W JP2014060758 W JP 2014060758W WO 2014171463 A1 WO2014171463 A1 WO 2014171463A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
cylinder
magnetic
coil
resonance imaging
Prior art date
Application number
PCT/JP2014/060758
Other languages
English (en)
French (fr)
Inventor
和人 野上
坂倉 良知
田中 秀和
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201480011551.6A priority Critical patent/CN105072990A/zh
Publication of WO2014171463A1 publication Critical patent/WO2014171463A1/ja
Priority to US14/823,354 priority patent/US20150346294A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming

Definitions

  • Embodiments described herein relate generally to a magnetic resonance imaging apparatus.
  • the nuclear spin of a subject placed in a static magnetic field is magnetically excited with an RF (Radio Frequency) pulse at the Larmor frequency, and the data of the magnetic resonance signal generated by the excitation is used.
  • RF Radio Frequency
  • This shimming includes passive shimming and active shimming.
  • passive shimming is performed by placing an iron shim in a layer between a main coil and a shield coil of an active shield type gradient coil (ASGC (Active Shield Gradient Coil)).
  • ASGC Active Shield Gradient Coil
  • the iron shim since the iron shim is arranged inside the gradient magnetic field coil, it may move from its original position due to electromagnetic force. Then, with this movement, the uniformity of the magnetic field deteriorates.
  • the problem to be solved by the present invention is to provide a magnetic resonance imaging apparatus capable of suppressing deterioration of magnetic field uniformity.
  • the magnetic resonance imaging apparatus includes a substantially cylindrical shape including a static magnetic field magnet that generates a static magnetic field in a space inside a cylinder, and a gradient magnetic field coil that is disposed inside the cylinder of the static magnetic field magnet and generates a gradient magnetic field.
  • the coil mechanism is provided. Further, among the coil mechanisms, the magnetic body is supported so as to be independent of the gradient magnetic field coil, and a magnetic body is disposed in the vicinity of the center of the long axis direction of the coil mechanism along the circumferential direction of the substantially cylindrical shape.
  • FIG. 1 is a functional block diagram showing the configuration of the MRI apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining definitions of terms in the embodiment.
  • FIG. 3 is a diagram for explaining the movement of the gradient magnetic field coil.
  • FIG. 4 is a cross-sectional view of a coil mechanism in which a compensation member is arranged in the first embodiment.
  • FIG. 5 is a view for explaining the arrangement of substantially ring-shaped compensation members in the first embodiment.
  • FIG. 6 is a view for explaining the arrangement of substantially ring-shaped compensation members in the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the position where the compensation member is arranged, the thickness of the compensation member, and the generated z 4 component.
  • FIG. 1 is a functional block diagram showing the configuration of the MRI apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining definitions of terms in the embodiment.
  • FIG. 3 is a diagram for explaining the movement of the gradient magnetic field coil.
  • FIG. 4 is
  • FIG. 8 is a diagram for explaining another example of the substantially ring-shaped compensation member in the first embodiment.
  • FIG. 9 is a diagram for explaining magnetic field adjustment work in the first embodiment.
  • FIG. 10A is a diagram showing a comparison of magnetic field uniformity distributions when the compensation member is not disposed and when it is disposed.
  • FIG. 10B is a diagram showing a comparison of magnetic field uniformity distributions when the compensation member is not disposed and when the compensation member is disposed.
  • FIG. 11 is a diagram illustrating an arrangement of compensation members in another embodiment.
  • FIG. 12 is a diagram illustrating an arrangement of compensation members in another embodiment.
  • FIG. 13 is a diagram showing an arrangement of compensation members in another embodiment.
  • FIG. 14 is a diagram showing the arrangement of compensation members in another embodiment.
  • MRI Magnetic Resonance Imaging
  • FIG. 1 is a functional block diagram showing the configuration of the MRI apparatus 100 according to the first embodiment.
  • the MRI apparatus 100 includes a static magnetic field magnet 101, a static magnetic field power supply 102, a gradient magnetic field coil 103, a gradient magnetic field power supply 104, a transmission coil 105, a reception coil 106, and a transmission unit 107. , Receiving unit 108, bed 109, sequence control unit 120, and computer 130.
  • a substantially cylindrical structure in which the static magnetic field magnet 101, the gradient magnetic field coil 103, and the transmission coil 105 are stacked and supported will be referred to as a “coil mechanism” as appropriate.
  • the MRI apparatus 100 does not include a subject P (for example, a human body).
  • the structure shown in FIG. 1 is only an example. Each unit may be appropriately integrated or separated.
  • the static magnetic field magnet 101 is a magnet formed in a hollow, substantially cylindrical shape, and generates a static magnetic field in a space inside the cylinder.
  • the static magnetic field magnet 101 is, for example, a superconducting magnet or the like, and is excited by receiving a current supplied from the static magnetic field power source 102.
  • the static magnetic field power supply 102 supplies a current to the static magnetic field magnet 101.
  • the static magnetic field magnet 101 may be a permanent magnet. In this case, the MRI apparatus 100 may not include the static magnetic field power source 102. In addition, the static magnetic field power source 102 may be provided separately from the MRI apparatus 100.
  • the gradient magnetic field coil 103 is a coil disposed inside the cylinder of the static magnetic field magnet 101 and formed in a hollow, substantially cylindrical shape.
  • the gradient coil 103 receives a current supplied from the gradient magnetic field power supply 104 and generates a gradient magnetic field.
  • the gradient magnetic field power supply 104 supplies a current to the gradient magnetic field coil 103.
  • the transmission coil 105 is a coil disposed inside the gradient magnetic field coil 103 and formed in a hollow, substantially cylindrical shape.
  • the transmission coil 105 receives the supply of the RF pulse from the transmission unit 107 and generates a high-frequency magnetic field.
  • the receiving coil 106 receives a magnetic resonance signal (hereinafter referred to as “MR (Magnetic Resonance) signal”) emitted from the subject P due to the influence of the high-frequency magnetic field, and outputs the received MR signal to the receiving unit 108.
  • MR Magnetic Resonance
  • the transmission coil 105 and the reception coil 106 described above are merely examples. These RF coils may be configured by combining one or more of a coil having only a transmission function, a coil having only a reception function, or a coil having a transmission / reception function.
  • the transmission unit 107 supplies an RF pulse corresponding to the Larmor frequency determined by the type of target atom and the magnetic field strength to the transmission coil 105.
  • the receiving unit 108 detects the MR signal output from the receiving coil 106 and generates MR data based on the detected MR signal. Specifically, the receiving unit 108 generates MR data by digitally converting the MR signal output from the receiving coil 106. Further, the receiving unit 108 sends the generated MR data to the sequence control unit 120.
  • the receiving unit 108 may be provided on the gantry device side including the static magnetic field magnet 101, the gradient magnetic field coil 103, and the like.
  • the bed 109 includes a top plate on which the subject P is placed. In FIG. 1, only this top plate is shown for convenience of explanation. Usually, the bed 109 is installed so that the central axis of the cylinder of the static magnetic field magnet 101 is parallel to the longitudinal direction. The top plate is movable in the longitudinal direction and the vertical direction, and is inserted into the space inside the cylinder of the transmission coil 105 with the subject P placed thereon.
  • the sequence control unit 120 performs imaging of the subject P by driving the gradient magnetic field power source 104, the transmission unit 107, and the reception unit 108 based on the sequence information transmitted from the computer 130.
  • the sequence information is information defining a procedure for performing imaging.
  • the sequence information includes the strength of the current supplied from the gradient magnetic field power supply 104 to the gradient magnetic field coil 103 and the timing of supplying the current, the strength of the RF pulse supplied from the transmitter 107 to the transmission coil 105, the timing of applying the RF pulse, and reception.
  • the timing at which the unit 108 detects the MR signal is defined.
  • the sequence controller 120 is an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), or an electronic circuit such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • the sequence control unit 120 drives the gradient magnetic field power source 104, the transmission unit 107, and the reception unit 108 to image the subject P. As a result, when the MR data is received from the reception unit 108, the sequence control unit 120 converts the received MR data into the computer 130. Forward to.
  • the computer 130 performs overall control of the MRI apparatus 100. Further, the computer 130 generates MR images by performing reconstruction processing such as Fourier transform on the MR data transferred from the sequence control unit 120.
  • the computer 130 includes a control unit, a storage unit, an input unit, and a display unit.
  • the control unit is an integrated circuit such as an ASIC or FPGA, or an electronic circuit such as a CPU or MPU.
  • the storage unit is a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, an optical disk, or the like.
  • the input unit is a pointing device such as a mouse or a trackball, or an input device such as a keyboard.
  • the display unit is a display device such as a liquid crystal display.
  • FIG. 2 is a figure for demonstrating the definition of the term in embodiment.
  • a surface forming the outside of the cylinder is referred to as a “cylindrical outer peripheral surface”
  • a surface forming the inside of the cylinder is referred to as “cylindrical This is referred to as “inner peripheral surface”.
  • a space surrounded by the inner peripheral surface of the cylinder is referred to as a “space inside the cylinder”
  • a space in the thickness portion of the cylinder is referred to as a “space inside the cylinder”.
  • the substantially cylindrical shape may be a cylindrical shape having a perfect circle in a cross section orthogonal to the central axis of the cylinder, or may be a cylindrical shape having an elliptical cross section.
  • the elliptical shape mentioned here refers to a shape in which a perfect circle is distorted within a range that does not significantly impair the function of the MRI apparatus 100.
  • the non-uniform component of the magnetic field to be suppressed here is generated due to the displacement of the relative position of the iron shim arranged in the space inside the cylinder of the gradient coil 103 as the gradient coil 103 moves.
  • the inhomogeneous component of the magnetic field formed by the static magnetic field magnet 101 is the expansion of the magnetic field component in the z direction (the central axis direction of the static magnetic field magnet 101, see FIG. 1) for each order (1) and ( 2) It can be expressed by the formula.
  • the notation up to the fourth-order term focused this time is specifically described, it can be expressed as follows.
  • P 1 (z) is referred to as z 1 component
  • P 2 (z) as z 2 component
  • P 3 (z) as z 3 component
  • P 4 (z) (35z 4 -30z 2 +3) / 8
  • P 1 (z) is referred to as z 1 component
  • P 2 (z) as z 2 component
  • P 3 (z) as z 3 component
  • P 4 (z) as z 4 component.
  • higher-order components of the fifth and higher terms are omitted.
  • an iron shim is arranged in the space inside the cylinder of the gradient magnetic field coil 103 so as to form a magnetic field that cancels out the inhomogeneity component of the above formula (1). Since the above equation (1) is clarified at the time of designing the static magnetic field magnet 101, the arrangement position and amount of the iron shim for forming a magnetic field that cancels this can be calculated in advance by simulation.
  • the design method of the static magnetic field magnet 101 includes A.
  • the former A In this method, the manufacturing cost tends to increase, for example, by increasing the number of modules and adjustment man-hours of the superconducting coil.
  • FIG. 3 is a perspective view showing the structure of the gradient magnetic field coil 103 according to the first embodiment, and is a view for explaining the movement of the gradient magnetic field coil 103.
  • a main coil 103a in the gradient coil 103, a main coil 103a, a cooling layer 103d provided with a cooling pipe, a shim layer 103c provided with an iron shim, and a cooling layer 103e provided with a cooling pipe.
  • the shield coil 103b are laminated in order from the inside of the cylinder.
  • a plurality of (for example, 24) shim tray insertion guides 103f are formed in the shim layer 103c, and the shim tray 103g is inserted into the shim tray insertion guide 103f.
  • the shim tray 103g has a plurality of (for example, 15) pockets in the longitudinal direction, and an iron shim is appropriately stored in each pocket.
  • the gradient magnetic field coil 103 is supported by using a cushioning material such as rubber or a spring in order to absorb vibration during imaging.
  • the iron shim arranged in the space inside the cylinder of the gradient magnetic field coil 103 is not necessarily arranged symmetrically with respect to the z-axis origin c, and may receive a strong electromagnetic force in one direction. Then, as a result of the iron shim in the pocket, the shim tray 103g, or the gradient magnetic field coil 103 itself moving, the relative position of the iron shim is displaced.
  • a magnetic field component whose degree is newly lowered by one appears as a magnetic field inhomogeneity component.
  • the z 2 component appears as the z 1 component and the z 4 component appears as the z 3 component.
  • the z 1 component can be separately corrected by a technique such as active shimming that causes a correction current to flow, but the z 3 component cannot be corrected by such a technique.
  • the first embodiment by suppressing the inhomogeneous component of the magnetic field generated mainly by the displacement of the relative position of the iron shim, mainly the z 3 component, the above A.E.
  • the design method of B. above We propose a method to suppress the deterioration of the uniformity of the magnetic field even when the static magnetic field magnet 101 is manufactured at a relatively low cost by this design method.
  • the z 4 component generated by the iron shim must be reduced before the relative displacement of the iron shim.
  • FIG. 4 is a cross-sectional view of the coil mechanism in which the compensation member is arranged in the first embodiment.
  • the coil mechanism is configured by laminating a substantially cylindrical static magnetic field magnet 101, a substantially cylindrical gradient magnetic field coil 103, and a substantially cylindrical transmission coil 105. Both ends of the static magnetic field magnet 101 and the bore tube 200 are fixed by an end plate 220, and a space surrounded by the cylindrical inner peripheral surface of the static magnetic field magnet 101 and the cylindrical outer peripheral surface of the bore tube 200 is formed as a sealed container. Is done.
  • the gradient magnetic field coil 103 is supported by the support unit 210 in the sealed container.
  • the air in the sealed container is discharged by a vacuum pump (not shown), so that a vacuum space is formed around the gradient magnetic field coil 103.
  • a vacuum pump not shown
  • illustration of the cooling layer 103 d and the cooling layer 103 e of the gradient coil 103 is omitted for convenience of explanation.
  • a transmission coil 105 is arranged inside the cylinder of the bore tube 200. Further, in FIG. 4, illustration of a support portion that supports the transmission coil 105, a bore tube that forms a living space of the subject P, and the like is omitted.
  • an alternate long and short dash line c indicates the z-axis origin that is the center point in the long axis direction of the coil mechanism, and the right direction from the z-axis origin is the plus (+) z-direction. The left direction from the origin is the minus ( ⁇ ) z direction.
  • the compensation member 10 formed of a magnetic material such as silicon steel or cobalt steel is placed on a cylindrical inner surface of the static magnetic field magnet 101 at a symmetrical position with respect to the z-axis origin c. Three of them are arranged in a substantially ring shape (at a position symmetrical to the xy plane).
  • the compensation member 10 from being arranged in a substantially ring-shaped, sometimes referred Ringushimu, and z 4 shim rings and the like.
  • FIG. 5 and 6 are views for explaining the arrangement of the substantially ring-shaped compensation member 10 in the first embodiment
  • FIG. 5 is a perspective view
  • FIG. 6 is a cylinder of the static magnetic field magnet 101.
  • the compensation member 10 is disposed on the inner peripheral surface of the cylinder of the static magnetic field magnet 101 by welding or the like.
  • the inner peripheral surface has a certain level of strength.
  • FIG. 7 is a diagram showing the relationship between the position where the compensation member 10 is disposed, the thickness of the compensation member 10, and the generated z 4 component.
  • the vertical axis represents the magnetic field strength (ppm)
  • the horizontal axis represents the distance from the z-axis origin c.
  • Two broken lines having different line types indicate two types of compensation members 10 having different thicknesses.
  • the thickness a is smaller than the thickness b.
  • the dotted broken line indicates the effect that the compensation member 10 generates the z 4 component when the compensation member 10 having the thickness a is disposed at each position. In other words, the z 4 component of the magnetic field generated by the static magnetic field magnet 101 itself is canceled and reduced by the z 4 component illustrated in FIG. 7 when the compensation member 10 having the thickness a is disposed at each position. Means.
  • the solid broken line indicates the effect that the compensation member 10 generates the z 4 component when the compensation member 10 having the thickness b is disposed at each position. In the vicinity of the end portion of the static magnetic field magnet 101, both of the effects are low, and there is not much difference between them. However, in the vicinity of the z-axis origin c, the compensation member 10 having a large thickness has a more remarkable effect.
  • the relationship between the position where the compensation member 10 is disposed, the thickness of the compensation member 10, and the generated z 4 component is a known relationship by calculation.
  • the position and thickness of the compensation member 10 may be determined as appropriate according to the actually required z 4 component.
  • the thickness of the compensation member 10 may be determined according to the position in the z-axis direction and the position in the circumferential direction. In other words, the compensation member 10 may have a different thickness depending on the position where it is arranged.
  • the compensation member 10 may be disposed near the z-axis origin c (near the center in the long axis direction of the coil mechanism). Desirably, in order to more smoothly reproduce the distribution of the z 4 component, it is desirable to disperse the components appropriately at a plurality of positions. Further, if the z 4 component of the magnetic field generated by the static magnetic field magnet 101 itself is symmetric with respect to the z-axis origin c, it is desirable that the compensation member 10 is also arranged symmetrically with respect to the z-axis origin c. As a result, FIGS.
  • FIGS. 4 to 6 show an example in which three approximately ring-shaped compensation members 10 having different thicknesses are arranged at positions symmetrical with respect to the z-axis origin c. Further, when the thickness of the compensation member 10 is determined according to the position in the circumferential direction, for example, the compensation member 10 that is thicker toward the lower side of the static magnetic field magnet 101 and thinner toward the upper side is disposed.
  • the embodiment is not limited to this.
  • the position and thickness of the compensation member 10 may be determined as appropriate in accordance with the actually required z 4 component. That is, for example, it may be arranged at the end, or it may be divided into one, two, or four or more. Also, the thickness may be different or the same. Also, the thickness and position may be asymmetric with respect to the z-axis origin c. Further, the static magnetic field magnet 101, the bore tube 200, the transmission coil 105, and the bore tube forming the living space of the subject P may be arranged in a plurality of layers such as the outer circumferential surface, the inner circumferential surface, and the inner space. Good.
  • FIG. 8 is a diagram for explaining another example of the substantially ring-shaped compensation member 10 according to the first embodiment.
  • the compensation member 10 does not have to be a complete ring, and may be a group of compensation members 10 that form a discrete ring shape as shown in FIG. When formed with a complete ring, eddy currents may flow, so it may be desirable to form a discrete ring shape.
  • the substantially ring-shaped compensation member 10 may be formed by laminating a plurality of thin plate-like members. Further, the compensation members 10 arranged in the circumferential direction may have different thicknesses.
  • FIG. 9 is a view for explaining magnetic field adjustment work in the first embodiment.
  • the static magnetic field magnet 101 is manufactured and shipped (step S1).
  • the compensation member 10 is welded to the inner peripheral surface of the cylinder of the static magnetic field magnet 101, the compensation member 10 is attached at the stage of manufacturing.
  • the static magnetic field magnet 101 is carried into the installation place, assembled and installed as the MRI apparatus 100 (step S2).
  • the static magnetic field magnet 101 is excited by receiving a current supplied from the static magnetic field power source 102 (step S3).
  • step S4 When the static magnetic field magnet 101 is excited, the magnetic field is measured using a field camera or the like (step S4), and it is determined whether the uniformity of the magnetic field has reached the standard (step S5). When the uniformity of the magnetic field does not reach the standard (step S5, No), the excited magnetic field is once demagnetized (step S6), and the shim tray 103g is extracted from the gradient magnetic field coil 103 or stored in each pocket. The position and amount of the iron shim to be adjusted are adjusted, and the shim tray 103g is inserted again (step S7).
  • step S8 when the uniformity of the magnetic field reaches the standard (step S5, Yes), the adjustment of the uniformity of the magnetic field is completed (step S8).
  • the compensation member 10 is arranged at the stage of manufacturing the static magnetic field magnet 101.
  • the z 4 component generated by the static magnetic field magnet 101 itself can be reduced by arranging the compensation member 10.
  • the compensation member 10 described above is disposed in the static magnetic field magnet 101 that has generated the “ ⁇ 414 ppm” z 4 component when the compensation member 10 is not disposed, the z 4 component is reduced to “ ⁇ 184 ppm”. Can do. This reduces the z 3 component generated by the displacement of the relative position of the iron shim arranged inside the cylinder of the gradient coil 103.
  • the specific numerical values are only examples.
  • FIGS. 10A and 10B are diagrams showing a comparison of the distribution of magnetic field uniformity between the case where the compensation member 10 is not disposed and the case where the compensation member 10 is disposed.
  • FIG. 10A illustrates the case where the compensation member 10 is not disposed, and FIG. The case where the compensation member 10 is arranged is shown.
  • FIGS. 10A and 10B it is assumed that the gradient coil 103 has moved by 1 mm.
  • FIGS. 10A and 10B the positions of the radii in the z direction at which the magnetic field uniformity is “+1.0 ppm”, “ ⁇ 1.0 ppm”, “+3.5 ppm”, and “ ⁇ 3.5 ppm” are shown. Compared.
  • the compensation member 10 is disposed rather than the case of FIG. 10A where the compensation member 10 is not disposed. In the case of FIG. 10B, the position of the radius exceeding
  • the compensation member 10 is still more than the case of FIG. In the case of FIG. 10B in which is arranged, the position of the radius exceeding
  • the substantially ring-shaped magnetic compensation member 10 along the circumferential direction of the substantially cylindrical shape is disposed in the vicinity of the center of the long axis direction of the coil mechanism.
  • the z 4 component generated by the static magnetic field magnet 101 itself can be reduced.
  • the compensation member 10 is arranged so as to reduce the high-order term magnetic field component.
  • the compensation member 10 is disposed so as to reduce the fourth-order magnetic field component formed by the static magnetic field magnet 101.
  • the compensation member 10 is arranged so as to reduce the third-order magnetic field component generated by the movement of the gradient coil 103.
  • the magnetic field component of the odd-order term in particular, the primary-order magnetic field component (z 1 component), which is the low-order term, is mainly caused by the iron shim inside the cylinder of the gradient magnetic field coil 103 being in the z-axis origin c. This is due to the asymmetrical arrangement.
  • the compensation member 10 disposed outside the static magnetic field magnet 101 that is, the shield coil 103b, bears a part of shimming originally performed by the iron shim inside the cylinder of the gradient magnetic field coil 103.
  • the compensation member 10 so that the iron shims inside the cylinder of the gradient magnetic field coil 103 are arranged symmetrically with respect to the z-axis origin c, the magnetic field component of the first-order term can be actively reduced. Can do.
  • FIG. 10 arrangement of compensation member 10
  • FIG. 11 are diagrams showing the arrangement of the compensation member 10 according to another embodiment. 11 to 14, the arrangement position of the compensation member 10 is indicated by being surrounded by a bold circle.
  • the compensation member 10 may be disposed in a space inside the cylinder of the static magnetic field magnet 101.
  • positioned at the inner peripheral surface side among the space inside a cylinder is shown, you may arrange
  • the compensation member 10 may be arranged on the outer peripheral surface of the cylinder of the bore tube 200 as shown in FIG. 12, or arranged on the inner peripheral surface of the cylinder of the bore tube 200 as shown in FIG. May be. Further, for example, the compensation member 10 may be disposed on the outer peripheral surface of the cylinder of the transmission coil 105 as shown in FIG.
  • the outer peripheral surface of the cylinder of the static magnetic field magnet 101, the inner peripheral surface of the cylinder of the transmission coil 105, or the outer peripheral surface of the bore tube that forms the living space of the subject P The compensator 10 is disposed if it is a component that is supported substantially independently from the gradient magnetic field coil 103, such as the peripheral surface and internal space, and maintains the original position even when the gradient magnetic field coil 103 moves. Can do.
  • any fixing member for example, an adhesive
  • the bore tube and the fixing member have a certain degree of strength in view of the electromagnetic force applied to the compensation member 10 after excitation.
  • the stage of installation of step S2 shown in FIG. 9, etc. can be considered.
  • the method of arranging the compensation member 10 can be used in combination with other shimming.
  • other shimming for example, in combination with active shimming, in combination with shimming in which an iron shim is arranged in the space inside the cylinder of the gradient magnetic field coil, or in combination with shimming in which an iron piece is arranged on the end face of a static magnetic field magnet, etc. It can be used together with shimming as appropriate.
  • the magnetic resonance imaging apparatus of at least one embodiment described above it is possible to suppress deterioration of the uniformity of the magnetic field.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 実施形態に係る磁気共鳴イメージング装置は、円筒内側の空間に静磁場を発生する静磁場磁石と、前記静磁場磁石の円筒内側に配置され、傾斜磁場を発生する傾斜磁場コイルとを含む略円筒形状のコイル機構を備える。また、前記コイル機構のうち、前記傾斜磁場コイルとは独立に支持され、前記コイル機構の長軸方向の中央付近に、略円筒形状の周方向に沿うように、磁性体が配置される。

Description

磁気共鳴イメージング装置
 本発明の実施形態は、磁気共鳴イメージング装置に関する。
 磁気共鳴イメージングは、静磁場中に置かれた被検体の原子核スピンを、そのラーモア(Larmor)周波数のRF(Radio Frequency)パルスで磁気的に励起し、励起に伴い発生する磁気共鳴信号のデータから画像を生成する撮像法である。
 この磁気共鳴イメージングにおいては、磁場の均一性が要求されるため、磁場の不均一性を補正するためのシミングが行われる。このシミングには、パッシブシミング及びアクティブシミングがある。従来、パッシブシミングは、アクティブシールド型傾斜磁場コイル(ASGC(Active Shield Gradient Coil))のメインコイルとシールドコイルとの間の層に鉄シムを配置することで実施されている。また、鉄シム量を低減するために、静磁場磁石の端面等に鉄片等を配置した上で、傾斜磁場コイルに鉄シムを配置する手法も提案されている。
 ところで、傾斜磁場コイルは、上述した通りその内部に鉄シムが配置されているため、電磁力を受けて本来の位置から移動することがある。すると、この移動に伴って、磁場の均一性は劣化してしまう。
特開2008-220923号公報 特開2006-218141号公報
 本発明が解決しようとする課題は、磁場の均一性の劣化を抑制することができる磁気共鳴イメージング装置を提供することである。
 実施形態に係る磁気共鳴イメージング装置は、円筒内側の空間に静磁場を発生する静磁場磁石と、前記静磁場磁石の円筒内側に配置され、傾斜磁場を発生する傾斜磁場コイルとを含む略円筒形状のコイル機構を備える。また、前記コイル機構のうち、前記傾斜磁場コイルとは独立に支持され、前記コイル機構の長軸方向の中央付近に、略円筒形状の周方向に沿うように、磁性体が配置される。
図1は、第1の実施形態に係るMRI装置の構成を示す機能ブロック図。 図2は、実施形態における用語の定義を説明するための図。 図3は、傾斜磁場コイルの移動を説明するための図。 図4は、第1の実施形態において補償部材を配置したコイル機構の断面図。 図5は、第1の実施形態における略リング状の補償部材の配置を説明するための図。 図6は、第1の実施形態における略リング状の補償部材の配置を説明するための図。 図7は、補償部材が配置される位置と、補償部材の厚みと、発生するz4成分との関係を示す図。 図8は、第1の実施形態における略リング状の補償部材の別例を説明するための図。 図9は、第1の実施形態における磁場の調整作業を説明するための図。 図10Aは、補償部材を配置しない場合と配置した場合との磁場均一性の分布の比較を示す図。 図10Bは、補償部材を配置しない場合と配置した場合との磁場均一性の分布の比較を示す図。 図11は、その他の実施形態における補償部材の配置を示す図。 図12は、その他の実施形態における補償部材の配置を示す図。 図13は、その他の実施形態における補償部材の配置を示す図。 図14は、その他の実施形態における補償部材の配置を示す図。
 以下、図面を参照しながら、実施形態に係る磁気共鳴イメージング装置(以下、適宜「MRI(Magnetic Resonance Imaging)装置」)を説明する。なお、実施形態は、以下の実施形態に限られるものではない。また、各実施形態において説明する内容は、原則として、他の実施形態においても同様に適用することができる。
(第1の実施形態)
 図1は、第1の実施形態に係るMRI装置100の構成を示す機能ブロック図である。図1に示すように、MRI装置100は、静磁場磁石101と、静磁場電源102と、傾斜磁場コイル103と、傾斜磁場電源104と、送信コイル105と、受信コイル106と、送信部107と、受信部108と、寝台109と、シーケンス制御部120と、計算機130とを備える。また、以下では、静磁場磁石101と、傾斜磁場コイル103と、送信コイル105とが積層されて支持される略円筒形状の構造物を、適宜「コイル機構」と称する。なお、MRI装置100に、被検体P(例えば、人体)は含まれない。また、図1に示す構成は一例に過ぎない。各部は、適宜統合若しくは分離して構成されてもよい。
 静磁場磁石101は、中空の略円筒形状に形成された磁石であり、円筒内側の空間に、静磁場を発生する。静磁場磁石101は、例えば、超電導磁石等であり、静磁場電源102から電流の供給を受けて励磁する。静磁場電源102は、静磁場磁石101に電流を供給する。なお、静磁場磁石101は、永久磁石でもよく、この場合、MRI装置100は、静磁場電源102を備えなくてもよい。また、静磁場電源102は、MRI装置100とは別に備えられてもよい。
 傾斜磁場コイル103は、静磁場磁石101の円筒内側に配置され、中空の略円筒形状に形成されたコイルである。傾斜磁場コイル103は、傾斜磁場電源104から電流の供給を受けて傾斜磁場を発生する。傾斜磁場電源104は、傾斜磁場コイル103に電流を供給する。
 送信コイル105は、傾斜磁場コイル103の円筒内側に配置され、中空の略円筒形状に形成されたコイルである。送信コイル105は、送信部107からRFパルスの供給を受けて高周波磁場を発生する。受信コイル106は、高周波磁場の影響によって被検体Pから発せられる磁気共鳴信号(以下、適宜「MR(Magnetic Resonance)信号」)を受信し、受信したMR信号を受信部108に出力する。
 なお、上述した送信コイル105及び受信コイル106は一例に過ぎない。これらのRFコイルは、送信機能のみを備えたコイル、受信機能のみを備えたコイル、若しくは送受信機能を備えたコイルのうち、1つ若しくは複数を組み合わせることによって構成されればよい。
 送信部107は、対象とする原子の種類及び磁場強度で定まるラーモア周波数に対応するRFパルスを送信コイル105に供給する。受信部108は、受信コイル106から出力されるMR信号を検出し、検出したMR信号に基づいてMRデータを生成する。具体的には、受信部108は、受信コイル106から出力されるMR信号をデジタル変換することによってMRデータを生成する。また、受信部108は、生成したMRデータをシーケンス制御部120に送る。なお、受信部108は、静磁場磁石101や、傾斜磁場コイル103等を備える架台装置側に備えられてもよい。
 寝台109は、被検体Pが載置される天板を備える。図1においては、説明の便宜上、この天板のみを図示する。通常、寝台109は、静磁場磁石101の円筒の中心軸と長手方向が平行になるように設置される。また、天板は、長手方向及び上下方向に移動可能であり、被検体Pが載置された状態で、送信コイル105の円筒内側の空間に挿入される。
 シーケンス制御部120は、計算機130から送信されるシーケンス情報に基づいて、傾斜磁場電源104、送信部107、及び受信部108を駆動することによって、被検体Pの撮像を行う。ここで、シーケンス情報は、撮像を行う手順を定義した情報である。シーケンス情報には、傾斜磁場電源104が傾斜磁場コイル103に供給する電流の強さや電流を供給するタイミング、送信部107が送信コイル105に供給するRFパルスの強さやRFパルスを印加するタイミング、受信部108がMR信号を検出するタイミング等が定義される。
 例えば、シーケンス制御部120は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等の集積回路、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等の電子回路である。
 なお、シーケンス制御部120は、傾斜磁場電源104、送信部107、及び受信部108を駆動して被検体Pを撮像した結果、受信部108からMRデータを受信すると、受信したMRデータを計算機130に転送する。
 計算機130は、MRI装置100の全体制御を行う。また、計算機130は、シーケンス制御部120から転送されたMRデータに、フーリエ変換等の再構成処理を施すことで、MR画像の生成等を行う。例えば、計算機130は、制御部、記憶部、入力部、表示部を備える。制御部は、ASIC、FPGA等の集積回路、CPU、MPU等の電子回路である。記憶部は、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等である。入力部は、マウスやトラックボール等のポインティングデバイス、キーボード等の入力デバイスである。表示部は、液晶ディスプレイ等の表示デバイスである。
 なお、図2は、実施形態における用語の定義を説明するための図である。以下の実施形態においては、図2に示すように、厚みを有する円筒を想定し、円筒の外側を形成する面を「円筒の外周面」と称し、円筒の内側を形成する面を「円筒の内周面」と称する。また、円筒の内周面により囲まれる空間を「円筒内側の空間」と称し、円筒の厚み部分の空間を「円筒内部の空間」と称する。これらの名称は、説明の便宜上のものに過ぎない。また、第1の実施形態において、略円筒形状とは、円筒の中心軸に直交する断面が真円の円筒形状であっても良いし、断面が楕円の円筒形状であっても良い。ここで言う楕円の形状とは、MRI装置100の機能を大きく損なわない範囲で真円が歪んだ形状を指す。
 さて、以下では、磁場の不均一性を補償する「補償部材」を適宜配置することで、磁場の均一性の劣化を抑制する手法を提案する。また、ここで抑制の対象とする磁場の不均一性成分は、傾斜磁場コイル103の移動に伴い、傾斜磁場コイル103の円筒内部の空間に配置された鉄シムの相対位置が変位したことにより発生する磁場成分である。
 まず、静磁場磁石101によって形成される磁場の不均一性成分は、z方向(静磁場磁石101の中心軸方向、図1を参照)の磁場成分を次数毎に展開した、(1)及び(2)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 また、今回注目した4次項までを具体的に表記すると、以下の様に表すことができる。
 P0(Z)=1,P1(z)=z,P2(z)=(3z2-1)/2,P3(z)=(5z3-3z)/2,P4(z)=(35z4-30z2+3)/8
 なお、以下では、P1(z)をz1成分、P2(z)をz2成分、P3(z)をz3成分、P4(z)をz4成分と称する。また、上記(2)式において、5次項以上の高次成分は省略されている。
 一方、傾斜磁場コイル103の円筒内部の空間には、上記(1)式の不均一性成分を打ち消す磁場を形成するように、鉄シムが配置される。上記(1)式は、静磁場磁石101の設計時に判明するので、これを打ち消す磁場を形成するための鉄シムの配置位置及び量も、予め、シミュレーションにより算出することができる。
 ここで、静磁場磁石101の設計手法には、A.磁場の均一性が高い静磁場磁石101を設計し、製造精度上発生する誤差成分のみを、鉄シムによって微調整する設計手法と、B.鉄シムの使用を前提に意図的に不均一性成分を発生させるように静磁場磁石101を設計し、この不均一性成分を鉄シムによって調整する設計手法とがある。前者A.の手法では、超電導コイルのモジュール数や調整工数を多くする等、製造コストが高くなる傾向がある。一方、後者B.の手法では、製造コストを抑えることはできるものの、鉄シムを多用する結果、鉄シムの相対位置が変位したことにより発生する磁場成分は、もはや、鉄シムで打ち消すこともできないため、著しい磁場の均一性の劣化をもたらすことになる。
 図3は、第1の実施形態に係る傾斜磁場コイル103の構造を示す斜視図であり、傾斜磁場コイル103の移動を説明するための図である。図3に示すように、傾斜磁場コイル103においては、メインコイル103aと、冷却管が配管される冷却層103dと、鉄シムが配置されるシム層103cと、冷却管が配管される冷却層103eと、シールドコイル103bとが、円筒内側から順に積層される。シム層103cには、複数本分(例えば、24本分)のシムトレイ挿入ガイド103fが形成され、このシムトレイ挿入ガイド103fに、シムトレイ103gが挿入される。シムトレイ103gは、長手方向に複数(例えば、15個)のポケットを有し、各ポケットに適宜鉄シムが収納される。
 この傾斜磁場コイル103は、撮像中の振動を吸収するために、ゴムやスプリング等の緩衝材等を用いて支持されている。一方、傾斜磁場コイル103の円筒内部の空間に配置された鉄シムは、z軸原点cに対して必ずしも対称には配置されないため、一方向に強い電磁力を受ける場合がある。すると、ポケット内の鉄シムや、シムトレイ103g、若しくは傾斜磁場コイル103自体が移動する結果、鉄シムの相対位置が変位する。
 このように鉄シムの相対位置が変位すると、新たに次数を1つ下げた磁場成分が、磁場の不均一性成分として現れる。例えば、z2成分は、z1成分として現れ、z4成分は、z3成分として現れる。このうち、z1成分については、補正電流を流すアクティブシミング等の手法によって別途補正することも可能であるが、z3成分については、そのような手法で補正することもできない。
 そこで、第1の実施形態においては、鉄シムの相対位置が変位したことにより発生する磁場の不均一性成分、主にz3成分を抑制することで、上記A.の設計手法のみならず上記B.の設計手法で比較的低価格に静磁場磁石101が製造された場合にも、磁場の均一性の劣化を抑制する手法を提案する。具体的には、鉄シムの相対位置変位後に発生するz3成分を低減するためには、そもそも、鉄シムの相対位置変位前に鉄シムによって発生するz4成分を低減しなければならず、このためには、静磁場磁石101自体のz4成分の絶対値を低減する必要がある。また、第1の実施形態においては、これを上記A.の設計手法で実現するのではなく、「補償部材」を適宜配置することで実現する。
 図4は、第1の実施形態において補償部材を配置したコイル機構の断面図である。図4に示すように、コイル機構は、略円筒形状の静磁場磁石101と、略円筒形状の傾斜磁場コイル103と、略円筒形状の送信コイル105とが、積層されて構成される。静磁場磁石101及びボアチューブ200の両端部は端板220によって固定され、静磁場磁石101の円筒の内周面とボアチューブ200の円筒の外周面とで囲まれた空間は、密閉容器として形成される。傾斜磁場コイル103は、密閉容器内に支持部210によって支持される。また、密閉容器内の空気が、図示しない真空ポンプで排出されることで、傾斜磁場コイル103の周囲に真空空間が形成される。また、図4においては、説明の便宜上、傾斜磁場コイル103の冷却層103d及び冷却層103eの図示を省略する。
 更に、ボアチューブ200の円筒内側に、送信コイル105が配置される。また、図4においては、送信コイル105を支持する支持部や、被検体Pの居住空間を形成するボアチューブ等の図示を省略する。なお、図4において、1点鎖線cは、コイル機構の長軸方向の中央点であるz軸原点を示し、このz軸原点から右方向が、プラス(+)のz方向であり、z軸原点から左方向が、マイナス(-)のz方向である。
 このような構成の下、第1の実施形態においては、コイル機構のうち、傾斜磁場コイル103とは概ね独立に支持され、傾斜磁場コイル103の移動の影響を受けない構成要素(あるいは、影響を受けたとしてもその影響が小さい構成要素)に補償部材を配置する。例えば、図4に示すように、静磁場磁石101の円筒の内周面に、珪素鋼やコバルト鋼等の磁性体で形成された補償部材10を、z軸原点cに対して対称な位置に(xy平面に対して対称な位置に)3本ずつ略リング状に配置する。なお、補償部材10は、略リング状に配置されることから、リングシム、z4シムリング等と称される場合がある。
 図5及び図6は、第1の実施形態における略リング状の補償部材10の配置を説明するための図であり、図5は、斜視図であり、図6は、静磁場磁石101の円筒の内周面の展開図である。例えば、補償部材10は、静磁場磁石101の円筒の内周面に溶接等で配置される。もっとも、励磁後にはこの補償部材10に電磁力がかかることに鑑みて、内周面にある程度の強度を持たせることが望ましい。
 図4に戻り、略リング状の補償部材10は、図4に示すように、配置される位置に応じてその厚みが異なっている。この点について説明すると、図7は、補償部材10が配置される位置と、補償部材10の厚みと、発生するz4成分との関係を示す図である。図7において、縦軸は磁場強度(ppm)を示し、横軸はz軸原点cからの距離を示す。線種の異なる2本の折れ線は、厚みの異なる2種類の補償部材10を示す。
 厚みaは、厚みbよりも厚みが小さい。点線の折れ線は、厚みaの補償部材10を各位置に配置した場合に、補償部材10がz4成分を発生させる効果を示している。言い換えると、静磁場磁石101自体により発生する磁場のz4成分は、厚みaの補償部材10が各位置に配置された場合、図7に図示されたz4成分によって打ち消され、低減されることを意味する。一方、実線の折れ線は、厚みbの補償部材10を各位置に配置した場合に、補償部材10がz4成分を発生させる効果を示している。静磁場磁石101の端部付近では両者いずれもその効果が低く、両者の差もあまりないが、z軸原点c付近では、厚みが大きい補償部材10の方が、その効果がより顕著である。
 このように、補償部材10が配置される位置と、補償部材10の厚みと、発生するz4成分との関係は、計算により既知の関係である。このため、補償部材10は、実際に必要とされるz4成分に合わせて、適宜、その配置される位置と、厚みとが決定されればよい。具体的には、z軸方向における位置及び周方向における位置に応じて補償部材10の厚みが決定されればよい。言い換えると、補償部材10は、配置される位置に応じて厚みが異なっていても良い。
 典型的には、図7に示したように、端部付近の効果が低いことから、補償部材10は、z軸原点c付近(コイル機構の長軸方向の中央付近)に配置されることが望ましく、また、z4成分の分布をより滑らかに再現するためには、複数の位置に適宜分散して配置されることが望ましい。また、静磁場磁石101自体により発生する磁場のz4成分がz軸原点cに対して対称であるならば、補償部材10も、z軸原点cに対して対称に配置されることが望ましい。この結果として、図4~図6では、厚みの異なる略リング状の補償部材10を、3本ずつ、z軸原点cに対して対称な位置に配置する例を示した。また、周方向における位置に応じて補償部材10の厚みが決定される場合には、例えば、静磁場磁石101の下側ほど厚く、上側ほど薄い補償部材10が配置される。
 しかしながら、実施形態はこれに限られるものではない。上述したように、補償部材10は、実際に必要とされるz4成分に合わせて、適宜、その配置される位置と厚みとが決定されればよい。即ち、例えば、端部に配置されることもあれば、1本、2本、あるいは4本以上に分かれて配置されることもある。また、厚みが異なる場合もあれば、同じ場合もある。また、厚みも位置も、z軸原点cに対して非対称の場合もある。また、静磁場磁石101、ボアチューブ200、送信コイル105、被検体Pの居住空間を形成するボアチューブそれぞれの外周面、内周面、内部の空間等、複数の層に分かれて配置されてもよい。
 図8は、第1の実施形態における略リング状の補償部材10の別例を説明するための図である。図8に示すように、補償部材10は、完全なリングである必要はなく、図8に示すように、離散的にリング状を形成する一群の補償部材10でもよい。完全なリングで形成された場合は、渦電流が流れるおそれもあるため、離散的にリング状を形成する方が望ましい場合もある。
 また、略リング状の補償部材10は、薄い板状のものを複数枚積層して形成してもよい。また、周方向にそれぞれ配置した補償部材10は、それぞれ異なる厚みであってもよい。
 図9は、第1の実施形態における磁場の調整作業を説明するための図である。まず、静磁場磁石101が製造され、出荷される(ステップS1)。第1の実施形態においては、静磁場磁石101の円筒の内周面に補償部材10を溶接する手法であるので、この製造の段階において、補償部材10が取り付けられる。
 続いて、静磁場磁石101が設置場所に搬入され、MRI装置100として組み立てられ、据え付けられる(ステップS2)。そして、静磁場磁石101は、静磁場電源102から電流の供給を受けて励磁する(ステップS3)。
 静磁場磁石101が励磁されると、フィールドカメラ等を用いて磁場が測定され(ステップS4)、磁場の均一性が規格に到達したか否かが判定される(ステップS5)。磁場の均一性が規格に到達していない場合(ステップS5,No)、励磁された磁場は、一旦消磁され(ステップS6)、傾斜磁場コイル103からのシムトレイ103gの抜き出しや、各ポケットに収納される鉄シムの配置位置や量の調整、再び、シムトレイ103gの挿入等が行われる(ステップS7)。
 一方、磁場の均一性が規格に到達した場合(ステップS5,Yes)、磁場の均一性の調整が完了する(ステップS8)。
 このように、第1の実施形態においては、静磁場磁石101の製造の段階において補償部材10が配置される。
 上述してきたように、補償部材10が配置されることで、静磁場磁石101自体が発生するz4成分を低減することができる。例えば、補償部材10を配置しない場合に「-414ppm」のz4成分を発生させていた静磁場磁石101に上述した補償部材10を配置すると、そのz4成分を「-184ppm」まで低減することができる。これは、傾斜磁場コイル103の円筒内部に配置された鉄シムの相対位置が変位したことにより発生するz3成分を低減することになる。なお、具体的な数値は一例に過ぎない。
 図10A及び図10Bは、補償部材10を配置しない場合と配置した場合との磁場均一性の分布の比較を示す図であり、図10Aは、補償部材10を配置しない場合を示し、図10Bは、補償部材10を配置した場合を示す。また、図10A及び図10Bにおいては、傾斜磁場コイル103が1mm移動した場合を想定する。
 一般に、磁場の均一性が|1.0ppm|程度を超えると、水と脂肪とを周波数分離する撮像法に影響が現れ始め、|3.5ppm|程度を超えると、水と脂肪とを周波数分離することができなくなると考えられる。このため、図10A及び図10Bでは、磁場の均一性が、「+1.0ppm」、「-1.0ppm」、「+3.5ppm」、「-3.5ppm」となるz方向の半径の位置を比較した。
 この点、例えば、図10Aの「-3.5ppm」と図10Bの「-3.5ppm」とを比較すると分かるように、補償部材10を配置しない図10Aの場合よりも、補償部材10を配置した図10Bの場合の方が、|3.5ppm|を超える半径の位置が大きい。同様に、例えば、図10Aの「-1.0ppm」と図10Bの「-1.0ppm」とを比較すると分かるように、やはり、補償部材10を配置しない図10Aの場合よりも、補償部材10を配置した図10Bの場合の方が、|1.0ppm|を超える半径の位置が大きい。即ち、脂肪抑制可能な領域が、補償部材10を配置した場合の方が改善されていることを示す。
 上述してきたように、第1の実施形態によれば、コイル機構の長軸方向の中央付近に、略円筒形状の周方向に沿った略リング状の磁性体の補償部材10が配置されるので、静磁場磁石101自体が発生するz4成分を低減することができる。この結果として、傾斜磁場コイル103の円筒内部の空間に配置された鉄シムの相対位置が変位したことにより発生するz3成分を低減することができ、磁場の均一性の劣化を抑制することができる。すなわち、補償部材10は、高次項の磁場成分を低減するように配置される。具体的には、補償部材10は、静磁場磁石101によって形成される4次項の磁場成分を低減するように配置される。また、補償部材10は、傾斜磁場コイル103の移動によって発生する3次項の磁場成分を低減するように配置される。
 この点、傾斜磁場コイル103の円筒内部の空間に配置された鉄シムの相対位置が変位したことにより発生するz3成分は、アクティブシミングによって低減することは難しい。また、鉄シム自体が変位してしまうので、従来の鉄シムによるシミングで低減することも難しい。更に、静磁場磁石の端面等に鉄片等を配置するシミングによっても低減することは難しい。
 ところで、上記の実施形態では、主に3次項及び4次項の磁場成分の低減について説明したが、これに限らず、例えば、奇数次項の磁場成分に対しても効果を奏するものである。一般的に、奇数次項の磁場成分、特に、低次の項である1次項の磁場成分(z1成分)は、主に、傾斜磁場コイル103の円筒内部の鉄シムがz軸原点cに対して非対称に配置されることに起因する。第1の実施形態では、本来、傾斜磁場コイル103の円筒内部の鉄シムが担っていたシミングの一部を、静磁場磁石101、すなわちシールドコイル103bの外側に配置される補償部材10が担う。この結果、鉄シムの配置の非対称性が緩和されるので、1次項の磁場成分の低減が期待される。言い換えると、傾斜磁場コイル103の円筒内部の鉄シムがz軸原点cに対して対称に配置されるように、補償部材10を配置することで、積極的に1次項の磁場成分を低減することができる。
(その他の実施形態)
 実施形態は、上述した実施形態に限られるものではない。
(補償部材10の配置)
 図11~14は、その他の実施形態における補償部材10の配置を示す図である。なお、図11~14においては、補償部材10の配置位置を、太線の円で囲んで示す。第1の実施形態においては、静磁場磁石101の円筒の内周面に補償部材10を配置する例を説明したが、実施形態はこれに限られるものではない。例えば、図11に示すように、補償部材10は、静磁場磁石101の円筒内部の空間に配置されてもよい。なお、図11においては、円筒内部の空間のうち内周面側に配置されている例を示すが、外周面側に配置されてもよい。
 また、例えば、補償部材10は、図12に示すように、ボアチューブ200の円筒の外周面に配置されてもよいし、図13に示すように、ボアチューブ200の円筒の内周面に配置されてもよい。また、例えば、補償部材10は、図14に示すように、送信コイル105の円筒の外周面に配置されてもよい。
 その他、図示した形態以外にも、例えば、静磁場磁石101の円筒の外周面や、送信コイル105の円筒の内周面、あるいは、被検体Pの居住空間を形成するボアチューブの外周面や内周面、内部の空間等、傾斜磁場コイル103とは概ね独立に支持され、傾斜磁場コイル103が移動した場合にも、本来の位置を維持する構成要素であれば、補償部材10を配置することができる。
 もっとも、例えば、静磁場磁石101の円筒の外周面に配置する場合には、その厚みを厚くする等、配置場所に応じた効果によって、厚みや位置を適宜変更することが必要になる。また、ボアチューブに配置する場合のように、溶接ができない場合には、補償部材10を配置するための何等かの固定部材(例えば、接着剤)を用いることになる。この場合、励磁後にはこの補償部材10に電磁力がかかることに鑑みて、ボアチューブや固定部材にある程度の強度を持たせることが望ましい。なお、補償部材10を溶接以外の手法で配置するタイミングとしては、図9に示すステップS2の据え付けの段階等が考えられる。
(他のシミングとの併用)
 また、補償部材10を配置する手法は、他のシミングと併用することができる。例えば、アクティブシミングとの併用や、傾斜磁場コイルの円筒内部の空間に鉄シムを配置するシミングとの併用、あるいは、静磁場磁石の端面等に鉄片等を配置するシミングとの併用等、他のシミングと適宜併用することができる。
 以上述べた少なくともひとつの実施形態の磁気共鳴イメージング装置によれば、磁場の均一性の劣化を抑制することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (13)

  1.  円筒内側の空間に静磁場を発生する静磁場磁石と、
     前記静磁場磁石の円筒内側に配置され、傾斜磁場を発生する傾斜磁場コイルと
     を含む略円筒形状のコイル機構のうち、
     前記傾斜磁場コイルとは独立に支持され、前記コイル機構の長軸方向の中央付近に、略円筒形状の周方向に沿うように、磁性体が配置される、磁気共鳴イメージング装置。
  2.  前記磁性体は、高次項の磁場成分を低減するように配置される、請求項1に記載の磁気共鳴イメージング装置。
  3.  前記磁性体は、前記静磁場磁石によって形成される4次項の磁場成分を低減するように配置される、請求項2に記載の磁気共鳴イメージング装置。
  4.  前記磁性体は、前記傾斜磁場コイルの移動によって発生する3次項の磁場成分を低減するように配置される、請求項2に記載の磁気共鳴イメージング装置。
  5.  前記磁性体は、奇数次項の磁場成分を低減するように配置される、請求項1に記載の磁気共鳴イメージング装置。
  6.  前記磁性体は、前記静磁場磁石の円筒の外周面、前記静磁場磁石の円筒の内周面、前記静磁場磁石の円筒内部の空間、前記静磁場磁石との間に密閉された空間を形成する第1ボアチューブの円筒の外周面、前記第1ボアチューブの円筒の内周面、前記傾斜磁場コイルの円筒内側に配置されるRF(Radio Frequency)コイルの円筒の外周面、前記RFコイルの円筒の内周面、被検体の居住空間を形成する第2ボアチューブの円筒の外周面、前記第2ボアチューブの円筒の内周面のうち、少なくともいずれかに配置される、請求項1に記載の磁気共鳴イメージング装置。
  7.  前記磁性体は、前記長軸方向の中央に対して対称の位置に配置される、請求項1に記載の磁気共鳴イメージング装置。
  8.  前記磁性体は、配置される位置に応じて厚みが異なる、請求項1に記載の磁気共鳴イメージング装置。
  9.  前記磁性体は、珪素鋼又はコバルト鋼である、請求項1に記載の磁気共鳴イメージング装置。
  10.  前記磁性体は、複数の略リング状の磁性体の部材が配置される、請求項1に記載の磁気共鳴イメージング装置。
  11.  前記磁性体は、複数の磁性体の部材が離散的に配置され、略リング状を形成する、請求項1に記載の磁気共鳴イメージング装置。
  12.  前記磁性体は、前記周方向にリング状の磁性体の部材を形成する、請求項1に記載の磁気共鳴イメージング装置。
  13.  前記複数の略リング状の磁性体の部材のうちの少なくとも1つは、他のリング状部材とは厚みが異なる、請求項10に記載の磁気共鳴イメージング装置。
PCT/JP2014/060758 2013-04-15 2014-04-15 磁気共鳴イメージング装置 WO2014171463A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480011551.6A CN105072990A (zh) 2013-04-15 2014-04-15 磁共振成像装置
US14/823,354 US20150346294A1 (en) 2013-04-15 2015-08-11 Magnetic resonance imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-085244 2013-04-15
JP2013085244 2013-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/823,354 Continuation US20150346294A1 (en) 2013-04-15 2015-08-11 Magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
WO2014171463A1 true WO2014171463A1 (ja) 2014-10-23

Family

ID=51731401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060758 WO2014171463A1 (ja) 2013-04-15 2014-04-15 磁気共鳴イメージング装置

Country Status (4)

Country Link
US (1) US20150346294A1 (ja)
JP (1) JP2014223287A (ja)
CN (1) CN105072990A (ja)
WO (1) WO2014171463A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3555650B1 (en) 2016-12-14 2022-09-28 Koninklijke Philips N.V. Supporting structure for a gradient coil assembly of a mri system
CN107907844B (zh) * 2017-11-03 2020-04-24 上海联影医疗科技有限公司 磁共振成像设备及其匀场方法
JP7179514B2 (ja) * 2018-07-11 2022-11-29 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
CN112858974A (zh) * 2019-11-28 2021-05-28 西门子(深圳)磁共振有限公司 局部区域的匀场方法、局部线圈及磁共振成像装置
EP3896473A1 (en) * 2020-04-17 2021-10-20 Siemens Healthcare GmbH Magnet system for a magnetic resonance imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165106A (ja) * 1987-12-22 1989-06-29 Asahi Chem Ind Co Ltd 磁界発生装置
JPH01227407A (ja) * 1988-03-08 1989-09-11 Toshiba Corp 磁気共鳴イメージング装置用磁石
JPH06304150A (ja) * 1993-04-08 1994-11-01 Oxford Magnet Technol Ltd 磁気共鳴映像のための磁石
JPH09238917A (ja) * 1996-03-11 1997-09-16 Toshiba Corp 磁気共鳴診断用コイルアセンブリ
JPH1027706A (ja) * 1996-07-10 1998-01-27 Mitsubishi Electric Corp 電磁石装置
JP2000083924A (ja) * 1998-08-28 2000-03-28 Picker Internatl Inc 磁気共鳴映像法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550472A (en) * 1995-04-13 1996-08-27 Picker International, Inc. Combined radio frequency coil with integral magnetic field shim set
DE69935702T2 (de) * 1998-06-19 2007-12-27 Neomax Co., Ltd. Magnet für die bildgebende magnetische resonanz
CN100556359C (zh) * 2003-02-10 2009-11-04 日立金属株式会社 磁场产生装置
US10281538B2 (en) * 2012-09-05 2019-05-07 General Electric Company Warm bore cylinder assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165106A (ja) * 1987-12-22 1989-06-29 Asahi Chem Ind Co Ltd 磁界発生装置
JPH01227407A (ja) * 1988-03-08 1989-09-11 Toshiba Corp 磁気共鳴イメージング装置用磁石
JPH06304150A (ja) * 1993-04-08 1994-11-01 Oxford Magnet Technol Ltd 磁気共鳴映像のための磁石
JPH09238917A (ja) * 1996-03-11 1997-09-16 Toshiba Corp 磁気共鳴診断用コイルアセンブリ
JPH1027706A (ja) * 1996-07-10 1998-01-27 Mitsubishi Electric Corp 電磁石装置
JP2000083924A (ja) * 1998-08-28 2000-03-28 Picker Internatl Inc 磁気共鳴映像法

Also Published As

Publication number Publication date
US20150346294A1 (en) 2015-12-03
JP2014223287A (ja) 2014-12-04
CN105072990A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2014171463A1 (ja) 磁気共鳴イメージング装置
JP5203682B2 (ja) Mri装置、nmr分析装置および静磁場発生部
JP5349177B2 (ja) 磁気共鳴イメージング装置
JP6309309B2 (ja) 磁気共鳴イメージング装置及び傾斜磁場コイル
WO2012132911A1 (ja) 静磁場均一度の調整方法、磁気共鳴イメージング用静磁場発生装置、磁場調整システム、プログラム
US10976391B2 (en) Halbach magnet arrangement with notch
JP4639948B2 (ja) 磁石装置及びそれを用いた磁気共鳴イメージング装置
CN105324678B (zh) 用于磁共振混合扫描器的匀场体系统
US10067202B2 (en) Magnetic resonance imaging apparatus and gradient coil
JP2014168529A (ja) 磁気共鳴イメージング装置及び傾斜磁場コイル
US20140125341A1 (en) Gradient coil mounting unit and magnetic resonance imaging apparatus having the same
US10126388B2 (en) Gradient coil unit and magnetic resonance imaging apparatus
US20090189607A1 (en) Gradient coil, magnetic resonance imaging apparatus and gradient coil manufacturing method
JP2012115474A (ja) Mri装置
WO2014208297A1 (ja) 傾斜磁場コイル及び磁気共鳴イメージング装置
JP6953236B2 (ja) 磁気共鳴イメージング装置
JP2018023407A (ja) 磁気共鳴イメージング装置
JP2005185318A (ja) 磁石装置及び磁気共鳴イメ−ジング装置
JP2014063869A (ja) 磁気シールド装置
JP5752837B2 (ja) 磁場調整装置
JP7114382B2 (ja) 磁性体の設置方法及び演算装置
CN214539984U (zh) 涡电流场补偿装置以及磁共振成像装置
JP6929667B2 (ja) 磁気共鳴イメージング装置及び静磁場補正方法
JP6912321B2 (ja) 磁気共鳴イメージング装置
JP7076339B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011551.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785381

Country of ref document: EP

Kind code of ref document: A1