WO2014169774A1 - 非线性补偿装置及其方法、发射机和通信系统 - Google Patents

非线性补偿装置及其方法、发射机和通信系统 Download PDF

Info

Publication number
WO2014169774A1
WO2014169774A1 PCT/CN2014/075027 CN2014075027W WO2014169774A1 WO 2014169774 A1 WO2014169774 A1 WO 2014169774A1 CN 2014075027 W CN2014075027 W CN 2014075027W WO 2014169774 A1 WO2014169774 A1 WO 2014169774A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
coefficient
unit
translation
processing
Prior art date
Application number
PCT/CN2014/075027
Other languages
English (en)
French (fr)
Inventor
刘博�
严伟振
李磊
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2016506772A priority Critical patent/JP6150005B2/ja
Publication of WO2014169774A1 publication Critical patent/WO2014169774A1/zh
Priority to US14/884,239 priority patent/US9654156B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • Nonlinear compensation device and method thereof transmitter and communication system
  • the present invention relates to the field of communications, and in particular, to a nonlinear compensation apparatus and method thereof, a transmitter, and a communication system in a communication system. Background technique
  • the transmission signal of the data transmitting end is transmitted through the communication system, which will generate nonlinear distortion caused by the nonlinear effect in the communication system, thereby causing the communication quality to deteriorate.
  • communication quality is generally improved by performing predistortion processing on the data transmitting end to compensate for nonlinear distortion generated during signal transmission.
  • the nonlinear compensation coefficient used in the predistortion processing can be obtained by a direct learning method or an indirect learning method.
  • a non-linear compensating apparatus includes: a pre-processor for pre-processing a transmit signal according to a pre-acquired pre-processing coefficient; a distortion device, wherein the predistorter is configured to perform predistortion processing on the preprocessed signal; wherein, after preprocessing, the comparison between the predistort processed signal and the characteristic parameter of the transmitted signal satisfies a preset condition.
  • a nonlinear compensation method includes: pre-processing a transmit signal according to a pre-acquired pre-processing coefficient; performing pre-distortion processing on the pre-processed signal; wherein, after pre-processing, the pre-distorted processed signal and the characteristic parameter of the transmit signal are The comparison result satisfies the pre-set conditions
  • the beneficial effects of the embodiments of the present invention are: effectively compensating the nonlinear distortion generated in the communication process, thereby improving the communication quality, and reducing the circuit complexity of the communication system and the complexity of the calculation.
  • FIG. 2(a) is a diagram showing an input-output curve of the nonlinear transmission unit 101 of FIG. 1
  • FIG. 2(b) is a diagram showing an input-output curve of the predistortion measurer 103 and the predistorter 104 of FIG.
  • FIG. 3 is a schematic structural view of a nonlinear compensation device 300 according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a nonlinear compensation device 400 according to Embodiment 2 of the present invention.
  • Figure 5 is a schematic structural view of the preprocessor 401 of Figure 4.
  • FIG. 6 is a flow chart of a method for pre-processing the transmitted signal by the pre-processor 401;
  • FIG. 7 is a schematic structural diagram of a preprocessing coefficient acquiring unit 403 in FIG. 4;
  • Figure 8 is a schematic structural view of the comparator 701 of Figure 7;
  • FIG. 9 is a flowchart of a method for acquiring a pre-processing coefficient according to Embodiment 2 of the present invention.
  • Figure 10 is a schematic structural view of a nonlinear compensation device 1000 according to Embodiment 3 of the present invention.
  • Figure 11 is a schematic structural view of the preprocessor 1001 of Figure 10;
  • FIG. 12 is a flow chart of a method for pre-processing a transmitted signal by the pre-processor 1001 of FIG. 10;
  • FIG. 13 is a schematic structural diagram of a pre-processing coefficient obtaining unit 1003 of FIG.
  • Figure 14 is a schematic structural view of the comparator 1301 of Figure 13;
  • Figure 16 is a block diagram showing the structure of a nonlinear compensation device 1600 according to Embodiment 4 of the present invention.
  • 17 is a schematic structural diagram of a nonlinear compensation coefficient acquisition unit of the present invention.
  • FIG. 18 is a flowchart of a method of determining a nonlinear compensation coefficient by using a nonlinear compensation coefficient acquisition unit;
  • FIG. 19 is a schematic structural view of a transmitter 1900 according to Embodiment 5 of the present invention.
  • Figure 20 is a block diagram showing the structure of a communication system 2000 according to Embodiment 6 of the present invention.
  • Figure 21 is a flow chart showing a nonlinear compensation method of Embodiment 7 of the present invention.
  • Figure 22 is a flow chart showing a nonlinear compensation method of Embodiment 8 of the present invention. detailed description
  • the nonlinear compensation apparatus and method in the prior art generally requires multiple iterative calculations based on the signal at the data transmitting end and the signal at the data receiving end.
  • 1 is a flow chart of nonlinear compensation of a prior art nonlinear compensation device.
  • the nonlinear compensation device includes a nonlinear channel 101, a gain controller 102, a predistortion measurer 103, and a predistorter 104.
  • the predistortion measurer 103 is identical to the predistorter 104, wherein X(t) is a transmit signal, Z(t) is a predistorted signal, and Z(t) is transmitted through the nonlinear channel 101.
  • the received signals Y(t), Y(t) are controlled by the gain of the gain controller 102 to obtain the signal Y'(t) such that the power of the signal Y'(t) is the same as the transmitted signal x(t).
  • the required nonlinear compensation coefficient in the first measurement, removes the predistortion processor 104, then X(t) is the same as Z(t), according to the signal Z(t) and the signal Y'(t),
  • the distortion measurer 103 can calculate the initial parameters of the predistortion measurer 103, and after calculating the initial parameters, the predistorter 104 is added to the nonlinear compensation means.
  • the transmission signal X(t) is again input to the nonlinear compensation device to obtain a signal Y'(t), and the signal Y'(t) is passed through the predistortion measurer 103 to obtain a signal Z'(t), by comparing the signal z' (t) adjusting the parameters of the predistortion measurer 103 with the signal z(t); copying the adjusted predistortion measurer 103 to the position of the predistorter 104; repeating the above process until Z'(t) and The difference e(t) of the signal Z(t) satisfies within a predetermined range.
  • FIG. 2 is a schematic diagram of an input-output curve of the non-linear channel 101 of FIG. 1
  • FIG. 2(b) is a diagram of an input-output curve of the predistortion measurer 103 and the predistorter 104 of FIG.
  • the curve 0-P is the input-output curve of the nonlinear channel 101.
  • the input signal x(t) ranges from 0 to VppX
  • the output signal Y, (t) ranges from 0 to VppY' 1 , corresponding to the 0 ⁇ P1 portion of the curve
  • the nonlinear compensation device in the prior art needs to repeatedly measure the signal at the receiving end when obtaining the nonlinear compensation coefficient, and repeatedly performs calculation based on the signal at the receiving end and the signal at the transmitting end, so that the circuit of the entire communication system is complicated. The degree and complexity of the calculations are greatly improved.
  • Embodiments of the present invention provide a nonlinear compensation apparatus and method thereof, which can effectively compensate for nonlinear distortion generated in a communication process, thereby improving communication quality, and can reduce circuit complexity and computational complexity of a communication system.
  • the nonlinear compensation device and the method thereof provided by the embodiments of the present invention can use only the part of 0 ⁇ ( ⁇ in the input-output curve, so that it is not necessary to measure multiple times at the receiving end. Effective nonlinear compensation is performed, which greatly reduces the circuit complexity of the communication system and the complexity of the calculation.
  • FIG. 3 is a schematic structural diagram of a channel quality indication feedback apparatus 300 according to Embodiment 1 of the present invention.
  • the apparatus is disposed on a user equipment side.
  • the apparatus 300 includes a pre-processor 301 and a predistorter 302.
  • the pre-processor 301 is configured to pre-process the transmit signal X(t) according to the pre-determined pre-processing coefficient to obtain the pre-processed signal X'(t); the pre-distorter 302 is used for pre-processing
  • the signal X'(t) is subjected to predistortion processing to obtain a predistort processed signal z(t), and the predistortion processed signal z(t) and the characteristic parameter of the transmitted signal x(t) are obtained.
  • the comparison result satisfies the pre-set conditions.
  • the received signal Y(t) obtained at the receiving end is substantially the same as the preprocessed signal X' (t)
  • the original transmitted signal X(t) can be well restored by performing the inverse transformation of the pre-processing on the received signal Y(t).
  • the pre-distortion processing is performed on the transmitted signal, and then the pre-distorted processed signal is identical to the transmitted signal.
  • the pre-distortion is processed by comparing the pre-distortion. The characteristic parameters of the latter signal and the transmitted signal are considered to meet the compensation requirement when the result of the comparison satisfies the preset condition.
  • the characteristic parameters of the pre-processed and non-linearly compensated signal z(t) and the transmitted signal x(t), that is, one or more of the signal's various indicators, such as power, amplitude, and mean, can be compared.
  • the invention is not limited to these indicators.
  • the ratio of the amplitudes of the two signals can be compared. When the ratio is equal to 1, the amplitudes of the two signals are exactly the same. This is the most ideal case when the ratio is within a certain range (for example, 1 - When e- 5 ⁇ l + e 5 ), it is considered that the compensation requirement is reached.
  • the difference between the mean values of the two signals can be compared.
  • the mean values of the two signals are exactly the same. This is the most ideal case when the ratio is within a predetermined range ( For example, when -e- 5 ⁇ e- 5 ), it is considered that the compensation requirement is reached.
  • the amplitude and the mean of the two signals can be compared at the same time. When the ratio of the amplitude and the difference of the mean values are respectively within the above range, it is considered that the compensation requirement is reached.
  • the above is an exemplary illustration of the characteristic parameters for comparing the two signals z(t) with x(t), and the invention is not limited to these characteristic parameters and the range of these parameters, which can be determined according to actual conditions.
  • the apparatus 400 includes a pre-processor 401, a predistorter 402, and a pre-processing coefficient acquisition unit 403.
  • the pre-processor 401 is configured to pre-process the transmitted signal X(t) according to the pre-obtained pre-processing coefficient to obtain the pre-processed signal X'(t); the predistorter 402 is used for pre-processing
  • the signal X'(t) is subjected to predistortion processing to obtain a predistort processed signal z(t), and a comparison of the predistortion processed signal z(t) with the characteristic parameter of the transmitted signal x(t) The result satisfies the pre-set conditions;
  • the pre-processing coefficient acquisition unit 403 is for determining a pre-processing coefficient used by the pre-processor 401 to pre-process the transmitted signal.
  • the preprocessing coefficient is, for example, a scaling factor and/or a translation coefficient.
  • the invention is not limited to these two coefficients.
  • the structure of the preprocessor 401, the structure of the preprocessing coefficient acquisition unit 403, and the method of acquiring the preprocessing coefficients by the preprocessor 401 and the preprocessing coefficient acquisition unit 403 are illustrated in FIGS. 5-8. , will not repeat them here.
  • the invention is not limited to these structures and processing methods.
  • the pre-processor 401 is configured to pre-process the transmit signal, so that the comparison result of the pre-distortion processed signal Z(t) and the characteristic parameter of the transmit signal X(t) satisfies a preset conditions of.
  • the characteristic parameters are, for example, the power, amplitude and mean of the signal, corresponding to the characteristic parameters to be compared, and the corresponding configuration of the pre-processor 401, for example, when the amplitude of the signal needs to be compared, the corresponding setting in the pre-processor 401
  • the scaling unit for adjusting the amplitude, when the average of the signals needs to be compared, is correspondingly set in the pre-processor 401 for adjusting the translation unit of the mean.
  • Fig. 5 is a schematic view showing the configuration of the preprocessor 401 of Fig. 4, which corresponds to the case where it is necessary to simultaneously compare the amplitude and the mean of the signals, but the present invention is not limited to this configuration.
  • the preprocessor 401 has a cropping unit 501, a scaling unit 502, and a panning unit 503.
  • the cutting unit 501 is configured to perform a chopping process on a portion of the amplitude of the transmitted signal X(t) that is greater than a predetermined value, where r is a preset crest coefficient, for example, the crest factor may be selected, but The invention is not limited to the numerical values within the scope.
  • the root mean square value of the transmitted signal X(t) is k
  • the amplitude of the signal in the signal X(t) with amplitude greater than rX K or less than -rX K will be forced after the cropping process by the topper 501 Set to rX K or -rX K.
  • the process of chopping the transmitted signal X(t) will be described in Fig. 8, and will not be described again here.
  • the scaling unit 502 is configured to perform a scaling process on the amplitude of the sliced processed signal according to a pre-obtained scaling factor
  • the translation unit 503 is configured to perform a translation process on the mean value of the amplitude-scaled processed signal according to the previously obtained translation coefficient.
  • the scaling unit 502 and the translation unit 503 are used to perform the scaling processing and the translation processing.
  • the linear processing may affect the signal-to-noise ratio of the communication system under noisy conditions. Therefore, the cropping unit 501 may be preferably arranged to reduce the signal-to-noise ratio of the predistortion processed signal at the topping noise and power reduction. A balance is achieved to achieve better compensation.
  • FIG. 6 is a flow chart of a method for pre-processing the transmitted signal by the pre-processor 401. As shown in Figure 6, the method includes:
  • Step 601 Perform a chopping process on a portion of the amplitude of the transmitted signal X(t) that is greater than a predetermined value
  • Step 602 Perform scaling processing on the amplitude of the sliced processed signal according to the pre-obtained scaling factor.
  • Step 603 Perform a translation process on the average value of the amplitude-scaled processed signal according to the previously obtained translation coefficient.
  • the scaling unit 502 shifting unit 501 performs scaling processing and translation processing on the amplitude and the mean value of the chopped processed signal according to the initially set scaling factor and translation coefficient, and the predistorter 402 performs scaling processing and translation processing.
  • the post signal is subjected to predistortion processing.
  • the pre-processing coefficient acquisition unit 403 Based on the comparison between the amplitude and the mean value of the signal after the pre-distortion processing and the pre-distortion processing, the pre-processing coefficient acquisition unit 403 adjusts the scaling coefficient and the translation coefficient until the pre-predetermination
  • the result of comparing the amplitude and the mean value of the signal after the pre-distortion processing with the transmitted signal satisfies a preset condition, and the scaling factor and the translation coefficient used when the predetermined condition is satisfied are determined as the scaling factor and The coefficient is shifted to obtain the preprocessing coefficient.
  • Fig. 7 is a view showing the configuration of the preprocessing coefficient acquiring unit 403 of Fig. 4, but the present invention is not limited to this structure.
  • the pre-processing coefficient acquisition unit 403 includes a comparator 701, a multiplier 702, and an adder 703.
  • the pre-processing coefficient acquisition unit 403 performs N adjustments on the scaling coefficient and the translation coefficient, so that the amplitude of the pre-distortion processed signal Z(t) N and the transmitted signal X(t) obtained after the Nth adjustment is The comparison result of the mean satisfies a predetermined condition, where N is an integer greater than or equal to 1.
  • the comparator 701 is configured to compare the amplitude of the pre-distortion processed signal and the transmitted signal of the ith adjustment in the Nth adjustment, obtain the amplitude error parameter of the ith adjustment, and compare the pre-distortion processing of the ith adjustment.
  • the mean value of the subsequent signal and the transmitted signal is obtained, and the mean error parameter of the i-th adjustment is obtained, where 0 ⁇ i N ;
  • the multiplier 702 is configured to scale the amplitude error parameter of the current sub-adjustment and the i-1th adjustment Multiplying the parameters to obtain the scaling factor of the ith adjustment; and multiplying the amplitude error parameter of the ith adjustment by the ith adjustment of the averaging error parameter;
  • the adder 703 is configured to use the multiplier 602 to adjust the amplitude error parameter of the i-th adjustment with the ith adjustment
  • the result obtained by multiplying the mean error parameter is added to the translation coefficient of the i-1th adjustment to obtain the translation coefficient of the current adjustment.
  • the comparator 701 is configured to compare the amplitude of the pre-distorted signal and the transmitted signal of the ith adjustment in the Nth adjustment, obtain the amplitude error parameter of the ith adjustment, and compare the N adjustments.
  • the average value of the i-th adjusted pre-distortion processed signal and the transmitted signal X(t) is obtained as the i-th adjusted mean error parameter, where 0 ⁇ i N .
  • Fig. 8 is a schematic structural view of the comparator 701 of Fig. 7, but the present invention is not limited to this configuration. As shown in FIG. 8, the comparator 701 includes averaging units 801 and 802, amplitude units 803 and 804, a subtractor 805, and a divider 806.
  • the transmitted signal X(t) and the predistorted processed signal 2 (which is the input signal of the comparator 701, the averaging units 801 and 802 are identical in structure, and the averaging units 801 and 802 respectively calculate the signal X(t) and the signal.
  • the average value of the amplitude units 803 and 804 is also the same, and the amplitude units 803 and 804 are calculated to calculate the amplitudes of the signals X(t) and Z(t), respectively; the mean values of the signals X(t) and Z(t) are passed.
  • Subtractor 805 subtracts, obtains the i-th adjusted mean error parameter en ⁇ t ⁇ , divides the amplitude of signal X(t) and signal Z(t by divider 806, and obtains the amplitude error parameter of the i-th adjustment.
  • the pre-processing coefficient acquisition unit 403 After obtaining the i-th adjusted mean error parameter eme ⁇ and the i-th adjusted amplitude error parameter evpp ⁇ , the pre-processing coefficient acquisition unit 403 acquires the pre-processing coefficient.
  • Fig. 9 is a flow chart showing a method of acquiring preprocessing coefficients by the preprocessing coefficient acquisition unit 403 of the present embodiment, but the present invention is not limited to this method.
  • 901 denotes a cropping unit 501 in FIG. 5
  • 902 and 903 denote multipliers 702 in FIG. 7,
  • 904 denotes adders 703 in FIG. 7,
  • 905 and 906 denote first memories and second, respectively.
  • the memory for example, the first memory 905 and the second memory 906 may be separately provided, or may be integrally provided, and may be disposed in the pre-processing coefficient acquisition unit 403, or may be disposed independently of the pre-processing coefficient acquisition unit 403.
  • 907 represents the scaling unit 502 in FIG. 5, which in the present embodiment is, for example, a multiplier
  • 908 represents the translating unit 503 in FIG. 5, which in the present embodiment is, for example, Adder.
  • the first memory unit 905 is configured to store a scaling parameter, and the initial value of the scaling parameter is, for example, 1.
  • the second memory unit 906 is configured to store a translation parameter, and the initial value of the translation parameter is, for example, 0.
  • the multiplication by the multiplier 902, the scaling factor P Vpp (i) of the i-th adjustment is obtained, and stored in the first memory unit 905, and will be transmitted
  • the signal X(t) is subjected to the chopping process by the cropping unit 901 and multiplied by the multiplication 907 by the scaling factor P Vpp (i) of the i-th adjustment, that is, the amplitude is adjusted to obtain the i-th amplitude scaling process.
  • the adjusted translation coefficient P mean (i-1) is added by the adder 904 to obtain the i-th adjusted translation coefficient P mean (i), and stored in the second memory unit 906, and the i-th
  • the sub-amplitude adjusted signal is added to the i-th adjusted translation coefficient P mean (i) by the adder 908 to obtain the i-th mean shift processing signal X' (t) i ;
  • the signal X, (t is subjected to predistortion processing to obtain a predistort processed signal Z ' (t) i ; the above process is repeated until the signal z' (t) N obtained after the Nth adjustment and the transmitted signal x (t)
  • the comparison result of the amplitude and the mean satisfies the preset condition; when the comparison result satisfies the preset The condition, the N th adjustment scaling factor P Vpp (N) and a translation factor
  • Fig. 10 is a block diagram showing the structure of a nonlinear compensating apparatus 1000 according to a third embodiment of the present invention, which is disposed at the transmitting end of the signal.
  • the apparatus 1000 includes a pre-processor 1001, a predistorter 1002, and a pre-processing coefficient acquisition unit 1003.
  • the pre-processor 1001 is configured to pre-process the transmitted signal X(t) according to the pre-obtained pre-processing coefficient to obtain the pre-processed signal X'(t) ; the predistorter 1002 is used for pre-processing The signal X'(t) is subjected to predistortion processing to obtain a predistort processed signal z(t), and the preprocessed signal z(t) and the transmitted signal x(t) are subjected to preprocessing.
  • the comparison result of the characteristic parameters satisfies a preset condition;
  • the pre-processing coefficient acquisition unit 1003 is configured to determine a pre-processing coefficient used when the pre-processor 1001 performs pre-processing on the transmission signal.
  • the predistortion processed signal Z(t) and the transmitted signal are different.
  • the preprocessor 1001 has a cropping unit and a scaling unit, and the preprocessing coefficient is only a scaling factor.
  • the invention is not limited to this case.
  • 11 is a schematic structural view of the preprocessor 1001 of FIG. 10, which corresponds to a case of comparing amplitudes of signals, However, the invention is not limited to this configuration.
  • the preprocessor 1001 has a cropping unit 1101 and a scaling unit 1102.
  • the top slice 1101 is the same as that described in Embodiment 2, and details are not described herein again.
  • the scaling unit 1102 is for performing a scaling process on the amplitude of the cropped signal based on the previously obtained scaling factor.
  • the linear processing including the scaling processing is performed by the scaling unit 1102, which may affect the signal-to-noise ratio of the communication system under noisy conditions, so that the cropping unit 1101 may be preferably disposed such that the nonlinear compensation is performed.
  • the signal is balanced between the top-cut noise and the reduced signal-to-noise ratio due to power reduction, resulting in better compensation.
  • Figure 12 is a flow chart of a method for pre-processing the transmitted signal by the pre-processor 1001. As shown in Figure 12, the method includes:
  • Step 1201 Perform a chopping process on a portion of the amplitude of the transmitted signal X(t) that is greater than a predetermined value;
  • Step 1202 Perform scaling processing on the amplitude of the sliced processed signal according to the previously obtained scaling factor.
  • Fig. 13 is a view showing the configuration of the preprocessing coefficient acquisition unit 1003 of Fig. 10, but the present invention is not limited to this configuration. As shown in FIG. 13, the preprocessing coefficient acquisition unit 1003 includes a comparator 1301 and a multiplier 1302.
  • the comparator 1301 is configured to compare the amplitude of the nonlinearly compensated signal and the transmitted signal of the i-th adjustment in the N adjustments to obtain an amplitude error parameter of the i-th adjustment, where 0 ⁇ i N. ;
  • the multiplier 1302 is configured to multiply the amplitude error parameter of the i-th adjustment by the scaling parameter of the i-1th adjustment to obtain the current scaling factor.
  • the scaling unit 1102 performs scaling processing on the amplitude of the cropped signal according to the initially set scaling factor, and the predistorter 1002 performs predistortion processing on the scaled signal, based on the pre-processing.
  • the preprocessing coefficient acquiring unit 1003 adjusts the scaling factor until the pre-distortion processed signal and the amplitude of the transmitted signal are compared.
  • a pre-set condition is determined, and a scaling factor used when the predetermined condition is satisfied is determined as the scaling factor, thereby acquiring the pre-processing coefficient.
  • the comparator 1301 is configured to compare the amplitude of the pre-distorted signal and the transmitted signal of the ith adjustment in the Nth adjustment, and obtain an amplitude error parameter of the ith adjustment, where 0 ⁇ i N .
  • Fig. 14 is a schematic structural view of the comparator 1301 of Fig. 13, but the present invention is not limited to this configuration. As shown in FIG. 14, the comparator 1301 includes amplitude determining units 1401 and 1402, and a divider 1403.
  • the transmitted signal X(t) and the nonlinearly compensated signal are the input signals of the comparator 1301, and the amplitude units 1401 and 1402 are identical in structure, and the amplitude units 1401 and 1402 are calculated to calculate the signal X(t) and the signal Z, respectively.
  • the pre-processing coefficient acquisition unit 1003 acquires the pre-processing coefficient.
  • Fig. 15 is a flowchart showing a method of acquiring preprocessing coefficients by the preprocessing coefficient acquisition unit 1003 of the present embodiment, but the present invention is not limited to this method.
  • 1501 denotes a cropping unit 1101 in FIG. 11
  • 1502 denotes a multiplier 1302 in FIG. 13
  • 1503 denotes a third memory.
  • the third memory may be disposed in the preprocessing coefficient acquiring unit 1003. It may also be provided in the nonlinear compensation device 1000 independently of the pre-processing coefficient acquisition unit 1003;
  • 1504 represents the scaling unit 1102 in Fig. 11, which is, for example, a multiplier in the present embodiment.
  • the third memory unit 1503 is configured to store a scaling factor, and the initial value of the scaling coefficient is, for example, 1.
  • the scaling unit 1102 performs the ith adjustment in the N adjustments, the amplitude error parameter evp ⁇ of the ith adjustment obtained in FIG. 15 and the scaling factor P Vpp (il) of the i-1th adjustment are passed through the multiplier.
  • the preprocessor has a cropping unit and a panning unit, and the preprocessing coefficient includes only the translation coefficient, At the time, only the portion of the translation coefficient calculated in FIG. 9 of Embodiment 2 can be used, and the portion where the scaling coefficient is calculated and the scaling unit are removed.
  • Example 4 Figure 16 is a block diagram showing the structure of a nonlinear compensating apparatus 1600 according to Embodiment 4 of the present invention, which is disposed at the transmitting end of the signal.
  • the apparatus 1600 includes a pre-processor 1601, a linear damper 1602, a predistorter 1603, and a linear compensator 1604.
  • the pre-processor 1601 is configured to pre-process the transmitted signal X(t) according to the pre-obtained pre-processing coefficient to obtain a pre-processed signal; the linear damper 1602 is configured to perform linear damage on the pre-processed signal.
  • the predistorter 1603 is configured to perform predistortion processing on the linearly damaged signal; the linear compensator 1604 is configured to linearly compensate the predistort processed signal to obtain a linearly compensated signal, and to enable predistortion processing.
  • the comparison result of the subsequent signal Z(t) and the characteristic parameter of the transmission signal X(t) satisfies a predetermined condition.
  • the linear damper 1602 and the linear compensator 1604 are reciprocal, i.e., in a linear compensator
  • the processing of the signal in 1604 is the inverse of the signal processing in linear impairment device 1602.
  • this embodiment removes the long memory effect caused by linear damage in the communication system by providing a pair of reciprocal linear dampers and linear compensators, so that the nonlinear compensating device is only for the residual short The nonlinear damage of the memory is compensated, thereby avoiding problems such as power loss caused by linear compensation at the transmitting end.
  • the received signal Y(t) obtained at the receiving end is substantially the same as the preprocessed signal X'(t) (in the ideal case, the two are identical), by receiving the signal Y(t) By performing an inverse transformation of the pre-processing, the original transmitted signal X(t) can be well restored.
  • the pre-distortion processing is performed on the transmitted signal, and then the pre-distorted processed signal is identical to the transmitted signal.
  • the pre-distortion is processed by comparing the pre-distortion. The characteristic parameters of the latter signal and the transmitted signal are considered to meet the compensation requirement when the result of the comparison satisfies the preset condition.
  • the pre-set conditions in this embodiment are the same as those in the first embodiment.
  • the process of performing pre-distortion processing in this embodiment is the same as that in the embodiment 2 or the embodiment 3, and details are not described herein again.
  • the predistortion processing performed by the predistorter may include according to the pre-obtained
  • the nonlinear compensation is performed by nonlinear compensation coefficients, and the nonlinear compensation coefficient can be obtained by any of the methods in the prior art.
  • a nonlinear compensation coefficient acquisition unit for determining the previously obtained nonlinear compensation coefficient may be provided in the nonlinear compensation device 300 (400, 900, 1600) to provide a nonlinear compensation coefficient to the predistorter to perform non- Linear compensation.
  • 17 is a schematic structural diagram of a nonlinear compensation coefficient acquisition unit. As shown in FIG. 17, the nonlinear compensation coefficient acquisition unit includes: a nonlinear transmission unit 1701, a linear filtering unit 1702, and a calculation unit 1703;
  • the nonlinear transmission unit 1701 and the linear filtering unit 1702 are connected to each other, and only the input signal and the output signal of the nonlinear transmission unit 1701 need to be measured once.
  • the calculation unit 1703 obtains the information based on the input signal and the output signal of the nonlinear transmission unit 1701. Nonlinear compensation coefficient.
  • the nonlinear transmission unit 1701 and the linear filtering unit 1702 are simulation models established for nonlinear distortion and linear distortion in a communication system, and the memory effect in some communication systems (for example, optical fiber communication) is very serious, so communication will be
  • the memory effect of the system is considered to be caused by linear damage, so the communication system is regarded as a combination of a linear filter and a non-memory or short-memory nonlinear device, and accordingly the linear filtering unit 1702 and the nonlinear transmission unit 1701 are provided.
  • the method of determining the nonlinear compensation coefficient by the nonlinear compensation coefficient acquisition unit is exemplified below, but the present invention is not limited to this method.
  • the nonlinear transmission unit 1701 is placed after the linear filtering unit 1702, and the calculation unit 1703 calculates the nonlinear compensation coefficient based on the input signal S1 of the nonlinear transmission unit 1701 and the output signal S2 of the nonlinear transmission unit 1701.
  • the nonlinear compensation coefficient can be calculated by using the prior art.
  • the tap coefficient of the linear filtering unit 1702 can be obtained by using a Recursive Least Square (RLS) or a Least Mean Square (LMS).
  • RLS Recursive Least Square
  • LMS Least Mean Square
  • the output signal of the nonlinear transmission unit 1701 can be obtained based on the input signal of the nonlinear transmission unit 1701, the output signal of the linear filtering unit 1702, and the tap coefficient.
  • the Volterra expansion method can be used to determine the nonlinear compensation term, and the initial parameters of the predistorter can be obtained according to the recursive least squares method or the minimum mean square error method.
  • the calculation unit when the nonlinear transmission unit 1701 is placed before the linear filtering unit 1702, the calculation unit also calculates the nonlinear compensation coefficient according to the input signal of the nonlinear transmission unit 1701 and the output signal of the nonlinear transmission unit 1701.
  • the calculation method is similar to the above method, and will not be described here. It can be seen that in Embodiments 1 to 4, since the pre-processed signal is obtained, the nonlinear compensation coefficient is obtained only by one measurement at the transmitting end, which can reduce the circuit complexity and computational complexity of the communication system. degree.
  • FIG 19 is a block diagram showing the structure of a transmitter 1900 according to Embodiment 5 of the present invention.
  • the transmitter 1900 includes the nonlinear compensation device 1901 (300, 400, 900, 1600) of any of the embodiments 1 to 4.
  • Figure 20 is a block diagram showing the structure of a communication system 2000 according to a sixth embodiment of the present invention.
  • the communication system 2000 includes the transmitter 2001 (1600) of Embodiment 6 and the receiver 2002.
  • the receiver 2002 may further include a post-compensator 2003, which performs the received signal according to a comparison result between the received signal Y(t) and the pre-processed signal X'(t) at the transmitting end. Post-linear compensation.
  • the nonlinear compensation coefficient used by the post-compensator 2003 can also be obtained according to the nonlinear compensation coefficient acquisition unit shown in FIG. 17, for example, the method shown in FIG. 18 can also be used, and details are not described herein again.
  • the nonlinear distortion generated in the signal transmission process can be better compensated, thereby further improving the communication quality.
  • Figure 21 is a flowchart of the nonlinear compensation method of Embodiment 7 of the present invention, corresponding to the nonlinear compensating apparatus of Embodiment 1. As shown in Figure 21, the method includes:
  • Step 2101 Pre-process the transmitted signal according to the pre-acquired pre-processing coefficient
  • Step 2102 Perform predistortion processing on the preprocessed signal.
  • the comparison result of the predistortion processed signal and the characteristic parameter of the transmitted signal satisfies a predetermined condition.
  • the received signal obtained at the receiving end is substantially the same as the pre-processed signal (in the ideal case, the two are identical), and the inverse of the pre-processing is performed on the received signal, which is good. Restore the original transmitted signal.
  • the pre-distortion processing is performed on the transmitted signal, and then the pre-distorted processed signal is identical to the transmitted signal.
  • the pre-distortion is processed by comparing the pre-distortion. The characteristic parameters of the latter signal and the transmitted signal are considered to meet the compensation requirement when the result of the comparison satisfies the preset condition.
  • the description of the pre-set conditions in the present embodiment is the same as that described in Embodiment 1.
  • the method for obtaining the pre-processing coefficients used in the pre-processing in this embodiment is the same as that described in Embodiment 2 or Embodiment 3, I won't go into details here.
  • the pre-distortion processing may include nonlinear compensation according to the nonlinear compensation coefficient obtained in advance, and the method for obtaining the nonlinear compensation coefficient in the embodiment is the same as that described in Embodiments 1 to 4. I will not repeat them here.
  • Figure 22 is a flow chart showing a nonlinear compensation method of Embodiment 8 of the present invention, corresponding to the nonlinear compensating apparatus of Embodiment 4. As shown in Figure 22, the method includes:
  • Step 2201 Pre-process the transmitted signal according to the pre-acquired pre-processing coefficient
  • Step 2202 Perform linear damage processing on the preprocessed signal
  • Step 2203 Perform predistortion processing on the signal after the linear damage processing
  • Step 2204 Perform linear compensation on the predistort processed signal
  • the comparison result of the linearly compensated signal and the characteristic parameter of the transmitted signal satisfies a predetermined condition.
  • the received signal obtained at the receiving end is substantially the same as the pre-processed signal (in the ideal case, the two are identical), and the inverse of the pre-processing is performed on the received signal, which is good. Restore the original transmitted signal.
  • the pre-distortion processing is performed on the transmitted signal, and then the pre-distorted processed signal is identical to the transmitted signal.
  • the pre-distortion processed signal and the characteristic parameters of the transmitted signal are processed. Generally, it is not completely the same. Therefore, by comparing the pre-distorted signal and the characteristic parameter of the transmitted signal after pre-processing, when the result of the comparison satisfies the preset condition, it is considered that the compensation requirement is reached.
  • the description of the pre-set conditions in the present embodiment is the same as that described in Embodiment 1, and the description of the method of obtaining the pre-processing coefficient used in the pre-processing in the present embodiment is the same as that described in Embodiment 2 or Embodiment 3.
  • the description of the linear damage processing and the linear compensation in this embodiment is the same as that of the embodiment 4, and details are not described herein again.
  • the pre-distortion processing may include nonlinear compensation according to the nonlinear compensation coefficient obtained in advance, and the method for obtaining the nonlinear compensation coefficient in the embodiment is the same as that described in Embodiments 1 to 4. I will not repeat them here.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods or steps described above. .
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本发明实施例提供一种非线性补偿装置及其方法、发射机和通信系统,该装置包括根据预先获得的预处理系数对发射信号进行预处理的预处理器以及对预处理后的信号进行预失真处理的预失真器,并且,使得预失真处理后的信号与所述发射信号的特性参数的比较结果满足预先设定的条件。本发明实施例通过在发射端对发射信号进行预处理,只需要在发射端进行测量,不需要在接收端进行多次测量就能进行有效的非线性补偿,并且能够降低通信系统的电路复杂程度以及计算的复杂程度。

Description

非线性补偿装置及其方法、 发射机和通信系统 技术领域
本发明涉及通信领域,特别涉及一种通信系统中的非线性补偿装置及其方法、发 射机和通信系统。 背景技术
目前, 在通信系统中, 数据发射端的发射信号经过通信系统的传输, 将产生由通 信系统中的非线性效应导致的非线性失真, 从而导致通信质量下降。
现有技术中,一般通过在数据发射端进行预失真处理以补偿信号传输过程中产生 的非线性失真, 从而提高通信质量。 而对于该预失真处理中使用的非线性补偿系数, 可通过直接学习法或间接学习法获得。但是, 无论是直接学习法还是间接学习法, 都 需要在信号经过通信系统的传输后, 多次测量数据接收端的信号, 并基于数据发射端 的信号和数据接收端的信号进行多次迭代计算,这样,整个通信系统的电路复杂程度 以及计算的复杂程度都大大提高。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种非线性补偿装置及其方法,能够有效的补偿通 信过程中产生的非线性失真从而提高通信质量,并且能够降低通信系统的电路复杂程 度以及计算的复杂程度。
根据本发明实施例的一个方面, 提供了一种非线性补偿装置, 其中, 所述装置包 括:预处理器,所述预处理器用于根据预先获得的预处理系数对发射信号进行预处理; 预失真器, 所述预失真器用于对预处理后的信号进行预失真处理; 其中, 经过预处理 后再经过预失真处理后的信号与所述发射信号的特性参数的比较结果满足预先设定 的条件。
根据本发明实施例的另一个方面, 提供了一种非线性补偿方法, 其中, 所述方法 包括: 根据预先获得的预处理系数对发射信号进行预处理; 对预处理后的信号进行预 失真处理; 其中, 经过预处理后再经过预失真处理后的信号与所述发射信号的特性参 数的比较结果满足预先设定的条件
本发明实施例的有益效果在于:有效的补偿了通信过程中产生的非线性失真从而 提高了通信质量, 并且降低了通信系统的电路复杂程度以及计算的复杂程度。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或缩小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中,类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中:
图 1是现有技术的非线性补偿装置进行非线性补偿的流程图;
图 2(a)是图 1 中的非线性传输单元 101 的输入 -输出曲线示意图, 图 2(b)是图 1 中的预失真测量器 103和预失真器 104的输入 -输出曲线示意图;
图 3是本发明实施例 1的非线性补偿装置 300的结构示意图;
图 4是本发明实施例 2的非线性补偿装置 400的结构示意图;
图 5是图 4中预处理器 401的结构示意图;
图 6是预处理器 401对发射信号进行预处理的方法流程图;
图 7是图 4中预处理系数获取单元 403的结构示意图; 图 8是图 7中比较器 701的结构示意图;
图 9是本发明实施例 2的获取预处理系数的方法的流程图;
图 10是本发明实施例 3的非线性补偿装置 1000的结构示意图;
图 11是图 10中预处理器 1001的结构示意图;
图 12是图 10中的预处理器 1001对发射信号进行预处理的方法流程图; 图 13是图 10中预处理系数获取单元 1003的结构示意图;
图 14是图 13中比较器 1301的结构示意图;
图 15是本发明实施例 3的获取预处理系数的方法的流程图;
图 16是本发明实施例 4的非线性补偿装置 1600的结构示意图;
图 17是本发明的非线性补偿系数获取单元的结构示意图;
图 18是利用非线性补偿系数获取单元确定非线性补偿系数的方法的流程图; 图 19是本发明实施例 5的发射机 1900的结构示意图;
图 20是本发明实施例 6的通信系统 2000的结构示意图;
图 21是本发明实施例 7的非线性补偿方法的流程图;
图 22是本发明实施例 8的非线性补偿方法的流程图。 具体实施方式
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得明显。在说明 书和附图中, 具体公开了本发明的实施方式,其表明了其中可以采用本发明的原则的 部分实施方式, 应了解的是, 本发明不限于所描述的实施方式, 相反, 本发明包括落 入所附权利要求的范围内的全部修改、 变型以及等同物。
目前,现有技术中的非线性补偿装置及方法一般需要基于数据发射端的信号和数 据接收端的信号进行多次迭代计算。图 1是现有技术的非线性补偿装置进行非线性补 偿的流程图, 如图 1所示, 非线性补偿装置包括非线性信道 101、 增益控制器 102、 预失真测量器 103以及预失真器 104, 其中, 预失真测量器 103与预失真器 104完全 相同, 其中, X(t)是发射信号, Z(t)是经过预失真的信号, Z(t)经过非线性信道 101的 传输后得到接收信号 Y(t), Y(t)通过增益控制器 102的增益控制, 得到信号 Y' (t), 并使得信号 Y' (t)的功率与发射信号 x(t)相同。
根据预失真测量器 103进行反复测量以获得预失真处理器 104进行预失真处理所 需要的非线性补偿系数, 在第一次测量时, 将预失真处理器 104移除, 那么 X(t)与 Z(t)相同, 根据信号 Z(t)和信号 Y' (t), 预失真测量器 103可以计算出预失真测量器 103的初始参数, 在计算出初始参数之后, 将预失真器 104加入非线性补偿装置中。 将发射信号 X(t)再次输入到非线性补偿装置中, 得到信号 Y' (t), 信号 Y' (t)经过预 失真测量器 103后得到信号 Z' (t), 通过比较信号 z' (t)与信号 z(t), 对预失真测量 器 103的参数进行调整; 将调整后的预失真测量器 103复制到预失真器 104的位置; 重复上述过程, 直到 Z' (t)与信号 Z(t)的差异 e(t)满足在预先设定的范围之内。
图 2 是图 1中的非线性信道 101的输入 -输出曲线示意图,图 2(b)是图 1中的预 失真测量器 103和预失真器 104的输入 -输出曲线示意图。 如图 2(a)所示, 曲线 0-P 是非线性信道 101 的输入 -输出曲线。 在第一次测量时, 输入信号 x(t)的范围是 0~VppX, 输出信号 Y, (t)的范围是 0~VppY' 1 , 对应曲线的 0~P1部分; 用此数据可 以获得图 2(b)中的预失真测量器 103和预失真器 104的输入 -输出曲线 O Q
在通常情况下, 0~VppY' i< VppX, 所以当预失真器 104的输入为 0~VppX时, 对应的输入-输出曲线为图 2(b)中 0~Q2的部分, 输入 -输出曲线中(^~(¾的部分是没 有经过测量的, 所以需要再次进行测量, 直到图 2(a)中输入-输出曲线 0~P对应的图 2(b)中输入 -输出曲线 0~Q整体都被测量过。
可以看出,现有技术中的非线性补偿装置在获得非线性补偿系数时, 需要反复测 量接收端的信号, 并基于接收端的信号和发射端的信号, 反复进行计算, 这样, 整个 通信系统的电路复杂程度以及计算的复杂程度都大大提高。
本发明实施例提供一种非线性补偿装置及其方法,能够有效的补偿通信过程中产 生的非线性失真从而提高通信质量,并且能够降低通信系统的电路复杂程度以及计算 的复杂程度。
对应于图 2(b)中, 本发明实施例提供的非线性补偿装置及其方法, 能够只使用输 入 -输出曲线中的 0~(^的部分, 因此不需要在接收端多次测量就能进行有效的非线性 补偿, 从而大大降低了通信系统的电路复杂程度以及计算的复杂程度。
以下结合附图对本发明的非线性补偿装置及其方法进行详细说明。
实施例 1
图 3是本发明实施例 1的信道质量指示反馈装置 300的结构示意图,该装置设置 于用户设备侧。 如图 3所示, 该装置 300包括预处理器 301、 预失真器 302。 其中,该预处理器 301用于根据预先获得的预处理系数对发射信号 X(t)进行预处 理, 获得预处理后的信号 X' (t); 该预失真器 302用于对预处理后的信号 X' (t)进行 预失真处理, 获得预失真处理后的信号 z(t), 并且, 使得预失真处理后的信号 z(t)与 所述发射信号 x(t)的特性参数的比较结果满足预先设定的条件。
在本实施例中,在接收端获得的接收信号 Y(t)与预处理后的信号 X' (t)大致相同
(在理想情况下, 两者完全相同), 通过将接收信号 Y(t)进行该预处理的逆变换, 就 可很好的还原出原始的发射信号 X(t)。
在本实施例中, 通过对发射信号进行预处理, 然后再进行预失真处理, 使得经过 预处理再经过预失真处理后的信号与发射信号相同。在实际应用中,考虑到设备精度 和计算精度等因素,经过预处理再经过预失真处理后的信号与发射信号的特性参数一 般不会完全相同, 因此,通过比较经过预处理再经过预失真处理后的信号与发射信号 的特性参数, 当比较的结果满足预先设定的条件时, 即认为达到了补偿要求。
例如, 可以比较经过预处理再经过非线性补偿后的信号 z(t)与发射信号 x(t)的特 性参数, 也就是信号的各项指标, 如功率、 振幅和均值中的一个或多个, 但本发明不 限于这些指标。 例如, 可以比较该两个信号的振幅的比值, 当比值等于 1时, 则两个 信号的振幅完全相同, 此为最理想的情况, 当比值在预先设定的某个范围内 (例如 1 - e-5~l + e 5 ) 时, 则认为达到了补偿要求。 又例如, 可以比较该两个信号的均值的差 值, 当差值等于 0时, 则两个信号的均值完全相同, 此为最理想的情况, 当比值在预 先设定的某个范围内 (例如 -e— 5~ e— 5) 时, 则认为达到了补偿要求。 又例如, 可同时 比较两个信号的振幅和均值, 当振幅的比值以及均值的差值分别在上述范围内时, 则 认为达到了补偿要求。 以上是对两个信号 z(t)与 x(t)比较的特性参数的示例性说明, 本发明并不限于这些特性参数和这些参数范围, 该参数范围可根据实际情况来确定。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
实施例 2
图 4是本发明实施例 1的非线性补偿装置 400的结构示意图,该装置设置于信号 的发射端。 如图 4所示, 该装置 400包括预处理器 401、 预失真器 402和预处理系数 获取单元 403。 其中,该预处理器 401用于根据预先获得的预处理系数对发射信号 X(t)进行预处 理, 获得预处理后的信号 X' (t); 该预失真器 402用于对预处理后的信号 X' (t)进行 预失真处理, 获得预失真处理后的信号 z(t), 并且, 使得预失真处理后的信号 z(t)与 该发射信号 x(t)的特性参数的比较结果满足预先设定的条件;
预处理系数获取单元 403用于确定预处理器 401对发射信号进行预处理时使用的 预处理系数。
在本实施例中, 该预处理系数例如是缩放系数和 /或平移系数。 但本发明不限于 这两种系数。
在本实施例中, 预处理器 401的结构、预处理系数获取单元 403的结构、 以及利 用预处理器 401和预处理系数获取单元 403获取预处理系数的方法在图 5-图 8中进行 说明, 此处不再赘述。 但本发明不限于这些结构和处理方法。
在本实施例中,预处理器 401用于对发射信号进行预处理, 以使得预失真处理后 的信号 Z(t)与所述发射信号 X(t)的特性参数的比较结果满足预先设定的条件。 该特性 参数例如是信号的功率、 振幅和均值, 对应于需要比较的特性参数, 相应的设置预处 理器 401的结构, 例如, 需要比较信号的振幅时, 则在预处理器 401中相应的设置用 于调整振幅的缩放单元, 需要比较信号的均值时, 则在预处理器 401中相应的设置用 于调整均值的平移单元。 图 5是图 4中预处理器 401的结构示意图,其对应于需要同 时比较信号的振幅和均值的情形, 但本发明并不限于这种结构。
如图 5所示, 预处理器 401具有切顶单元 501、 缩放单元 502、 平移单元 503。 其中,切顶单元 501用于对发射信号 X(t)的振幅大于预定值的部分进行切顶处理, r是预先设定的切顶系数, 例如, 该切顶系数可以选取 中的数值, 但本发明不 限于此范围内的数值。 例如, 发射信号 X(t)的均方根值是 k, 那么在经过切顶器 501 的切顶处理后, 信号 X(t)中振幅大于 rX K或小于 -rX K的信号振幅将被强制设为 rX K或 -rX K。 对发射信号 X(t)进行切顶处理的过程将在图 8中进行说明, 此处不再赘 述。
缩放单元 502 用于根据预先获得的缩放系数对切顶处理后的信号的振幅进行缩 放处理,平移单元 503用于根据预先获得的平移系数对振幅缩放处理后的信号的均值 进行平移处理。
在本实施例中,利用缩放单元 502和平移单元 503进行包括缩放处理和平移处理 的线性处理,在有噪声的条件下可能会影响通信系统的信噪比, 因此可以优选设置切 顶单元 501, 使得预失真处理后的信号在切顶噪声与功率降低带来的信噪比降低之间 获得平衡, 从而达到更好的补偿效果。
图 6是预处理器 401对发射信号进行预处理的方法流程图。如图 6所示, 该方法 包括:
步骤 601 : 对发射信号 X(t)的振幅大于预定值的部分进行切顶处理;
步骤 602: 根据预先获得的缩放系数对切顶处理后的信号的振幅进行缩放处理; 步骤 603: 根据预先获得的平移系数对振幅缩放处理后的信号的均值进行平移处 理。
在本实施例中,缩放单元 502平移单元 501根据初始设定的缩放系数和平移系数 对切顶处理后的信号的振幅和均值进行缩放处理和平移处理,预失真器 402对缩放处 理和平移处理后的信号进行预失真处理,基于经过预处理后再经过预失真处理后的信 号与发射信号的振幅和均值的比较结果,预处理系数获取单元 403对缩放系数和平移 系数进行调整,直到经过预处理后再经过预失真处理后的信号与发射信号的振幅和均 值的比较结果满足预先设定的条件,并将满足该预先设定的条件时使用的缩放系数和 平移系数确定为该缩放系数和平移系数, 从而获取该预处理系数。
其中, 对于该预先设定的条件, 与实施例 1中的描述相同, 此处不再赘述。 图 7是图 4中预处理系数获取单元 403的结构示意图,但本发明并不限于这种结 构。如图 7所示,预处理系数获取单元 403包括比较器 701、乘法器 702和加法器 703。
其中, 预处理系数获取单元 403对缩放系数和平移系数进行了 N次调整, 从而 使得第 N次调整后获得的预失真处理后的信号 Z(t)N与发射信号 X(t)的振幅和均值的 比较结果满足预先设定的条件, 其中, N为大于等于 1的整数。
其中,比较器 701用于比较 N次调整中的第 i次调整的预失真处理后的信号与发 射信号的振幅, 获得第 i次调整的振幅误差参数, 并且比较第 i次调整的预失真处理 后的信号与发射信号的均值, 获得第 i次调整的均值误差参数, 其中, 0<i N; 乘法器 702用于将所述当前次调整的振幅误差参数与第 i-1次调整的缩放参数相 乘, 获得第 i次调整的缩放系数; 并且, 将第 i次调整的该振幅误差参数与第 i次调 整的该均值误差参数相乘;
加法器 703用于将乘法器 602将第 i次调整的该振幅误差参数与第 i次调整的该 均值误差参数相乘获得的结果与第 i-1次调整的平移系数相加, 获得当前次调整的平 移系数。
在本实施例中,比较器 701用于比较 N次调整中的第 i次调整的预失真处理后的 信号与发射信号的振幅, 获得第 i次调整的振幅误差参数, 以及比较 N次调整中的第 i次调整的预失真处理后的信号与发射信号 X(t)的均值, 获得第 i次调整的均值误差 参数, 其中, 0<i N。 图 8是图 7中比较器 701的结构示意图, 但是本发明并不限 于这种结构。 如图 8所示, 比较器 701包括求均值单元 801和 802、 求振幅单元 803 和 804、 减法器 805以及除法器 806。
其中,发射信号 X(t)和预失真处理后的信号 2( 是比较器 701的输入信号,求均 值单元 801和 802结构相同,求均值单元 801和 802分别计算出信号 X(t)和信号 的均值, 求振幅单元 803和 804的结构也相同, 求振幅单元 803和 804分别计算出信 号 X(t)和信号 Z(t) 振幅; 将信号 X(t)和信号 Z(t 的均值通过减法器 805相减, 获 得第 i次调整的均值误差参数 en^ t^将信号 X(t)和信号 Z(t 的振幅通过除法器 806 相除, 获得第 i次调整的振幅误差参数
Figure imgf000010_0001
在获得了第 i次调整的均值误差参数 eme^ 和第 i次调整的振幅误差参数 evpp^ 之后, 利用预处理系数获取单元 403获取预处理系数。
图 9是本实施例的利用预处理系数获取单元 403获取预处理系数的方法的流程 图, 但是本发明并不限于这种方法。 如图 9所示, 901表示图 5中的切顶单元 501, 902和 903表示图 7中的乘法器 702, 904表示图 7中的加法器 703, 905和 906分别 表示第一存储器和第二存储器,例如,第一存储器 905和第二存储器 906可分别设置, 也可设置为一体, 并且, 其可设置在预处理系数获取单元 403中, 也可独立于预处理 系数获取单元 403而设置在非线性补偿装置 400中; 907表示图 5中的缩放单元 502, 在本实施例中该缩放单元例如为乘法器, 908表示图 5中的平移单元 503, 在本实施 例中该平移单元例如为加法器。
其中, 第一存储器单元 905用于存储缩放参数, 该缩放参数的初始值例如是 1, 第二存储器单元 906用于存储平移参数, 该平移参数的初始值例如是 0。 在缩放单元 502和平移单元 503进行 N次调整中的第 i次调整时, 将图 8中获得的第 i次调整的 振幅误差参数 evpp^与第 i-1次调整的缩放参数 PVpp(i-l)通过乘法器 902相乘, 获得 第 i次调整的缩放系数 PVpp(i), 并将其存储在第一存储器单元 905中, 并且, 将发射 信号 X(t)经过切顶单元 901切顶处理后的信号与该第 i次调整的缩放系数 PVpp(i)通过 乘法器 907相乘, 即进行振幅的调整, 获得第 i次振幅缩放处理后的信号; 将图 8中 获得的第 i次调整的振幅误差参数 ενρρ( 与第 i次调整的均值误差参数 通过 乘法器 903相乘, 并将相乘获得的结果与第 i-1次调整的平移系数 Pmean(i-1)通过加法 器 904相加, 获得第 i次调整的平移系数 Pmean(i), 并将其存储在第二存储器单元 906 中, 并且, 将该第 i次振幅调整后的信号与该第 i次调整的平移系数 Pmean(i)通过加法 器 908相加, 获得第 i次均值平移处理后的信号 X' (t)i ; 通过预失真器 402对该信号 X, (t 进行预失真处理, 获得预失真处理后的信号 Z ' (t)i ; 重复上述过程, 直到第 N 次调整后获得的信号 z' (t)N与发射信号 x(t)的振幅和均值的比较结果满足预先设定 的条件; 当该比较结果满足预先设定的条件时, 将第 N次调整的缩放系数 PVpp(N)以 及平移系数 Pmean(N)作为预处理系数, 提供给预处理器 401进行预处理。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
实施例 3
图 10是本发明实施例 3的非线性补偿装置 1000的结构示意图,该装置设置于信 号的发射端。 如图 10所示, 该装置 1000包括预处理器 1001、 预失真器 1002和预处 理系数获取单元 1003。
其中, 该预处理器 1001用于根据预先获得的预处理系数对发射信号 X(t)进行预 处理, 获得预处理后的信号 X' (t); 该预失真器 1002用于对预处理后的信号 X' (t) 进行预失真处理, 获得预失真处理后的信号 z(t), 并且, 使得经过预处理再经过预失 真处理后的信号 z(t)与该发射信号 x(t)的特性参数的比较结果满足预先设定的条件; 预处理系数获取单元 1003用于确定预处理器 1001对发射信号进行预处理时使用 的预处理系数。
在本实施例中, 与实施例 2 不同的是, 预失真处理后的信号 Z(t)与该发射信号
X(t)只进行振幅的比较, 与之对应的是, 预处理器 1001 具有切顶单元和缩放单元, 并且该预处理系数只是缩放系数。 但本发明不限于这种情形。
其中, 对于该预先设定的条件, 与实施例 1中的描述相同, 此处不再赘述。 图 11是图 10中预处理器 1001的结构示意图,其对应于比较信号的振幅的情形, 但本发明并不限于这种结构。
如图 11所示, 预处理器 1001具有切顶单元 1101和缩放单元 1102。
其中, 切顶单 1101与实施例 2中的描述相同, 此处不再赘述。
缩放单元 1102用于根据预先获得的缩放系数对切顶处理后的信号的振幅进行缩 放处理。 在本实施例中, 利用缩放单元 1102进行包括缩放处理的线性处理, 在有噪 声的条件下可能会影响通信系统的信噪比, 因此可以优选的设置切顶单元 1101, 使 得非线性补偿后的信号在切顶噪声与功率降低带来的信噪比降低之间获得平衡,从而 达到更好的补偿效果。
图 12是预处理器 1001对发射信号进行预处理的方法流程图。 如图 12所示, 该 方法包括:
步骤 1201 : 对发射信号 X(t)的振幅大于预定值的部分进行切顶处理;
步骤 1202: 根据预先获得的缩放系数对切顶处理后的信号的振幅进行缩放处理。 图 13是图 10中预处理系数获取单元 1003的结构示意图, 但本发明并不限于这 种结构。 如图 13所示, 预处理系数获取单元 1003包括比较器 1301和乘法器 1302。
其中, 比较器 1301用于比较 N次调整中的第 i次调整的非线性补偿后的信号与 发射信号的振幅, 获得第 i次调整的振幅误差参数, 其中, 0<i N。;
乘法器 1302用于将第 i次调整的振幅误差参数与第 i-1次调整的缩放参数相乘, 获得当前次的缩放系数。
在本实施例中, 缩放单元 1102根据初始设定的缩放系数对切顶处理后的信号的 振幅进行缩放处理, 预失真器 1002对缩放处理后的信号进行预失真处理, 基于经过 预处理后再经过预失真处理后的信号与发射信号的振幅的比较结果,预处理系数获取 单元 1003对缩放系数进行调整, 直到经过预处理后再经过预失真处理后的信号与发 射信号的振幅的比较结果满足预先设定的条件,并将满足该预先设定的条件时使用的 缩放系数确定为该缩放系数, 从而获取该预处理系数。
其中, 对于该预先设定的条件, 与实施例 1中的描述相同, 此处不再赘述。 在本实施例中, 比较器 1301用于比较 N次调整中的第 i次调整的预失真处理后 的信号与发射信号的振幅, 获得第 i次调整的振幅误差参数, 其中, 0<i N。 图 14 是图 13中比较器 1301的结构示意图,但是本发明并不限于这种结构。如图 14所示, 比较器 1301包括求振幅单元 1401和 1402、 除法器 1403。 其中, 发射信号 X(t)和非线性补偿后的信号 是比较器 1301的输入信号, 求 振幅单元 1401和 1402的结构相同, 求振幅单元 1401和 1402分别计算出信号 X(t) 和信号 Z(A的振幅; 将信号 X(t)和信号 Z(A的振幅通过除法器 1403相除, 获得第 i 次调整的振幅误差参数 evpp
在获得了第 i次调整的振幅误差参数 evp^ 之后,利用预处理系数获取单元 1003 获取预处理系数。
图 15是本实施例的利用预处理系数获取单元 1003获取预处理系数的方法的流程 图,但是本发明并不限于这种方法。如图 15所示, 1501表示图 11中的切顶单元 1101, 1502表示图 13中的乘法器 1302, 1503表示第三存储器, 例如, 该第三存储器可设 置在预处理系数获取单元 1003中,也可独立于预处理系数获取单元 1003而设置在非 线性补偿装置 1000中; 1504表示图 11中的缩放单元 1102, 在本实施例中该缩放单 元例如为乘法器。
其中, 第三存储器单元 1503用于存储缩放系数, 该缩放系数的初始值例如是 1。 在缩放单元 1102进行 N次调整中的第 i次调整时, 将图 15中获得的第 i次调整的振 幅误差参数 evp^ 与第 i-1次调整的缩放系数 PVpp(i-l)通过乘法器 1302相乘,获得第 i次调整的缩放系数 PVpp(i), 并将其存储在第三存储器单元 1503中, 并且, 将发射信 号 X(t)经过切顶单元 1501切顶处理后的信号与该第 i次调整的缩放系数 PVpp(i)通过乘 法器 1304相乘, 即进行振幅的缩放处理, 获得第 i次振幅缩放处理后的信号 X' (t)1; 通过预失真器 1002 对该信号 X, (t 进行预失真处理, 获得预失真处理后的信号 V (t)1; 重复上述过程, 直到第 N次调整后获得的信号 Z' (t)N与发射信号 X(t)的振 幅的比较结果满足预先设定的条件; 当该比较结果满足预先设定的条件时, 将第 N 次调整的缩放系数 PVpp(N)作为预处理系数, 提供给预处理器 1001进行预处理。
另外, 当非线性补偿后的信号 Z(t)与该发射信号 X(t)只进行均值的比较时, 预处 理器具有切顶单元和平移单元, 并且该预处理系数只包括平移系数, 此时, 可仅利用 实施例 2的图 9中计算平移系数的部分,而将计算缩放系数的部分以及缩放单元移除。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
实施例 4 图 16是本发明实施例 4的非线性补偿装置 1600的结构示意图,该装置设置于信 号的发射端。 如图 16所示, 该装置 1600包括预处理器 1601、 线性损伤器 1602、 预 失真器 1603以及线性补偿器 1604。
其中, 该预处理器 1601用于根据预先获得的预处理系数对发射信号 X(t)进行预 处理, 获得预处理后的信号; 该线性损伤器 1602用于对预处理后的信号进行线性损 伤; 该预失真器 1603用于对线性损伤后的信号进行预失真处理; 该线性补偿器 1604 用于对预失真处理后的信号进行线性补偿, 获得线性补偿后的信号, 并且, 使得预失 真处理后的信号 Z(t)与所述发射信号 X(t)的特性参数的比较结果满足预先设定的条 件。
在本实施例中, 线性损伤器 1602和线性补偿器 1604是互逆的, 即在线性补偿器
1604中对信号的处理是线性损伤器 1602中信号处理的逆过程。
与实施例 1不同的是, 本实施例通过设置一对互逆的线性损伤器和线性补偿器, 将通信系统中线性损伤造成的长记忆效应去除,使得该非线性补偿装置只针对残留较 短记忆的非线性损伤进行补偿,从而避免了在发射端进行线性补偿而造成的功率损失 等问题。
在本实施例中,在接收端获得的接收信号 Y(t)与预处理后的信号 X' (t)大致相同 (在理想情况下, 两者完全相同), 通过将接收信号 Y(t)进行该预处理的逆变换, 就 可很好的还原出原始的发射信号 X(t)。
在本实施例中, 通过对发射信号进行预处理, 然后再进行预失真处理, 使得经过 预处理再经过预失真处理后的信号与发射信号相同。在实际应用中,考虑到设备精度 和计算精度等因素,经过预处理再经过预失真处理后的信号与发射信号的特性参数一 般不会完全相同, 因此,通过比较经过预处理再经过预失真处理后的信号与发射信号 的特性参数, 当比较的结果满足预先设定的条件时, 即认为达到了补偿要求。
本实施例中的预先设定的条件与实施例 1中的描述相同,本实施例中进行预失真 处理的过程与实施例 2或实施例 3的描述相同, 此处不再赘述。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
在实施例 1至实施例 4中,预失真器进行的预失真处理可以包括根据预先获得的 非线性补偿系数进行的非线性补偿, 并且, 可利用现有技术中的任一种方法获得该非 线性补偿系数。
例如, 可在非线性补偿装置 300 (400, 900, 1600) 中设置用于确定该预先获得 的非线性补偿系数的非线性补偿系数获取单元,以提供非线性补偿系数给预失真器而 进行非线性补偿。 图 17是非线性补偿系数获取单元的结构示意图, 如图 17所示, 非 线性补偿系数获取单元包括: 非线性传输单元 1701、 线性滤波单元 1702以及计算单 元 1703 ;
其中, 非线性传输单元 1701和线性滤波单元 1702相互连接, 仅需测量一次非线 性传输单元 1701的输入信号和输出信号, 计算单元 1703基于非线性传输单元 1701 的输入信号和输出信号, 获得所述非线性补偿系数。
其中,非线性传输单元 1701和线性滤波单元 1702是针对通信系统中的非线性失 真以及线性失真而建立的仿真模型, 在某些通信系统(例如光纤通信) 中的记忆效应 非常严重, 因此将通信系统的记忆效应视为线性损伤引起的, 因此将通信系统视为线 性滤波器和无记忆或短记忆的非线性器件的组合, 因此相应的设置了线性滤波单元 1702和非线性传输单元 1701。
以下示例性的给出了利用非线性补偿系数获取单元确定非线性补偿系数的方法, 但本发明并不限于此方法。
图 18是利用非线性补偿系数获取单元确定非线性补偿系数的方法的流程图。 如 图 18所示, 非线性传输单元 1701置于线性滤波单元 1702之后,计算单元 1703根据 非线性传输单元 1701的输入信号 S1以及非线性传输单元 1701的输出信号 S2计算该 非线性补偿系数。 其中, 计算非线性补偿系数可采用现有技术, 例如, 可采用递归最 小二乘法 (RLS, Recursive Least Square) 或者最小均方误差法 (LMS, Least Mean Square)获得线性滤波单元 1702的抽头系数,根据非线性传输单元 1701的输入信号、 线性滤波单元 1702的输出信号以及该抽头系数,可以获得非线性传输单元 1701的输 出信号。 例如可采用 Volterra展开法确定非线性补偿项, 根据递归最小二乘法或最小 均方误差法获得预失真器的初始参数。
另外, 当非线性传输单元 1701置于线性滤波单元 1702之前时,计算单元同样是 根据非线性传输单元 1701的输入信号以及非线性传输单元 1701的输出信号计算该非 线性补偿系数。 计算的方法与上述方法类似, 此处不再赘述。 由此可知, 在实施例 1至实施例 4中, 由于对发射信号进行了预处理, 获得非线 性补偿系数均只需在发射端进行一次测量,能够降低通信系统的电路复杂程度以及计 算的复杂程度。
实施例 5
图 19是本发明实施例 5的发射机 1900的结构示意图。 该发射机 1900包括实施 例 1至实施例 4中任一实施例的非线性补偿装置 1901 ( 300, 400, 900, 1600)。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
实施例 6
图 20是本发明实施例 6的通信系统 2000的结构示意图。 该通信系统 2000包括 实施例 6的发射机 2001 ( 1600) 以及接收机 2002。
在本实施例中, 接收机 2002还可包括后置补偿器 2003, 其根据接收信号 Y(t)与 在发射端经过预处理后的信号 X' (t)的比较结果,对该接收信号进行后置的非线性补 偿。
其中,后置补偿器 2003所用的非线性补偿系数同样可以根据图 17所示的非线性 补偿系数获取单元获得, 例如, 也可采用图 18所示的方法获得, 此处不再赘述。
在本实施例中, 通过在接收端设置后置补偿器 2003, 能够更好的补偿信号传输 过程中产生的非线性失真, 从而进一步提高通信质量。
实施例 7
图 21是本发明实施例 7的非线性补偿方法的流程图, 对应于实施例 1的非线性 补偿装置。 如图 21所示, 该方法包括:
步骤 2101 : 根据预先获得的预处理系数对发射信号进行预处理;
步骤 2102: 对预处理后的信号进行预失真处理;
并且,使得预失真处理后的信号与发射信号的特性参数的比较结果满足预先设定 的条件。
在本实施例中,在接收端获得的接收信号与预处理后的信号大致相同(在理想情 况下, 两者完全相同), 通过将接收信号进行该预处理的逆变换, 就可很好的还原出 原始的发射信号。 在本实施例中, 通过对发射信号进行预处理, 然后再进行预失真处理, 使得经过 预处理再经过预失真处理后的信号与发射信号相同。在实际应用中,考虑到设备精度 和计算精度等因素,经过预处理再经过预失真处理后的信号与发射信号的特性参数一 般不会完全相同, 因此,通过比较经过预处理再经过预失真处理后的信号与发射信号 的特性参数, 当比较的结果满足预先设定的条件时, 即认为达到了补偿要求。
本实施例中对于预先设定的条件的描述与实施例 1中的描述相同,本实施中对于 预处理中使用的预处理系数的获得方法与实施例 2或实施例 3中的描述相同,此处不 再赘述。
在本实施例中,预失真处理可以包括根据预先获得的非线性补偿系数进行的非线 性补偿,本实施例中对于非线性补偿系数的获得方法与实施例 1至实施例 4中的描述 相同, 此处不再赘述。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
实施例 8
图 22是本发明实施例 8的非线性补偿方法的流程图, 对应于实施例 4的非线性 补偿装置。 如图 22所示, 该方法包括:
步骤 2201 : 根据预先获得的预处理系数对发射信号进行预处理;
步骤 2202: 对预处理后的信号进行线性损伤处理;
步骤 2203 : 对线性损伤处理后的信号进行预失真处理;
步骤 2204: 对预失真处理后的信号进行线性补偿;
并且,使得线性补偿后的信号与发射信号的特性参数的比较结果满足预先设定的 条件。
在本实施例中,在接收端获得的接收信号与预处理后的信号大致相同(在理想情 况下, 两者完全相同), 通过将接收信号进行该预处理的逆变换, 就可很好的还原出 原始的发射信号。
在本实施例中, 通过对发射信号进行预处理, 然后再进行预失真处理, 使得经过 预处理再经过预失真处理后的信号与发射信号相同。在实际应用中,考虑到设备精度 和计算精度等因素,经过预处理再经过预失真处理后的信号与发射信号的特性参数一 般不会完全相同, 因此,通过比较经过预处理再经过预失真处理后的信号与发射信号 的特性参数, 当比较的结果满足预先设定的条件时, 即认为达到了补偿要求。
本实施例中对于预先设定的条件的描述与实施例 1中的描述相同,本实施中对于 预处理中使用的预处理系数的获得方法的描述与实施例 2或实施例 3中的描述相同, 本实施例中对于线性损伤处理和线性补偿的描述与实施例 4的描述相同,此处不再赘 述。
在本实施例中,预失真处理可以包括根据预先获得的非线性补偿系数进行的非线 性补偿,本实施例中对于非线性补偿系数的获得方法与实施例 1至实施例 4中的描述 相同, 此处不再赘述。
由上述实施例可知, 通过在发射端对发射信号进行预处理, 只需要在发射端进行 测量, 不需要在接收端进行多次测量, 能够有效的补偿通信过程中产生的非线性失真 从而提高通信质量, 并且能够降低通信系统的电路复杂程度以及计算的复杂程度。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文该的装置或构成部件, 或使该逻辑部件实现上文该的各种方法或步骤。
本发明还涉及用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash 存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种非线性补偿装置, 其中, 所述装置包括:
预处理器, 所述预处理器用于根据预先获得的预处理系数对发射信号进行预处 理;
预失真器, 所述预失真器用于对预处理后的信号进行预失真处理;
其中,经过预处理后再经过预失真处理后的信号与所述发射信号的特性参数的比 较结果满足预先设定的条件。
2、 根据权利要求 1所述的装置, 其中, 所述特性参数包括功率、 振幅以及均值 中的一个或多个; 所述预处理系数包括缩放系数和 /或平移系数;
当所述预处理系数包括缩放系数时, 所述预处理器包括:
切顶单元,所述切顶单元用于对所述发射信号的振幅大于预定值的部分进行切顶 处理;
缩放单元,所述缩放器用于根据预先获得的所述缩放系数对切顶处理后的信号的 振幅进行缩放处理;
当所述预处理系数包括平移系数时, 所述预处理器包括:
切顶单元,所述切顶单元用于对所述发射信号的振幅大于预定值的部分进行切顶 处理;
平移单元,所述平移器用于根据预先获得的所述平移系数对切顶处理后的信号的 均值进行平移处理;
当所述预处理系数包括缩放系数和平移系数时, 所述预处理器包括: 切顶单元,所述切顶单元用于对所述发射信号的振幅大于预定值的部分进行切顶 处理;
缩放单元,所述缩放器用于根据预先获得的所述缩放系数对切顶处理后的信号的 振幅进行缩放处理;
平移单元,所述平移单元用于根据预先获得的所述平移系数对振幅缩放处理后的 信号的均值进行平移处理。
3、 根据权利要求 2所述的装置, 其中, 所述装置还包括:
预处理系数获取单元,所述预处理系数获取单元用于根据所述发射信号、预先设 定的初始缩放系数和 /或初始平移系数和经过预失真处理的信号来确定所述缩放系数 和 /或平移系数; 其中,
所述缩放单元和 /或所述平移单元根据所述预先设定的初始缩放系数和 /或初始平 移系数对所述切顶处理后的信号的振幅和 /或均值进行缩放处理和 /或平移处理, 所述 预失真器对缩放处理和 /或平移处理后的信号进行所述预失真处理, 基于所述经过预 处理后再经过预失真处理后的信号与所述发射信号的特性参数的比较结果,所述预处 理系数获取单元对所述缩放系数和 /或所述平移系数进行调整, 直到所述经过预处理 后再经过预失真处理后的信号与所述发射信号的特性参数的比较结果满足预先设定 的条件, 并将满足所述预先设定的条件时使用的缩放系数和 /或平移系数确定为所述 缩放系数和 /或平移系数。
4、 根据权利要求 3所述的装置, 其中, 所述预处理系数获取单元包括比较器、 乘法器和加法器; 或者所述预处理系数获取单元包括比较器和乘法器;
其中, 在所述预处理系数获取单元对所述缩放系数和 /或所述平移系数进行调整 的过程中,
所述比较器用于比较当前次调整的非线性补偿后的信号与所述发射信号的振幅, 获得当前次调整的振幅误差参数, 和 /或比较当前次调整的非线性补偿后的信号与所 述发射信号的均值, 获得当前次调整的均值误差参数;
所述乘法器用于将所述当前次调整的振幅误差参数与前一次调整的缩放参数相 乘, 获得当前次调整的缩放系数; 和 /或将当前次调整的所述振幅误差参数与当前次 调整的所述均值误差参数相乘;
所述加法器单元用于将所述乘法器单元将当前次调整的所述振幅误差参数与当 前次调整的所述均值误差参数相乘获得的结果与前一次调整的平移参数相加,获得当 前次调整的平移系数。
5、 根据权利要求 1所述的装置, 其中, 所述装置还包括:
线性损伤器,所述线性损伤器用于对所述预处理后的信号进行线性损伤处理, 并 将线性损伤处理后的信号输入到预失真器中;
线性补偿器,所述线性补偿器用于对经过线性损伤处理并经过预失真处理的信号 进行线性补偿。
6、 根据权利要求 1所述的装置, 其中, 所述预失真器对所述预处理后的信号进 行预失真处理包括对所述预处理后的信号进行非线性补偿;
所述装置还包括:
非线性补偿系数获取单元,所述非线性补偿系数获取单元用于确定所述预失真器 进行非线性补偿时使用的非线性补偿系数。
7、 根据权利要求 6所述的装置, 其中,
所述非线性补偿系数获取单元包括: 非线性传输单元、线性滤波单元以及计算单 元;
其中,所述非线性传输单元和所述线性滤波单元相互连接,所述计算单元基于所 述非线性传输单元的输入信号和输出信号, 获得所述非线性补偿系数。
8、 一种发射机, 其中, 所述发射机包括权利要求 1所述的装置。
9、 一种通信系统, 其中, 所述通信系统包括权利要求 8所述的发射机和接收机, 所述接收机包括后置补偿器,所述后置补偿器用于根据接收信号与所述预处理后的信 号的比较结果, 对所述接收信号进行非线性补偿。
PCT/CN2014/075027 2013-04-15 2014-04-10 非线性补偿装置及其方法、发射机和通信系统 WO2014169774A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016506772A JP6150005B2 (ja) 2013-04-15 2014-04-10 非線形補償装置及びその方法、送信機並びに通信システム
US14/884,239 US9654156B2 (en) 2013-04-15 2015-10-15 Nonlinear compensating apparatus and method, transmitter and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310128976.2A CN104104633B (zh) 2013-04-15 2013-04-15 非线性补偿装置及其方法、发射机和通信系统
CN201310128976.2 2013-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/884,239 Continuation US9654156B2 (en) 2013-04-15 2015-10-15 Nonlinear compensating apparatus and method, transmitter and communication system

Publications (1)

Publication Number Publication Date
WO2014169774A1 true WO2014169774A1 (zh) 2014-10-23

Family

ID=51672438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075027 WO2014169774A1 (zh) 2013-04-15 2014-04-10 非线性补偿装置及其方法、发射机和通信系统

Country Status (4)

Country Link
US (1) US9654156B2 (zh)
JP (1) JP6150005B2 (zh)
CN (1) CN104104633B (zh)
WO (1) WO2014169774A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923640B2 (en) 2015-09-15 2018-03-20 Fujitsu Limited Transmission apparatus and transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106161125B (zh) * 2015-03-31 2019-05-17 富士通株式会社 非线性特性的估计装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175061A (zh) * 2007-11-30 2008-05-07 北京北方烽火科技有限公司 一种ofdm发射机的自适应数字预失真方法和装置
CN101621305A (zh) * 2008-06-30 2010-01-06 富士通株式会社 基带预失真装置和方法
CN102394846A (zh) * 2011-11-10 2012-03-28 电子科技大学 一种基于记忆非线性系统的预失真方法以及预失真装置
US20120286985A1 (en) * 2011-05-12 2012-11-15 Andrew Llc Interpolation-Based Digital Pre-Distortion Architecture

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356146B1 (en) * 1999-07-13 2002-03-12 Pmc-Sierra, Inc. Amplifier measurement and modeling processes for use in generating predistortion parameters
JP2003032219A (ja) * 2001-07-17 2003-01-31 Nippon Hoso Kyokai <Nhk> Ofdm高能率増幅装置
US20040203540A1 (en) * 2003-04-14 2004-10-14 Kiomars Anvari Combined RF peak suppression and pre-distortion circuit
US7099399B2 (en) * 2004-01-27 2006-08-29 Crestcom, Inc. Distortion-managed digital RF communications transmitter and method therefor
CN101330481B (zh) * 2007-06-19 2011-04-06 中兴通讯股份有限公司 预失真模型装置和信号的预失真处理装置、系统及方法
JP5157479B2 (ja) * 2008-01-28 2013-03-06 富士通株式会社 歪補償装置及びこれを備えた電力増幅装置
TWI358220B (en) * 2008-04-21 2012-02-11 Ra Link Technology Corp Signal transmitting apparatus for ofdm system and
JP5176692B2 (ja) * 2008-05-28 2013-04-03 日本電気株式会社 歪補償回路及び歪補償方法
EP2226932B1 (en) * 2009-03-02 2013-10-16 Alcatel Lucent Method for amplifying a signal by a power amplifier, power amplifier system, device, computer program product, and digital storage medium thereof
KR20110103628A (ko) * 2010-03-15 2011-09-21 삼성전자주식회사 피크 레벨 확장을 이용하여 성능 개선을 수행하는 디지털 전치 왜곡 장치 및 방법
JP2013005354A (ja) * 2011-06-20 2013-01-07 Toshiba Corp 電力増幅器および増幅制御方法
JP2014011567A (ja) * 2012-06-28 2014-01-20 Fujitsu Ltd 電力増幅器の補償装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175061A (zh) * 2007-11-30 2008-05-07 北京北方烽火科技有限公司 一种ofdm发射机的自适应数字预失真方法和装置
CN101621305A (zh) * 2008-06-30 2010-01-06 富士通株式会社 基带预失真装置和方法
US20120286985A1 (en) * 2011-05-12 2012-11-15 Andrew Llc Interpolation-Based Digital Pre-Distortion Architecture
CN102394846A (zh) * 2011-11-10 2012-03-28 电子科技大学 一种基于记忆非线性系统的预失真方法以及预失真装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923640B2 (en) 2015-09-15 2018-03-20 Fujitsu Limited Transmission apparatus and transmission system

Also Published As

Publication number Publication date
CN104104633A (zh) 2014-10-15
JP2016514932A (ja) 2016-05-23
US20160036473A1 (en) 2016-02-04
CN104104633B (zh) 2017-08-04
JP6150005B2 (ja) 2017-06-21
US9654156B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US8787494B2 (en) Modeling digital predistorter
EP2369852B1 (en) Audio power management system
JP6060588B2 (ja) 非線形補償装置、方法及び送信機
WO2012066383A1 (en) Orthogonal basis function set for ditigal predistorter
US10756682B1 (en) Compensating for transmitter nonlinearities
TW201234785A (en) Device and method for impedance and equalizer compensation of high speed serial link
GB2376583A (en) Time alignment of signals in an adaptive predistorted amplifier
TW201431326A (zh) 用以測定位在奈奎斯特頻率之頻散通訊通道中的通道損失之系統與方法
JP2012520031A (ja) 拡大の作業範囲を有するデジタルプリディストーション回路及びその方法
WO2014169774A1 (zh) 非线性补偿装置及其方法、发射机和通信系统
US6782043B1 (en) Method and apparatus for estimating the length of a transmission line
KR101251542B1 (ko) 성긴 볼테라 시스템 추정을 이용한 디지털 전치왜곡 시스템
CN106533998B (zh) 非线性特性的确定方法、装置和系统
CN108667538B (zh) 复杂噪声环境下时延和幅度衰减的联合估计方法
US6671374B1 (en) Adaptive filter for echo cancellation, method for operating an adaptive filter for echo cancellation, an article of manufacture for determining tap weights and a length for an adaptive filter for echo cancellation and a computer implemented control system for determining tap weights and a length for an adaptive filter for echo cancellation
CN107251496B (zh) 盲信道均衡器
US20120154039A1 (en) Generation of pre-distortion coefficients
JP5245685B2 (ja) オンラインでデータパターンを補償される適応等化器制御のための方法、ロジック及びシステム
TWI819476B (zh) 通訊裝置以及用於補償通訊裝置的頻率響應失真的方法
KR101105903B1 (ko) 전치 왜곡을 위한 적응적 노이즈 제거 장치 및 방법
CN113407908B (zh) 一种多峰频谱中矢量拟合的方法
US11496166B1 (en) Predistortion method and system for a non-linear device-under-test
KR100991494B1 (ko) 디지털 전치왜곡 방법 및 그 장치
CN116667863A (zh) 通讯装置以及用于补偿通讯装置的频率响应失真的方法
Hughes et al. Characterizing bandlimited nonlinear (and linear) systems with memory reducing the curse of dimensionality in new Volterra expansion technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785893

Country of ref document: EP

Kind code of ref document: A1