WO2014168138A1 - 有機電界発光素子用アダマンタン化合物及び有機電界発光素子 - Google Patents

有機電界発光素子用アダマンタン化合物及び有機電界発光素子 Download PDF

Info

Publication number
WO2014168138A1
WO2014168138A1 PCT/JP2014/060174 JP2014060174W WO2014168138A1 WO 2014168138 A1 WO2014168138 A1 WO 2014168138A1 JP 2014060174 W JP2014060174 W JP 2014060174W WO 2014168138 A1 WO2014168138 A1 WO 2014168138A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
organic
compound
aromatic
Prior art date
Application number
PCT/JP2014/060174
Other languages
English (en)
French (fr)
Inventor
匡志 多田
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to US14/783,797 priority Critical patent/US9722189B2/en
Priority to JP2015511263A priority patent/JP6307494B2/ja
Priority to KR1020157032181A priority patent/KR102133241B1/ko
Priority to CN201480020574.3A priority patent/CN105190930B/zh
Priority to EP14782590.5A priority patent/EP2985802B1/en
Publication of WO2014168138A1 publication Critical patent/WO2014168138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel adamantane compound for an organic electroluminescent element and an organic electroluminescent element using the same, and more particularly to a thin film type device that emits light by applying an electric field to a light emitting layer made of an organic compound. .
  • an organic electroluminescent element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as the simplest structure. That is, the organic EL element utilizes a phenomenon in which when an electric field is applied between both electrodes, electrons are injected from the cathode and holes are injected from the anode, and these recombine in the light emitting layer to emit light.
  • organic EL devices using organic thin films have been developed.
  • developments have been made to increase luminous efficiency.
  • the efficiency of carrier injection from the electrode was improved by optimizing the type of electrode.
  • the development of devices using a hole transport layer made of aromatic diamine and a light-emitting layer / electron transport layer made of 8-hydroxyquinoline aluminum complex (hereinafter referred to as Alq3) has led to a significant improvement in luminous efficiency compared to conventional devices.
  • Alq3 8-hydroxyquinoline aluminum complex
  • Examples of the host material used for the light emitting layer of the organic EL element include carbazole compounds described in Patent Documents 1 and 2, oxazole compounds and triazole compounds described in Patent Document 3, Neither efficiency nor life was practical.
  • Patent Document 4 discloses an adamantane compound having a triphenylsilyl group and a triarylamine structure as shown below.
  • Patent Document 5 discloses an arylamine compound substituted with adamantane as shown below.
  • Patent Document 6 discloses a carbazole compound substituted with adamantane as shown below.
  • Patent Document 7 discloses the following compounds, as well as WO 2008/152939 and JP 2012-525378. However, they do not have an adamantane structure.
  • An object of the present invention is to provide a practically useful organic EL device having a high light emission efficiency and a high driving stability while having a low driving voltage, and a compound suitable therefor in view of the above-described present situation.
  • an adamantane compound having a triarylborane structure exhibits excellent characteristics when used as an organic EL device, and have completed the present invention.
  • the present invention relates to a compound for an organic EL device represented by the following general formula (1).
  • L and L 1 are independently a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or the substituted or unsubstituted aromatic hydrocarbon group and aromatic heterocyclic ring.
  • Ar 1 each independently represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • the compound represented by the following general formula (2) or general formula (3) is mentioned preferably.
  • L 2 represents a single bond, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or the substituted or unsubstituted aromatic hydrocarbon group and aromatic heterocyclic group.
  • Ar 2 independently represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group
  • X represents hydrogen, a cyano group, an alkyl group, a diarylamino group, a triarylsilyl group , A diarylphosphinyl group, a diarylphosphine oxide group, a diarylboranyl group, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aromatic heterocyclic group.
  • L 2 Ar 2 is L 2 and consent of the general formula (2).
  • L 3 represents a single bond, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or an aromatic ring of the substituted or unsubstituted aromatic hydrocarbon group and aromatic heterocyclic group Represents a divalent group selected from 2 to 3 linked aromatic groups formed by linking, the linked aromatic group may be linear or branched, and the linked aromatic ring May be the same or different.
  • Ar 3 each independently represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group. Two Ar 3 can be bonded to each other to form a condensed heterocyclic ring.
  • this invention relates to the organic EL element which has an organic layer containing the said compound for organic EL elements.
  • the organic layer is preferably a light emitting layer. More preferably, it is an organic EL element containing the compound for organic EL element as a dopant in the light emitting layer, or an organic EL element containing a phosphorescent dopant and the compound for organic EL element as a host material.
  • the compound for an organic EL device of the present invention has excellent electrical characteristics and charge transport properties, and is a hole transport material, electron blocking material, light emitting material, hole blocking material, and electron transport material of an organic EL device.
  • Useful as. This is characterized in that the triarylborane skeleton has a low energy level of the lowest empty orbital (LUMO) due to the conjugation spread through the empty p-orbital of boron, and is more stable against electrochemical reduction. This is probably because of this.
  • the above compound can adjust the energy level of the highest occupied orbital (HOMO) according to the application while keeping the LUMO energy level low. is there.
  • the organic EL device using the above compound can realize the optimum carrier balance for enhancing the luminous efficiency, and as a result, has high luminous efficiency, low driving voltage, and high durability.
  • An organic EL element can be provided.
  • FIG. 1 shows a 1H-NMR chart of Compound 10 for organic EL devices of the present invention.
  • 1 shows a 1H-NMR chart of Compound 15 for an organic EL device of the present invention.
  • the compound for organic EL devices of the present invention is represented by the general formula (1).
  • L and L 1 are independently a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or the substituted or unsubstituted aromatic hydrocarbon group and Represents a group selected from linked aromatic groups constituted by connecting 2 to 4 aromatic rings of an aromatic heterocyclic group, L is a monovalent group, and L 1 is a divalent group. .
  • aromatic hydrocarbon group or “aromatic heterocyclic group” means a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group, respectively, unless otherwise specified.
  • linked aromatic group means a substituted or unsubstituted linked aromatic group, unless otherwise specified.
  • aromatic hydrocarbon group or an aromatic heterocyclic group but also other groups such as an alkyl group and an arylamino group, when having a substitutable hydrogen atom, a substituent that can be usually substituted Can have.
  • the aromatic hydrocarbon group preferably has 6 to 30 carbon atoms
  • the aromatic heterocyclic group preferably has 3 to 30 carbon atoms.
  • the carbon number is calculated including the carbon number of the substituent when it has a substituent.
  • the linked aromatic group is a linked aromatic group formed by connecting 2 to 4 aromatic rings of the aromatic hydrocarbon group, the aromatic heterocyclic group, or both aromatic rings, preferably these aromatic groups A linked aromatic group formed by connecting 2 to 4 rings. When it is a linked aromatic group, it may be linear or branched, and the aromatic rings to be linked may be the same or different.
  • the number of carbon atoms of the linked aromatic group is preferably 6 to 80, and the above carbon number is calculated including the carbon number of the substituent when it has a substituent.
  • the aromatic ring is understood to mean including an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or both.
  • L and L 1 are an unsubstituted aromatic hydrocarbon group, an aromatic heterocyclic group, or a linked aromatic group
  • benzene pentalene, indene, naphthalene, anthracene, phenanthrene, pyrrole, imidazole, Pyrazole, thiazole, thiophene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, isoindole, indazole, purine, benzimidazole, indolizine, chromene, benzoxazole, isobenzofuran, quinolidine, isoquinoline, imidazole, naphthyridine, phthalazine, quinazoline, quinoxaline , Cinnoline, quinoline, pteridine, perimidine, phenanthroline, phenanthridine, acridine, phenazine, phenothi
  • L is an unsubstituted monovalent linked aromatic group
  • examples of the linked aromatic group include structures represented by the following formulas (4) to (6).
  • L 1 is a divalent linked aromatic group, a structure is formed by taking one hydrogen from this.
  • Ar 4 to Ar 9 each represents an unsubstituted monocyclic or condensed aromatic ring, which may be the same or different.
  • L and L 1 are an aromatic hydrocarbon group having a substituent, an aromatic heterocyclic group having a substituent, or a linked aromatic group having a substituent
  • alkyl having 1 to 12 carbon atoms Group aralkyl group having 7 to 19 carbon atoms, alkenyl group having 2 to 12 carbon atoms, alkynyl group having 2 to 12 carbon atoms, cyano group, dialkylamino group having 2 to 24 carbon atoms, diarylamino having 6 to 36 carbon atoms Groups, C 14-38 diaralkylamino groups, amino groups, nitro groups, acyl groups, C 2-12 alkoxycarbonyl groups, carboxyl groups, C 1-12 alkoxyl groups, C 1-12 carbon atoms, Alkylsulfonyl group, haloalkyl group having 1 to 12 carbon atoms, hydroxyl group, amide group, phenoxy group, alkylthio group having 1 to 12 carbon atoms,
  • L is phenylene, and L is phenyl or substituted phenyl.
  • Ar 1 each independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group, preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, or a group having 3 to 30 carbon atoms.
  • An aromatic heterocyclic group more preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 3 to 17 carbon atoms.
  • the carbon number is calculated including the carbon number of the substituent when it has a substituent.
  • the unsubstituted aromatic hydrocarbon group and the unsubstituted aromatic heterocyclic group are the same as those described for L above.
  • Examples of the substituent in the case of an aromatic hydrocarbon group having a substituent and an aromatic heterocyclic group having a substituent include a cyano group, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 38 carbon atoms, carbon C2-C20 alkenyl group, C2-C20 alkynyl group, C2-C40 dialkylamino group, C12-44 diarylamino group, C2-C20 acyl group, C2-C2 20 acyloxy groups, alkoxy groups having 1 to 20 carbon atoms, alkoxycarbonyl groups having 2 to 20 carbon atoms, alkoxycarbonyloxy groups having 2 to 20 carbon atoms, alkylsulfonyl groups having 1 to 20 carbon atoms, phenoxy groups, carbon numbers
  • An alkylthio group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 30 carbon atoms is preferable
  • it is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a phenoxy group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 30 carbon atoms.
  • a preferable compound is the compound of the general formula (2).
  • L 2 is understood as L 1 in the general formula (1) being —Ph—L 2 — (where Ph is phenylene). That is, L 2 is understood to be a group formed by taking the phenylene when the terminal of L 2 is phenylene. From this and the description of L 1 , the range of L 2 is determined, but preferred L 2 is as follows.
  • L 2 represents a single bond, an aromatic hydrocarbon group, an aromatic heterocyclic group, or a linked aromatic group formed by linking two to three aromatic rings of the aromatic hydrocarbon group and the aromatic heterocyclic group.
  • the linked aromatic group may be linear or branched, and the aromatic rings to be linked may be the same or different.
  • the carbon number is calculated including the carbon number of the substituent when it has a substituent.
  • the aromatic hydrocarbon group, aromatic heterocyclic group, or linked aromatic group is the aromatic hydrocarbon group, aromatic heterocyclic group, or linked aromatic group described for L 1 in the general formula (1). This is the same as the group group except that some of the preferred carbon numbers are different. The same applies to the substituent in the case where they have a substituent.
  • Ar 2 is the same as that described for Ar 1 in General Formula (1).
  • X is understood as L in the general formula (1) being -Ph-X. That is, X is understood to be a group formed by taking the Ph when the terminal of L is Ph. From this and the explanation of L, the range of X is determined, but preferable X is as follows.
  • X represents hydrogen, a cyano group, an alkyl group, a diarylamino group, a triarylsilyl group, a diarylphosphinyl group, a diarylphosphine oxide group, a diarylboranyl group, an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • cyano group alkyl group having 1 to 12 carbon atoms, diarylamino group having 6 to 36 carbon atoms, triarylsilyl group having 18 to 36 carbon atoms, diarylphosphinyl group having 12 to 44 carbon atoms
  • An aryl group, a C12-44 diarylphosphine oxide group, and a C12-44 diarylboranyl group are the same as those described for Ar 1 in the general formula (1). The same applies to the substituent in the case where they have a substituent.
  • a compound represented by the general formula (3) is preferable.
  • L 2 of the general formula (3) is L 2
  • L 3 in the general formula (3) is a single bond, an aromatic hydrocarbon group, an aromatic heterocyclic group, or 2 to 3 aromatic rings of the aromatic hydrocarbon group or aromatic heterocyclic group linked together.
  • a linked aromatic group formed by linking two to three aromatic rings more preferably a single bond, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic heterocyclic group having 3 to 17 carbon atoms, Alternatively, it is a linked aromatic group formed by connecting 2 to 3 of these aromatic rings.
  • the aromatic hydrocarbon group, the aromatic heterocyclic group, or the linked aromatic group is the same as that described for L 1 in the general formula (1). The same applies to the substituent in the case of having a substituent.
  • Ar 3 in the general formula (3) independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group, preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 30 carbon atoms. And more preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms or an aromatic heterocyclic group having 3 to 17 carbon atoms.
  • the aromatic hydrocarbon group and the aromatic heterocyclic group are the same as those described for Ar 1 in the general formula (1). The same applies to the substituent in the case of having a substituent.
  • Two Ar 3 can be bonded to each other to form a condensed heterocyclic ring containing Y.
  • part or all of hydrogen may be replaced with deuterium.
  • the adamantane compound having a triarylborane skeleton of the present invention is a novel compound, and these compounds are obtained by reacting 1,3-dibromoadamantane with an aromatic compound, for example, as shown in the following reaction formula I. Further, after halogenation and lithiation with butyllithium, an adamantane compound having a triarylborane skeleton can be synthesized by reaction with diarylfluoroborane.
  • the compound for an organic EL device represented by the general formulas (1) to (3) (hereinafter also referred to as the compound of the present invention) is an organic material in which an anode, a plurality of organic layers and a cathode are laminated on a substrate. By including it in at least one organic layer of the EL element, an excellent organic EL element is provided.
  • a light emitting layer, a hole transport layer, an electron transport layer, a hole blocking layer, and an electron blocking layer are suitable.
  • the compound of the present invention when used in the light emitting layer, it can be used as a host material of the light emitting layer containing a dopant, and the compound of the present invention can be used as an organic light emitting material that emits fluorescence and delayed fluorescence.
  • the host material is a phosphorescent host material, a fluorescent host material, and a delayed fluorescent host material.
  • the compound of the present invention when used as an organic light emitting material that emits fluorescence and delayed fluorescence, an organic compound in which at least one of singlet excitation energy and triplet excitation energy is higher than that of the organic light emitting material is used as a host material. It is preferable to use as.
  • the compound of the present invention is particularly preferably contained as a host material for a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and at least one organic layer contains the compound of the present invention.
  • the compound of the invention together with a phosphorescent dopant is included in the light emitting layer.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL element used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted either on the cathode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer, and a cathode as essential layers, but preferably has a hole injecting and transporting layer and an electron injecting and transporting layer in addition to the essential layers. It is preferable to have a hole blocking layer between the electron injecting and transporting layers.
  • the hole injection / transport layer means either or both of the hole injection layer and the hole transport layer
  • the electron injection / transport layer means either or both of the electron injection layer and the electron transport layer.
  • the structure opposite to that shown in FIG. 1, that is, the cathode 7, the electron transport layer 6, the light emitting layer 5, the hole transport layer 4 and the anode 2 can be laminated in this order on the substrate 1. Addition and omission are possible.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited, and any substrate that has been conventionally used for an organic EL element can be used.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or pattern accuracy is not required (about 100 ⁇ m or more).
  • the pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • a cathode having a work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound, or a mixture thereof
  • electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this such as a magnesium / silver mixture, magnesium, from the viewpoint of electron injectability and durability against oxidation, etc.
  • a magnesium / silver mixture, magnesium from the viewpoint of electron injectability and durability against oxidation, etc.
  • Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be prepared by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a film thickness of 1 to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively, and the light emitting layer includes an organic light emitting material and a host material.
  • a fluorescent light emitting material can be used alone for the light emitting layer, but it is preferable to use a fluorescent light emitting material as a fluorescent light emitting dopant and mix a host material.
  • the compound of the present invention can be used, but since it is known from a large number of patent documents, it can also be selected from them.
  • Polyphenylene, polyphenylene vinylene polymer compounds such as, organic silane derivatives, and the like.
  • Preferred examples include condensed aromatic derivatives, styryl derivatives, diketopyrrolopyrrole derivatives, oxazine derivatives, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes, more preferably naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene.
  • the compounds of the present invention as represented by the general formulas (1) to (3) can be used, which are known from many non-patent documents, patent documents, and the like. You can also choose from them.
  • compounds having condensed aryl rings such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthalene, triphenylene, perylene, fluoranthene, fluorene, indene and derivatives thereof, N, N'-dinaphthyl-N, N'-diphenyl-4
  • Aromatic amine derivatives such as 4'-diphenyl-1,1'-diamine
  • metal chelated oxinoid derivatives such as tris (8-quinolinato) aluminum (III)
  • bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, Indene derivatives, coumarin derivatives, o
  • the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
  • an organic EL element injects electric charges into a luminescent material from both an anode and a cathode, generates an excited luminescent material, and emits light.
  • a charge injection type organic EL element it is said that 25% of the generated excitons are excited to a singlet excited state and the remaining 75% are excited to a triplet excited state.
  • certain fluorescent materials emit triplet-triplet annihilation or absorption of thermal energy after energy transition to triplet excited state due to intersystem crossing etc.
  • a reverse singlet is crossed into a singlet excited state to emit fluorescence and express thermally activated delayed fluorescence.
  • An organic EL device using the compound of the present invention can also exhibit delayed fluorescence. In this case, both fluorescence emission and delayed fluorescence emission can be included.
  • the delayed fluorescent material can be used alone in the light emitting layer, but it is preferable to use the delayed fluorescent material as a delayed fluorescent light emitting dopant and mix the host material.
  • the compound of the present invention represented by the general formulas (1) to (3) can be used, but it can also be selected from known delayed fluorescent light emitting materials. Examples include indolocarbazole derivatives described in Appl. Phys. Lett. 98, 083302 (2011) and carbazole derivatives described in Nature 492, 234 (2012), but are not limited to these compounds. It is not something.
  • delayed fluorescent materials are shown below, but are not limited to the following compounds.
  • the amount of the delayed fluorescent material contained in the light emitting layer is 0.01 to 50% by weight, preferably 0.1 to 20%. It is good to be in the range of wt%, more preferably 0.01 to 10%.
  • the compounds of the present invention represented by the general formulas (1) to (3) can be used, but can also be selected from compounds other than adamantane compounds.
  • a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4
  • Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine
  • metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III)
  • bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives, oxadia
  • the light emitting layer When the light emitting layer is a phosphorescent light emitting layer, the light emitting layer contains a phosphorescent light emitting dopant and a host material.
  • Phosphorescent dopant materials are known from a number of documents and can be selected from them. Examples include iridium complexes described in J. Am. Chem. Soc. 2001, 123,4303., Platinum complexes described in Nature 395, 151 (1997), etc., but are not limited to these compounds. .
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as Ir (bt) 2 ⁇ acac3, and complexes such as PtOEt3. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent dopant contained in the light emitting layer is 2 to 40% by weight, preferably 5 to 30% by weight.
  • the luminescent layer is a phosphorescent layer
  • the compounds of the present invention represented by the general formulas (1) to (3) as the host material in the luminescent layer.
  • the material used for the light emitting layer may be a host material other than the adamantane compound.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  • Such other host materials are known from a large number of patent documents, and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, indolocarbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide
  • Tetracarboxylic anhydride Tetracarboxylic anhydride, phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, various metal complexes represented by metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, Examples include aniline-based copolymers, thiophene oligomers, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, and polyfluorene derivatives.
  • the light emitting layer may be any one of a fluorescent light emitting layer, a delayed fluorescent light emitting layer and a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes in the light emitting layer can be improved by preventing the above.
  • the compound of the present invention represented by the general formulas (1) to (3).
  • a hole blocking layer material may be used.
  • the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer has the function of a hole transport layer in a broad sense. By blocking electrons while transporting holes, the probability of recombination of electrons and holes in the light emitting layer can be improved. .
  • the compounds of the present invention represented by the general formulas (1) to (3) according to the present invention can be used. It can also be used as needed.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the compounds of the present invention represented by the general formulas (1) to (3) can be used.
  • other materials for example, 1,3-dicarbazolylbenzene ( mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. It is preferable to use an adamantane compound represented by the general formulas (1) to (3) for the hole transport layer, but any one of conventionally known compounds can be selected and used.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, Examples include styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Porphyrin compounds, aromatic tertiary amine compounds, and styryl. It is preferable to use an amine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • the compound of the present invention represented by the general formulas (1) to (3) according to the present invention for the electron transport layer but any one of conventionally known compounds may be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • adamantane compound as a phosphorescent light emitting device material was synthesized by the route shown below.
  • corresponds to the number attached
  • Example 3 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • compound 10 as a host material and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) as a phosphorescent dopant are co-deposited from different deposition sources.
  • the light emitting layer was formed to a thickness of 40 nm.
  • the concentration of Ir (ppy) 3 in the light emitting layer was 10.0 wt%.
  • Alq3 was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride was formed to a thickness of 1.0 nm as an electron injection layer on the electron transport layer.
  • aluminum as an electrode was formed to a thickness of 70 nm to produce an organic EL device.
  • the organic EL element had the light emission characteristics as shown in Table 1.
  • Table 1 the luminance, voltage, and luminous efficiency show values at 20 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 520 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • Examples 4-12 Compounds 2, 4, 16, 24, 37, 43, 72 and 91 were prepared in the same manner as in Examples 1 and 2.
  • An organic EL device was produced in the same manner as in Example 3 except that Compound 2, 4, 15, 16, 24, 37, 43, 72, or 91 was used in place of Compound 10 as the host material for the light emitting layer.
  • the maximum wavelength of each element emission spectrum was 520 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • the respective emission characteristics are shown in Table 1.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 3 except that CBP was used as the host of the light emitting layer.
  • Comparative Examples 2-3 An organic EL device was produced in the same manner as in Example 3 except that the following compound H-1 or H-2 was used as the host of the light emitting layer.
  • the organic EL device using the adamantane compound represented by the general formula (1) has a low driving voltage and good light emission compared with the case where CBP generally known as a phosphorescent host is used. It can be seen that it shows efficiency. Further, it can be seen that the emission efficiency is better than that in the case of using H-1 and H-2 which are adamantane compounds having no triarylborane structure. From the above, the superiority of the organic EL device using the compound of the present invention is clear.
  • the organic EL device according to the present invention has practically satisfactory levels of light emission characteristics, driving voltage and durability, and is a flat panel display (mobile phone display device, vehicle-mounted display device, OA computer display device, television, etc.), surface light emission.
  • the technical value of the light source (illumination, light source of copying machine, backlight light source of liquid crystal display and instruments), display panel, and sign lamp is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 発光特性、駆動電圧及び耐久性において、実用上満足できる有機EL素子とそれに使用される有機EL素子用化合物を提供する。 基板上に陽極、発光層を含む複数の有機層及び陰極が積層されてなる有機EL素子であって、発光層、正孔輸送層、電子輸送層、正孔阻止層、及び電子阻止層から選ばれる少なくとも一つの有機層中に、有機EL素子用化合物として分子中に少なくとも一つのトリアリールボラン構造を有するアダマンタン化合物を含有する。

Description

有機電界発光素子用アダマンタン化合物及び有機電界発光素子
 本発明は新規な有機電界発光素子用アダマンタン化合物及びこれを用いた有機電界発光素子に関するものであり、詳しくは有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
 一般に有機電界発光素子(以下、有機EL素子)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち有機EL素子では、両電極間に電界が印加されると陰極から電子が、陽極から正孔がそれぞれ注入され、これらが発光層において再結合し光を放出する現象を利用する。
 近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に発光効率を高めるための開発が行われた。その中で電極の種類の最適化により、電極からキャリアの注入効率が改善された。また芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3)からなる発光層兼電子輸送層を用いた素子の開発により、従来の素子からの大幅な発光効率の改善がなされた。これにより有機EL素子は自発光・高速応答性といった特性を有する高性能フラットパネルへの実用化を目指した開発が進められてきた。
 素子の発光効率を向上させる試みとして、蛍光発光材料ではなく燐光発光材料を用いることが検討されている。芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであるが、燐光発光、すなわち三重項励起状態からの発光を利用することにより、従来の蛍光発光(一重項励起状態からの発光)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層に用いることが検討されてきたが、極めて低い輝度しか得られなかった。その後、三重項励起状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。この燐光発光を利用した研究は燐光発光ドーパントとして特許文献1に記載されているようなイリジウム錯体等を用いた研究が多数行われており、高効率発光するものも見出されている。
WO01/041512A 特開2001-313178号公報 特開2002-352957号公報 WO2010/052932A 特開2007-77064号公報 WO03/080761A 特開2000-290645号公報
 有機EL素子の発光層に用いるホスト材料としては、特許文献1及び2で記載されているカルバゾール系化合物や特許文献3に記載されているオキサゾール系化合物、トリアゾール系化合物等が挙げられるが、いずれも効率、寿命共に実用に耐えうるものではなかった。
 また特許文献4には以下に示すようなトリフェニルシリル基とトリアリールアミン構造を有するアダマンタン化合物が開示されている。
Figure JPOXMLDOC01-appb-C000004
 特許文献5には、以下に示すようなアダマンタンを置換したアリールアミン化合物が開示されている。
Figure JPOXMLDOC01-appb-C000005
 特許文献6には、以下に示すようなアダマンタンを置換したカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-C000006
 なお、トリアリールボラン構造を有する化合物については、特許文献7には以下に示すような化合物が開示されている他、WO2008/152939号公報や特表2012-525378号公報にも開示されている。しかし、これらはアダマンタン構造を有するものではない。
Figure JPOXMLDOC01-appb-C000007
 有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状を鑑み、低駆動電圧でありながら高発光効率と高い駆動安定性を有する実用上有用な有機EL素子、及びそれに適する化合物を提供することを目的とする。
 本発明者らは鋭意検討した結果、トリアリールボラン構造を有するアダマンタン化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
 本発明は、下記一般式(1)で表される有機EL素子用化合物に関する。
Figure JPOXMLDOC01-appb-C000008
 ここで、L及びL1は独立に、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~4つ連結して構成される連結芳香族基から選ばれる1価又は2価の基を表し、連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。Ar1はそれぞれ独立して置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表す。
 上記有機EL素子用化合物としては、下記一般式(2)、又は一般式(3)で表される化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000009
 ここで、L2は単結合、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~3つ連結して構成される連結芳香族基から選ばれる2価の基を表し、連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。Ar2はそれぞれ独立して置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表し、Xは水素、シアノ基、アルキル基、ジアリールアミノ基、トリアリールシリル基、ジアリールホスフィニル基、ジアリールホスフィンオキシド基、ジアリールボラニル基、置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表す。
Figure JPOXMLDOC01-appb-C000010
 ここで、L2、Ar2は一般式(2)のL2、Ar2と同意である。L3は単結合、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~3つ連結して構成される連結芳香族基から選ばれる2価の基を表し、連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。YはB、N、PまたはP=Oを表す。Ar3はそれぞれ独立して置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表す。2つのAr3は互いに結合し、縮合複素環を形成することができる。
 また本発明は、上記有機EL素子用化合物を含む有機層を有する有機EL素子に関する。該有機層は、発光層であることが好ましい。さらに好ましくは、該発光層に上記有機EL素子用化合物をドーパントとして含有する有機EL素子、または燐光発光性ドーパントと上記有機EL素子用化合物をホスト材料として含有する有機EL素子である。
 本発明の有機EL素子用化合物は、優れた電気的特性及び電荷輸送特性を有しており、有機EL素子の正孔輸送材料、電子阻止材料、発光材料、正孔阻止材料、及び電子輸送材料として有用である。これは、トリアリールボラン骨格は、ホウ素の空のp軌道を介した共役の拡がりにより最低空軌道(LUMO)のエネルギー準位が低く、更に電気化学的な還元に対する安定性が高いという特徴を有するためであると考えられる。更に上記化合物はアダマンタンを介して種々の置換を導入することで、LUMOのエネルギー準位を低く維持しながら、最高被占軌道(HOMO)のエネルギー準位を用途に合わせて調整することが可能である。
 以上のことから、上記化合物を用いた有機EL素子は、発光効率を高めるための最適なキャリアバランスを実現することができ、その結果、高発光効率、低駆動電圧であり、かつ耐久性が高い有機EL素子を提供できる。
有機EL素子の一構造例を示す断面図である。 本発明の有機EL素子用化合物10の1H-NMRチャートを示す。 本発明の有機EL素子用化合物15の1H-NMRチャートを示す。
 本発明の有機EL素子用化合物は、一般式(1)で表わされる。
 一般式(1)中、L及びL1は独立に、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~4つ連結して構成される連結芳香族基から選ばれる基を表すが、Lは1価の基であり、L1は2価の基である。
 以下、特段の断りなく単に、芳香族炭化水素基、又は芳香族複素環基という場合は、それぞれ置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を意味する。また、特段の断りなく単に、連結芳香族基という場合は、置換若しくは未置換の連結芳香族基を意味する。
 なお、芳香族炭化水素基、又は芳香族複素環基に限らず、アルキル基やアリールアミノ基等の他の基であっても、置換可能な水素原子を有する場合は、通常置換しうる置換基を有することができる。
 上記芳香族炭化水素基は、炭素数6~30であることが好ましく、芳香族複素環基は炭素数3~30であることが好ましい。上記炭素数は、置換基を有する場合は、置換基の炭素数を含めて計算する。
 上記連結芳香族基は、上記芳香族炭化水素基、上記芳香族複素環基、又は両者の芳香族環が2~4つ連結して生じる連結芳香族基であり、好ましくは、これらの芳香族環が2~4つ連結して生じる連結芳香族基である。連結芳香族基である場合は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。連結芳香族基の炭素数は、6~80であることが好ましく、上記炭素数は、置換基を有する場合は、置換基の炭素数を含めて計算する。また、芳香族環は、芳香族炭化水素環、芳香族複素環又は両者を含む意味と解される。
 L、L1が未置換の芳香族炭化水素基、芳香族複素環基、又は連結芳香族基である場合の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アントラセン、フェナントレン、ピロール、イミダゾール、ピラゾール、チアゾール、チオフェン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、イソインドール、インダゾール、プリン、ベンゾイミダゾール、インドリジン、クロメン、ベンゾオキサゾール、イソベンゾフラン、キノリジン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、キノキサリン、シンノリン、キノリン、プテリジン、ペリミジン、フェナントロリン、フェナントリジン、アクリジン、フェナジン、フェノチアジン、フェノキサジン、フェナザシラン、シベンゾジオキシン、カルボリン、インドール、インドロインドール、カルバゾール、フラン、ベンゾフラン、イソベンゾフラン、ベンゾチアゾール、オキサトレン、ジベンゾフラン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン等の芳香族化合物から1個又は2個の水素を取って生じる基、又はこれらが2~4つ連結した芳香族化合物から1個又は2個の水素を取って生じる連結芳香族基が挙げられる。
 Lが未置換の1価の連結芳香族基である場合において、連結芳香族基としては、下記式(4)~(6)で示されるような構造が挙げられる。なお、L1が2価の連結芳香族基である場合は、これから1個の水素を取って生じる構造となる。
Figure JPOXMLDOC01-appb-C000011
 式(4)~(6)中、Ar4~Ar9は未置換の単環又は縮合環の芳香族環を表し、同一であっても異なっていても良い。
 L、L1が置換基を有する芳香族炭化水素基、置換基を有する芳香族複素環基、又は置換基を有する連結芳香族基である場合の置換基としては、炭素数1~12のアルキル基、炭素数7~19のアラルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、シアノ基、炭素数2~24のジアルキルアミノ基、炭素数6~36のジアリールアミノ基、炭素数14~38のジアラルキルアミノ基、アミノ基、ニトロ基、アシル基、炭素数2~12のアルコキシカルボニル基、カルボキシル基、炭素数1~12のアルコキシル基、炭素数1~12のアルキルスルホニル基、炭素数1~12のハロアルキル基、水酸基、アミド基、フェノキシ基、炭素数1~12のアルキルチオ基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数3~40のトリアルキルシリル基、炭素数18~36のトリアリールシリル基、炭素数2~40のジアルキルホスフィノ基、炭素数12~44のジアリールホスフィノ基、炭素数2~40のジアルキルホスフィンオキシド基、炭素数12~44のジアリールホスフィンオキシド基、炭素数2~40のジアルキルボリル基、又は炭素数12~44のジアリールボリル基が好ましく挙げられる。より好ましくは、炭素数1~12のアルキル基、炭素数7~19のアラルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数2~24のジアルキルアミノ基、炭素数6~36のジアリールアミノ基、炭素数14~38のジアラルキルアミノ基、炭素数2~12のアシル基、炭素数2~12のアルコキシカルボニル基、炭素数1~12のアルコキシル基、炭素数1~12のアルキルスルホニル基、炭素数1~12のハロアルキル基、フェノキシ基、炭素数1~12のアルキルチオ基、炭素数3~40のトリアルキルシリル基、炭素数18~36のトリアリールシリル基、炭素数2~40のジアルキルホスフィノ基、炭素数12~44のジアリールホスフィノ基、炭素数2~40のジアルキルホスフィンオキシド基、炭素数12~44のジアリールホスフィンオキシド基、炭素数2~40のジアルキルボリル基、又は炭素数12~44のジアリールボリル基である。
 好ましいLはフェニレンであり、Lはフェニル又は置換フェニルである。
 一般式(1)中、Ar1はそれぞれ独立して芳香族炭化水素基、又は芳香族複素環基を表し、好ましくは炭素数6~30の芳香族炭化水素基、又は炭素数3~30の芳香族複素環基であり、より好ましくは、炭素数6~18の芳香族炭化水素基、又は炭素数3~17の芳香族複素環基である。上記炭素数は、置換基を有する場合は、置換基の炭素数を含めて計算する。
 未置換の芳香族炭化水素基及び未置換の芳香族複素環基は、前記Lで説明したものと同様である。
 置換基を有する芳香族炭化水素基、置換基を有する芳香族複素環基である場合の置換基としては、シアノ基、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、フェノキシ基、炭素数1~20のアルキルチオ基、炭素数6~30の芳香族炭化水素基、又は炭素数3~30の芳香族複素環基が好ましい。より好ましくは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、フェノキシ基、炭素数6~30の芳香族炭化水素基、又は炭素数3~30の芳香族複素環基である。
 一般式(1)の化合物の内、好ましい化合物としては、前記一般式(2)の化合物がある。
 一般式(2)中、L2は、一般式(1)のL1が-Ph-L2-(ここで、Phはフェニレン)となったものと理解される。すなわち、L2は、上記L2の末端がフェニレンである場合であって、そのフェニレンを取って生じる基であると理解される。このこと及びL1の説明から、L2の範囲は定まるが、好ましいL2は次のとおりである。
 L2は、単結合、芳香族炭化水素基、芳香族複素環基、又は該芳香族炭化水素基及び芳香族複素環基の芳香族環が2~3つ連結して構成される連結芳香族基から選ばれる2価の基を表す。好ましくは、単結合、炭素数6~24の芳香族炭化水素基、炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基又は芳香族複素環基の芳香族環が2~3つ連結して生じる連結芳香族基であり、より好ましくは、単結合、炭素数6~18の芳香族炭化水素基、炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~3つ連結して生じる連結芳香族基である。連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。上記炭素数は、置換基を有する場合は、置換基の炭素数を含めて計算する。
 ここで、芳香族炭化水素基、芳香族複素環基、又は連結芳香族基は、前記一般式(1)中のL1で説明した芳香族炭化水素基、芳香族複素環基、又は連結芳香族基と好ましい炭素数が一部相違するほかは同様である。それらが、置換基を有する場合の置換基についても同様である。
 一般式(2)中、Ar2は前記一般式(1)中のAr1で説明したものと同様である。
 一般式(2)中、Xは、一般式(1)中のLが、-Ph-Xとなったものと理解される。すなわち、Xは、上記Lの末端がPhである場合であって、そのPhを取って生じる基であると理解される。このこと及びLの説明から、Xの範囲は定まるが、好ましいXは次のとおりである。
 Xは、水素、シアノ基、アルキル基、ジアリールアミノ基、トリアリールシリル基、ジアリールホスフィニル基、ジアリールホスフィンオキシド基、ジアリールボラニル基、芳香族炭化水素基、又は芳香族複素環基を表し、好ましくは、水素、シアノ基、炭素数1~12のアルキル基、炭素数6~36のジアリールアミノ基、炭素数18~36のトリアリールシリル基、炭素数12~44のジアリールホスフィニル基、炭素数12~44のジアリールホスフィンオキシド基、炭素数12~44のジアリールボラニル基、炭素数6~30の芳香族炭化水素基、又は炭素数3~30の芳香族複素環基であり、より好ましくは、炭素数6~36のジアリールアミノ基、炭素数18~36のトリアリールシリル基、炭素数12~44のジアリールホスフィニル基、炭素数12~44のジアリールホスフィンオキシド基、炭素数12~44のジアリールボラニル基である。
 ここで、芳香族炭化水素基及び芳香族複素環基は、前記一般式(1)中のArで説明したものと同様である。それらが、置換基を有する場合の置換基についても同様である。
 一般式(2)の化合物の内、好ましいものとしては、前記一般式(3)で表される化合物がある。
 一般式(3)中のL2、Ar2は、一般式(2)のL2、Ar2と同意である。一般式(2)のXが、一般式(3)ではL3Y(Ar3)2に限定されたものと理解される。
 一般式(3)中のL3は単結合、芳香族炭化水素基、芳香族複素環基、又は該芳香族炭化水素基又は芳香族複素環基の芳香族環が2~3つ連結して構成される連結芳香族基から選ばれる2価の基を表し、好ましくは、単結合、炭素数6~30の芳香族炭化水素基、炭素数3~30の芳香族複素環基、又はこれらの芳香族環が2~3つ連結して生じる連結芳香族基であり、より好ましくは、単結合、炭素数6~18の芳香族炭化水素基、炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~3つ連結して生じる連結芳香族基である。
 ここで、芳香族炭化水素基、芳香族複素環基、又は連結芳香族基は、一般式(1)中のL1で説明したものと同様である。置換基を有する場合の置換基についても同様である。
 一般式(3)中のYはB、N、PまたはP=Oを表す。
 一般式(3)中のAr3はそれぞれ独立して芳香族炭化水素基、又は芳香族複素環基を表し、好ましくは、炭素数6~30の芳香族炭化水素基、又は炭素数3~30の芳香族複素環基であり、より好ましくは、炭素数6~18の芳香族炭化水素基、又は炭素数3~17の芳香族複素環基である。ここで、芳香族炭化水素基及び芳香族複素環基は、前記一般式(1)中のAr1で説明したものと同様である。置換基を有する場合の置換基についても同様である。また、2つのAr3は互いに結合し、Yを含む縮合複素環を形成することができる。
 一般式(1)~(3)において、水素の一部又は全部は重水素に置換されても良い。
 本発明のトリアリールボラン骨格を有するアダマンタン化合物は新規な化合物であり、これらの化合物は例えば下記反応式Iに示すように1,3-ジブロモアダマンタンと芳香族化合物との反応により、相当するジアリールアダマンタンを合成することができ、更にハロゲン化、ブチルリチウムを用いたリチオ化の後、ジアリールフルオロボランとの反応によってトリアリールボラン骨格を有するアダマンタン化合物を合成することができる。
Figure JPOXMLDOC01-appb-C000012
 一般式(1)~(3)で表される化合物の具体例を以下に示すが、本発明の有機電界発光素子用化合物はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 前記一般式(1)~(3)で表される有機EL素子用化合物(以下、本発明の化合物ともいう。)は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機EL素子を与える。含有させる有機層としては、発光層、正孔輸送層、電子輸送層、正孔阻止層、そして電子阻止層が適する。ここで発光層に使用する場合はドーパントを含有する発光層のホスト材料として使用できるほか、本発明の化合物を蛍光及び遅延蛍光を放射する有機発光材料として使用することができる。ここでホスト材料とは、燐光ホスト材料、蛍光ホスト材料、そして遅延蛍光ホスト材料である。本発明の化合物を蛍光及び遅延蛍光を放射する有機発光材料として使用する場合、一重項励起エネルギーと三重項励起エネルギーの少なくとも何れか一方が該有機発光材料よりも高い値を有する有機化合物をホスト材料として使用することが好ましい。また、本発明の化合物は、燐光発光ドーパントを含有する発光層のホスト材料として含有させることが特に好ましい。
 次に本発明の有機EL素子について説明する。
 本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも1つの発光層を有する有機層を有し、且つ少なくとも1つの有機層は本発明の化合物を含む。有利には、燐光発光ドーパントと共に本発明の化合物を発光層中に含む。
 次に本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は図示のものに限定されない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表す。本発明の有機EL素子は発光層と隣接して励起子阻止層を有してもよく、また発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陰極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層、そして陰極を必須の層として有するが、必須の層以外に正孔注入輸送層、電子注入輸送層を有することが良く、更に発光層と電子注入輸送層の間に正孔阻止層を有することが良い。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか、または両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれかまたは両者を意味する。
 図1とは逆の構造、すなわち基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も必要により層を追加、省略することが可能である。
―基板―
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については特に制限はなく、従来から有機EL素子に用いられているものであれば良く、例えばガラス、透明プラスチック、石英等からなるものを用いることができる。
―陽極―
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作成可能な材料を用いても良い。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成しても良く、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成しても良い。あるいは有機導電性化合物のように塗布可能な物質を用いる場合には印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
―陰極―
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及び、これらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム―カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作成することができる。また陰極としてシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度は向上し、好都合である。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
―発光層―
 発光層は陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり、発光層には有機発光材料とホスト材料を含む。
 発光層が蛍光発光層である場合、発光層に蛍光発光材料を単独で使用することもできるが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を混合することが好ましい。
 発光層における蛍光発光材料としては、本発明の化合物を用いることができるが、多数の特許文献等により知られているので、それらから選択することもできる。例えばベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族誘導体、スチリル誘導体、ジケトピロロピロール誘導体、オキサジン誘導体、ピロメテン金属錯体、遷移金属錯体、又はランタノイド錯体が挙げられ、より好ましくはナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、ナフト[2,1-f]イソキノリン、α‐ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、又はジアリールアミノ基を有しても良い。
 発光層における蛍光ホスト材料としては、一般式(1)~(3)で表されるような本発明の化合物を用いることができるが、多数の非特許文献、特許文献等により知られており、それらから選択することもできる。例えばナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタレン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’‐ジナフチル‐N,N’-ジフェニル‐4,4’‐ジフェニル‐1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)などの金属キレート化オキシノイド誘導体、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が使用できるが特に限定されるものではない。
 前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01~20重量%、好ましくは0.1~10重量%の範囲にあることが良い。
 通常、有機EL素子は、陽極、陰極の両電極より発光物質に電荷を注入し、励起状態の発光物質を生成し、発光させる。電荷注入型の有機EL素子の場合、生成した励起子のうち一重項励起状態に励起されるのは25%であり、残りの75%は三重項励起状態に励起されると言われている。Advanced Materials 2009, 21, 4802.に示されているように特定の蛍光発光物質は、項間交差等により三重項励起状態へとエネルギーが遷移した後、三重項‐三重項消滅あるいは熱エネルギーの吸収により、一重項励起状態に逆項間交差され蛍光を放射し、熱活性型遅延蛍光を発現することが知られている。本発明の化合物を使用する有機EL素子でも遅延蛍光を発現することができる。この場合、蛍光発光及び遅延蛍光発光の両方を含むこともできる。
 発光層が遅延蛍光発光層である場合、発光層に遅延蛍光材料を単独で使用することもできるが、遅延蛍光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を混合することが好ましい。
 発光層における遅延蛍光発光材料としては一般式(1)~(3)で表される本発明の化合物を用いることができるが、公知の遅延蛍光発光材料から選択することもできる。例えば、Appl. Phys. Lett. 98, 083302(2011)に記載されているインドロカルバゾール誘導体やNature 492, 234(2012)に記載されているカルバゾール誘導体等が挙げられるが、これらの化合物に限定されるものではない。
 遅延蛍光材料の具体例を下記に示すが、下記の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
 前記遅延蛍光発光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を含む場合、遅延蛍光発光ドーパントが発光層中に含有される量は、0.01~50重量%、好ましくは0.1~20重量%、より好ましくは0.01~10%の範囲にあることが良い。
 発光層における遅延蛍光ホスト材料としては、一般式(1)~(3)で表される本発明の化合物を用いることができるが、アダマンタン化合物以外の化合物から選択することもできる。例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体、アリールシラン誘導体等が使用できるが特に限定されるものではない。
 発光層が燐光発光層である場合、発光層は燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料は、多数の文献により知られており、それらから選択することができる。例えば、J.Am.Chem.Soc.2001,123,4303.に記載されているイリジウム錯体やNature 395, 151(1997)に記載されている白金錯体等が挙げられるが、これらの化合物に限定されない。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-C000023
  前記燐光発光ドーパントが発光層中に含有される量は、2~40重量%、好ましくは5~30重量%の範囲にあることがよい。
  発光層が燐光発光層である場合、発光層におけるホスト材料としては、前記一般式(1)~(3)で表される本発明の化合物を用いることが好ましい。しかし、本発明の化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料はアダマンタン化合物以外の他のホスト材料であってもよい。また、本発明の化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
 このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
 発光層は蛍光発光層、遅延蛍光発光層あるいは燐光発光層のいずれでもよいが、燐光発光層であることが好ましい。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで発光層中での電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には一般式(1)~(3)で表される本発明の化合物を用いることが好ましいが、本発明の化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
 電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送しつつ電子を阻止することで発光層中での電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、本発明に係る一般式(1)~(3)で表される本発明の化合物を用いることができるが、他の材料として、後述する正孔輸送層の材料を必要に応じて用いることもできる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、一般式(1)~(3)で表される本発明の化合物を用いることができるが、他の材料として、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には一般式(1)~(3)で表されるアダマンタン化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には本発明に係る一般式(1)~(3)で表される本発明の化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
 以下に示すルートにより燐光発光素子用材料となるアダマンタン化合物を合成した。尚、化合物番号は、上記例示化合物に付した番号に対応する。
実施例1
Figure JPOXMLDOC01-appb-C000024
 窒素雰囲気下、化合物(A) 5.00g、化合物(B) 1.57g、炭酸セシウム27.14g、酢酸パラジウム0.62g、そしてキシレン150mlを加え室温で撹拌した。さらにトリ-tert-ブチルホスフィン1.12gを加え150℃で1時間撹拌した。反応溶液を室温まで冷却し、ろ過した。ろ液を濃縮することで得られた残渣をシリカゲルカラムクロマトグラフィーで精製することで白色固体として中間体(C)1.72g(収率 36%)を得た。
 窒素雰囲気下、中間体(C)1.72gとテトラヒドロフラン50mlを加え、-78℃まで冷却した。ブチルリチウム2mlを加え、-78℃で30分間撹拌した後、ジメシチルフルオロボラン 0.94gを加え室温で2時間撹拌した。反応溶液を濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー、再結晶で精製することで白色固体として化合物10 0.56g(収率 30%)を得た。
APCI-TOFMS m/z 704 [M+1]、1H-NMR 測定結果(測定溶媒:THF-d8)を図2に示す。
実施例2
化合物15の合成
Figure JPOXMLDOC01-appb-C000025
 窒素雰囲気下、化合物(D)8.73g、化合物(E)2.94g、リン酸三カリウム19.02g、ヨウ化銅(I)0.85g、そして1,4-ジオキサン 500mlを加え室温で撹拌した。さらにトランス-1,2-シクロヘキサンジアミン 5.11gを加え110℃で8時間撹拌した。反応溶液を室温まで冷却しろ過した。ろ液を濃縮することで得られた残渣をシリカゲルカラムクロマトグラフィーで精製することで白色固体として中間体(F)4.03g(収率 39%)を得た。
 窒素雰囲気下、中間体(F)4.03gとテトラヒドロフラン100mlを加え、-60℃まで冷却した。ブチルリチウム5.8mlを加え、-60℃で30分間撹拌した後、ジメシチルフルオロボラン 5.00gを加え室温で72時間撹拌した。反応溶液を濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー、再結晶で精製することで白色固体として化合物15 2.53g(収率 47%)を得た。
APCI-TOFMS m/z 702 [M+1]、1H-NMR 測定結果(測定溶媒:THF-d8)を図2に示す。
実施例3
  膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5 Paで積層させた。まず、ITO上に銅フタロシアニン(CuPC)を25 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての化合物10と、燐光発光ドーパントとしてのトリス(2‐フェニルピリジン)イリジウム(III)(Ir(ppy)3)とを異なる蒸着源から、共蒸着し、40 nmの厚さに発光層を形成した。発光層中のIr(ppy)3の濃度は10.0 wt%であった。次に、電子輸送層としてAlq3を20 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウムを1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウムを70 nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1のような発光特性を有することが確認された。表1において、輝度、電圧及び発光効率は、20mA/cm2での値を示す。素子発光スペクトルの極大波長は520 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
実施例4~12
 実施例1、2と同様にして化合物2、4、16、24、37、43、72、91を用意した。
 発光層のホスト材料として、化合物10に代えて化合物2、4、15、16、24、37、43、72、又は91を用いた以外は実施例3と同様にして有機EL素子を作製した。各々の素子発光スペクトルの極大波長は520nmであり、Ir(ppy)からの発光が得られていることが分かった。各々の発光特性を表1に示す。
比較例1
 発光層のホストとして、CBPを用いた以外は実施例3と同様にして有機EL素子を作製した。
比較例2~3
 発光層のホストとして、下記化合物H-1、又はH-2を用いた以外は実施例3と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000026
 比較例1~3で作製した有機EL素子の発光スペクトルの極大スペクトルはいずれも520nmであり、Ir(ppy)3からの発光が得られていることがわかった。ホスト材料として使用した化合物及び各々の発光特性を表1に示す。
 表1において、発光特性は、20mA/cm2での値である。
Figure JPOXMLDOC01-appb-T000027
 表1より、一般式(1)で表されるアダマンタン化合物を用いた有機EL素子は、燐光ホストとして一般的に知られているCBPを用いた場合に対して、駆動電圧が低く、良好な発光効率を示すことが分かる。またトリアリールボラン構造を持たないアダマンタン化合物であるH-1、H-2を用いた場合と比較して良好な発光効率を示すことが分かる。以上より、本発明の化合物を用いた有機EL素子の優位性は明らかである。
産業上の利用の可能性
 本発明による有機EL素子は、発光特性、駆動電圧ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を活かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。
1  基板、2  陽極、3  正孔注入層、4  正孔輸送層、5  発光層、6  電子輸送層、7  陰極

Claims (7)

  1.  下記一般式(1)で表される有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000001
     ここで、L及びL1はそれぞれ独立に、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~4つ連結して構成される連結芳香族基から選ばれる1価又は2価の基を表し、連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。Ar1はそれぞれ独立して置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表す。
  2.  下記一般式(2)で表される請求項1に記載の有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000002
     ここで、L2は単結合、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~3つ連結して構成される連結芳香族基から選ばれる2価の基を表し、連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。Ar2はそれぞれ独立して置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表し、Xは水素、シアノ基、アルキル基、ジアリールアミノ基、トリアリールシリル基、ジアリールホスフィニル基、ジアリールホスフィンオキシド基、ジアリールボラニル基、置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表す。
  3.  下記一般式(3)で表される請求項2に記載の有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000003
     ここで、L2、Ar2は一般式(2)のL2、Ar2と同意である。Lは単結合、置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の芳香族複素環基、又は該置換若しくは未置換の芳香族炭化水素基及び芳香族複素環基の芳香族環が2~3つ連結して構成される連結芳香族基から選ばれる2価の基を表し、連結芳香族基は直鎖状であっても分岐状であっても良く、連結する芳香族環は同一であっても異なっていても良い。YはB、N、PまたはP=Oを表す。Ar3はそれぞれ独立して置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基を表す。2つのAr3は互いに結合し、縮合複素環を形成することができる。
  4.  請求項1~3のいずれかに記載の有機電界発光素子用化合物を含む有機層を有することを特徴とする有機電界発光素子。
  5.  有機電界発光素子用化合物を含む有機層が、発光層である請求項4に記載の有機電界発光素子。
  6.  発光層が、有機電界発光素子用化合物をドーパント材料として含有する請求項5に記載の有機電界発光素子。
  7.  発光層が、燐光発光性ドーパントと有機電界発光素子用化合物をホスト材料として含有する請求項5に記載の有機電界発光素子。
PCT/JP2014/060174 2013-04-11 2014-04-08 有機電界発光素子用アダマンタン化合物及び有機電界発光素子 WO2014168138A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/783,797 US9722189B2 (en) 2013-04-11 2014-04-08 Adamantane compound for organic electroluminescent elements, and organic electroluminescent element
JP2015511263A JP6307494B2 (ja) 2013-04-11 2014-04-08 有機電界発光素子用アダマンタン化合物及び有機電界発光素子
KR1020157032181A KR102133241B1 (ko) 2013-04-11 2014-04-08 유기 전계 발광 소자용 아다만탄 화합물 및 유기 전계 발광 소자
CN201480020574.3A CN105190930B (zh) 2013-04-11 2014-04-08 有机电致发光元件用金刚烷化合物及有机电致发光元件
EP14782590.5A EP2985802B1 (en) 2013-04-11 2014-04-08 Adamantane compound for organic electroluminescent elements, and organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-082813 2013-04-11
JP2013082813 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014168138A1 true WO2014168138A1 (ja) 2014-10-16

Family

ID=51689545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060174 WO2014168138A1 (ja) 2013-04-11 2014-04-08 有機電界発光素子用アダマンタン化合物及び有機電界発光素子

Country Status (7)

Country Link
US (1) US9722189B2 (ja)
EP (1) EP2985802B1 (ja)
JP (1) JP6307494B2 (ja)
KR (1) KR102133241B1 (ja)
CN (1) CN105190930B (ja)
TW (1) TWI593696B (ja)
WO (1) WO2014168138A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520976A (ja) * 2017-05-22 2020-07-16 マテリアル サイエンス カンパニー リミテッドMaterial Science Co.,Ltd. 有機化合物及びこれを含む有機電界発光素子
KR20210095555A (ko) * 2020-01-23 2021-08-02 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022075396A1 (ja) * 2020-10-09 2022-04-14 保土谷化学工業株式会社 アダマンタン化合物および有機エレクトロルミネッセンス素子、電子機器
WO2023043039A1 (ko) * 2021-09-17 2023-03-23 주식회사 동진쎄미켐 신규한 발광 소자용 화합물 및 이를 포함하는 유기 발광 소자
WO2024080196A1 (ja) * 2022-10-12 2024-04-18 ソニーグループ株式会社 表示装置及び電子機器
US11997925B2 (en) 2018-08-31 2024-05-28 Lg Chem, Ltd. Cyclic compound and organic light emitting device comprising same
KR102677026B1 (ko) 2020-09-08 2024-06-20 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102360091B1 (ko) * 2014-12-31 2022-02-09 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
WO2017116168A1 (ko) * 2015-12-31 2017-07-06 머티어리얼사이언스 주식회사 유기 전계 발광 소자
JP6687887B2 (ja) * 2016-02-18 2020-04-28 セイコーエプソン株式会社 セラミックス部品及びセラミックス部品の三次元製造方法
CN105713187B (zh) * 2016-03-24 2018-01-23 广东工业大学 一种金刚烷改性聚咔唑高分子发光材料及其制备方法
KR20180122617A (ko) * 2016-03-28 2018-11-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
WO2017205425A1 (en) * 2016-05-24 2017-11-30 President And Fellows Of Harvard College Compounds for organic light emitting diode materials
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
KR102096867B1 (ko) * 2016-12-29 2020-04-03 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
US20210066613A1 (en) * 2018-03-28 2021-03-04 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
KR102289383B1 (ko) * 2018-09-04 2021-08-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN109593042B (zh) * 2018-12-24 2021-12-07 陕西莱特迈思光电材料有限公司 一种有机电致发光材料及包含其的有机电致发光器件
CN109535011B (zh) * 2018-12-24 2021-11-16 陕西莱特迈思光电材料有限公司 有机电致发光材料及包含其的有机电致发光器件
KR102618829B1 (ko) * 2019-03-08 2023-12-29 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN110028459B (zh) * 2019-05-24 2023-04-18 武汉天马微电子有限公司 化合物、显示面板以及显示装置
CN110156756A (zh) * 2019-05-27 2019-08-23 上海天马有机发光显示技术有限公司 化合物、显示面板以及显示装置
CN111072668A (zh) * 2019-10-31 2020-04-28 陕西莱特光电材料股份有限公司 含氮化合物、电子元件以及电子装置
KR102663117B1 (ko) * 2019-11-21 2024-05-02 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN112778278B (zh) * 2020-12-31 2022-04-29 温州市工业科学研究院 一种基于金刚烷的磷光发光主体材料及其有机电致发光器件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290645A (ja) 1999-04-12 2000-10-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003031368A (ja) * 2001-07-11 2003-01-31 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
WO2003080761A1 (fr) 2002-03-25 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour element organique electroluminescent et element organique electroluminescent l'utilisant
JP2005317314A (ja) * 2004-04-28 2005-11-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2007077064A (ja) 2005-09-14 2007-03-29 Sony Corp アリールアミン化合物、アリールアミン化合物の合成方法、有機電界発光素子
WO2008152939A1 (ja) 2007-06-15 2008-12-18 Idemitsu Kosan Co., Ltd. 芳香族ホウ素誘導体、有機エレクトロルミネッセンス素子及びそれを用いた有機エレクトロルミネッセンス材料含有溶液
WO2010052932A1 (ja) 2008-11-07 2010-05-14 保土谷化学工業株式会社 トリフェニルシリル基とトリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
JP2011093825A (ja) * 2009-10-28 2011-05-12 Hodogaya Chem Co Ltd 2,2−ジフェニルアダマンチル構造を有する化合物および有機エレクトロルミネッセンス素子
JP2012525378A (ja) 2009-04-28 2012-10-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997937B2 (ja) * 2003-03-19 2007-10-24 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE10337346A1 (de) * 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
DE102004020298A1 (de) * 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
US7893430B2 (en) * 2009-02-26 2011-02-22 Battelle Memorial Institute OLED devices
KR20110049012A (ko) * 2009-11-04 2011-05-12 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290645A (ja) 1999-04-12 2000-10-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003031368A (ja) * 2001-07-11 2003-01-31 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
WO2003080761A1 (fr) 2002-03-25 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour element organique electroluminescent et element organique electroluminescent l'utilisant
JP2005317314A (ja) * 2004-04-28 2005-11-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2007077064A (ja) 2005-09-14 2007-03-29 Sony Corp アリールアミン化合物、アリールアミン化合物の合成方法、有機電界発光素子
WO2008152939A1 (ja) 2007-06-15 2008-12-18 Idemitsu Kosan Co., Ltd. 芳香族ホウ素誘導体、有機エレクトロルミネッセンス素子及びそれを用いた有機エレクトロルミネッセンス材料含有溶液
WO2010052932A1 (ja) 2008-11-07 2010-05-14 保土谷化学工業株式会社 トリフェニルシリル基とトリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
JP2012525378A (ja) 2009-04-28 2012-10-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
JP2011093825A (ja) * 2009-10-28 2011-05-12 Hodogaya Chem Co Ltd 2,2−ジフェニルアダマンチル構造を有する化合物および有機エレクトロルミネッセンス素子

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS, vol. 21, 2009, pages 4802
APP . PHYS. LETT., vol. 98, 2011, pages 083302
J. AM. CHEM. SOC., vol. 123, 2001, pages 4303
NATURE, vol. 395, 1997, pages 151
NATURE, vol. 492, 2012, pages 234
See also references of EP2985802A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520976A (ja) * 2017-05-22 2020-07-16 マテリアル サイエンス カンパニー リミテッドMaterial Science Co.,Ltd. 有機化合物及びこれを含む有機電界発光素子
JP7026405B2 (ja) 2017-05-22 2022-02-28 マテリアル サイエンス カンパニー リミテッド 有機化合物及びこれを含む有機電界発光素子
US11997925B2 (en) 2018-08-31 2024-05-28 Lg Chem, Ltd. Cyclic compound and organic light emitting device comprising same
KR20210095555A (ko) * 2020-01-23 2021-08-02 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102501262B1 (ko) 2020-01-23 2023-02-17 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102677026B1 (ko) 2020-09-08 2024-06-20 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2022075396A1 (ja) * 2020-10-09 2022-04-14 保土谷化学工業株式会社 アダマンタン化合物および有機エレクトロルミネッセンス素子、電子機器
WO2023043039A1 (ko) * 2021-09-17 2023-03-23 주식회사 동진쎄미켐 신규한 발광 소자용 화합물 및 이를 포함하는 유기 발광 소자
WO2024080196A1 (ja) * 2022-10-12 2024-04-18 ソニーグループ株式会社 表示装置及び電子機器

Also Published As

Publication number Publication date
US20160072064A1 (en) 2016-03-10
EP2985802A4 (en) 2016-11-09
CN105190930A (zh) 2015-12-23
EP2985802B1 (en) 2017-08-30
JPWO2014168138A1 (ja) 2017-02-16
KR20150139969A (ko) 2015-12-14
TW201504250A (zh) 2015-02-01
TWI593696B (zh) 2017-08-01
KR102133241B1 (ko) 2020-07-13
EP2985802A1 (en) 2016-02-17
US9722189B2 (en) 2017-08-01
CN105190930B (zh) 2017-06-09
JP6307494B2 (ja) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6307494B2 (ja) 有機電界発光素子用アダマンタン化合物及び有機電界発光素子
JP6334404B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP6006732B2 (ja) 有機電界発光素子用材料及びそれを用いた有機電界発光素子
JP6375302B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6360797B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6360796B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6436901B2 (ja) 有機電界発光素子用ホウ素化合物及び有機電界発光素子
JP6310928B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6647283B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015146417A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015098297A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402178B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402177B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2018170369A (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2018170383A (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020574.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511263

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014782590

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014782590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157032181

Country of ref document: KR

Kind code of ref document: A