WO2014171164A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014171164A1
WO2014171164A1 PCT/JP2014/052077 JP2014052077W WO2014171164A1 WO 2014171164 A1 WO2014171164 A1 WO 2014171164A1 JP 2014052077 W JP2014052077 W JP 2014052077W WO 2014171164 A1 WO2014171164 A1 WO 2014171164A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
antioxidant
styrene
pneumatic tire
Prior art date
Application number
PCT/JP2014/052077
Other languages
English (en)
French (fr)
Inventor
友美 増井
睦樹 杉本
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to JP2015512327A priority Critical patent/JP6367793B2/ja
Publication of WO2014171164A1 publication Critical patent/WO2014171164A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • B60C2005/145Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre made of laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C2009/0269Physical properties or dimensions of the carcass coating rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C2009/0269Physical properties or dimensions of the carcass coating rubber
    • B60C2009/0284Thickness

Definitions

  • the present invention relates to a pneumatic tire provided with an inner liner, and more particularly, to a pneumatic tire with improved ultraviolet degradation resistance and oxidation degradation resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-136766
  • a thermoplastic resin film is arranged inside a carcass layer, and the distance in the tire radial direction from the plane connecting the cross-sectional centers of the carcass cords of the carcass layer is described. It has been reported that, when it is made as small as possible, the shear rigidity in the tire circumferential direction is improved by the thermoplastic resin film, and the braking performance at the time of sudden braking from high speed running can be improved.
  • Patent Document 1 also describes that the thermoplastic resin film forms bellows-like irregularities along the surface of the carcass cord.
  • thermoplastic resin may deteriorate and cracks may be formed inside the tire, giving the user the impression that the inside appearance is poor.
  • the tire interior space of a pneumatic tire is normally filled with air. When cracks enter the inside of the tire, oxygen contained in the filled air is lost. In addition, the oxygen penetrates into the tire component and oxidizes the tire component over time. Thereby, since a thermoplastic resin deteriorates, it causes deterioration of durability of a tire.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-254779 proposes adding an ultraviolet absorber or an antioxidant to a thermoplastic resin.
  • the present invention is to prevent deterioration of thermoplastic resin due to ultraviolet rays or oxygen in a pneumatic tire provided with an inner liner, thereby preventing a decrease in rigidity of the thermoplastic resin, and thus preventing a decrease in braking performance. .
  • the pneumatic tire according to the present invention includes an inner liner disposed inside the tire and a carcass ply provided adjacent to the inner liner and having a cord embedded in a rubber layer.
  • the inner liner includes a first layer having a first elastomer component containing a styrene-isobutylene-styrene block copolymer, a first ultraviolet absorber, and a first antioxidant, a styrene-isoprene-styrene block copolymer, and styrene.
  • a polymer laminate comprising a second elastomer component comprising at least one of isobutylene block copolymers, a second layer having a second UV absorber and a second antioxidant.
  • the total blending amount of the first ultraviolet absorber and the first antioxidant is 0.5% by mass or more and 40% by mass or less with respect to the first elastomer component.
  • the total blending amount of the second ultraviolet absorber and the second antioxidant is 0.5% by mass or more and 40% by mass or less with respect to the second elastomer component.
  • the thickness of the first layer is from 0.05 mm to 0.6 mm, and the thickness of the second layer is from 0.01 mm to 0.3 mm.
  • the second layer is disposed in contact with the rubber layer of the carcass ply. When the diameter of the cord is D, the distance L from the plane passing through the center of the cross section of the cord to the second layer is 0 or more and (1 + D / 2) mm or less.
  • the total blending amount of the first ultraviolet absorber and the first antioxidant is preferably 2.0% by mass or more and 20% by mass or less with respect to the first elastomer component.
  • the total amount of the second ultraviolet absorber and the second antioxidant is preferably 2.0% by mass or more and 20% by mass or less with respect to the second elastomer component.
  • At least one of a styrene-isobutylene-styrene block copolymer and a SIBS-modified copolymer is blended in either the first layer or the second layer.
  • first layer or the second layer is mixed with a tackifier or polyisobutylene.
  • the boundary surface between the polymer laminate and the rubber layer of the carcass ply preferably has an uneven shape.
  • At least one of the ultraviolet absorber and the antioxidant is contained not only in the first layer constituting the inner liner but also in the second layer. Deterioration is prevented, thus preventing a reduction in braking performance.
  • FIG. 1 is a schematic cross-sectional view showing a right half of a pneumatic tire according to an embodiment of the present invention, which is typically used as a pneumatic tire for passenger cars.
  • a pneumatic tire 1 shown in FIG. 1 includes a tread portion 2, sidewall portions 3 and bead portions 4 arranged so as to form a toroid shape from both ends of the tread portion 2. Further, a bead core 5 is embedded in the bead portion 4. Further, a carcass ply 6 provided from one bead portion 4 to the other bead portion 4 (not shown) and folded at both ends around the bead core 5 and on the outer side of the crown portion of the carcass ply 6. Are arranged with a belt layer 7 composed of at least two plies.
  • the belt layer 7 usually intersects two plies made of steel cords or cords such as aramid fibers with respect to the tire circumferential direction so that the cords are usually at an angle of 5 to 30 °.
  • a topping rubber layer can be provided on both outer sides of the belt layer 7 to reduce peeling at both ends of the belt layer 7.
  • the carcass ply 6 has cords made of organic fibers such as polyester, nylon, and aramid arranged at approximately 90 ° in the tire circumferential direction, and the bead core 5 has a region surrounded by the carcass ply 6 and its folded portion.
  • a bead apex 8 extending from the upper end in the direction of the sidewall portion 3 is disposed.
  • An inner liner 9 is arranged on the inner side in the tire radial direction of the carcass ply 6 from one bead portion 4 to the other bead portion 4 (not shown).
  • FIG. 2 is a schematic cross-sectional view showing an enlarged vicinity of the boundary between the carcass ply and the inner liner in the pneumatic tire according to one embodiment of the present invention.
  • the inner liner 9 according to the present invention is composed of a polymer laminate including a first layer IL1 and a second layer IL2.
  • the second layer IL2 is in contact with the rubber layer 6a constituting the carcass ply 6 and forms a boundary surface S.
  • the carcass ply 6 has a plurality of cords K embedded in a rubber layer 6a at regular intervals.
  • the surface passing through the cross-sectional center of the cord K (the surface formed by connecting the cross-sectional centers of the cords K) is second from the KC.
  • the distance L to the layer IL2 (that is, the distance L is the distance from the surface KC passing through the cross-sectional center of the code K to the boundary surface S) is 0 or more and (1 + D / 2) mm or less.
  • the second layer IL2 includes at least one of a styrene-isoprene-styrene block copolymer (hereinafter also referred to as “SIS”) and a styrene-isobutylene block copolymer (hereinafter also referred to as “SIB”).
  • SIS and SIB have higher rigidity than the rubber layer 6 a of the carcass ply 6. Therefore, by making the distance L as small as (1 + D / 2) mm or less, shear stress acts in the tire circumferential direction of the second layer IL2, and the shear rigidity in the tire circumferential direction is improved. As a result, it is possible to improve the steering stability during travel of the pneumatic tire.
  • the distance L is smaller than 0 mm, the restraining force between the cords K of the carcass ply 6 is reduced, the cord K interval is likely to fluctuate, and the rigidity in the tire circumferential direction is lowered.
  • the distance L is smaller than 0 mm means that the boundary surface S between the rubber layer 6a and the second layer IL2 constituting the carcass ply 6 is closer to the side wall portion 3 than the surface KC passing through the cross-sectional center of the cord K. Means to be located.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged vicinity of a boundary between a carcass ply and an inner liner in a pneumatic tire according to another embodiment of the present invention.
  • the boundary surface S between the second layer IL2 and the rubber layer 6a is uneven.
  • the shape may be formed.
  • the distance L from the surface KC passing through the cross-sectional center of the cord K to the boundary surface S between the rubber layer 6a and the second layer IL2 is substantially zero.
  • the distance L when the boundary surface S has an uneven shape means the average value of the shortest distance L ′ from the surface KC passing through the cross-sectional center of the cord K to the boundary surface S between the rubber layer 6a and the second layer IL2. To do.
  • the inner liner is composed of a polymer laminate including a first layer disposed inside the tire and a second layer disposed so as to contact the rubber layer 6a of the carcass ply 6.
  • the first layer contains both the first UV absorber and the first antioxidant
  • the second layer contains both the second UV absorber and the second antioxidant. Therefore, a pneumatic tire excellent in braking performance can be provided.
  • the first layer has a first elastomer component containing a styrene-isobutylene-styrene block copolymer (hereinafter also referred to as “SIBS”), a first ultraviolet absorber, and a first antioxidant.
  • SIBS styrene-isobutylene-styrene block copolymer
  • the first elastomer component contains a styrene-isobutylene-styrene triblock copolymer (SIBS).
  • SIBS includes an isobutylene block in the molecular chain. Therefore, the polymer film made of SIBS has excellent air permeation resistance. Therefore, a pneumatic tire excellent in air permeation resistance can be obtained by using the first layer containing SIBS for the inner liner.
  • a pneumatic tire having excellent air permeation resistance can be obtained by using the first layer containing SIBS for the inner liner. Therefore, it is not necessary to use a high specific gravity halogenated rubber which has been conventionally used for imparting air permeation resistance such as halogenated butyl rubber. Further, even when a high specific gravity halogenated rubber is used, the amount of use can be reduced. From these things, since the weight of the tire can be reduced, the effect of improving the fuel efficiency can be obtained.
  • SIBS is saturated in its molecular structure except for an aromatic ring, it does not harden even when deteriorated and has excellent durability. Therefore, when the first layer containing SIBS is used for the inner liner, a pneumatic tire having excellent durability can be obtained.
  • the molecular weight of SIBS is not particularly limited. However, from the viewpoints of rubber elasticity, fluidity of SIBS, moldability to inner liner, etc., the mass average molecular weight of SIBS by GPC measurement is preferably 50,000 or more and 400,000 or less. If the mass average molecular weight of SIBS as measured by GPC is less than 50000, rubber elasticity, tensile strength and tensile elongation of SIBS may be reduced. Moreover, when the mass average molecular weight of SIBS by GPC measurement exceeds 400,000, there exists a possibility that the moldability (extrusion processability etc.) to an inner liner may fall by the fall of the fluidity
  • the content of the styrene component in SIBS is preferably 10 to 40% by mass, and more preferably 10 to 30% by mass from the viewpoint of improving the air permeability and durability of the tire. More preferably, the content is 14 to 23% by mass.
  • the molar ratio of isobutylene component and styrene component (isobutylene / styrene) constituting SIBS is preferably 40/60 to 95/5 from the viewpoint of rubber elasticity of SIBS.
  • the degree of polymerization of each block in the molecular chain is about 10,000 to 150,000 in the molecular chain from the viewpoint of rubber elasticity and handleability of SIBS (the degree of polymerization may be liquid when it is less than 10,000).
  • the styrene block is preferably about 5000 to 30000.
  • SIBS can be obtained by a general vinyl compound polymerization method such as a living cationic polymerization method.
  • a general vinyl compound polymerization method such as a living cationic polymerization method.
  • JP-A-62-48704 and JP-A-64-62308 disclose that living cationic polymerization of isobutylene and other vinyl compounds is possible, and isobutylene and other compounds as vinyl compounds are used as living compounds.
  • a polyisobutylene block copolymer can be produced by cationic polymerization.
  • a method for producing a vinyl compound polymer by a living cationic polymerization method is disclosed in, for example, US Pat. No. 4,946,899, US Pat. No. 5,219,948, and Japanese Patent Laid-Open No. 3-174403. It is described in.
  • SIBS has no double bond other than an aromatic ring in the molecule, it is more stable to ultraviolet rays than a polymer having a double bond in the molecule (for example, polybutadiene), and is therefore weather resistant. Good properties.
  • the refractive index (nD) at 20 ° C. of light having a wavelength of 589 nm, despite having no double bond other than an aromatic ring in the molecule and being a saturated rubbery polymer is a polymer handbook. According to [1989: Wiley (Polymer Handbook, Willy, 1989)], it is 1.506. This is significantly higher than other saturated rubbery polymers (eg, ethylene-butene copolymers).
  • the first elastomer component may be made of SIBS, but may contain SIBS and SIBS-modified copolymer, or may be made of SIBS-modified copolymer.
  • the SIBS-modified copolymer is obtained by modifying the styrene block portion of SIBS with an acid chloride or acid anhydride having an unsaturated bond.
  • the acid chloride include methacrylic acid chloride, methacrylic acid bromide, methacrylic acid iodide, acrylic acid chloride, acrylic acid bromide, acrylic acid iodide, crotonyl acid chloride and crotonyl acid bromide.
  • methacrylic acid chloride and acrylic acid chloride are suitable.
  • Examples of the acid anhydride include acetic anhydride, maleic anhydride, and phthalic anhydride, and acetic anhydride is particularly preferable. Two or more of these compounds can be used in combination. Since the unsaturated group is introduced into SIBS by such modification, crosslinking using a crosslinking agent can be made possible.
  • the SIBS-modified copolymer is preferably blended in an amount of 10% by mass or more and 100% by mass, more preferably 30% by mass or more and 100% by mass in the first elastomer component.
  • the blending amount of the SIBS-modified copolymer is less than 10% by mass of the first elastomer component, vulcanization adhesion between the second layer and the carcass ply rubber may not be sufficient.
  • the acid chloride and the acid anhydride are preferably contained in an amount of 1% by mass or more, more preferably 5% by mass or more, and 30% by mass or less. More preferably.
  • a conventional method can be used. For example, thermal crosslinking by heating or crosslinking by a crosslinking agent can be performed.
  • a crosslinking agent organic peroxides such as dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane and the like can be used.
  • the organic peroxide is preferably blended in an amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the first elastomer component.
  • polyfunctional vinyl monomers for example, divinylbenzene
  • triallyl cyanurate or polyfunctional methacrylate monomers
  • polyfunctional methacrylate monomers for example, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylol propane tri (Methacrylate or allyl methacrylate)
  • crosslinking agent for example, it can be expected to improve the flex cracking property of the composition after crosslinking.
  • the film made of the SIBS-modified copolymer has excellent air permeation resistance.
  • unsaturated groups are introduced into SIBS, so that thermal crosslinking and crosslinking with a crosslinking agent are possible.
  • the air permeation resistance is improved and the properties as an inner liner are improved.
  • a pneumatic tire having excellent air permeation resistance can also be obtained by using the first layer containing the SIBS-modified copolymer as an inner liner. Therefore, as in the case where the first layer containing SIBS is used for the inner liner, the weight of the tire can be reduced, so that the effect of improving fuel efficiency can be obtained. The same can be said for the molecular weight of the SIBS-modified copolymer.
  • the SIBS-modified copolymer can be obtained, for example, by the following method. After placing the styrene-isobutylene-styrene block copolymer in a separable flask, the inside of the polymerization vessel is purged with nitrogen. Thereafter, an organic solvent dried with molecular sieves (for example, n-hexane and butyl chloride) is added, and methacrylic acid chloride is further added. Finally, aluminum trichloride is added and reacted while stirring the solution. After a certain time from the start of the reaction, a predetermined amount of water is added to the reaction solution and stirred to terminate the reaction.
  • molecular sieves for example, n-hexane and butyl chloride
  • the reaction solution is washed with a large amount of water several times or more, further slowly dropped into a large amount of a mixed solvent of methanol and acetone to precipitate a polymer, and the obtained polymer is vacuum dried.
  • a method for producing the SIBS-modified copolymer is disclosed in, for example, Japanese Patent No. 4510005 (Japanese Patent Laid-Open No. 2002-226667).
  • a 1st ultraviolet absorber absorbs the light of the ultraviolet region which has a wavelength of 290 nm or more, and prevents degradation of the molecular chain of a high molecular compound.
  • benzophenone-based, salicylate-based, and benzotriazole-based ultraviolet absorbers absorb ultraviolet light in the wavelength range of 320 nm to 350 nm, which is most susceptible to degradation by polymer compounds, and convert light in this wavelength region into vibration energy or thermal energy. It has a function of preventing absorption into a polymer compound by conversion.
  • benzotriazole ultraviolet absorbers can absorb a wide range of ultraviolet light. Here, it is as follows if the 1st ultraviolet absorber is illustrated.
  • TINUVIN 213 manufactured by BASF, melting point ⁇ 40 ° C., maximum absorption wavelength 344 nm
  • TINUVIN 571 BASF, molecular weight 393.6, melting point ⁇ 56 ° C., maximum absorption wavelength 343 nm
  • TINUVIN 1577FF BASF, molecular weight 425, melting point 148 ° C., maximum absorption wavelength 274 nm
  • 274 nm 2- [4,6-diphenyl-1,3,5-triazin-2-yl] -5- (hexyloxy) phenol
  • CHIMASSORB 81 / FL manufactured by BASF, molecular weight 326.4, melting point 48-49 ° C. (2-hydroxy-4- (octyloxy) benzophenone).
  • TINUVIN 120 BASF, molecular weight 438.7, melting point 192 to 197 ° C., maximum absorption wavelength 265 nm
  • 265 nm maximum absorption wavelength 265 nm
  • CHIMASSORB 2020 FDL (BASF, molecular weight 2600-3400, melting point 130-136 ° C) (dibutylamine 1,3,5-triazine N, N-bis (2,2,6,6-tetramethyl-4-piperidyl) -1,6-hexamethylenediamine / N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate)
  • CHIMASSORB 944 FDL BASF, molecular weight 2000-3100, melting point 100-135 ° C.
  • TINUVIN 622 LD BASF, molecular weight 2600-3400, melting point
  • any one of the above ultraviolet absorbers may be used, or two or more of the above ultraviolet absorbers may be mixed and used.
  • the first antioxidant functions as a radical scavenger and can prevent deterioration of the molecular chain of the polymer by mainly capturing carbon radicals.
  • the first antioxidant is exemplified below.
  • IRGANOX1010 [Hindered phenolic antioxidants]
  • IRGANOX1010 (manufactured by BASF), Adeka Stub AO-60 (manufactured by ADEKA), Sumilyzer BP-101 (manufactured by Sumitomo Chemical Co., Ltd.) (pentaerythrityl tetrakis [3- (3,505-di-t-butyl-) 4-hydroxyphenyl) propionate])
  • IRGANOX1035 BASF
  • IRGANOX1076 (manufactured by BASF) (octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate)
  • IRGANOX1098 (manufactured by BASF) (N, N'-hexamethylenebis (3,5-di-t-buty
  • Phosphorous antioxidants are used as peroxide decomposing agents, and are excellent in the antioxidant function during thermal processing molding.
  • IRGAFOS12 BASF, molecular weight 1462.9
  • IRGAFOS38 (manufactured by BASF, molecular weight 514)
  • IRGAFOS168 (BASF, molecular weight 646)
  • ADK STAB 2112 made by ADEKA Corporation
  • Sumilyzer P-16 manufactured by Sumitomo Chemical Co., Ltd.
  • IRGANOX B 225 BASF
  • IRGAFOS168: IRGANOX1010 1: 1) IRGANOX215 (BASF)
  • IRGAFOS168: IRGANOX1010 2: 1)
  • IRGANOX220 manufactured by BASF
  • IRGAFOS168: IRGANOX1010 3: 1)
  • IRGANOX921 manufactured by BASF
  • IRGAFOS168: IRGANOX1076 2: 1).
  • any one of the above antioxidants may be used, or two or more of the above antioxidants may be mixed and used.
  • Total blending amount of the first UV absorber and the first antioxidant The total blending amount of the first UV absorber and the first antioxidant is 0.5% by mass or more and 40% by mass with respect to the first elastomer component. % Or less. If the total blending amount is less than 0.5% by mass with respect to the first elastomer component, the effect expected by the addition of the first ultraviolet absorber and the first antioxidant may not be sufficiently exhibited. When this total compounding quantity exceeds 40 mass% with respect to a 1st elastomer component, the fall of the original function of a 1st layer may be caused. Preferably, the total blending amount is 2.0% by mass or more and 20% by mass or less with respect to the first elastomer component.
  • One or more of the above listed first ultraviolet absorbers can be used in combination with one or more of the above listed first antioxidants.
  • antioxidant is the concept containing an oxygen absorber.
  • an oxygen absorbent a general oxygen absorbent having the ability to capture oxygen in the air can be used, for example, iron powder oxygen absorption that absorbs oxygen in the air using an oxidation reaction of iron powder. You can give the agent.
  • the halide may be an alkali metal chloride, bromide or iodide (eg sodium chloride or sodium bromide), or an alkaline earth metal chloride, bromide or iodide (eg calcium chloride or chloride). Magnesium) and the like.
  • Iron powder and a halide may be mixed, or the surface of the iron powder may be coated with a halide.
  • an oxygen absorbent obtained by further promoting the oxidation of iron by oxygen by further combining porous particles such as zeolite with water impregnated may be used.
  • hindered phenolic antioxidants as radical trapping agents for carbon radicals are preferred.
  • a tackifier is blended in the first layer.
  • tire characteristics such as durability, driving stability during traveling, air permeation resistance (air blocking property), and rolling resistance can be further improved.
  • the addition of the tackifier further improves the adhesive strength of the first elastomer component containing SIBS, and further improves the adhesive strength of the first layer.
  • the tackifier When the tackifier is blended in the first layer, the tackifier is preferably blended in an amount of 1 to 100 parts by weight, preferably 1 to 50 parts by weight, based on 100 parts by weight of SIBS. More preferred. If the compounding amount of the tackifier is less than 1 part by mass with respect to 100 parts by mass of SIBS, the effect obtained by blending the tackifier may not be sufficiently obtained. On the other hand, when the compounding amount of the tackifier exceeds 100 parts by mass with respect to 100 parts by mass of SIBS, the steering stability during running or the air permeation resistance tends to decrease.
  • tackifier refers to an additive for enhancing the tackiness of the rubber composition forming the inner liner.
  • the mass average molecular weight of the tackifier by GPC measurement is preferably 1 ⁇ 10 2 to 1 ⁇ 10 6 .
  • the mass average molecular weight of the tackifier by GPC measurement is less than 1 ⁇ 10 2 , the viscosity of the tackifier is too low, which is disadvantageous in terms of moldability to the inner liner.
  • the mass average molecular weight of the tackifier by GPC measurement exceeds 1 ⁇ 10 6 , the tackiness tends to be insufficient to the first layer.
  • the softening point of the tackifier is preferably in the range of 50 ° C to 150 ° C.
  • the softening point of the tackifier is measured using a differential scanning calorimeter (“DSC 2910” manufactured by TA Instruments Japan Co., Ltd.). Examples of the tackifier that can be used in the present invention include the following.
  • C9 petroleum resin is obtained by polymerizing the C5 to C9 fraction (mainly C9 fraction), which is the remainder obtained by removing useful compounds such as ethylene, propylene or butadiene from the thermal decomposition product of naphtha in a mixed state.
  • Aromatic petroleum resin is obtained by polymerizing the C5 to C9 fraction (mainly C9 fraction), which is the remainder obtained by removing useful compounds such as ethylene, propylene or butadiene from the thermal decomposition product of naphtha in a mixed state.
  • C5 petroleum resin is obtained by polymerizing a C4 to C5 fraction (mainly C5 fraction), which is a residue obtained by removing a useful compound such as ethylene, propylene or butadiene from a thermal decomposition product of naphtha in a mixed state. It is an aliphatic petroleum resin. All are trade names, Highlets G100 (Mitsui Petrochemical Co., Ltd., softening point 100 ° C); Marcarets T100AS (Maruzen Oil Co., Ltd., softening point 100 ° C); Escorez 1102 (Tonex Corp., softening point 110 ° C.).
  • [Aromatic modified terpene resin] All of them are trade names, such as YS resin TO85, TO105, TO115, and TO125 (all manufactured by Yashara Chemical Co., Ltd., softening point 80 to 130 ° C.).
  • Alkylphenol resin Under the trade name, Tamanoru 510 (manufactured by Arakawa Chemical Co., Ltd., softening point 75 to 95 ° C.) is available.
  • a fully hydrogenated petroleum resin of C9 petroleum resin is preferable.
  • the completely hydrogenated petroleum resin of C9 petroleum resin has good compatibility with SIBS constituting the first layer, and has a high effect of improving the adhesive strength of the first layer.
  • the effect of improving the adhesive strength and / or the adhesive strength between the second layer and the carcass ply is high.
  • the second elastomer component of the second layer is a styrene-isoprene-styrene triblock copolymer (SIS) or a styrene-isobutylene diblock copolymer (SIB) 20 It is preferably composed of ⁇ 90 mass% and styrene-isobutylene-styrene triblock copolymer (SIBS) 10 ⁇ 80 mass%.
  • SIBS styrene-isoprene-styrene triblock copolymer
  • SIBS styrene-isobutylene-styrene triblock copolymer
  • Polyisobutylene It is preferable that polyisobutylene is blended in the first layer. Thereby, adhesiveness increases and workability improves.
  • the polyisobutylene is preferably blended in an amount of 3 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 100 parts by mass of SIBS. . If the blending amount of polyisobutylene is less than 3 parts by weight with respect to 100 parts by weight of SIBS, the effect obtained by blending polyisobutylene may not be sufficiently obtained. On the other hand, when the compounding amount of polyisobutylene exceeds 20 parts by mass with respect to 100 parts by mass of SIBS, the fracture strength may be lowered.
  • the molecular weight of polyisobutylene is not particularly limited, but is preferably 9000 or more and 60000 or less, and more preferably 12000 or more and 51000 or less, from the viewpoint of achieving both improvement in adhesiveness and prevention of reduction in fracture strength.
  • the thickness of the first layer including SIBS (T1 in FIG. 2) is 0.05 to 0.6 mm.
  • T1 of the first layer is less than 0.05 mm, the first layer is broken by the press pressure during vulcanization of the raw tire in which the polymer laminate is applied to the inner liner, and an air leak occurs in the obtained tire. Phenomena may occur.
  • the thickness T1 of the first layer is preferably 0.05 to 0.4 mm.
  • the first layer can be obtained according to a usual method for forming a thermoplastic resin or a thermoplastic elastomer into a film.
  • a first rubber composition containing a first elastomer component, a first ultraviolet absorber, and a first antioxidant.
  • the product can be obtained by forming into a film by extrusion molding or calendering.
  • the first layer may further contain other additives such as a reinforcing agent, a vulcanizing agent, a vulcanization accelerator, various oils, an anti-aging agent, a softening agent, a plasticizer, or a coupling agent.
  • the second layer includes a second elastomer component containing at least one of styrene-isoprene-styrene block copolymer (SIS) and styrene-isobutylene block copolymer (SIB), a second ultraviolet absorber, and a second antioxidant. And having an agent.
  • SIS styrene-isoprene-styrene block copolymer
  • SIB styrene-isobutylene block copolymer
  • the second elastomer component contains at least one of SIS and SIB. Since the isoprene block of SIS and the isobutylene block of SIB are soft segments, the polymer film containing SIS or SIB tends to be vulcanized and bonded to the rubber component. Therefore, by using the inner liner provided with the second layer containing SIS or SIB, a pneumatic tire excellent in adhesive strength between the inner liner and the rubber layer of the carcass ply can be obtained. Thereby, durability of a pneumatic tire and steering stability at the time of driving
  • the molecular weight of SIS is not particularly limited. However, from the viewpoints of rubber elasticity of SIS and molding processability to the inner liner, the mass average molecular weight of SIS by GPC measurement is preferably 100,000 or more and 290000 or less. When the mass average molecular weight of SIS by GPC measurement is less than 100,000, rubber elasticity and tensile strength of SIS may be reduced. Moreover, when the mass average molecular weight of SIS by GPC measurement exceeds 290000, there exists a possibility that the molding processability (extrusion processability etc.) to an inner liner may fall by the fall of the fluidity
  • the content of the styrene component in the SIS is 10 to 30% by mass from the viewpoints of SIS stickiness, SIS rubber elasticity, adhesion strength of the second layer to the first layer and adhesion strength of the second layer to the carcass ply. Preferably there is.
  • the degree of polymerization of each block constituting the SIS is preferably about 500 to 5000 for the isoprene block and about 50 to 1500 for the styrene block from the viewpoint of rubber elasticity and handleability of the SIS.
  • SIS can be obtained by a general vinyl compound polymerization method such as a living cationic polymerization method.
  • the SIB it is preferable to use a linear one from the viewpoint of rubber elasticity, the adhesive strength of the second layer to the first layer, and the adhesive strength of the second layer to the carcass ply.
  • the molecular weight of SIB is not particularly limited. However, from the viewpoint of rubber elasticity of SIB and moldability to the inner liner, the mass average molecular weight of SIB by GPC measurement is preferably 40000 to 120,000. If the mass average molecular weight of SIB by GPC measurement is less than 40000, rubber elasticity and tensile strength of SIB may be reduced.
  • the mass average molecular weight of SIB by GPC measurement exceeds 120,000, there exists a possibility that the moldability (extrusion processability etc.) to an inner liner may fall by the fall of the fluidity
  • the content of the styrene component in the SIB is 10 to 35% by mass from the viewpoints of the adhesiveness of the SIB, the rubber elasticity of the SIB, the adhesive strength of the second layer to the first layer and the adhesive strength of the second layer to the carcass ply Preferably there is.
  • the degree of polymerization of each block constituting the SIB is preferably about 300 to 3000 for the isobutylene block and about 10 to 1500 for the styrene block from the viewpoint of rubber elasticity and handleability of the SIB.
  • SIB can be obtained by a general vinyl compound polymerization method such as a living cationic polymerization method.
  • a general vinyl compound polymerization method such as a living cationic polymerization method.
  • methylcyclohexane, n-butyl chloride and cumyl chloride are added to a stirrer, cooled to -70 ° C., reacted for 2 hours, and then a large amount of methanol is added.
  • a method is disclosed in which the reaction is stopped and vacuum dried at 60 ° C. to obtain SIB.
  • the second elastomer component is preferably obtained by mixing SIS and SIB at an arbitrary ratio.
  • the second layer may have a single layer structure including both SIS and SIB, or may have a multilayer structure including a layer including SIS and a layer including SIB layer.
  • the second elastomer component is styrene-isoprene-butadiene-styrene copolymer (SIBS), styrene-ethylene-butene-styrene copolymer (SEBS), styrene-ethylene-propylene-styrene copolymer (SEPS), styrene- One or more selected from the group consisting of ethylene / ethylene / propylene / styrene copolymer (SEEPS), styrene / butadiene / butylene / styrene copolymer (SBBS), and those obtained by introducing an epoxy group into these thermoplastic elastomers.
  • SIBS styrene-isoprene-butadiene-styrene copolymer
  • SEBS styrene-ethylene-butene-styrene copolymer
  • SEPS st
  • thermoplastic elastomer may be included.
  • thermoplastic elastomer having an epoxy group include an epoxy-modified styrene-butadiene-styrene copolymer (specific examples include “epoefriend A1020” manufactured by Epoxidized SBS Daicel Chemical Industries, Ltd., mass average molecular weight: 100,000). , Epoxy equivalent: 500, etc.).
  • the second ultraviolet absorber like the first ultraviolet absorber, absorbs light in the ultraviolet region having a wavelength of 290 nm or more and prevents the molecular chain of the polymer compound from deteriorating.
  • the materials listed as specific examples of the first ultraviolet absorber can be used without particular limitation, and any one of the materials listed as specific examples of the first ultraviolet absorber is used. Alternatively, two or more kinds may be mixed and used.
  • the second ultraviolet absorber blended in the second layer may be the same as the first ultraviolet absorber blended in the first layer, or different from the first ultraviolet absorber blended in the first layer. May be.
  • the second antioxidant functions as a radical scavenger and can prevent deterioration of the molecular chain of the polymer by mainly capturing carbon radicals.
  • the materials listed as specific examples of the first antioxidant can be used without particular limitation, and any one of the materials listed as specific examples of the first antioxidant is used. Alternatively, two or more kinds may be mixed and used.
  • the second antioxidant compounded in the second layer may be the same as the first antioxidant compounded in the first layer, or different from the first antioxidant compounded in the first layer. May be.
  • the total blending amount of the second ultraviolet absorber and the second antioxidant is 0.5% by mass or more and 40% by mass with respect to the second elastomer component. % Or less. If the total blending amount is less than 0.5% by mass with respect to the second elastomer component, the effect expected by the addition of the second ultraviolet absorber and the second antioxidant may not be sufficiently exhibited. When this total compounding amount exceeds 40 mass% with respect to the 2nd elastomer component, the fall of the original function of a 2nd layer may be caused.
  • the total blending amount is 2.0% by mass or more and 20% by mass or less with respect to the second elastomer component.
  • One or more of the materials listed as specific examples of the first ultraviolet absorber can be used in combination with one or more of the materials listed as specific examples of the first antioxidant.
  • Oxygen absorbent It is preferable that an oxygen absorbent is blended in the second layer.
  • an oxygen absorber the material enumerated as an oxygen absorber mix
  • Tackifier It is preferable that a tackifier is blended in the second layer. Thereby, the same effect as the effect acquired by mix
  • the tackifier When the tackifier is blended in the second layer, the tackifier is preferably blended in an amount of 1 to 100 parts by weight with respect to 100 parts by weight of the second elastomer component. More preferably.
  • blending a tackifier cannot fully be acquired as the compounding quantity of a tackifier is less than 1 mass part with respect to 100 mass parts of 2nd elastomer components.
  • the compounding amount of the tackifier exceeds 100 parts by mass with respect to 100 parts by mass of the second elastomer component, steering stability or air permeation resistance during running tends to decrease.
  • the mass average molecular weight of the tackifier by GPC measurement is preferably 1 ⁇ 10 2 to 1 ⁇ 10 6 , and the softening point of the tackifier is 50 ° C. It is preferably in the range of ⁇ 150 ° C.
  • the softening point of the tackifier is less than 50 ° C., the rubber hardness of the tire is greatly lowered, and the steering stability tends to be lowered.
  • the materials listed as specific examples of the tackifier compounded in the first layer can be used without particular limitation, and the adhesive compounded in the first layer Any one of the materials listed as specific examples of the imparting agent may be used, or two or more materials may be mixed and used.
  • the tackifier compounded in the second layer may be the same as the tackifier compounded in the first layer, or may be different from the tackifier compounded in the first layer.
  • polyisobutylene It is preferable that polyisobutylene is blended in the second layer. Thereby, the same effect as that obtained by blending polyisobutylene in the first layer is obtained.
  • the polyisobutylene is preferably contained in an amount of 3 to 20 parts by mass and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the second elastomer component. preferable. If the content of polyisobutylene is less than 3 parts by mass with respect to 100 parts by mass of the second elastomer component, the effect obtained by blending polyisobutylene may not be sufficiently obtained. On the other hand, when the content of polyisobutylene exceeds 20 parts by mass with respect to 100 parts by mass of the second elastomer component, the fracture strength may be reduced.
  • the molecular weight of the polyisobutylene is preferably 9000 or more and 60000 or less, more preferably 12000 or more and 51000 or less.
  • the thickness of the second layer (T2 in FIG. 2) is 0.01 to 0.3 mm.
  • the thickness T2 of the second layer means the thickness of the SIS layer when the second layer consists of only the SIS layer, and the thickness of the SIB layer when the second layer consists of only the SIB layer.
  • the second layer has a multilayer structure such as a two-layer structure of an SIS layer and an SIB layer, it means the total thickness of the multilayer structure.
  • the thickness T2 of the second layer is less than 0.01 mm, the second layer is broken by pressing pressure during vulcanization of the raw tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesive strength is reduced. There is a fear.
  • the thickness T2 of the second layer exceeds 0.3 mm, the tire mass increases and the fuel efficiency performance decreases.
  • the thickness T2 of the second layer is preferably 0.05 to 0.2 mm.
  • the second layer can be obtained according to a usual method of forming a film of a thermoplastic resin or a thermoplastic elastomer.
  • a second rubber composition containing a second elastomer component, a second ultraviolet absorber, and a second antioxidant.
  • the product can be obtained by forming into a film by extrusion molding or calendering.
  • the second layer may further contain other additives such as a reinforcing agent, a vulcanizing agent, a vulcanization accelerator, various oils, an anti-aging agent, a softening agent, a plasticizer, or a coupling agent.
  • the polymer laminate 10 that is an inner liner includes a SIBS layer 11 as a first layer and a SIS layer 12 as a second layer.
  • the polymer laminate 10 is placed toward the outer side in the tire radial direction so that the SIS layer 12 is in contact with the carcass ply 61.
  • the adhesive strength between the SIS layer 12 and the carcass ply 61 can be increased in the tire vulcanization process. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well bonded.
  • the polymer laminate 10 is composed of a SIBS layer 11 as a first layer and a SIB layer 13 as a second layer.
  • the polymer laminate 10 is installed toward the outer side in the tire radial direction so that the SIB layer 13 is in contact with the carcass ply 61.
  • the adhesive strength between the SIB layer 13 and the carcass ply 61 can be increased in the tire vulcanizing step. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well bonded.
  • the polymer laminate (unvulcanized) is a first rubber composition containing a first elastomer component, a first ultraviolet absorber, and a first antioxidant (the first rubber composition forms the first layer). And a second rubber composition containing a second elastomer component, a second ultraviolet absorber, and a second antioxidant (the second rubber composition forms the second layer), for example, FIG. 4 or FIG. Can be obtained by laminating extrusion such as laminating extrusion or coextrusion.
  • a general manufacturing method can be used for the pneumatic tire of the present invention. That is, it can be manufactured by applying the polymer laminate 10 to an inner liner of a raw tire of the pneumatic tire 1 and vulcanizing it together with other members.
  • the second layer such as the SIS layer 12 or the SIB layer 13
  • the adhesive strength between the second layer and the carcass ply 61 can be increased in the tire vulcanization step.
  • the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well bonded.
  • the rubber layer of the carcass ply used in the pneumatic tire of the present invention is made of generally used rubber components such as natural rubber, polyisoprene, styrene-butadiene rubber, polybutadiene rubber, and fillers such as carbon black and silica. Can be used.
  • the rubber composition constituting the first layer and / or the second layer of the polymer laminate includes the above-described tackifier, it softens in the mold at a temperature during vulcanization, for example, 150 to 180 ° C. State (intermediate state between solid and liquid). Therefore, when the mold is opened after vulcanization, the shape of the polymer laminate is deformed when the rubber composition is in a softened state. Moreover, since the reactivity is higher in the softened state than in the solid state, it may stick to and adhere to an adjacent member. Therefore, when the polymer laminate includes a tackifier, it is preferable to provide a cooling step after vulcanization.
  • the cooling method include a method of rapidly cooling the inside of the bladder to 50 to 120 ° C. within 10 to 300 seconds after vulcanization.
  • the cooling medium one or more selected from air, water vapor, water and oil can be used.
  • the inner liner can be made thinner regardless of whether the rubber composition contains a tackifier, for example, the inner liner has a thickness of about 0.05 to 0.6 mm. Can be made smaller. This is because the releasability from the bladder of the tire obtained by vulcanization is improved by the cooling step.
  • SIBS Chipster SIBSTAR 102T (Shore A hardness 25, styrene component content 25% by mass, mass average molecular weight by GPC measurement 100000)” manufactured by Kaneka Corporation as a styrene-isobutylene-styrene triblock copolymer (SIBS) was used.
  • tackifier As a tackifier, C9 petroleum resin Alcon P140 (manufactured by Arakawa Chemical Industries, Ltd., softening point 140 ° C., mass average molecular weight Mw: 900) was used.
  • Polyisobutylene As polyisobutylene, “Tetrax 3T” (viscosity average molecular weight 30000, mass average molecular weight 49000) manufactured by Nippon Oil Corporation was used.
  • ADEKA STAB LA-36 benzotriazole UV absorber, melting point 138 to 141 ° C., molecular weight 315.8, maximum absorption wavelength 353 nm, 2- (manufactured by ADEKA Co., Ltd.)” 2′-Hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole ” was used.
  • IRGANOX 1010 hindered phenol antioxidant, melting point 110 to 125 ° C., specific gravity 1.15, molecular weight 117.7, pentaerythrityl tetrakis (3- ( 3,5-di-t-butyl-4-hydroxyphenyl) propionate) ” was used.
  • SIS styrene-isoprene-styrene block copolymer
  • D116JP styrene component content: 15 mass%, mass average molecular weight: 150,000
  • (A) Weather resistance test About the inside of an inner liner, the weather resistance test was done on the following conditions using the Sunshine super long life weather meter by Suga Test Instruments Co., Ltd. Irradiation was conducted for 60 minutes under conditions of rain for 12 minutes in a bath temperature of 63 ° C., humidity of 50% and 60 ° C., and the number of cracks in the inner liner after the test was measured. The weather resistance index was calculated by substituting the measured number of cracks into the following equation. The weather resistance index is an index based on the number of cracks in Comparative Example 1, and the greater the value of the weather resistance index, the higher the weather resistance of the tire. Weather resistance index (number of cracks in Comparative Example 1) / (number of cracks in each Example or other Comparative Examples) ⁇ 100.
  • (B) Bending crack growth test The durability running test was evaluated based on whether the inner liner was cracked or peeled off.
  • the prototype tire was assembled in a JIS standard rim 15 ⁇ 6 JJ, the tire internal pressure was set to 150 KPa, which is lower than usual, the load was 600 kg, the speed was 100 km / h, and the running distance was 20000 km. After completion of the test, the inside of the tire was observed to measure the number of cracks or the number of peels.
  • the bending fatigue index was calculated by substituting the measured number of cracks or number of peelings into the following formula.
  • (C) Elastic modulus change test Viscoelasticity of inner liner using viscoelasticity spectrum meter VES (Iwamoto Seisakusho Co., Ltd.) before traveling and after traveling a specified travel distance of 20000 km under the same conditions as the flex crack growth test. Was measured, and the rate of change in elastic modulus was calculated. The elastic modulus change index was calculated using the calculated elastic modulus change rate. The elastic modulus change index is an index based on the elastic modulus change rate in Comparative Example 1. The larger the elastic modulus change index value, the lower the elastic modulus change rate (increase rate) and the better.
  • (E) Brake distance measurement test The tire after the specified travel distance of 20000 km and the tire before the travel are mounted on a domestic FR sports type vehicle, and sudden braking is applied while driving at 140 km / h on the test course. It was measured. This test was performed five times for each tire, and an average value for three times excluding the maximum value and the minimum value was calculated. The braking distance index was calculated by substituting this average value into the following equation.
  • the braking distance index is an index based on the braking distance in Comparative Example 1, and the larger the braking distance index value, the shorter the braking distance and the better the braking performance of the tire.
  • Braking distance index (braking distance of comparative example 1) / (braking distance of each embodiment or other comparative example) ⁇ 100 .
  • Comparative Example 1 is a pneumatic tire using Comparative Formulation 1 as the first layer and Comparative Formula 9 as the second layer.
  • the tire had insufficient weather resistance index, flex fatigue resistance index, elastic modulus change index, static air pressure reduction rate, and braking distance index.
  • Comparative Example 2 is a pneumatic tire using Comparative Formulation 2 as the first layer and Comparative Formula 9 as the second layer. Although the weather resistance index of the tire was slightly improved as compared with Comparative Example 1, the flex fatigue resistance index and the static air pressure reduction rate were the same as those of Comparative Example 1. In addition, the elastic modulus change index and the braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 3 is a pneumatic tire using Comparative Formulation 3 as the first layer and Comparative Formula 9 as the second layer. Although the weather resistance index of the tire was slightly improved as compared with Comparative Example 1, the flex fatigue resistance index and the static air pressure reduction rate were the same as those of Comparative Example 1. In addition, the elastic modulus change index and the braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 4 is a pneumatic tire using Comparative Formula 4 as the first layer and Comparative Formula 9 as the second layer.
  • the weather resistance index, flex fatigue resistance index, and static air pressure decrease rate of the tire were slightly improved as compared with Comparative Example 1, but the elastic modulus change index and braking distance index were decreased as compared with Comparative Example 1.
  • Comparative Example 5 is a pneumatic tire using Comparative Formulation 5 as the first layer and Comparative Formulation 9 as the second layer.
  • the weather resistance index, flex fatigue resistance index, and static air pressure decrease rate of the tire were slightly improved as compared with Comparative Example 1, but the elastic modulus change index and braking distance index were decreased as compared with Comparative Example 1.
  • Comparative Example 6 is a pneumatic tire using Comparative Formulation 6 as the first layer and Comparative Formula 9 as the second layer.
  • the weather resistance index and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, but the flex fatigue resistance index, elastic modulus change index, and braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 7 is a pneumatic tire using Comparative Formulation 3 as the first layer and Comparative Formulation 10 as the second layer.
  • the weather resistance index and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, but the flex fatigue resistance index, elastic modulus change index, and braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 8 is a pneumatic tire using Comparative Formulation 3 as the first layer and Comparative Formulation 11 as the second layer. Although the weather resistance index of the tire was slightly improved as compared with Comparative Example 1, the flex fatigue resistance index and the static air pressure reduction rate were the same as those of Comparative Example 1. The elastic modulus change index and the braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 9 is a pneumatic tire using Comparative Formulation 3 as the first layer and Comparative Formulation 12 as the second layer.
  • the weather resistance index and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, but the flex fatigue resistance index was equivalent to that of Comparative Example 1.
  • the elastic modulus change index and the braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 10 is a pneumatic tire using Comparative Formulation 3 as the first layer and Comparative Formulation 13 as the second layer.
  • the weather resistance index and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, but the flex fatigue resistance index was equivalent to that of Comparative Example 1.
  • the elastic modulus change index and the braking distance index were lower than those of Comparative Example 1.
  • the total amount of the UV absorber and the antioxidant is less than 0.5% by mass or more than 40% by mass. Therefore, it is considered that the above results were obtained.
  • Comparative Example 11 is a pneumatic tire using the implementation formulation 5 as the first layer and the comparison formulation 7 as the second layer. Although the weather resistance index and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, the flex fatigue resistance index, the elastic modulus change index, and the braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 12 is a pneumatic tire using the implementation formulation 6 as the first layer and the comparison formulation 13 as the second layer.
  • the weather resistance index, flex fatigue resistance index, and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, but the elastic modulus change index and braking distance index were lower than Comparative Example 1.
  • Comparative Example 13 is a pneumatic tire using Comparative Formulation 5 as the first layer and Implementation Formula 9 as the second layer.
  • the weather resistance index and static air pressure reduction rate of the tire were slightly improved as compared with Comparative Example 1, but the flex fatigue resistance index was equivalent to that of Comparative Example 1.
  • the elastic modulus change index and the braking distance index were lower than those of Comparative Example 1.
  • Comparative Example 14 is a pneumatic tire using Comparative Formulation 6 as the first layer and Implementation Formula 10 as the second layer. Although the weather resistance index of the tire was slightly improved as compared with Comparative Example 1, the static air pressure reduction rate was equivalent to that of Comparative Example 1. The bending fatigue index, the elastic modulus change index, and the braking distance index decreased as compared with Comparative Example 1.
  • the total amount of the ultraviolet absorber and the antioxidant is 0.5% by mass or more and 40% by mass or less in the first layer, but less than 0.5% by mass in the second layer.
  • the total blending amount of the ultraviolet absorber and the antioxidant is 0.5% by mass or more and 40% by mass or less in the first layer, but exceeds 40% by mass in the second layer. Yes.
  • the total amount of the UV absorber and the antioxidant is 0.5% by mass or more and 40% by mass or less in the second layer, but less than 0.5% by mass in the first layer.
  • the total amount of the ultraviolet absorber and the antioxidant is 0.5% by mass or more and 40% by mass or less in the second layer, but exceeds 40% by mass in the first layer. Yes. Therefore, it is considered that the above results were obtained.
  • Examples 1 to 8 are pneumatic tires in which the formulation 1, 2, 3, 4, 5, 6, 7, and 8 were used as the first layer, and the formulation 13 was used as the second layer.
  • the weather resistance index, static air pressure decrease rate, elastic modulus change index, flex fatigue resistance index, and braking distance index of the tire were improved as compared with Comparative Example 1.
  • Examples 9 to 12 are pneumatic tires using the working composition 5 as the first layer and the working compositions 14, 15, 16, and 17 as the second layer, respectively.
  • the weather resistance index, static air pressure decrease rate, elastic modulus change index, flex fatigue resistance index, and braking distance index of the tire were improved as compared with Comparative Example 1.
  • Examples 14 and 15 and Comparative Examples 15 and 16 are pneumatic tires using the working composition 2 as the first layer and the working composition 13 as the second layer.
  • the weather resistance index, static air pressure decrease rate, elastic modulus change index, and bending fatigue index of the tire were improved as compared with Comparative Example 1.
  • the distance L was 0 or more and (1 + D / 2) mm or less, but in Comparative Examples 15 and 16, the distance L was larger than (1 + D / 2) mm. Therefore, the braking distance index improved in Examples 14 and 15 as compared with Comparative Example 1, but decreased in Comparative Examples 15 and 16 as compared with Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 空気入りタイヤのインナーライナーは、SIBSを含むエラストマー成分と紫外線吸収剤および酸化防止剤の少なくとも一方とを有する第1層と、SISおよびSIBの少なくとも一方を含むエラストマー成分と紫外線吸収剤および酸化防止剤の少なくとも一方とを有する第2層とを含むポリマー積層体で構成される。第1層および第2層では、紫外線吸収剤および酸化防止剤の合計配合量はエラストマー成分に対して0.5質量%以上40質量%以下である。第1層の厚みは0.05mm以上0.6mm以下であり、第2層の厚みは0.01mm以上0.3mm以下である。第2層は、カーカスプライのゴム層と接する。距離Lは0以上で(1+D/2)mm以下である。

Description

空気入りタイヤ
 本発明は、インナーライナーを備えた空気入りタイヤに関し、特に、耐紫外線劣化性能および耐酸化劣化性能が改善された空気入りタイヤに関する。
 近年、車の低燃費化に対する強い社会的要請から、タイヤの軽量化が図られており、タイヤ部材のなかでも、タイヤの内部に配され、空気入りタイヤ内部から外部への空気の漏れの量(空気内圧低下)を軽減して耐空気透過性を向上させるはたらきをもつインナーライナーにおいても、軽量化などがおこなわれるようになってきた。このため、従来用いられていたブチルゴムの代わりに耐空気透過性に優れ、インナーライナー層の厚みをより薄くできる熱可塑性樹脂を含む材料からなるフィルムが提案されている。
 たとえば、特許文献1(特開2004-136766号公報)には、熱可塑性樹脂フィルムをカーカス層の内側に配置し、前記カーカス層のカーカスコードの横断面中心を結ぶ面からのタイヤ径方向距離を極力小さくすると、その熱可塑性樹脂フィルムによりタイヤ周方向のせん断剛性が向上し、高速走行からの急制動時の制動性能を向上させることができるということが報告されている。また、特許文献1には、熱可塑性樹脂フィルムがカーカスコードの表面に沿って蛇腹状の凹凸を形成することも記載されている。
 しかし、タイヤは、輸送中または販売店店頭での展示中などに屋外にさらされることがあり、太陽光つまり紫外線による劣化を受ける。そのため、熱可塑性樹脂が劣化してタイヤの内側に亀裂が入ることがあり、内観が悪いという印象をユーザーに与えてしまう。また、空気入りタイヤのタイヤ内部空間には、通常、空気が充填されている。タイヤの内側に亀裂が入ると、その充填された空気に含まれる酸素が損なわれる。それだけでなく、その酸素は、タイヤ構成部材の内部に浸透し、経時的にタイヤ構成部材を酸化する。これにより、熱可塑性樹脂が劣化するため、タイヤの耐久性の劣化を引き起こす。こうした紫外線によるタイヤの耐久性の劣化を抑制するために、特許文献2(特開2012-254779号公報)では熱可塑性樹脂に紫外線吸収剤または酸化防止剤を添加することが提案されている。
特開2004-136766号公報 特開2012-254779号公報
 本発明は、インナーライナーを備えた空気入りタイヤにおいて、紫外線または酸素による熱可塑性樹脂の劣化を防止して当該熱可塑性樹脂の剛性の低下を防ぎ、よって、制動性能の低下を防止することである。
 本発明に係る空気入りタイヤは、タイヤ内側に配置されるインナーライナーと、インナーライナーに隣接して設けられ、ゴム層中にコードが埋設されてなるカーカスプライとを備える。インナーライナーは、スチレン-イソブチレン-スチレンブロック共重合体を含む第1エラストマー成分と第1紫外線吸収剤と第1酸化防止剤とを有する第1層と、スチレン-イソプレン-スチレンブロック共重合体およびスチレン-イソブチレンブロック共重合体の少なくとも一方を含む第2エラストマー成分と第2紫外線吸収剤と第2酸化防止剤とを有する第2層とを含むポリマー積層体で構成されている。第1紫外線吸収剤および第1酸化防止剤の合計配合量は、第1エラストマー成分に対して0.5質量%以上40質量%以下である。第2紫外線吸収剤および第2酸化防止剤の合計配合量は、第2エラストマー成分に対して0.5質量%以上40質量%以下である。第1層の厚みは、0.05mm以上0.6mm以下であり、第2層の厚みは、0.01mm以上0.3mm以下である。第2層は、カーカスプライのゴム層と接するように配置されている。コードの直径をDとするとき、コードの断面中心を通る面から第2層までの距離Lが0以上で(1+D/2)mm以下である。
 第1紫外線吸収剤および第1酸化防止剤の合計配合量は、第1エラストマー成分に対して2.0質量%以上20質量%以下であることが好ましい。第2紫外線吸収剤および第2酸化防止剤の合計配合量は、第2エラストマー成分に対して2.0質量%以上20質量%以下であることが好ましい。
 第1層および第2層のいずれかには、スチレン-イソブチレン-スチレンブロック共重合体およびSIBS変性共重合体の少なくとも一方が配合されていることが好ましい。
 第1層および第2層のいずれかには、粘着付与剤またはポリイソブチレンが配合されていることが好ましい。
 ポリマー積層体とカーカスプライのゴム層との境界面は、凹凸状を形成していることが好ましい。
 本発明に係る空気入りタイヤでは、紫外線吸収剤および酸化防止剤の少なくとも一方はインナーライナーを構成する第1層だけでなく第2層にも含まれているため、紫外線または酸素による熱可塑性樹脂の劣化が防止され、よって、制動性能の低下が防止される。
本発明の空気入りタイヤの右半分の概略断面図である。 本発明の一実施形態に係る空気入りタイヤにおけるカーカスプライとインナーライナーとの境界近傍を拡大して示す模式的断面図である。 本発明の一実施形態に係る空気入りタイヤにおけるカーカスプライとインナーライナーとの境界近傍を拡大して示す模式的断面図である。 本発明の一実施の形態に係るインナーライナーの模式的断面図である。 本発明の一実施の形態に係るインナーライナーの模式的断面図である。
 <タイヤの構造>
 本発明の空気入りタイヤについて図を用いて説明する。図1は、本発明の一実施形態に係る空気入りタイヤの右半分を示す模式的断面図であり、典型的には乗用車用空気入りタイヤとして用いられるものである。図1に示される空気入りタイヤ1は、トレッド部2と、トレッド部2の両端からトロイド形状を形成するように配置されたサイドウォール部3とビード部4とを有している。さらに、ビード部4にはビードコア5が埋設される。また、一方のビード部4から他方のビード部4(図示せず)に亘って設けられ、両端をビードコア5のまわりに折り返して係止されるカーカスプライ6と、カーカスプライ6のクラウン部外側には、少なくとも2枚のプライよりなるベルト層7とが配置されている。
 上記ベルト層7は、通常、スチールコードまたはアラミド繊維等のコードよりなるプライの2枚をタイヤ周方向に対して、コードが通常5~30°の角度になるようにプライ間で相互に交差するように配置される。なお、ベルト層7の両端外側には、トッピングゴム層を設け、ベルト層7両端の剥離を軽減することができる。また、カーカスプライ6は、ポリエステル、ナイロン、アラミド等の有機繊維からなるコードがタイヤ周方向にほぼ90°に配列されており、カーカスプライ6とその折り返し部によって囲まれる領域には、ビードコア5の上端からサイドウォール部3方向に延びるビードエーペックス8が配置される。
 カーカスプライ6のタイヤ半径方向内側には、一方のビード部4から他方のビード部4(図示せず)に亘ってインナーライナー9が配置される。
 図2は、本発明の一実施形態に係る空気入りタイヤにおけるカーカスプライとインナーライナーとの境界近傍を拡大して示す模式的断面図である。本発明に係るインナーライナー9は、第1層IL1と第2層IL2とを含むポリマー積層体で構成されている。第2層IL2は、カーカスプライ6を構成するゴム層6aと接しており、境界面Sを形成している。カーカスプライ6は、ゴム層6a中に複数のコードKが一定間隔に埋設されてなる。
 ここで、本発明の空気入りタイヤにおいては、コードKの直径をDとするとき、コードKの断面中心を通る面(複数のコードKの断面中心を結んで形成される面)KCから第2層IL2までの距離L(すなわち、距離LはコードKの断面中心を通る面KCから境界面Sまでの距離)は、0以上で(1+D/2)mm以下とされる。
 第2層IL2は、後述のように、スチレン-イソプレン-スチレンブロック共重合体(以下「SIS」とも言う。)およびスチレン-イソブチレンブロック共重合体(以下「SIB」とも言う。)の少なくとも一方を含む。SISおよびSIBは、カーカスプライ6のゴム層6aよりも剛性が高い。したがって、上記距離Lを(1+D/2)mm以下と小さくすることで、第2層IL2のタイヤ周方向にせん断応力が作用し、タイヤ周方向のせん断剛性が向上する。その結果、空気入りタイヤの走行時の操縦安定性を向上させることができる。一方、距離Lが0mmよりも小さい場合には、カーカスプライ6のコードK間の拘束力が低下し、コードK間隔が変動しやすくなり、タイヤ周方向の剛性が低下する。なお、距離Lが0mmよりも小さいとは、カーカスプライ6を構成するゴム層6aと第2層IL2との境界面Sが、コードKの断面中心を通る面KCよりもサイドウォール部3側に位置することを意味する。
 図3は、本発明の他の実施形態に係る空気入りタイヤにおけるカーカスプライとインナーライナーとの境界近傍を拡大して示す模式的断面図である。図3に示されるように、ポリマー積層体の第2層IL2がカーカスプライ6のコードKとコードKとの間に侵入することによって、第2層IL2とゴム層6aとの境界面Sが凹凸状を形成していてもよい。図3に示される実施形態においては、コードKの断面中心を通る面KCからゴム層6aと第2層IL2との境界面Sまでの距離Lは、実質的に0となっている。かかる構成によっても、タイヤ周方向のせん断剛性が向上し、その結果、空気入りタイヤの走行時の制動性能を向上させることができる。なお、境界面Sが凹凸形状を有する場合の距離Lは、コードKの断面中心を通る面KCからゴム層6aと第2層IL2との境界面Sまでの最短距離L’の平均値を意味する。
 <インナーライナー>
 本発明において、インナーライナーは、タイヤ内側に配置された第1層とカーカスプライ6のゴム層6aと接するように配置された第2層とを含むポリマー積層体で構成されている。第1層が第1紫外線吸収剤と第1酸化防止剤との両方を含み、第2層が第2紫外線吸収剤と第2酸化防止剤との両方を含む。よって、制動性能に優れた空気入りタイヤを提供することができる。
 〔第1層〕
 第1層は、スチレン-イソブチレン-スチレンブロック共重合体(以下「SIBS」とも言う。)を含む第1エラストマー成分と、第1紫外線吸収剤と、第1酸化防止剤とを有する。
 (1) 第1エラストマー成分
 第1エラストマー成分は、スチレン-イソブチレン-スチレントリブロック共重合体(SIBS)を含む。ここで、SIBSは、分子鎖中にイソブチレンブロックを含む。そのため、SIBSからなるポリマーフィルムは、優れた耐空気透過性を有する。したがって、SIBSを含む第1層をインナーライナーに用いることにより、耐空気透過性に優れた空気入りタイヤを得ることができる。
 上述のように、SIBSを含む第1層をインナーライナーに用いることにより耐空気透過性に優れた空気入りタイヤを得ることができる。よって、ハロゲン化ブチルゴムなどの耐空気透過性を付与するために従来使用されてきた高比重のハロゲン化ゴムを使用する必要がない。また、高比重のハロゲン化ゴムを使用する場合であっても、その使用量の低減が可能である。これらのことから、タイヤの軽量化が可能となるので燃費が向上するという効果も得ることができる。
 また、SIBSは、その分子構造において芳香環以外は飽和しているので、劣化しても硬化し難く、優れた耐久性を有する。したがって、SIBSを含む第1層をインナーライナーに用いた場合には、耐久性に優れた空気入りタイヤを得ることができる。
 SIBSの分子量は特に制限されない。しかし、SIBSのゴム弾性、流動性およびインナーライナーへの成形加工性などの観点から、GPC測定によるSIBSの質量平均分子量は50000以上400000以下であることが好ましい。GPC測定によるSIBSの質量平均分子量が50000未満であると、SIBSのゴム弾性、引張強度および引張伸びが低下するおそれがある。また、GPC測定によるSIBSの質量平均分子量が400000を超えると、SIBSの流動性の低下によりインナーライナーへの成形加工性(押出加工性など)が低下するおそれがある。SIBS中のスチレン成分の含有量は、タイヤの耐空気透過性および耐久性をより良好にするという観点から、10~40質量%であることが好ましく、10~30質量%であることがより好ましく、14~23質量%であることがさらに好ましい。SIBSを構成するイソブチレン成分とスチレン成分とのモル比(イソブチレン/スチレン)は、SIBSのゴム弾性の観点から、40/60~95/5であることが好ましい。
 SIBSにおいては、SIBSのゴム弾性および取り扱い性(重合度が10000未満では液状になることがある)の観点から、分子鎖中における各ブロックの重合度は、イソブチレンブロックが10000~150000程度であることが好ましく、スチレンブロックが5000~30000程度であることが好ましい。
 SIBSは、リビングカチオン重合法などの一般的なビニル系化合物の重合法により得ることができる。たとえば、特開昭62-48704号公報および特開昭64-62308号公報には、イソブチレンと他のビニル化合物とのリビングカチオン重合が可能であり、ビニル系化合物としてのイソブチレンおよび他の化合物をリビングカチオン重合することでポリイソブチレン系のブロック共重合体を製造できることが開示されている。このほかにも、リビングカチオン重合法によるビニル系化合物重合体の製造法が、たとえば、米国特許第4,946,899号、米国特許第5,219,948号、特開平3-174403号公報などに記載されている。
 SIBSは、分子内に芳香環以外の二重結合を有していないために、分子内に二重結合を有している重合体(たとえばポリブタジエン)に比べて紫外線に対する安定性が高く、したがって耐候性が良好である。また、分子内に芳香環以外の二重結合を有しておらず、飽和系のゴム状ポリマーであるにも関わらず、波長589nmの光の20℃での屈折率(nD)は、ポリマーハンドブック〔1989年:ワイリー(Polymer Handbook, Willy,1989)〕によると、1.506である。これは他の飽和系のゴム状ポリマー(たとえばエチレン-ブテン共重合体)に比べて有意に高い。
 第1エラストマー成分は、SIBSからなっても良いが、SIBSとSIBS変性共重合体とを含んでいても良いし、SIBS変性共重合体からなっても良い。SIBS変性共重合体とは、SIBSのスチレンブロック部分が不飽和結合を有する酸塩化物または酸無水物で変性されたものである。ここで、酸塩化物とは、メタクリル酸クロライド、メタクリル酸ブロマイド、メタクリル酸ヨウダイド、アクリル酸クロライド、アクリル酸ブロマイド、アクリル酸ヨウダイド、クロトニル酸クロライドおよびクロトニル酸ブロマイドが例示される。特に、メタクリル酸クロライド、アクリル酸クロライドが好適である。また、酸無水物とは、無水酢酸、無水マレイン酸、無水フタル酸等が例示されるが、特に、無水酢酸が好適である。これらの化合物は、二種類以上を併用することも可能である。係る変性により不飽和基がSIBSに導入されるため、架橋剤を用いた架橋を可能とすることができる。
 SIBS変性共重合体は、第1エラストマー成分において、10質量%以上100質量%配合されていることが好ましく、30質量%以上100質量%配合されていることがより好ましい。SIBS変性共重合体の配合量が第1エラストマー成分の10質量%未満である場合には、第2層およびカーカスプライゴムとの加硫接着が十分でないことがある。
 上記酸塩化物および上記酸無水物は、SIBS変性共重合体において、1質量%以上含まれていることが好ましく、5質量%以上含まれていることがより好ましく、30質量%以下含まれていることがさらに好ましい。
 SIBS変性共重合体を架橋する方法としては、従来の方法を用いることができ、例えば、加熱による熱架橋または架橋剤による架橋などを行うことができる。ここで架橋剤としては、有機パーオキサイド、例えば、ジクミルパーオキサイド、ジ‐tert‐ブチルパーオキサイド、2,5‐ジメチル‐2,5‐ジ‐(tert‐ブチルパーオキシ)ヘキサンなどが使用できる。有機パーオキサイドは、第1エラストマー成分100質量部に対して0.1質量部以上3.0質量部以下配合されていることが好ましい。なお、多官能性ビニルモノマー(例えばジビニルベンゼン)、トリアリルシアヌレート、又は多官能性メタクリレートモノマー(例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、もしくはアリルメタクリレート)を架橋剤として併用することもできる。この場合には、架橋後における組成物の屈曲亀裂特性の向上が期待できる。
 SIBS変性共重合体はイソブチレンブロックを含むので、SIBS変性共重合体からなるフィルムは優れた耐空気透過性を有する。また、SIBS変性共重合体では、不飽和基がSIBSに導入されているため、熱架橋および架橋剤による架橋が可能となり、引張強度、破断時伸および永久歪などの基本特性とともに、屈曲亀裂特性および耐空気透過性が改善されインナーライナーとしての特性が改善される。
 SIBS変性共重合体を含む第1層をインナーライナーに用いることによっても、耐空気透過性に優れた空気入りタイヤを得ることができる。よって、SIBSを含む第1層をインナーライナーに用いた場合と同じく、タイヤの軽量化が可能となるので燃費が向上するという効果が得られる。SIBS変性共重合体の分子量についても、SIBSの分子量と同様のことが言える。
 SIBS変性共重合体は、たとえば、次の方法により得ることができる。セパラブルフラスコにスチレン―イソブチレンースチレンブロック共重合体を入れた後、重合容器内を窒素置換する。その後、モレキュラーシーブスで乾燥した有機溶剤(例えば、n-ヘキサン及びブチルクロリド)を加え、さらにメタクリル酸クロライドを加える。最後に、溶液を攪拌しながら三塩化アルミニウムを加えて反応させる。反応開始から一定時間後に反応溶液に所定量の水を加えて攪拌して反応を終了させる。反応溶液を多量の水で数回以上水洗を行い、さらに大量のメタノールとアセトンとの混合溶媒にゆっくりと滴下して重合体を沈殿させ、得られた重合体を真空乾燥することにより得られる。なおSIBS変性共重合体の製法は、例えば特許第4551005号(特開2002-226667号公報)に開示されている。
 (2) 第1紫外線吸収剤
 第1紫外線吸収剤は、波長290nm以上の紫外線領域の光を吸収して高分子化合物の分子鎖の劣化を防止する。例えば、ベンゾフェノン系、サリチレート系およびベンゾトリアゾール系の紫外線吸収剤は、高分子化合物が最も劣化を受けやすい波長320nm~350nm付近の紫外線光を吸収し、この波長域の光を振動エネルギーまたは熱エネルギーに変換することで高分子化合物への吸収を防止する機能を有する。特に、ベンゾトリアゾール系紫外線吸収剤は幅広い紫外線光を吸収できる。ここで、第1紫外線吸収剤を例示すれば次のとおりである。
 [ベンゾトリアゾール系紫外線吸収剤]
TINUVIN P/FL(BASF社製、分子量225、融点128~132℃、最大吸収波長341nm)(2-(2-ヒドロキシ-ベンゾトリアゾール-2-イル)-p-クレゾール)
TINUVIN 234(BASF社製、分子量447.6、融点137~141℃、最大吸収波長343nm)(2-[2-ヒドロキシ-3,5-ビス(α、α’ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール)
TINUVIN 326/FL(BASF社製、分子量315.8、融点138~141℃、最大吸収波長353nm)、アデカスタブLA-36((株)ADEKA製)(2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール)
TINUVIN 237(BASF社製、分子量338.4、融点139~144℃、最大吸収波長359nm)(2,4-ジ-t-ブチル-6-(5-クロロベンゾトリアゾール-2-イル-)フェノール)
TINUVIN 328(BASF社製、分子量351.5、融点80~88℃、最大吸収波長347nm)(2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール)TINUVIN 329/FL(BASF社製、分子量323、融点103~105℃、最大吸収波長343nm)(2-(2-ヒドロキシ-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール)。
 [液状紫外線吸収剤]
TINUVIN 213(BASF社製、融点-40℃、最大吸収波長344nm)(5-(2-ヒドロキシ-ベンゾトリアゾール-2-イル)-4-ヒドロキシ-3-tert-ブチルベンゼンプロパン酸メチル)
TINUVIN 571(BASF社製、分子量393.6、融点-56℃、最大吸収波長343nm)(2-(2-ヒドロキシ-ベンゾトリアゾール-2-イル)-4-メチル-6-ドデシルフェノール)。
 [トリアジン系紫外線吸収剤]
TINUVIN 1577FF(BASF社製、分子量425、融点148℃、最大吸収波長274nm)(2-[4,6-ジフェニル-1,3,5-トリアジン-2-イル]-5-(ヘキシルオキシ)フェノール)。
 [ベンゾフェノン系紫外線吸収剤]
CHIMASSORB 81/FL(BASF社製、分子量326.4、融点48~49℃)(2-ヒドロキシ-4-(オクチルオキシ)ベンゾフェノン)。
 [ベンゾエート系紫外線吸収剤]
TINUVIN 120(BASF社製、分子量438.7、融点192~197℃、最大吸収波長265nm)(2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート)。
 [ヒンダードアミン系安定剤]
CHIMASSORB 2020 FDL(BASF社製、分子量2600~3400、融点130~136℃)(ジブチルアミン1,3,5-トリアジン・N,N-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物)
CHIMASSORB 944 FDL(BASF社製、分子量2000~3100、融点100~135℃)(ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{2,2,6,6-テトラメチル-4-ピペリジル)イミノ}])
TINUVIN 622 LD(BASF社製、分子量3100~4000、融点55~70℃)(ブタン二酸1-[2-(4-ヒドロキシ-2,2,6,6-テトラメチルピペリジノ)エチル])
TINUVIN 144(BASF社製、分子量685、融点146~150℃)(2-ブチル-2-[3,5-ジ(tert-ブチル)-4-ヒドロキシベンジル]マロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)
TINUVIN 292(BASF社製、分子量509)(セバシン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル))
TINUVIN 770 DF(BASF社製、分子量481、融点81~85℃)(セバシン酸ビス(2,2,6,6-テトラメチルピペリジン-4-イル)。
 第1紫外線吸収剤としては、上記紫外線吸収剤のいずれか一種を用いても良いし、上記紫外線吸収剤のうちの二種以上を混合して用いても良い。
 (3) 第1酸化防止剤
 第1酸化防止剤は、ラジカル補足剤として機能し、主に炭素ラジカルを補足することで高分子の分子鎖の劣化を防止できる。第1酸化防止剤を以下に例示する。
 [ヒンダードフェノール系酸化防止剤]
IRGANOX1010(BASF製)、アデカスタブAO-60((株)ADEKA製)、スミライザーBP-101(住友化学(株)製)(ペンタエリスリチル・テトラキス[3-(3,505-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
IRGANOX1035(BASF製)(2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
IRGANOX1076(BASF製)(オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)
IRGANOX1098(BASF製)(N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド))
IRGANOX1135(BASF製)(イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
IRGANOX1330(BASF製)(1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン)
IRGANOX1726(BASF製)(4,6-ビス(ドデシルチオメチル)-O-クレゾール)
IRGANOX1425(BASF製)(ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム(50%)、ポリエチレンワックス(50%))
IRGANOX1520(BASF製)(2,4-ビス[(オクチルチオ)メチル]-O-クレゾール)
IRGANOX245(BASF製)(トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート])
IRGANOX259(BASF製)(1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
IRGANOX3114(BASF製)(トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト)
IRGANOX5057(BASF製)(オクチル化ジフェニルアミン)
IRGANOX565(BASF製)(2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン)
サイアノックスCY1790(サンケミカル(株)製)(1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸)
アデカスタブAO-40((株)ADEKA製)、スミライサーBBM(住友化学(株)製)(4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール))
アデカスタブAO-50((株)ADEKA製)、スミライザーBP-76(住友化学(株)製)(ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)
アデカスタブAO-80((株)ADEKA製)、スミライザーGA-80(住友化学(株)製)(3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフィエニル)プロピオニルオキシ]エチル]2,4,8,10-テトラオキサスピロ[5,5]-ウンデカン)。
 [リン系酸化防止剤]
リン系酸化防止剤は、過酸化物分解剤として使用され、熱加工成型時の酸化防止機能に優れており、たとえば以下のものがある。
IRGAFOS12(BASF製、分子量1462.9)(6,6’,6’’-[ニトリロトリス(エチレンオキシ)]トリス(2,4,8,10-テトラ-tert-ブチルベンゾ[d,f][1,3,2]ジオキサホスフェピン))
IRGAFOS38(BASF製、分子量514)(亜リン酸エチルビス(2,4-ジ-tert-ブチル-6-メチルフェニル))
IRGAFOS168(BASF製、分子量646)
アデカスタブ2112((株)ADEKA製)
スミライザーP-16(住友化学(株)製)(トリス(2,4-ジ-t-ブチルフェニル)フォスファイト)
アデカスタブPEP-8((株)ADEKA製)(ジステアリルペンタエリスリトールジフォスファイト)
アデカスタブPEP-36((株)ADEKA製)(サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)フォスファイト)。
 [ヒドロキシルアミン系]
IRGASTAB FS 042(BASF製)(N,N-ジオクタデシルヒドロキシルアミン)。
 [ヒンダードフェノール/リン混合系酸化防止剤]
45 IRGANOX B 225(BASF製)(IRGAFOS168:IRGANOX1010=1:1)
IRGANOX215(BASF製)(IRGAFOS168:IRGANOX1010=2:1)
IRGANOX220(BASF製)(IRGAFOS168:IRGANOX1010=3:1)
IRGANOX921(BASF製)(IRGAFOS168:IRGANOX1076=2:1)。
 第1酸化防止剤としては、上記酸化防止剤のいずれか一種を用いても良いし、上記酸化防止剤のうちの二種以上を混合して用いても良い。
 (4) 第1紫外線吸収剤および第1酸化防止剤の合計配合量
 第1紫外線吸収剤および第1酸化防止剤の合計配合量は、第1エラストマー成分に対して0.5質量%以上40質量%以下である。この合計配合量が第1エラストマー成分に対して0.5質量%未満であれば、第1紫外線吸収剤および第1酸化防止剤の添加により期待される効果が十分に発揮されないことがある。この合計配合量が第1エラストマー成分に対して40質量%を超えると、第1層の本来の機能の低下を招くことがある。好ましくは、上記合計配合量は第1エラストマー成分に対して2.0質量%以上20質量%以下である。
 上記列挙された第1紫外線吸収剤のうちの一種以上と上記列挙された第1酸化防止剤のうちの一種以上とを組み合わせて使用することができる。たとえば、ベンゾトリアゾール系紫外線吸収剤とヒンダードフェノール系酸化防止剤とを組合せて使用することが好ましい。
 (5) 酸素吸収剤
 本発明において、酸化防止剤は、酸素吸収剤を包含する概念である。酸素吸収剤としては、空気中の酸素を捕捉する能力を有する一般的な酸素吸収剤を用いることができ、例えば、鉄粉の酸化反応を利用して空気中の酸素を吸収する鉄粉末酸素吸収剤をあげることができる。このとき、通常、表面積が0.5m2/g以上の鉄粉100質量部に対し、0.1~50質量部のハロゲン化物を組み合わせて用いることが好ましい。ハロゲン化物としては、アルカリ金属の塩化物、臭化物またはヨウ化物(例えば塩化ナトリウムまたは臭化ナトリウム)などであっても良いし、アルカリ土類金属の塩化物、臭化物またはヨウ化物(例えば塩化カルシウムまたは塩化マグネシウム)などであっても良い。鉄粉とハロゲン化物とが混合されていても良いし、鉄粉の表面がハロゲン化物で被覆されていても良い。本発明に用いる酸素吸収剤としては、ゼオライトなどの多孔性粒子に水分を含浸させたものをさらに組合せることにより、前記酸素による鉄の酸化をさらに促進させたものを用いてもよい。特に、炭素ラジカルのラジカルトラップ剤としてのヒンダードフェノール系酸化防止剤が好ましい。
 (6) 粘着付与剤
 第1層には粘着付与剤が配合されていることが好ましい。これにより、エアーインの防止により空気入りタイヤの外観を向上させることができる。また、耐久性、走行時の操縦安定性、耐空気透過性(空気遮断性)および転がり抵抗などのタイヤ特性をより向上させることができる。特に、第1層と第2層との接着強度および/または第2層とカーカスプライとの接着強度が改善されることにより、走行時の操縦安定性を向上させることができる。また、粘着付与剤の添加により、SIBSを含む第1エラストマー成分の粘着力がより向上し、ひいては第1層の粘着力がより向上する。これにより、タイヤ成形時に第1層を形成するゴム組成物層が脱落するなどの問題が生じにくくなり、空気入りタイヤの成形加工性をより向上させることができる。
 粘着付与剤が第1層に配合されている場合、粘着付与剤は、SIBS100質量部に対して、1~100質量部配合されていることが好ましく、1~50質量部配合されていることがより好ましい。粘着付与剤の配合量がSIBS100質量部に対して1質量部未満であれば、粘着付与剤を配合したことにより得られる効果を十分に得ることができないことがある。一方、粘着付与剤の配合量がSIBS100質量部に対して100質量部を超えると、走行時の操縦安定性または耐空気透過性などが逆に低下する傾向にある。
 ここで、「粘着付与剤」とは、インナーライナーを形成するゴム組成物の粘着性を増進するための添加剤をいう。GPC測定による粘着付与剤の質量平均分子量は1×102~1×106であることが好ましい。GPC測定による粘着付与剤の質量平均分子量が1×102未満の場合には、粘着付与剤の粘度が低すぎて、インナーライナーへの成形加工性の点で不利である。一方、GPC測定による粘着付与剤の質量平均分子量が1×106を超える場合には、第1層への粘着性付与が十分でなくなる傾向にある。粘着付与剤の軟化点は50℃~150℃の範囲であることが好ましい。粘着付与剤の軟化点が50℃未満の場合には、タイヤのゴム硬度が大幅に低下し、操縦安定性が低下する傾向がある。一方、粘着付与剤の軟化点が150℃を超える場合には、粘着性付与効果が不十分となる傾向がある。なお、軟化点は、示差走査熱量計(ティー・エイ・インスツルメント・ジャパン(株)製の「DSC 2910」)を用いて測定される。本発明において使用できる粘着付与剤としては、たとえば、次のものが例示される。
 [C9石油樹脂]
C9石油樹脂とは、ナフサの熱分解物から、エチレン、プロピレンまたはブタジエンなどの有用な化合物を取り去った残部であるC5~C9留分(主としてC9留分)を混合状態のまま重合して得られる芳香族石油樹脂である。いずれも商品名で、アルコンP70、P90、P100、P115、P125、P140、M90、M100、M115、M135(いずれも荒川化学工業(株)社製、軟化点70~145℃);アイマーブS100、S110、P100、P125、P140(いずれも出光石油化学(株)製、芳香族共重合系水添石油樹脂、軟化点100~140℃、質量平均分子量700~900、臭素価2.0~6.0g/100g);ペトコールXL(東ソー(株)製)などがある。
 [C5石油樹脂]
C5石油樹脂とは、ナフサの熱分解物から、エチレン、プロピレンまたはブタジエンなどの有用な化合物を取り去った残部であるC4~C5留分(主としてC5留分)を混合状態のまま重合して得られる脂肪族石油樹脂である。いずれも商品名で、ハイレッツG100(三井石油化学(株)製、軟化点100℃);マルカレッツT100AS(丸善石油(株)製、軟化点100℃);エスコレッツ1102(トーネックス(株)製、軟化点110℃)などがある。
 [テルペン樹脂]
いずれも商品名で、YSレジンPX800N、PX1000、PX1150、PX1250、PXN1150N、クリアロンP85、P105、P115、P125、P135、P150、M105、M115、K100(いずれもヤスハラケミカル(株)製、軟化点75~160℃)などがある。
 [芳香族変性テルペン樹脂]
いずれも商品名で、YSレジンTO85、TO105、TO115、TO125(いずれもヤスハラケミカル(株)製、軟化点80~130℃)などがある。
 [テルペンフェノール樹脂]
いずれも商品名で、タマノル803L、901(荒川化学工業(株)製、軟化点120~160℃);YSポリスターU115、U130、T80、T100、T115、T130、T145、T160(いずれもヤスハラケミカル(株)製、軟化点75~165℃)などがある。
 [クマロン樹脂]
軟化点90℃のクマロン樹脂(神戸油化学工業(株)製)などがある。
 [クマロンインデンオイル]
商品名で15E(神戸油化学工業(株)製、流動点15℃)などがある。
 [ロジンエステル]
いずれも商品名で、エステルガムAAL、A、AAV、105、AT、H、HP、HD(いずれも荒川化学工業(株)製、軟化点68~110℃);ハリエスターTF、S、C、DS70L、DS90、DS130(いずれもハリマ化成(株)製、軟化点68~138℃)などがある。
 [水添ロジンエステル]
いずれも商品名で、スーパーエステルA75、A100、A115、A125(いずれも荒川化学工業(株)製、軟化点70~130℃)などがある。
 [アルキルフェノール樹脂]
商品名で、タマノル510(荒川化学工業(株)製、軟化点75~95℃)などがある。
 [DCPD]
商品名でエスコレッツ5300(トーネックス(株)製、軟化点105℃)などがある。
 上記の中でも、C9石油樹脂の完全水添系石油樹脂が好適である。C9石油樹脂の完全水添系石油樹脂は、第1層を構成するSIBSに対する相溶性が良好であり、また、第1層の粘着力を向上させる効果が高く、第1層と第2層との接着強度および/または第2層とカーカスプライとの接着強度を向上させる効果が高い。
 粘着付与剤が第1層に配合されている場合、第2層の第2エラストマー成分は、スチレン-イソプレン-スチレントリブロック共重合体(SIS)またはスチレン-イソブチレンジブロック共重合体(SIB)20~90質量%と、スチレン-イソブチレン-スチレントリブロック共重合体(SIBS)10~80質量%とから構成されることが好ましい。第2エラストマー成分としてSISまたはSIBとともにSIBSを併用することによって、粘着付与剤の効果を十分に得ることができる。ただし、第2エラストマー成分におけるSIBSの含有量が80質量%を超えると、第2層とカーカスプライとの接着強度が低下する傾向にある。また、第2エラストマー成分におけるSIBSの含有量が10質量%未満であると、粘着付与剤の効果が十分に得られない傾向にある。
 (7) ポリイソブチレン
 第1層にはポリイソブチレンが配合されていることが好ましい。これにより、接着性が増し、加工性が向上する。
 ポリイソブチレンが第1層に配合されている場合、ポリイソブチレンは、SIBS100質量部に対して、3~20質量部配合されていることが好ましく、5~15質量部配合されていることがより好ましい。ポリイソブチレンの配合量がSIBS100質量部に対して3質量部未満であれば、ポリイソブチレンを配合したことにより得られる効果を十分に得ることができないことがある。一方、ポリイソブチレンの配合量がSIBS100質量部に対して20質量部を超えると、破壊強度が低下することがある。
 ポリイソブチレンの分子量は特に限定されないが、接着性の向上と破壊強度の低下防止とを両立させるという観点から、9000以上60000以下であることが好ましく、12000以上51000以下であることがより好ましい。
 (8) 第1層の厚さ
 SIBSを含む第1層の厚さ(図2におけるT1)は、0.05~0.6mmである。第1層の厚さT1が0.05mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第1層がプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じるおそれがある。一方、第1層の厚さT1が0.6mmを超えると、タイヤ質量が増加し、低燃費性能が低下する。第1層の厚さT1は、好ましくは0.05~0.4mmである。
 第1層は、熱可塑性樹脂または熱可塑性エラストマーをフィルム化する通常の方法にしたがって得ることができ、たとえば第1エラストマー成分と第1紫外線吸収剤と第1酸化防止剤とを含む第1ゴム組成物を押出成形またはカレンダー成形などしてフィルム化することにより得ることができる。第1層は、補強剤、加硫剤、加硫促進剤、各種オイル、老化防止剤、軟化剤、可塑剤またはカップリング剤などの他の添加剤をさらに含有しても良い。
 〔第2層〕
 第2層は、スチレン-イソプレン-スチレンブロック共重合体(SIS)およびスチレン-イソブチレンブロック共重合体(SIB)の少なくとも一方を含む第2エラストマー成分と、第2紫外線吸収剤と、第2酸化防止剤とを有する。
 (1) 第2エラストマー成分
 第2エラストマー成分は、SISおよびSIBの少なくとも一方を含む。SISのイソプレンブロックおよびSIBのイソブチレンブロックはソフトセグメントであるため、SISまたはSIBを含むポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SISまたはSIBを含む第2層を備えたインナーライナーを用いることにより、インナーライナーとカーカスプライのゴム層との接着強度に優れた空気入りタイヤを得ることができる。これにより、空気入りタイヤの耐久性および走行時の操縦安定性を向上させることができる。
 SISの分子量は特に制限されない。しかし、SISのゴム弾性およびインナーライナーへの成形加工性などの観点から、GPC測定によるSISの質量平均分子量は100000以上290000以下であることが好ましい。GPC測定によるSISの質量平均分子量が100000未満であると、SISのゴム弾性および引張強度が低下するおそれがある。また、GPC測定によるSISの質量平均分子量が290000を超えると、SISの流動性の低下によりインナーライナーへの成形加工性(押出加工性など)が低下するおそれがある。SIS中のスチレン成分の含有量は、SISの粘着性、SISのゴム弾性、第1層に対する第2層の接着強度およびカーカスプライに対する第2層の接着強度の観点から、10~30質量%であることが好ましい。
 SISを構成する各ブロックの重合度は、SISのゴム弾性および取り扱い性の観点から、イソプレンブロックが500~5000程度であることが好ましく、スチレンブロックが50~1500程度であることが好ましい。
 SISは、リビングカチオン重合法などの一般的なビニル系化合物の重合法により得ることができる。
 SIBとしては、直鎖状のものを用いることがゴム弾性、第1層に対する第2層の接着強度およびカーカスプライに対する第2層の接着強度の観点から好ましい。SIBの分子量は特に制限はない。しかし、SIBのゴム弾性およびインナーライナーへの成形加工性の観点から、GPC測定によるSIBの質量平均分子量が40000~120000であることが好ましい。GPC測定によるSIBの質量平均分子量が40000未満であると、SIBのゴム弾性および引張強度が低下するおそれがある。また、GPC測定によるSIBの質量平均分子量が120000を超えると、SIBの流動性の低下によりインナーライナーへの成形加工性(押出加工性など)が低下するおそれがある。SIB中のスチレン成分の含有量は、SIBの粘着性、SIBのゴム弾性、第1層に対する第2層の接着強度およびカーカスプライに対する第2層の接着強度の観点から、10~35質量%であることが好ましい。
 SIBを構成する各ブロックの重合度は、SIBのゴム弾性および取り扱い性の観点から、イソブチレンブロックが300~3000程度であることが好ましく、スチレンブロックが10~1500程度であることが好ましい。
 SIBは、リビングカチオン重合法などの一般的なビニル系化合物の重合法により得ることができる。たとえば、国際公開第2005/033035号には、攪拌機にメチルシクロヘキサン、n-ブチルクロライド、クミルクロライドを加え、-70℃に冷却した後、2時間反応させ、その後に大量のメタノールを添加して反応を停止させ、60℃で真空乾燥してSIBを得る方法が開示されている。
 第2エラストマー成分は、SISおよびSIBのそれぞれを任意の割合で混ぜることにより得られたものであることが好ましい。この場合において、第2層はSISおよびSIBの双方を含む単層構造であってもよいし、SISを含む層とSIB層を含む層との多層構造であってもよい。
 第2エラストマー成分は、スチレン-イソプレン・ブタジエン-スチレン共重合体(SIBS)、スチレン-エチレン・ブテン-スチレン共重合体(SEBS)、スチレン-エチレン・プロピレン-スチレン共重合体(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレン共重合体(SEEPS)、スチレン-ブタジエン・ブチレン-スチレン共重合体(SBBS)およびこれらの熱可塑性エラストマーにエポキシ基を導入したものからなる群から選択される1種以上の熱可塑性エラストマーを含んでいてもよい。第1層も同様である。エポキシ基を有する熱可塑性エラストマーとしては、たとえば、エポキシ変性スチレン-ブタジエン-スチレン共重合体(具体例としては、エポキシ化SBS ダイセル化学工業(株)製「エポフレンド A1020」、質量平均分子量:10万、エポキシ当量:500等)などが挙げられる。
 (2) 第2紫外線吸収剤
 第2紫外線吸収剤は、第1紫外線吸収剤と同じく、波長290nm以上の紫外線領域の光を吸収して高分子化合物の分子鎖の劣化を防止する。第2紫外線吸収剤としては、第1紫外線吸収剤の具体例として列挙した材料を特に制限されることなく用いることができ、第1紫外線吸収剤の具体例として列挙した材料のいずれか一種を用いても良いし二種以上を混合して用いても良い。第2層に配合された第2紫外線吸収剤は、第1層に配合された第1紫外線吸収剤と同一であっても良いし、第1層に配合された第1紫外線吸収剤とは異なっても良い。
 (3) 第2酸化防止剤
 第2酸化防止剤は、第1酸化防止剤と同じく、ラジカル補足剤として機能し、主に炭素ラジカルを補足することで高分子の分子鎖の劣化を防止できる。第2酸化防止剤としては、第1酸化防止剤の具体例として列挙した材料を特に制限されることなく用いることができ、第1酸化防止剤の具体例として列挙した材料のいずれか一種を用いても良いし二種以上を混合して用いても良い。第2層に配合された第2酸化防止剤は、第1層に配合された第1酸化防止剤と同一であっても良いし、第1層に配合された第1酸化防止剤とは異なっても良い。
 (4) 第2紫外線吸収剤および第2酸化防止剤の合計配合量
 第2紫外線吸収剤および第2酸化防止剤の合計配合量は、第2エラストマー成分に対して0.5質量%以上40質量%以下である。この合計配合量が第2エラストマー成分に対して0.5質量%未満であれば、第2紫外線吸収剤および第2酸化防止剤の添加により期待される効果が十分に発揮されないことがある。この合計配合量が第2エラストマー成分に対して40質量%を超えると、第2層の本来の機能の低下を招くことがある。好ましくは、上記合計配合量は第2エラストマー成分に対して2.0質量%以上20質量%以下である。
 第1紫外線吸収剤の具体例として列挙された材料のうちの一種以上と第1酸化防止剤の具体例として列挙された材料のうちの一種以上とを組み合わせて使用することができる。たとえば、ベンゾトリアゾール系紫外線吸収剤とヒンダードフェノール系酸化防止剤とを組合せて使用することが好ましい。
 (5) 酸素吸収剤
 第2層には酸素吸収剤が配合されていることが好ましい。酸素吸収剤としては、第1層に配合される酸素吸収剤として列挙した材料を特に限定されることなく用いることができる。
 (6) 粘着付与剤
 第2層には粘着付与剤が配合されていることが好ましい。これにより、第1層に粘着付与剤が配合されたことにより得られる効果と同一の効果が得られる。
 粘着付与剤が第2層に配合されている場合、粘着付与剤は、第2エラストマー成分100質量部に対して、1~100質量部配合されていることが好ましく、1~50質量部配合されていることがより好ましい。粘着付与剤の配合量が第2エラストマー成分100質量部に対して1質量部未満であると、粘着付与剤を配合したことにより得られる効果を十分に得ることができない。一方、粘着付与剤の配合量が第2エラストマー成分100質量部に対して100質量部を超えると、走行時の操縦安定性または耐空気透過性が逆に低下する傾向にある。
 第1層に配合される粘着付与剤と同じ理由から、GPC測定による粘着付与剤の質量平均分子量は1×102~1×106であることが好ましく、粘着付与剤の軟化点は50℃~150℃の範囲であることが好ましい。粘着付与剤の軟化点が50℃未満の場合には、タイヤのゴム硬度が大幅に低下し、操縦安定性が低下する傾向がある。第2層に配合される粘着付与剤としては、第1層に配合される粘着付与剤の具体例として列挙した材料を特に制限されることなく用いることができ、第1層に配合される粘着付与剤の具体例として列挙した材料のいずれか一種を用いても良いし二種以上を混合して用いても良い。第2層に配合される粘着付与剤は、第1層に配合される粘着付与剤と同一であっても良いし、第1層に配合される粘着付与剤とは異なっても良い。
 (7) ポリイソブチレン
 第2層にはポリイソブチレンが配合されていることが好ましい。これにより、第1層にポリイソブチレンが配合されたことにより得られる効果と同一の効果が得られる。
 第2層がポリイソブチレンを含む場合、ポリイソブチレンは、第2エラストマー成分100質量部に対して、3~20質量部含まれていることが好ましく、5~15質量部含まれていることがより好ましい。ポリイソブチレンの含有量が第2エラストマー成分100質量部に対して3質量部未満であれば、ポリイソブチレンを配合したことにより得られる効果を十分に得ることができないことがある。一方、ポリイソブチレンの含有量が第2エラストマー成分100質量部に対して20質量部を超えると、破壊強度の低下を招くことがある。
 第1層に配合されるポリイソブチレンと同じ理由から、ポリイソブチレンの分子量は9000以上60000以下であることが好ましく、12000以上51000以下であることがより好ましい。
 (8) 第2層の厚さ
 第2層の厚さ(図2におけるT2)は、0.01~0.3mmである。ここで、第2層の厚さT2とは、第2層がSIS層のみからなる場合は該SIS層の厚さを意味し、第2層がSIB層のみからなる場合は該SIB層の厚さを意味し、第2層がSIS層およびSIB層の2層構造など多層構造からなる場合は該多層構造の合計の厚さを意味する。第2層の厚さT2が0.01mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下するおそれがある。一方、第2層の厚さT2が0.3mmを超えると、タイヤ質量が増加し、低燃費性能が低下する。第2層の厚さT2は、好ましくは0.05~0.2mmである。
 第2層は、熱可塑性樹脂または熱可塑性エラストマーをフィルム化する通常の方法にしたがって得ることができ、たとえば第2エラストマー成分と第2紫外線吸収剤と第2酸化防止剤とを含む第2ゴム組成物を押出成形またはカレンダー成形などしてフィルム化することにより得ることができる。第2層は、補強剤、加硫剤、加硫促進剤、各種オイル、老化防止剤、軟化剤、可塑剤またはカップリング剤などの他の添加剤をさらに含有しても良い。
 本発明におけるインナーライナー(ポリマー積層体)が採り得る形態の例を図4、図5に示す。図4に示す例では、インナーライナーであるポリマー積層体10は、第1層としてのSIBS層11および第2層としてのSIS層12から構成される。ポリマー積層体10は、そのSIS層12がカーカスプライ61に接するようにタイヤ半径方向外側に向けて設置される。これにより、タイヤの加硫工程において、SIS層12とカーカスプライ61との接着強度を高めることができる。したがって得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
 図5に示す例では、ポリマー積層体10は、第1層としてのSIBS層11および第2層としてのSIB層13から構成される。ポリマー積層体10は、そのSIB層13がカーカスプライ61に接するようにタイヤ半径方向外側に向けて設置される。これにより、タイヤの加硫工程において、SIB層13とカーカスプライ61との接着強度を高めることができる。したがって得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
 <ポリマー積層体の製造方法>
 ポリマー積層体(未加硫のもの)は、第1エラストマー成分と第1紫外線吸収剤と第1酸化防止剤とを含む第1ゴム組成物(第1ゴム組成物は第1層を形成する)と、第2エラストマー成分と第2紫外線吸収剤と第2酸化防止剤とを含む第2ゴム組成物(第2ゴム組成物は第2層を形成する)とを用い、たとえば図4または図5のいずれかに示された順序で、ラミネート押出や共押出などの積層押出をして得ることができる。
 <空気入りタイヤの製造方法>
 本発明の空気入りタイヤは、一般的な製造方法を用いることができる。すなわち、上記ポリマー積層体10を空気入りタイヤ1の生タイヤのインナーライナーに適用して他の部材とともに加硫成形することによって製造することができる。ポリマー積層体10を生タイヤに配置する際は、ポリマー積層体10の第2層(SIS層12またはSIB層13など)が、カーカスプライ61に接するようにタイヤ半径方向外側に向けて配置する。このように配置すると、タイヤ加硫工程において、第2層とカーカスプライ61との接着強度を高めることができる。得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
 なお、本発明の空気入りタイヤに用いられるカーカスプライのゴム層は、一般に用いられるゴム成分、たとえば、天然ゴム、ポリイソプレン、スチレンーブタジエンゴム、ポリブタジエンゴムなどに、カーボンブラック、シリカなどの充填剤を配合したものを用いることができる。
 ここで、ポリマー積層体の第1層および/または第2層を構成するゴム組成物は、上記粘着付与剤を含む場合、加硫中の温度、たとえば150~180℃において、金型内で軟化状態(固体と液体の中間状態)である。そのため、加硫後に金型を開放すると、当該ゴム組成物が軟化状態であるときには、ポリマー積層体の形状が変形してしまう。また、軟化状態時は固体状態時よりも反応性が高いため、隣接部材と粘着、接着してしまう場合がある。したがって、ポリマー積層体が粘着付与剤を含む場合には、加硫後に冷却工程を設けることが好ましい。冷却方法としては、たとえば、加硫後に10~300秒の間に50~120℃までブラダー内を急冷する方法を挙げることができる。冷却媒体としては、空気、水蒸気、水およびオイルより選択される1種以上を用いることができる。
 上記冷却を行なう手法によれば、ゴム組成物が粘着付与剤を含むかどうかにかかわらず、インナーライナーの厚みをより小さくすることができ、たとえばインナーライナーの厚みを0.05~0.6mm程度まで小さくすることができる。これは、冷却工程により、加硫して得られるタイヤの、ブラダーからの離型性が向上するためである。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <ポリマー積層体の製造>
 表1~表2に示す配合量に基づいて、以下に示す材料を用いて、実施配合1~17および比較配合1~13のゴム組成物を調製した。調製されたゴム組成物を2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220°C)にてベレット化した。その後、Tダイ押出機(スクリュ径:φ80mm、L/D:50、ダイリップ幅:500mm、シリンダ温度:220°C、フィルムゲージ:第1層の形成時には0.30mmとし、第2層の形成時には0.1mmとした)にてポリマー積層体を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [SIBS]
 スチレン-イソブチレン-スチレントリブロック共重合体(SIBS)として、カネカ(株)社製の「シプスターSIBSTAR 102T(ショアA硬度25、スチレン成分含有量25質量%、GPC測定による質量平均分子量:100000)」を用いた。
 [SIBS変性共重合体の製造]
 2リットルのセパラブルフラスコにスチレンーイソブチレンブロック共重合体75g(スチレン含量30%、スチレンユニットのモル数0.216モル)を入れて、容器内を窒素で置換した。注射器を用いて、モレキュラーシーブスで乾燥したn-ヘキサン1200mL及びモレキュラーシーブスで乾燥したn-ブチルクロリド1800ミリリットルを加えた。
 次に、シリンジを用いてメタクリル酸クロライド30g(0.291モル)を加えた。そして溶液を撹搾しながら三塩化アルミニウム39.4g(0.295モル)を加えて反応を開始した。30分の反応の後、反応溶液に約1000ミリリットルの水を加えて激しく撹拌し反応を終了させた。反応溶液を多量の水で数回水洗を行い、さらに大量のメタノールとアセトン混合溶媒(l:1)に徐々に滴下して反応生成物を沈殿させ、その後反応生成物を60°Cで24時間真空乾燥して、SIBS変性共重合体(質量平均分子量:150000、スチレン含量:20質量%、酸塩化物:1.0質量%)を得た。
 [粘着付与剤]
 粘着付与剤として、C9石油樹脂のアルコンP140(荒川化学工業(株)社製、軟化点140°C、質量平均分子量Mw:900)を用いた。
 [ポリイソブチレン]
 ポリイソブチレンとして、新日本石油(株)社製の「テトラックス3T」(粘度平均分子量30000、質量平均分子量49000)を用いた。
 [紫外線吸収剤]
 第1紫外線吸収剤および第2紫外線吸収剤として、(株)ADEKA社製の「アデカスタブLAー36(ベンゾトリアゾール系紫外線吸収剤、融点138~141℃、分子量315.8、最大吸収波長353nm、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール」を用いた。
 [酸化防止剤]
 第1酸化防止剤および第2酸化防止剤として、BASF社製の「IRGANOX 1010(ヒンダードフェノール系酸化防止剤、融点110~125℃、比重1.15、分子量117.7、ペンタエリスリチル・テトラキス(3- (3,5-ジ-t-プチル-4-ヒドロキシフェニル)プロピオネート))」を用いた。
 [SIS]
 スチレン-イソプレン-スチレンブロック共重合体(SIS)として、クレイトンボリマ一社製のD116JP(スチレン成分含有量15質量%、質量平均分子量:150000)を用いた。
 [SIBの製造]
 撹枠機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n-ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を-70℃に冷却した後、α-ピコリン(2-メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、-70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレンーイソブチレンジブロック共重合体(SIB)を得た(スチレン成分含有量:15質量%、質量平均分子量:70000)。
 <空気入りタイヤの製造>
 得られたポリマー積層体をインナーライナーに適用した生タイヤを製造してから、加硫工程を行った。加硫工程では、170°Cで20分間プレスを行い、加硫金型から取り出すことなく110°Cで3分間冷却し、その後、加硫金型から取り出した。冷却媒体としては水を使用した。これにより、図1に示す基本構造を有する195/65R15サイズの空気入りタイヤが製造された。
 <性能試験>
 前述の如く製造された空気入りタイヤに関し、以下の性能試験を行った。結果を表3~表7に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 (a) 耐候性試験
 インナーライナー内部について、スガ試験機(株)製サンシャインスーパーロングライフウェザーメーターを用いて次の条件で耐候性試験を行った。槽内温度63℃、湿度50%、60℃中、12分間降雨の条件で、60時間照射し、試験後のインナーライナーの亀裂数を測定した。測定された亀裂数を下記式に代入して耐候性指数を算出した。耐候性指数は比較例1での亀裂数を基準とする指数であり、耐候性指数の値が大きいほどタイヤの耐候性が高いことを示す。
耐候性指数=(比較例1の亀裂数)/(各実施例または他の比較例の亀裂数)×100。
 (b) 屈曲亀裂成長試験
 耐久走行試験は、インナーライナーが割れたり剥がれたりするかどうかで評価した。試作タイヤをJIS規格リム15×6JJに組み付け、タイヤ内圧を通常よりも低内圧である150KPaに設定し、加重を600kgとし、速度を100km/hとし、走行距離20000kmとした。試験終了後、タイヤの内部を観察して、亀裂数または剥離数を測定した。測定された亀裂数または剥離数を下記式に代入して耐屈曲疲労指数を算出した。耐屈曲疲労指数は比較例1での亀裂数を基準とする指数であり、耐屈曲疲労指数の値が大きいほど屈曲亀裂成長が小さいことを示す。
耐屈曲疲労指数=(比較例1の亀裂数)/(各実施例または他の比較例の亀裂数)×100。
 (c) 弾性率変化試験
 屈曲亀裂成長試験と同様な条件で、走行する前と規定走行距離20000km走行した後とにおいて粘弾性スペクトルメータVES((株)岩本製作所)を用いてインナーライナーの粘弾性を測定し、弾性率の変化率を算出した。算出された弾性率の変化率を用いて弾性率変化指数を算出した。弾性率変化指数は比較例1での弾性率の変化率を基準とする指数であり、弾性率変化指数の値が大きいほど弾性率の変化率(上昇率)が低く良好であることを示す。
弾性率の変化率=(走行後の弾性率)/(走行前の弾性率)×100
弾性率変化指数=(比較例1の弾性率の変化率)/(各実施例または他の比較例の弾性率の変化率)×100。
 (d) 静的空気圧低下率(%/月)の算出
 上述の方法で製造した各実施例および各比較例のタイヤ(195/65R15スチールラジアルPCタイヤ)をJIS規格リム15×6JJに組み付け、初期空気圧300Kpaを封入し、90日間室温で放置し、空気圧の低下率を計算し、1ヶ月(30日)あたりの空気圧の低下率(単位:%/月)を算出した。静的空気圧低下率の値が小さいほど良好であることを示す。
 (e) 制動距離測定試験
 規定走行距離20000km走行後のタイヤと走行前のタイヤとを国産FRスポーツタイプ車に装着し、テストコースにて140km/hで走行中に急ブレーキをかけ、制動距離を測定した。この試験は各タイヤについて5回ずつ行い、最大値と最小値とを除いた3回についての平均値を計算した。この平均値を下記式に代入して制動距離指数を算出した。制動距離指数は比較例1での制動距離を基準とする指数であり、制動距離指数の値が大きいほど制動距離が短くタイヤの制動性能が良好であることを示す。
制動距離指数=(比較例1の制動距離)/(各実施例または他の比較例の制動距離)×100
 (f) 総合判定
 総合判定の判定基準は表8に示すとおりである。
Figure JPOXMLDOC01-appb-T000008
 <考察>
 比較例1は、第1層として比較配合1を用い第2層として比較配合9を用いた空気入りタイヤである。該タイヤの耐候性指数、耐屈曲疲労指数、弾性率変化指数、静的空気圧低下率、制動距離指数は不十分であった。
 比較例2は、第1層として比較配合2を用い第2層として比較配合9を用いた空気入りタイヤである。該タイヤの耐候性指数は比較例1よりもわずかに向上したが、耐屈曲疲労指数、静的空気圧低下率は比較例1と同等であった。また、弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例3は、第1層として比較配合3を用い第2層として比較配合9を用いた空気入りタイヤである。該タイヤの耐候性指数は比較例1よりもわずかに向上したが、耐屈曲疲労指数、静的空気圧低下率は比較例1と同等であった。また、弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例4は、第1層として比較配合4を用い第2層として比較配合9を用いた空気入りタイヤである。該タイヤの耐候性指数、耐屈曲疲労指数、静的空気圧低下率は比較例1よりもわずかに向上したが、弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例5は、第1層として比較配合5を用い第2層として比較配合9を用いた空気入りタイヤである。該タイヤの耐候性指数、耐屈曲疲労指数、静的空気圧低下率は比較例1よりもわずかに向上したが、弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例6は、第1層として比較配合6を用い第2層として比較配合9を用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率は比較例1よりもわずかに向上したが、耐屈曲疲労指数、弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例7は、第1層として比較配合3を用い第2層として比較配合10を用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率は比較例1よりもわずかに向上したが、耐屈曲疲労指数、弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例8は、第1層として比較配合3を用い第2層として比較配合11を用いた空気入りタイヤである。該タイヤの耐候性指数は比較例1よりもわずかに向上したが、耐屈曲疲労指数、静的空気圧低下率は比較例1と同等であった。弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例9は、第1層として比較配合3を用い第2層として比較配合12を用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率は比較例1よりもわずかに向上したが、耐屈曲疲労指数は比較例1と同等であった。弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例10は、第1層として比較配合3を用い第2層として比較配合13を用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率は比較例1よりもわずかに向上したが、耐屈曲疲労指数は比較例1と同等であった。弾性率変化指数、制動距離指数は比較例1に比べて低下した。
 比較例1~10では、紫外線吸収剤および酸化防止剤の合計配合量は、0.5質量%未満である又は40質量%を超えている。そのため、上記の結果が得られたと考えられる。
 比較例11は、第1層として実施配合5を用い第2層として比較配合7を用いた空気入りタイヤである。該タイヤの耐候性指数および静的空気圧低下率は比較例1よりもわずかに向上したが、耐屈曲疲労指数、弾性率変化指数および制動距離指数は比較例1に比べて低下した。
 比較例12は、第1層として実施配合6を用い第2層として比較配合13を用いた空気入りタイヤである。該タイヤの耐候性指数、耐屈曲疲労指数および静的空気圧低下率は比較例1よりもわずかに向上したが、弾性率変化指数および制動距離指数は比較例1に比べて低下した。
 比較例13は、第1層として比較配合5を用い第2層として実施配合9を用いた空気入りタイヤである。該タイヤの耐候性指数および静的空気圧低下率は比較例1よりもわずかに向上したが、耐屈曲疲労指数は比較例1と同等であった。弾性率変化指数および制動距離指数は比較例1に比べて低下した。
 比較例14は、第1層として比較配合6を用い第2層として実施配合10を用いた空気入りタイヤである。該タイヤの耐候性指数は比較例1よりもわずかに向上したが、静的空気圧低下率は比較例1と同等であった。耐屈曲疲労指数、弾性率変化指数および制動距離指数は比較例1に比べて低下した。
 比較例11では、紫外線吸収剤および酸化防止剤の合計配合量は、第1層においては0.5質量%以上40質量%以下であるが、第2層においては0.5質量%未満である。また、比較例12では、紫外線吸収剤および酸化防止剤の合計配合量は、第1層においては0.5質量%以上40質量%以下であるが、第2層においては40質量%を超えている。比較例13では、紫外線吸収剤および酸化防止剤の合計配合量は、第2層においては0.5質量%以上40質量%以下であるが、第1層においては0.5質量%未満である。また、比較例14では、紫外線吸収剤および酸化防止剤の合計配合量は、第2層においては0.5質量%以上40質量%以下であるが、第1層においては40質量%を超えている。そのため、上記の結果が得られたと考えられる。
 実施例1~8は、第1層として実施配合1、2、3、4、5、6、7、8をそれぞれ用い第2層として実施配合13を用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率、弾性率変化指数、耐屈曲疲労指数、制動距離指数は比較例1に比べて向上した。
 実施例9~12は、第1層として実施配合5を用い第2層として実施配合14、15、16、17をそれぞれ用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率、弾性率変化指数、耐屈曲疲労指数、制動距離指数は比較例1に比べて向上した。
 実施例14、15、比較例15、16は、第1層として実施配合2を用い第2層として実施配合13を用いた空気入りタイヤである。該タイヤの耐候性指数、静的空気圧低下率、弾性率変化指数、耐屈曲疲労指数は比較例1に比べて向上した。しかし、実施例14、15では距離Lは0以上で(1+D/2)mm以下であるが、比較例15、16では距離Lは(1+D/2)mmよりも大きかった。そのため、制動距離指数は、実施例14、15では比較例1に比べて向上したが、比較例15、16では比較例1に比べて低下した。
 1 空気入りタイヤ、2 トレッド部、3 サイドウォール部、4 ビード部、5 ビードコア、6 カーカスプライ、6a ゴム層、7 ベルト層、8 ビードエーペックス、9 インナーライナー、10 ポリマー積層体、11 SIBS層、12 SIS層、13 SIB層、IL1 第1層、IL2 第2層、K コード、KC コードKの断面中心を通る面、L 距離、S 境界面。

Claims (5)

  1.  タイヤ内側に配置されるインナーライナーと、前記インナーライナーに隣接して設けられ、ゴム層中にコードが埋設されてなるカーカスプライとを備えた空気入りタイヤであって、
     前記インナーライナーは、スチレン-イソブチレン-スチレンブロック共重合体を含む第1エラストマー成分と第1紫外線吸収剤と第1酸化防止剤とを有する第1層と、スチレン-イソプレン-スチレンブロック共重合体およびスチレン-イソブチレンブロック共重合体の少なくとも一方を含む第2エラストマー成分と第2紫外線吸収剤と第2酸化防止剤とを有する第2層とを含むポリマー積層体で構成され、
     前記第1紫外線吸収剤および前記第1酸化防止剤の合計配合量は、前記第1エラストマー成分に対して0.5質量%以上40質量%以下であり、
     前記第2紫外線吸収剤および前記第2酸化防止剤の合計配合量は、前記第2エラストマー成分に対して0.5質量%以上40質量%以下であり、
     前記第1層の厚みは、0.05mm以上0.6mm以下であり、
     前記第2層の厚みは、0.01mm以上0.3mm以下であり、
     前記第2層は、前記カーカスプライの前記ゴム層と接するように配置されており、
     前記コードの直径をDとするとき、前記コードの断面中心を通る面から前記第2層までの距離Lが0以上で(1+D/2)mm以下であることを特徴とする空気入りタイヤ。
  2.  前記第1紫外線吸収剤および前記第1酸化防止剤の合計配合量は、前記第1エラストマー成分に対して2.0質量%以上20質量%以下であり、
     前記第2紫外線吸収剤および前記第2酸化防止剤の合計配合量は、前記第2エラストマー成分に対して2.0質量%以上20質量%以下である請求項1に記載の空気入りタイヤ。
  3.  前記第1層および前記第2層のいずれかには、スチレン-イソブチレン-スチレンブロック共重合体およびSIBS変性共重合体の少なくとも一方が配合されている請求項1または2に記載の空気入りタイヤ。
  4.  前記第1層および前記第2層のいずれかには、粘着付与剤またはポリイソブチレンが配合されている請求項1~3のいずれかに記載の空気入りタイヤ。
  5.  前記ポリマー積層体と前記カーカスプライの前記ゴム層との境界面は、凹凸状を形成している請求項1~4のいずれかに記載の空気入りタイヤ。
PCT/JP2014/052077 2013-04-19 2014-01-30 空気入りタイヤ WO2014171164A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512327A JP6367793B2 (ja) 2013-04-19 2014-01-30 空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013088371 2013-04-19
JP2013-088371 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171164A1 true WO2014171164A1 (ja) 2014-10-23

Family

ID=51731125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052077 WO2014171164A1 (ja) 2013-04-19 2014-01-30 空気入りタイヤ

Country Status (2)

Country Link
JP (1) JP6367793B2 (ja)
WO (1) WO2014171164A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107696798A (zh) * 2017-09-26 2018-02-16 正新橡胶(中国)有限公司 充气轮胎及其胎体帘纱层
WO2019230496A1 (ja) * 2018-05-31 2019-12-05 株式会社ブリヂストン 空気入りタイヤ
CN112094473A (zh) * 2020-08-26 2020-12-18 中广核高新核材集团(东莞)祈富新材料有限公司 一种高韧可充气tpe材料及其制备方法
EP4342691A1 (en) * 2022-09-21 2024-03-27 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136766A (ja) * 2002-10-17 2004-05-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012051544A (ja) * 2010-08-06 2012-03-15 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012254779A (ja) * 2011-05-13 2012-12-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP5143958B1 (ja) * 2012-02-17 2013-02-13 住友ゴム工業株式会社 空気入りタイヤ
JP2013047037A (ja) * 2011-08-29 2013-03-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136766A (ja) * 2002-10-17 2004-05-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012051544A (ja) * 2010-08-06 2012-03-15 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012254779A (ja) * 2011-05-13 2012-12-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2013047037A (ja) * 2011-08-29 2013-03-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP5143958B1 (ja) * 2012-02-17 2013-02-13 住友ゴム工業株式会社 空気入りタイヤ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107696798A (zh) * 2017-09-26 2018-02-16 正新橡胶(中国)有限公司 充气轮胎及其胎体帘纱层
WO2019230496A1 (ja) * 2018-05-31 2019-12-05 株式会社ブリヂストン 空気入りタイヤ
CN112094473A (zh) * 2020-08-26 2020-12-18 中广核高新核材集团(东莞)祈富新材料有限公司 一种高韧可充气tpe材料及其制备方法
EP4342691A1 (en) * 2022-09-21 2024-03-27 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Also Published As

Publication number Publication date
JPWO2014171164A1 (ja) 2017-02-16
JP6367793B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5048881B1 (ja) 空気入りタイヤ
US20180134077A1 (en) Pneumatic tire
US10464300B2 (en) Method for manufacturing pneumatic tire
JP5138758B2 (ja) 空気入りタイヤ
JP2011051320A (ja) ポリマー積層体およびそれをインナーライナーに用いた空気入りタイヤ
JP2011074237A (ja) インナーライナー用ポリマー組成物およびそれを用いた空気入りタイヤ
JP6367793B2 (ja) 空気入りタイヤ
JP5781753B2 (ja) 空気入りタイヤ
JP5143958B1 (ja) 空気入りタイヤ
WO2012157322A9 (ja) 空気入りタイヤ
JP5342662B2 (ja) 空気入りタイヤ
JP5373932B2 (ja) 空気入りタイヤの製造方法
JP5497829B2 (ja) 空気入りタイヤ
JP5809118B2 (ja) 空気入りタイヤ
JP5342636B2 (ja) 空気入りタイヤ
JP2014040217A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14786071

Country of ref document: EP

Kind code of ref document: A1