WO2014168084A1 - Scroll-type compressor - Google Patents

Scroll-type compressor Download PDF

Info

Publication number
WO2014168084A1
WO2014168084A1 PCT/JP2014/059968 JP2014059968W WO2014168084A1 WO 2014168084 A1 WO2014168084 A1 WO 2014168084A1 JP 2014059968 W JP2014059968 W JP 2014059968W WO 2014168084 A1 WO2014168084 A1 WO 2014168084A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular groove
scroll
movable scroll
space
quadrant
Prior art date
Application number
PCT/JP2014/059968
Other languages
French (fr)
Japanese (ja)
Inventor
史雄 赤岩
飯塚 二郎
雄仁 桜井
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN201480019362.3A priority Critical patent/CN105074221B/en
Publication of WO2014168084A1 publication Critical patent/WO2014168084A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/066Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with an intermediate piece sliding along perpendicular axes, e.g. Oldham coupling

Definitions

  • the present invention relates to a scroll compressor, and more particularly to a scroll compressor suitable for being incorporated in a vehicle air conditioner or a heat pump device.
  • This type of scroll compressor includes a housing having a suction chamber for a working fluid containing lubricating oil, a fixed scroll fixed to the housing, and rotationally driven by a drive shaft to revolve around the fixed scroll. And a movable scroll that forms a compression chamber for the working fluid sucked from the suction chamber.
  • the movable scroll is supported by the thrust plate so as to be capable of revolving, and the thrust surface forming the annular belt of the thrust plate receives the thrust load of the drive shaft from the rear surface forming the annular belt of the movable scroll, and slides with this rear surface.
  • a moving part is formed.
  • the frequency and area where the recesses are opened are not clear, and the movement of the lubricating oil between the recesses is performed via an oil film formed on the sliding portion.
  • the retention of lubricating oil in the sliding part increases, but if the lubricating oil stagnates in the recessing part and the fluidity of the lubricating oil decreases, the lubricating oil is smoothly taken into the sliding part as a result.
  • the present invention has been made based on the above-described circumstances, and the object of the present invention is to make use of the revolving orbiting motion of the movable scroll and smoothly take in the lubricating oil into the sliding portion of the movable scroll, and this sliding portion.
  • a scroll type compressor that can improve the fluidity of the lubricating oil in the entire compressor with a simple configuration and, in turn, improve the lubricating performance, durability, and compression efficiency of the compressor. There is to do.
  • a scroll compressor according to claim 1 is fixed by being rotationally driven by a housing having a suction chamber for a working fluid containing lubricating oil, a fixed scroll fixed to the housing, and a drive shaft.
  • the movable scroll that forms a compression chamber for the working fluid sucked from the suction chamber and the movable scroll are supported so as to be able to revolve, and the thrust load of the drive shaft is applied from the annular back surface of the movable scroll.
  • a support member having an annular thrust surface that forms a sliding portion with the receiver and the back surface, an annular space that communicates with the suction chamber and faces the periphery of the thrust surface and is partitioned along the circumferential direction in the housing; And an annular groove recessed along the circumferential direction on at least one of the rear surface and the thrust surface, and accompanying the revolution of the movable scroll An annular groove in the first to fourth quadrants each quadrant of the orthogonal coordinate system formed on its orbital plane is exposed to the annular space.
  • a movable scroll comprising a hole recessed in one of the back surface and the thrust surface and a pin protruding from the other of the back surface and the thrust surface and loosely fitted in the hole.
  • a rotation prevention mechanism is further provided, and the hole is recessed in the path of the annular groove.
  • the annular space includes an inner circumferential space defined facing the inner peripheral edge of the thrust surface, and the annular groove includes an inner annular groove exposed to the inner circumferential space in each quadrant.
  • the inner peripheral radius of the inner annular groove is smaller than the sum of the inner peripheral radius of the thrust surface and the turning radius of the movable scroll.
  • the annular space includes an outer circumferential space defined facing the outer peripheral edge of the thrust surface, and the annular groove includes an outer annular groove exposed to the outer circumferential space in each quadrant.
  • the outer peripheral radius of the outer annular groove is larger than the value obtained by subtracting the turning radius of the movable scroll from the outer peripheral radius of the thrust surface.
  • the annular groove is formed in each quadrant of the first quadrant to the fourth quadrant of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll. Sequentially exposed to the annular space. As a result, the lubricating oil in the annular space can be sequentially taken into the sliding portion via the annular groove by the revolution turning of the movable scroll.
  • the lubricating oil can be taken in each quadrant, an oil film can be formed in a wide range radially around the turning center of the movable scroll on the sliding portion.
  • the lubricating oil in the annular space can be quickly supplied to the sliding portion via the annular groove. In this way, by utilizing the revolving orbiting motion of the movable scroll, the lubricating oil is smoothly taken into the sliding portion and the fluidity of the lubricating oil in the sliding portion is increased, thereby forming the annular groove at least on the back surface and the thrust surface of the movable scroll.
  • the lubrication performance, durability, and compression efficiency of the compressor can be improved with a simple configuration that is provided at any one of the predetermined positions.
  • the exposed areas of the annular grooves exposed to the annular space overlap each other in each quadrant, and thus the first and fourth quadrants are successively connected during the revolution of the movable scroll.
  • the annular groove is exposed to the annular space. Therefore, the lubricating oil in the annular space can be continuously taken into the sliding portion via the annular groove, and the lubricating performance, durability and compression efficiency of the compressor can be further improved.
  • the annular groove includes the inner annular groove that is exposed to the inner circumferential space in each quadrant, so that the lubricating oil in the inner circumferential space passes through the inner annular groove, that is, the inner circumferential edge of the thrust surface, that is, It can be quickly supplied to the sliding portion from the inside in the radial direction of the sliding portion.
  • the annular groove includes the outer annular groove exposed to the outer circumferential space in each quadrant, so that the lubricating oil in the outer circumferential space passes through the outer annular groove, that is, the outer circumferential edge of the thrust surface, that is, the sliding. It is possible to quickly supply the sliding portion from the radially outer side of the portion.
  • the lubricating oil in the inner circumferential space and the outer circumferential space is passed through the inner annular groove and the outer annular groove, respectively, and the inner peripheral edge and outer peripheral edge of the thrust surface, that is, sliding. It is possible to supply more rapidly from the inside and outside in the radial direction of the portion by the sliding portion. Specifically, if the outer peripheral radius of the outer annular groove is made larger than the value obtained by subtracting the turning radius of the movable scroll from the outer peripheral radius of the thrust surface, the lubricating oil in the outer peripheral space is moved to the outer side. It can supply to a sliding part via an annular groove.
  • FIG. 2 is a diagram illustrating the flow of refrigerant and lubricating oil by showing the inside of the front housing according to the first embodiment of the present invention from the AA direction in FIG. 1.
  • the orbiting scroll of FIG. 2 revolves, (a) the first quadrant, (b) the second quadrant, (c) the third quadrant, and (d) the fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane.
  • the inner annular groove is exposed to the inner space, and the state in which the lubricating oil is taken into the sliding portion is a diagram.
  • FIG. 4 is a cross-sectional view showing FIG. 3A from the BB direction.
  • FIG. 6 is a diagram illustrating the flow of refrigerant and lubricating oil by showing the inside of the front housing according to the second embodiment of the present invention from the AA direction in FIG. 1.
  • the orbiting scroll of FIG. 5 revolves, the (a) first quadrant, (b) second quadrant, (c) third quadrant, and (d) fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane.
  • the outer annular groove is exposed to the outer peripheral space, and the state in which the lubricating oil is taken into the sliding part is a diagram.
  • FIG. 7A is a cross-sectional view of FIG. 6A from the CC direction.
  • FIG. 6 is a diagram illustrating the flow of refrigerant and lubricating oil by showing the inside of the front housing according to the third embodiment of the present invention from the AA direction in FIG. 1.
  • the orbiting scroll of FIG. 8 revolves, the (a) first quadrant, (b) second quadrant, (c) third quadrant, and (d) fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane.
  • the inner annular groove is exposed to the inner peripheral space
  • the outer annular groove is exposed to the outer peripheral space
  • FIG. 9A is a cross-sectional view of FIG. 9A from the DD direction.
  • FIGS. 8A to 8D are cross-sectional views showing other forms of the inner annular groove of FIG. 4 and the outer annular groove of FIG.
  • FIG. 1 shows a compressor according to this embodiment.
  • the compressor 1 is a horizontal type scroll compressor, and is incorporated in a refrigeration circuit of a vehicle air conditioning system.
  • the compressor 1 sucks the refrigerant from the return path of the refrigerant circulation path of the refrigerant that is the working fluid, compresses the refrigerant, and discharges the refrigerant toward the forward path of the circulation path.
  • the refrigerant contains lubricating oil, and the lubricating oil in the refrigerant not only lubricates the bearings and various sliding surfaces in the compressor 1 but also functions to seal the sliding surfaces.
  • the compressor 1 includes a rear housing 2 and a front housing 4, and a scroll unit 6 is disposed between the rear housing 2 and the front housing 4.
  • a drive shaft 8 is horizontally disposed in the front housing 4, and the drive shaft 8 has a large-diameter shaft portion 10 positioned on the scroll unit 6 side and a small-diameter shaft portion 12 protruding from the front housing 4.
  • the large-diameter shaft portion 10 is rotatably supported by the front housing 4 via a needle bearing 14, and the small-diameter shaft portion 12 is rotatably supported by the front housing 4 via a ball bearing 16.
  • a driving pulley 20 having a built-in electromagnetic clutch 18 is attached to the protruding end of the small diameter shaft portion 12, and this driving pulley 20 is rotatably supported by the front housing 4 via a bearing 22.
  • the power of the vehicle engine is transmitted to the drive pulley 20 via a drive belt (not shown), and the rotation of the drive pulley 20 can be transmitted to the drive shaft 8 via the electromagnetic clutch 18. Accordingly, when the electromagnetic clutch 18 is turned on during driving of the engine, the drive shaft 8 rotates integrally with the drive pulley 20.
  • the scroll unit 6 includes a fixed scroll 24 sandwiched between the rear housing 2 and the front housing 4 and a movable scroll 26 assembled so as to mesh with the fixed scroll 24.
  • the movable scroll 26 revolves around the fixed scroll 24 by being rotationally driven by the drive shaft 8, and the fixed scroll 24 and the movable scroll 26 are engaged with each other and cooperate to compress the refrigerant containing lubricating oil therein.
  • a chamber 28 is formed, and the volume of the compression chamber 28 is increased or decreased along with the revolving orbiting motion of the movable scroll 26 relative to the fixed scroll 24.
  • the boss 32 projecting from the substrate 30 of the movable scroll 26 and the large-diameter shaft portion 10 of the drive shaft 8 include a crank pin 34, an eccentric bush 36, and a needle bearing. They are connected to each other via 38.
  • a counterweight 40 is attached to the eccentric bush 36.
  • annular thrust plate (support member) 42 that supports the movable scroll 26 so as to be capable of revolving and turning is disposed.
  • the thrust plate 42 has a thrust surface 42 a forming an annular band, and the thrust surface 42 a is a thrust load of the drive shaft 8 from the back surface 26 a forming an annular band formed on the boss 32 side of the substrate 30 of the movable scroll 26.
  • the sliding portion 44 is formed together with the back surface 26a.
  • the fixed scroll 24 is fixed to the rear housing 2 via a fixing bolt (not shown), and a discharge chamber 48 is formed between the fixed scroll 24 and the end wall 46 of the rear housing 2.
  • the fixed scroll 24 has a discharge hole (not shown) that allows the compression chamber 28 and the discharge chamber 48 to communicate with each other.
  • a discharge valve 54 that opens and closes the discharge hole is disposed in the discharge chamber 48. Its opening degree is regulated.
  • a refrigerant suction port 58 projects from the outer peripheral wall 4 a of the front housing 4, and the suction port 58 communicates with the return path of the refrigerant circulation path described above.
  • the front housing 4 is provided with a suction chamber 60 communicated with the suction port 58, a communication hole 62 opened to the suction chamber 60, and a suction hole 64.
  • a discharge port 66 is protruded from the end wall 46 of the rear housing 2, and this discharge port 66 communicates with the forward path of the refrigerant circulation path and also communicates with the discharge chamber 48.
  • an inner peripheral space 68 (annular space) communicating with the suction chamber 60 via the communication hole 62 is defined.
  • the inner circumferential space 68 faces the inner circumferential edge 70 of the thrust surface 42a, is formed in an annular shape along the circumferential direction in the front housing 4, and the boss 32 and the counterweight 40 are positioned therein.
  • an outer peripheral space (annular space) 72 communicating with the suction chamber 60 through the suction hole 64 is defined between the inner peripheral wall 4 b of the front housing 4 and the thrust plate 42.
  • the outer circumferential space 72 faces the outer peripheral edge 74 of the thrust surface 42 a and is formed in an annular shape along the circumferential direction in the front housing 4.
  • Such a swiveling motion of the movable scroll 26 includes a refrigerant suction process from the suction port 58 through the suction chamber 60, the suction hole 64, and the outer peripheral space 72 in sequence, and the compression and discharge of the sucked refrigerant.
  • a high-pressure refrigerant is discharged from the compressor 1 through the discharge chamber, the discharge chamber 48 and the discharge port 66 in this order.
  • the refrigerant contains lubricating oil
  • the lubricating oil in the refrigerant lubricates the bearings 14 and 38 and the sliding portion 44 in the front housing 4 and other sliding surfaces in the scroll unit 6. It also contributes to the sealing of the compression chamber 28.
  • Example 1 In detail, as shown in FIG. 2, the refrigerant (indicated by the alternate long and short dash line) introduced from the suction port 58 through the suction hole 64 into the compressor 1 flows through the outer peripheral space 72 without being blocked. Go to the bottom of the inside.
  • the refrigerant is appropriately taken into the compression chamber 28 of the scroll unit 6, while a part of the mist-like lubricating oil contained in the refrigerant adheres to the wall surface of the outer peripheral space 72 including the inner peripheral wall 4 b and is liquid with the refrigerant.
  • the lubricating oil flows down the outer peripheral space 72.
  • a part of the mist-like lubricating oil contained in the refrigerant adheres to the wall surface of the inner peripheral space 68 including the outer peripheral surface 32a of the boss 32, and the liquid lubricating oil flows down through the inner peripheral space 68 together with the refrigerant.
  • an inner annular groove 78 is recessed substantially concentrically with the back surface 26a along the circumferential direction of the back surface 26a.
  • the inner annular groove 78 has, for example, a rectangular cross section, and is formed closer to the boss 32 than the center of the radial width of the back surface 26a, that is, radially inward.
  • the above-described rotation prevention mechanism 76 has a so-called pin and hole type mechanism including a hole 76a and a pin 76b.
  • the hole 76a is formed in a bottomed shape in the path of the inner annular groove 78 of the back surface 26a, and the pin 76b is provided so as to protrude from the pedestal 4c (shown in FIG. 1) of the front housing 4 through the thrust surface 42a. It is loosely fitted in the hole 76a.
  • the inner annular groove 78 in each quadrant of the first quadrant to the fourth quadrant of the Cartesian coordinate system formed on the revolution turning surface of the movable scroll 26 in the arrow direction shown in FIGS. 3A to 3D. Is exposed to the inner peripheral space 68, and an exposed region 80 of the inner annular groove 78 is formed. Then, the lubricating oil adhering to the wall surface of the inner peripheral space 68 is sequentially introduced and taken into the exposed region 80 in the directions indicated by the arrows in each quadrant, and the sliding portion 44 is radially centered around the turning center of the movable scroll 26. Lubricate over a wide range.
  • the exposed region 80 is a region of about 1/5 or more and 1/2 or less of the entire circumferential length of the inner annular groove 78 (for example, a region of about 1/4 of the entire circumferential length in FIG. 3).
  • Each quadrant is formed to overlap each other.
  • at least the inner radius Rig of the inner annular groove 78, the inner radius Rith of the thrust surface 42 a, and the turning radius Rt of the movable scroll 26 are at least below.
  • the following relational expression (1) holds.
  • the inner peripheral radius Rig is the distance from the radial center line Lms of the movable scroll 26 to the inner peripheral edge 82 of the inner annular groove 78, and the inner peripheral radius Rith is from the turning center line Lo of the movable scroll 26 to the inner surface of the thrust surface 42a.
  • the turning radius Rt is a distance from the radial center line Lms to the turning center line Lo.
  • the inner annular groove 78 has a predetermined position on the back surface 26a so that the inner peripheral radius Rig of the inner annular groove 78 is smaller than the sum of the inner peripheral radius Rith of the thrust surface 42a and the turning radius Rt of the movable scroll 26. Formed.
  • the inner annular groove 78 is formed in the inner circumferential space 68 in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll 26 with the revolution turning. Exposed to. Thereby, in the revolution turning of the movable scroll 26, the lubricating oil in the inner circumferential space 68 is sequentially applied to the inner peripheral edge 70 of the thrust surface 42 a via the inner annular groove 78, that is, from the radially inner side of the sliding portion 44 to the sliding portion 44. Can be captured.
  • the inner annular groove 78 is formed in the inner circumferential space 68 so as to be successively connected in the first quadrant to the fourth quadrant during the revolution of the movable scroll 26. Therefore, the lubricating oil in the inner circumferential space 68 can be continuously taken into the sliding portion 44 through the inner annular groove 78. In addition, since the lubricating oil can be taken in each quadrant, it is possible to form an oil film on the sliding portion 44 over a wide range radially from the inside in the radial direction of the sliding portion 44 around the turning center of the movable scroll 26. . Therefore, even when the compressor is started, the lubricating oil in the inner circumferential space 68 can be quickly supplied to the sliding portion 44 via the inner annular groove 78.
  • the lubricating oil is smoothly taken into the sliding portion 44 and the fluidity of the lubricating oil in the sliding portion 44 is increased, whereby the inner annular groove 78 is formed in the movable scroll 26.
  • the lubrication performance, durability, and compression efficiency of the compressor 1 can be improved with a simple configuration that is simply provided at a predetermined position on the back surface 26a. Further, since the hole 76a of the rotation prevention mechanism 76 is recessed in the path of the inner annular groove 78, not only the sliding portion 44 but also the fluidity of the lubricating oil in the rotation prevention mechanism 76 can be improved. The lubricating performance, durability and compression efficiency of the compressor 1 can be further improved.
  • the outer annular groove 84 is recessed substantially concentrically with the back surface 26a along the circumferential direction of the back surface 26a.
  • the outer annular groove 84 has a rectangular cross section like the inner annular groove 78, and is formed radially outward from the radial center of the back surface 26a.
  • symbol is attached
  • the outer annular groove 84 in each quadrant of the first quadrant to the fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane as the movable scroll 26 revolves in the direction of the arrow shown in FIGS. Is exposed to the outer peripheral space 72, and an exposed region 86 of the outer annular groove 84 is formed. Then, the lubricating oil adhering to the wall surface of the outer peripheral space 72 is sequentially introduced and taken into the exposed region 86 in the directions indicated by the arrows in each quadrant, and the sliding portion 44 is lubricated radially over a wide range.
  • the exposed region 86 is also a region that is about 1/5 or more and 1/2 or less of the entire circumferential length of the outer annular groove 84 (for example, about 1/4 of the entire circumferential length in FIG. 6). Region) and preferably overlap each other in each quadrant. As shown in FIG. 7, in order to secure the exposed region 86 in each quadrant, at least the following relationship among the outer peripheral radius Rog of the outer annular groove 84, the outer peripheral radius Roth of the thrust surface 42 a, and the turning radius Rt of the movable scroll 26. Formula (2) is materialized.
  • the outer peripheral radius Rog is the distance from the radial center line Lms of the movable scroll 26 to the outer peripheral edge 88 of the outer annular groove 84, and the outer peripheral radius Roth is from the turning center line Lo of the movable scroll 26 to the outer peripheral edge 74 of the thrust surface 42a.
  • the distance and the turning radius Rt are distances from the radial center line Lms to the turning center line Lo.
  • the outer annular groove 84 is positioned at a predetermined position on the back surface 26a so that the outer peripheral radius Rog of the outer annular groove 84 is larger than the value obtained by subtracting the turning radius Rt of the movable scroll 26 from the outer peripheral radius Roth of the thrust surface 42a. It is formed.
  • the outer annular groove 84 is formed in the outer circumferential space 72 in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll 26 as the revolution turns. Exposed. Accordingly, the lubricating oil in the outer peripheral space 72 can be sequentially taken into the sliding portion 44 from the outer peripheral edge 74 of the thrust surface 42 a, that is, from the radially outer side of the sliding portion 44 through the outer annular groove 84. Further, since an oil film can be formed on the sliding portion 44 in a wide range radially from the outer side in the radial direction of the sliding portion 44 around the turning center of the movable scroll 26, the sliding portion is activated when the compressor 1 is started. Lubricating oil can be quickly supplied to 44.
  • the outer annular groove 84 is formed in the outer peripheral space 72 so as to be sequentially connected in the first quadrant to the fourth quadrant during the revolution of the movable scroll 26. Since it is exposed, the lubricating oil in the outer peripheral space 72 can be continuously taken into the sliding portion 44 via the outer annular groove 84. Further, as in the case of the first embodiment, the fluidity of the lubricating oil in the rotation prevention mechanism 76 can be increased, and the outer annular groove 84 is simply configured to be provided at a predetermined position on the back surface 26a of the movable scroll 26. The fluidity of the lubricating oil in the entire compressor 1 can be improved, and as a result, the lubricating performance, durability, and compression efficiency of the compressor 1 can be improved.
  • an inner annular groove 78 and an outer annular groove 84 are recessed substantially concentrically with the back surface 26a along the circumferential direction of the back surface 26a.
  • symbol is attached
  • the inner annular groove is formed in each quadrant of the first quadrant to the fourth quadrant of the orthogonal coordinate system formed on the revolution swivel surface.
  • the lubricating oil adhering to the wall surfaces of the inner peripheral space 68 and the outer peripheral space 72 sequentially flows into the exposed regions 80 and 86 and is taken in in the directions indicated by the arrows, and the sliding portion 44 is radially spread over a wide range. Lubricate over.
  • the outer annular groove 84 is located at the position of the back surface 26a where at least both of the relational expressions (1) and (2) described above are established. 78 and an outer annular groove 84 are formed. As described above, in this embodiment, the inner annular groove 78 and the outer annular groove 84 in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll 26 as the revolution turns. Are exposed to the inner space 68 and the outer space 72, respectively.
  • the lubricating oil in the inner circumferential space 68 and the outer circumferential space 72 is passed from the inner and outer peripheral edges 70 and 74 of the thrust surface 42a through the inner annular groove 78 and the outer annular groove 84, that is, from the inside and outside in the radial direction of the sliding portion 44.
  • the sliding portion 44 can be sequentially loaded. Accordingly, an oil film can be formed on the sliding portion 44 over a wider range from the inside and outside of the sliding portion 44 in the radial direction centering on the turning center of the movable scroll 26. Lubricating oil can be supplied more rapidly by the portion 44.
  • the exposed regions 80 and 86 are formed so as to be sequentially connected in the first quadrant to the fourth quadrant during the revolution of the movable scroll 26.
  • the lubricating oil can be continuously taken into the sliding portion 44.
  • the fluidity of the lubricating oil in the rotation prevention mechanism 76 can be improved, and the entire compressor 1 can be simply configured by simply providing the inner annular groove 78 and the outer annular groove 84 at predetermined positions on the back surface 26a of the movable scroll 26.
  • the fluidity of the lubricating oil can be improved, and the lubricating performance, durability and compression efficiency of the compressor 1 can be further improved.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the inner annular groove 78 and the outer annular groove 84 may be provided on the thrust surface 42a instead of the back surface 26a.
  • a thrust surface is formed on the pedestal portion 4c of the front housing 4. Therefore, the inner annular groove 78 and the outer annular groove 84 are formed in the pedestal portion 4c. It may be formed. Even in these cases, the fluidity of the lubricating oil in the entire compressor 1 can be improved, and the lubricating performance, durability, and compression efficiency of the compressor 1 can be improved.
  • the cross-sectional shape of the inner annular groove 78 and the outer annular groove 84 is not limited to a rectangular shape, but a shape that allows easy intake of lubricating oil from the inner peripheral space 68 and the outer peripheral space 72, for example, a trapezoidal cross section shown in FIG.
  • Various shapes such as a triangular cross section shown in b), a semicircular cross section shown in FIG. 11C, and an oval cross section shown in FIG.
  • the present invention can be applied not only to a horizontal type scroll compressor but also to a vertical type, and can be applied to all scroll type fluid machines such as a scroll expander in which an expansion chamber for refrigerant is formed.
  • scroll type fluid machines such as a scroll expander in which an expansion chamber for refrigerant is formed.
  • Scroll compressor 4 Front housing (housing) 4c pedestal (supporting member) 8 Drive shaft 24 Fixed scroll 26 Movable scroll 26a Back surface 28 Compression chamber 42 Thrust plate (support member) 42a Thrust surface 44 Sliding part 60 Suction chamber 68 Inner peripheral space (annular space) 70 Inner periphery (periphery) 72 Peripheral space (annular space) 74 Outer periphery (periphery) 76 Rotation prevention mechanism 76a Hole 76b Pin 78 Inner annular groove (annular groove) 80 Exposed area 84 Outer annular groove (annular groove) 86 Exposed area

Abstract

[Problem] To provide a scroll-type compressor capable of increasing the fluidity of a lubricant throughout a compressor by using a simple configuration, and thereby improve the lubrication performance, durability, and compression efficiency of the compressor, as a result of using the revolving turning motion of a movable scroll, smoothly introducing lubricant into sliding sections of the movable scroll, and improving the fluidity of the lubricant in the sliding sections. [Solution] A scroll-type compressor comprising: annular spaces (68, 72) connected to an intake chamber (60), facing peripheral edges (70, 74) of a thrust surface (42a) of support members (42, 4c), and partitioned along the circumferential direction inside a housing (4); and annular grooves (78, 84) on at least either the rear surface (26a) or thrust surface of a movable scroll (26), and recessed along the circumferential direction of same. The annular grooves protrude into an annular space in each quadrant of first to fourth quadrants of a Cartesian coordinate system formed on the revolving turning surface of the movable scroll, in conjunction with the revolving turning motion thereof.

Description

スクロール型圧縮機Scroll compressor
 本発明は、スクロール型圧縮機に係り、詳しくは、車両用空調装置やヒートポンプ装置に組み込まれて好適なスクロール型圧縮機に関する。 The present invention relates to a scroll compressor, and more particularly to a scroll compressor suitable for being incorporated in a vehicle air conditioner or a heat pump device.
 この種のスクロール型圧縮機は、潤滑油を含む作動流体の吸入室を有するハウジングと、ハウジングに固定された固定スクロールと、駆動軸により回転駆動されて前記固定スクロールに対し公転旋回することにより、吸入室から吸入された作動流体の圧縮室を形成する可動スクロールとを備えている。可動スクロールは、スラストプレートによって公転旋回可能に支持され、スラストプレートの円環状の帯をなすスラスト面は、可動スクロールの円環状の帯をなす背面から駆動軸のスラスト荷重を受け、この背面とともに摺動部を形成する。 This type of scroll compressor includes a housing having a suction chamber for a working fluid containing lubricating oil, a fixed scroll fixed to the housing, and rotationally driven by a drive shaft to revolve around the fixed scroll. And a movable scroll that forms a compression chamber for the working fluid sucked from the suction chamber. The movable scroll is supported by the thrust plate so as to be capable of revolving, and the thrust surface forming the annular belt of the thrust plate receives the thrust load of the drive shaft from the rear surface forming the annular belt of the movable scroll, and slides with this rear surface. A moving part is formed.
 そして、潤滑油を貯留する複数の凹部を摺動部に形成し、可動スクロールの公転旋回に伴い凹部を部分的に開放することにより潤滑油の保持性及び流動性を高めたスクロール型圧縮機が開示されている(例えば特許文献1)。 And the scroll type compressor which formed the several recessed part which stores lubricating oil in a sliding part, and improved the retainability and fluidity | liquidity of lubricating oil by partially opening a recessed part with the revolution turning of a movable scroll. It is disclosed (for example, Patent Document 1).
特開2010-48093号公報JP 2010-48093 A
 上記従来技術では、凹部が開放される頻度及び領域は定かではなく、また、各凹部間の潤滑油の移動は摺動部に形成される油膜を経由して行われる。凹部を多数形成することにより摺動部における潤滑油の保持性は高まるが、潤滑油が凹部に停滞し、潤滑油の流動性が低下すると、結果として摺動部への潤滑油の取り込みが円滑に行われないおそれがあるため、圧縮機の潤滑性能向上には依然として課題が残されている。 In the above prior art, the frequency and area where the recesses are opened are not clear, and the movement of the lubricating oil between the recesses is performed via an oil film formed on the sliding portion. By forming a large number of recesses, the retention of lubricating oil in the sliding part increases, but if the lubricating oil stagnates in the recessing part and the fluidity of the lubricating oil decreases, the lubricating oil is smoothly taken into the sliding part as a result. However, there is still a problem in improving the lubrication performance of the compressor.
 本発明は前述の事情に基づいてなされたもので、その目的とするところは、可動スクロールの公転旋回運動を利用し、可動スクロールの摺動部に潤滑油を円滑に取り込むとともに、この摺動部における潤滑油の流動性を高めることにより、簡単な構成で圧縮機全体における潤滑油の流動性を高め、ひいては圧縮機の潤滑性能、耐久性及び圧縮効率を高めることができるスクロール型圧縮機を提供することにある。 The present invention has been made based on the above-described circumstances, and the object of the present invention is to make use of the revolving orbiting motion of the movable scroll and smoothly take in the lubricating oil into the sliding portion of the movable scroll, and this sliding portion. Provides a scroll type compressor that can improve the fluidity of the lubricating oil in the entire compressor with a simple configuration and, in turn, improve the lubricating performance, durability, and compression efficiency of the compressor. There is to do.
 上記の目的を達成するべく、請求項1記載のスクロール型圧縮機は、潤滑油を含む作動流体の吸入室を有するハウジングと、ハウジングに固定された固定スクロールと、駆動軸により回転駆動されて固定スクロールに対し公転旋回することにより、吸入室から吸入された作動流体の圧縮室を形成する可動スクロールと、可動スクロールを公転旋回可能に支持し、可動スクロールの環状の背面から駆動軸のスラスト荷重を受け、背面とともに摺動部を形成する環状のスラスト面を有した支持部材と、吸入室に連通されるとともにスラスト面の周縁に面し、ハウジング内の周方向に沿って区画された環状空間と、背面及びスラスト面の少なくとも何れか一方にこれらの周方向に沿って凹設された環状溝とを備え、可動スクロールの公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において環状溝が環状空間に露出する。 In order to achieve the above object, a scroll compressor according to claim 1 is fixed by being rotationally driven by a housing having a suction chamber for a working fluid containing lubricating oil, a fixed scroll fixed to the housing, and a drive shaft. By orbiting the scroll, the movable scroll that forms a compression chamber for the working fluid sucked from the suction chamber and the movable scroll are supported so as to be able to revolve, and the thrust load of the drive shaft is applied from the annular back surface of the movable scroll. A support member having an annular thrust surface that forms a sliding portion with the receiver and the back surface, an annular space that communicates with the suction chamber and faces the periphery of the thrust surface and is partitioned along the circumferential direction in the housing; And an annular groove recessed along the circumferential direction on at least one of the rear surface and the thrust surface, and accompanying the revolution of the movable scroll An annular groove in the first to fourth quadrants each quadrant of the orthogonal coordinate system formed on its orbital plane is exposed to the annular space.
 請求項2記載の発明では、環状空間に露出する環状溝の露出領域は、各象限において互いにオーバーラップしている。
 請求項3記載の発明では、背面及びスラスト面の何れか一方に凹設されたホールと、背面及びスラスト面の何れか他方から凸設されるとともにホールに遊嵌されるピンとからなる可動スクロールの自転阻止機構を更に備え、ホールは環状溝の経路に凹設される。
In the invention according to claim 2, the exposed areas of the annular groove exposed in the annular space overlap each other in each quadrant.
According to a third aspect of the present invention, there is provided a movable scroll comprising a hole recessed in one of the back surface and the thrust surface and a pin protruding from the other of the back surface and the thrust surface and loosely fitted in the hole. A rotation prevention mechanism is further provided, and the hole is recessed in the path of the annular groove.
 請求項4記載の発明では、環状空間は、スラスト面の内周縁に面して区画される内周空間を含み、環状溝は、各象限において内周空間に露出する内側環状溝を含む。
 請求項5記載の発明では、内側環状溝の内周半径は、スラスト面の内周半径と可動スクロールの旋回半径との和よりも小さい。
 請求項6記載の発明では、環状空間は、スラスト面の外周縁に面して区画される外周空間を含み、環状溝は、各象限において外周空間に露出する外側環状溝を含む。
According to a fourth aspect of the present invention, the annular space includes an inner circumferential space defined facing the inner peripheral edge of the thrust surface, and the annular groove includes an inner annular groove exposed to the inner circumferential space in each quadrant.
In the invention according to claim 5, the inner peripheral radius of the inner annular groove is smaller than the sum of the inner peripheral radius of the thrust surface and the turning radius of the movable scroll.
In the invention described in claim 6, the annular space includes an outer circumferential space defined facing the outer peripheral edge of the thrust surface, and the annular groove includes an outer annular groove exposed to the outer circumferential space in each quadrant.
 請求項7記載の発明では、外側環状溝の外周半径は、スラスト面の外周半径から可動スクロールの旋回半径を差し引いた値よりも大きい。 In the invention according to claim 7, the outer peripheral radius of the outer annular groove is larger than the value obtained by subtracting the turning radius of the movable scroll from the outer peripheral radius of the thrust surface.
 請求項1記載の本発明のスクロール型圧縮機によれば、可動スクロールの公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において環状溝が環状空間に順次露出する。これにより、可動スクロールの公転旋回により環状空間の潤滑油を環状溝を介して摺動部に順次取り込むことができる。 According to the scroll compressor of the present invention, the annular groove is formed in each quadrant of the first quadrant to the fourth quadrant of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll. Sequentially exposed to the annular space. As a result, the lubricating oil in the annular space can be sequentially taken into the sliding portion via the annular groove by the revolution turning of the movable scroll.
 また、各象限において潤滑油を取り込むことができることから、摺動部に可動スクロールの旋回中心を中心とした放射状に広範囲に亘って油膜を形成することができるため、圧縮機の起動時であっても、環状空間の潤滑油を環状溝を介して摺動部に迅速に供給することができる。このように可動スクロールの公転旋回運動を利用し、摺動部に潤滑油を円滑に取り込んで摺動部における潤滑油の流動性を高めることにより、環状溝を可動スクロールの背面及びスラスト面の少なくとも何れか一方の所定位置に設けるだけの簡単な構成で、圧縮機の潤滑性能、耐久性及び圧縮効率を向上することができる。 In addition, since the lubricating oil can be taken in each quadrant, an oil film can be formed in a wide range radially around the turning center of the movable scroll on the sliding portion. In addition, the lubricating oil in the annular space can be quickly supplied to the sliding portion via the annular groove. In this way, by utilizing the revolving orbiting motion of the movable scroll, the lubricating oil is smoothly taken into the sliding portion and the fluidity of the lubricating oil in the sliding portion is increased, thereby forming the annular groove at least on the back surface and the thrust surface of the movable scroll. The lubrication performance, durability, and compression efficiency of the compressor can be improved with a simple configuration that is provided at any one of the predetermined positions.
 請求項2記載の発明によれば、環状空間に露出する環状溝の露出領域が各象限において互いにオーバーラップしていることにより、可動スクロールの公転旋回中に第1象限~第4象限において順に連なるようにして環状溝が環状空間に露出する。従って、環状空間の潤滑油を環状溝を介して摺動部に連続的に取り込むことができ、圧縮機の潤滑性能、耐久性及び圧縮効率を更に向上することができる。 According to the second aspect of the present invention, the exposed areas of the annular grooves exposed to the annular space overlap each other in each quadrant, and thus the first and fourth quadrants are successively connected during the revolution of the movable scroll. Thus, the annular groove is exposed to the annular space. Therefore, the lubricating oil in the annular space can be continuously taken into the sliding portion via the annular groove, and the lubricating performance, durability and compression efficiency of the compressor can be further improved.
 請求項3記載の発明によれば、自転阻止機構のホールが環状溝の経路に凹設されることにより、可動スクロールの背面とスラスト面との摺動部のみならず、自転阻止機構における潤滑油の流動性をも高めることができるため、圧縮機の潤滑性能、耐久性及び圧縮効率を更に向上することができる。
 請求項4記載の発明によれば、環状溝が各象限において内周空間に露出する内側環状溝を含むことにより、内周空間の潤滑油を内側環状溝を介してスラスト面の内周縁、すなわち摺動部の径方向内側から摺動部に迅速に供給することができる。
According to the third aspect of the present invention, since the hole of the rotation prevention mechanism is recessed in the path of the annular groove, not only the sliding portion between the back surface and the thrust surface of the movable scroll but also the lubricating oil in the rotation prevention mechanism Therefore, the lubrication performance, durability and compression efficiency of the compressor can be further improved.
According to the fourth aspect of the present invention, the annular groove includes the inner annular groove that is exposed to the inner circumferential space in each quadrant, so that the lubricating oil in the inner circumferential space passes through the inner annular groove, that is, the inner circumferential edge of the thrust surface, that is, It can be quickly supplied to the sliding portion from the inside in the radial direction of the sliding portion.
 請求項5記載の発明によれば、具体的には、内側環状溝の内周半径をスラスト面の内周半径と可動スクロールの旋回半径との和よりも小さくすれば、内周空間の潤滑油を内側環状溝を介して摺動部に供給することができる。
 請求項6記載の発明によれば、環状溝が各象限において外周空間に露出する外側環状溝を含むことにより、外周空間の潤滑油を外側環状溝を介してスラスト面の外周縁、すなわち摺動部の径方向外側から摺動部に迅速に供給することができる。
According to the fifth aspect of the invention, specifically, if the inner peripheral radius of the inner annular groove is smaller than the sum of the inner peripheral radius of the thrust surface and the turning radius of the movable scroll, the lubricating oil in the inner peripheral space Can be supplied to the sliding portion via the inner annular groove.
According to the sixth aspect of the present invention, the annular groove includes the outer annular groove exposed to the outer circumferential space in each quadrant, so that the lubricating oil in the outer circumferential space passes through the outer annular groove, that is, the outer circumferential edge of the thrust surface, that is, the sliding. It is possible to quickly supply the sliding portion from the radially outer side of the portion.
 特に、内側環状溝及び外側環状溝の両方を有する場合には、内周空間,外周空間の潤滑油をそれぞれ内側環状溝,外側環状溝を介してスラスト面の内周縁及び外周縁、すなわち摺動部の径方向内外から摺動部により一層迅速に供給することができる。
 請求項7記載の発明によれば、具体的には、外側環状溝の外周半径をスラスト面の外周半径から可動スクロールの旋回半径を差し引いた値よりも大きくすれば、外周空間の潤滑油を外側環状溝を介して摺動部に供給することができる。
In particular, when both the inner annular groove and the outer annular groove are provided, the lubricating oil in the inner circumferential space and the outer circumferential space is passed through the inner annular groove and the outer annular groove, respectively, and the inner peripheral edge and outer peripheral edge of the thrust surface, that is, sliding. It is possible to supply more rapidly from the inside and outside in the radial direction of the portion by the sliding portion.
Specifically, if the outer peripheral radius of the outer annular groove is made larger than the value obtained by subtracting the turning radius of the movable scroll from the outer peripheral radius of the thrust surface, the lubricating oil in the outer peripheral space is moved to the outer side. It can supply to a sliding part via an annular groove.
本発明のスクロール型圧縮機を示した縦断面図である。It is the longitudinal section showing the scroll type compressor of the present invention. 本発明の実施例1に係るフロントハウジング内を図1のA-A方向から示して冷媒及び潤滑油の流れを説明した図である。FIG. 2 is a diagram illustrating the flow of refrigerant and lubricating oil by showing the inside of the front housing according to the first embodiment of the present invention from the AA direction in FIG. 1. 図2の可動スクロールの公転旋回に伴い、その公転旋回面に形成される直交座標系の(a)第1象限、(b)第2象限、(c)第3象限、(d)第4象限の各象限において、内側環状溝が内周空間に露出し、摺動部に潤滑油が取り込まれる状態を説明した図である。As the orbiting scroll of FIG. 2 revolves, (a) the first quadrant, (b) the second quadrant, (c) the third quadrant, and (d) the fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane. In each quadrant, the inner annular groove is exposed to the inner space, and the state in which the lubricating oil is taken into the sliding portion is a diagram. 図3(a)をB-B方向から示した断面図である。FIG. 4 is a cross-sectional view showing FIG. 3A from the BB direction. 本発明の実施例2に係るフロントハウジング内を図1のA-A方向から示して冷媒及び潤滑油の流れを説明した図である。FIG. 6 is a diagram illustrating the flow of refrigerant and lubricating oil by showing the inside of the front housing according to the second embodiment of the present invention from the AA direction in FIG. 1. 図5の可動スクロールの公転旋回に伴い、その公転旋回面に形成される直交座標系の(a)第1象限、(b)第2象限、(c)第3象限、(d)第4象限の各象限において、外側環状溝が外周空間に露出し、摺動部に潤滑油が取り込まれる状態を説明した図である。As the orbiting scroll of FIG. 5 revolves, the (a) first quadrant, (b) second quadrant, (c) third quadrant, and (d) fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane. In each quadrant, the outer annular groove is exposed to the outer peripheral space, and the state in which the lubricating oil is taken into the sliding part is a diagram. 図6(a)をC-C方向から示した断面図である。FIG. 7A is a cross-sectional view of FIG. 6A from the CC direction. 本発明の実施例3に係るフロントハウジング内を図1のA-A方向から示して冷媒及び潤滑油の流れを説明した図である。FIG. 6 is a diagram illustrating the flow of refrigerant and lubricating oil by showing the inside of the front housing according to the third embodiment of the present invention from the AA direction in FIG. 1. 図8の可動スクロールの公転旋回に伴い、その公転旋回面に形成される直交座標系の(a)第1象限、(b)第2象限、(c)第3象限、(d)第4象限の各象限において、内側環状溝が内周空間に露出するとともに外側環状溝が外周空間に露出し、摺動部に潤滑油が取り込まれる状態を説明した図である。As the orbiting scroll of FIG. 8 revolves, the (a) first quadrant, (b) second quadrant, (c) third quadrant, and (d) fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane. In each quadrant, the inner annular groove is exposed to the inner peripheral space, the outer annular groove is exposed to the outer peripheral space, and the state in which the lubricating oil is taken into the sliding portion. 図9(a)をD-D方向から示した断面図である。FIG. 9A is a cross-sectional view of FIG. 9A from the DD direction. (a)~(d)図4の内側環状溝及び図7の外側環状溝の別の形態を示した断面図である。FIGS. 8A to 8D are cross-sectional views showing other forms of the inner annular groove of FIG. 4 and the outer annular groove of FIG.
 以下、図面により本発明の実施形態について説明する。
 図1は、本実施形態に係る圧縮機を示す。当該圧縮機1は横置きタイプのスクロール型圧縮機であって、車両の空調システムの冷凍回路に組み込まれている。そして、圧縮機1はその作動流体である冷媒の冷媒循環経路の復路から冷媒を吸入し、この冷媒を圧縮して循環経路の往路に向けて吐出する。冷媒は潤滑油を含み、この冷媒中の潤滑油は圧縮機1内の軸受や種々の摺動面を潤滑する他、摺動面のシールする機能をも発揮する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a compressor according to this embodiment. The compressor 1 is a horizontal type scroll compressor, and is incorporated in a refrigeration circuit of a vehicle air conditioning system. The compressor 1 sucks the refrigerant from the return path of the refrigerant circulation path of the refrigerant that is the working fluid, compresses the refrigerant, and discharges the refrigerant toward the forward path of the circulation path. The refrigerant contains lubricating oil, and the lubricating oil in the refrigerant not only lubricates the bearings and various sliding surfaces in the compressor 1 but also functions to seal the sliding surfaces.
 上記圧縮機1はリアハウジング2及びフロントハウジング4を備え、リアハウジング2とフロントハウジング4との間にはスクロールユニット6が配置されている。
 フロントハウジング4内には駆動軸8が水平配置され、この駆動軸8はスクロールユニット6側に位置した大径軸部10と、フロントハウジング4から突出した小径軸部12とを有する。大径軸部10はニードル軸受14を介してフロントハウジング4に回転自在に支持され、小径軸部12はボール軸受16を介してフロントハウジング4に回転自在に支持されている。
The compressor 1 includes a rear housing 2 and a front housing 4, and a scroll unit 6 is disposed between the rear housing 2 and the front housing 4.
A drive shaft 8 is horizontally disposed in the front housing 4, and the drive shaft 8 has a large-diameter shaft portion 10 positioned on the scroll unit 6 side and a small-diameter shaft portion 12 protruding from the front housing 4. The large-diameter shaft portion 10 is rotatably supported by the front housing 4 via a needle bearing 14, and the small-diameter shaft portion 12 is rotatably supported by the front housing 4 via a ball bearing 16.
 小径軸部12の突出端には電磁クラッチ18を内蔵した駆動プーリ20が取付けられており、この駆動プーリ20は軸受22を介してフロントハウジング4に回転自在に支持されている。駆動プーリ20には車両のエンジンの動力が図示しない駆動ベルトを介して伝達され、駆動プーリ20の回転は電磁クラッチ18を介して駆動軸8に伝達可能である。従って、エンジンの駆動中、電磁クラッチ18がオン作動されると、駆動軸8は駆動プーリ20と一体的に回転する。 A driving pulley 20 having a built-in electromagnetic clutch 18 is attached to the protruding end of the small diameter shaft portion 12, and this driving pulley 20 is rotatably supported by the front housing 4 via a bearing 22. The power of the vehicle engine is transmitted to the drive pulley 20 via a drive belt (not shown), and the rotation of the drive pulley 20 can be transmitted to the drive shaft 8 via the electromagnetic clutch 18. Accordingly, when the electromagnetic clutch 18 is turned on during driving of the engine, the drive shaft 8 rotates integrally with the drive pulley 20.
 一方、スクロールユニット6は、リアハウジング2及びフロントハウジング4に挟持された固定スクロール24と、この固定スクロール24に対して噛み合うように組付けられた可動スクロール26とを備えている。可動スクロール26は、駆動軸8に回転駆動されることにより固定スクロール24に対し公転旋回し、固定スクロール24及び可動スクロール26が噛み合って協働することにより、その内部に潤滑油を含む冷媒の圧縮室28が形成され、この圧縮室28の容積が固定スクロール24に対する可動スクロール26の公転旋回運動に伴い増減される。 On the other hand, the scroll unit 6 includes a fixed scroll 24 sandwiched between the rear housing 2 and the front housing 4 and a movable scroll 26 assembled so as to mesh with the fixed scroll 24. The movable scroll 26 revolves around the fixed scroll 24 by being rotationally driven by the drive shaft 8, and the fixed scroll 24 and the movable scroll 26 are engaged with each other and cooperate to compress the refrigerant containing lubricating oil therein. A chamber 28 is formed, and the volume of the compression chamber 28 is increased or decreased along with the revolving orbiting motion of the movable scroll 26 relative to the fixed scroll 24.
 前述した可動スクロール26に公転旋回運動を付与するため、可動スクロール26の基板30に凸設されたボス32と駆動軸8の大径軸部10とは、クランクピン34、偏心ブッシュ36及びニードル軸受38を介して互いに連結されている。また、偏心ブッシュ36にはカウンタウエイト40が取付けられている。そして、可動スクロール26とフロントハウジング4との間には可動スクロール26を公転旋回可能に支持する円環状のスラストプレート(支持部材)42が配置されている。 In order to impart a revolving orbiting motion to the movable scroll 26 described above, the boss 32 projecting from the substrate 30 of the movable scroll 26 and the large-diameter shaft portion 10 of the drive shaft 8 include a crank pin 34, an eccentric bush 36, and a needle bearing. They are connected to each other via 38. A counterweight 40 is attached to the eccentric bush 36. Between the movable scroll 26 and the front housing 4, an annular thrust plate (support member) 42 that supports the movable scroll 26 so as to be capable of revolving and turning is disposed.
 スラストプレート42は円環状の帯をなすスラスト面42aを有し、スラスト面42aは可動スクロール26の基板30のボス32側に形成された円環状の帯をなす背面26aから駆動軸8のスラスト荷重を受け、背面26aとともに摺動部44を形成している。
 固定スクロール24はリアハウジング2に図示しない固定ボルトを介して固定され、固定スクロール24とリアハウジング2における端壁46との間に吐出室48が形成されている。
The thrust plate 42 has a thrust surface 42 a forming an annular band, and the thrust surface 42 a is a thrust load of the drive shaft 8 from the back surface 26 a forming an annular band formed on the boss 32 side of the substrate 30 of the movable scroll 26. The sliding portion 44 is formed together with the back surface 26a.
The fixed scroll 24 is fixed to the rear housing 2 via a fixing bolt (not shown), and a discharge chamber 48 is formed between the fixed scroll 24 and the end wall 46 of the rear housing 2.
 固定スクロール24は圧縮室28と吐出室48とを互いに連通させる図示しない吐出孔を有し、吐出室48には吐出孔を開閉する吐出弁54が配置され、この吐出弁54はストッパプレート56によってその開度が規制されている。
 フロントハウジング4の外周壁4aには冷媒の吸入ポート58が凸設され、吸入ポート58は前述した冷媒循環経路の復路に連通されている。また、フロントハウジング4には、吸入ポート58に連通された吸入室60、吸入室60に開口された連通孔62及び吸入孔64が内設されている。一方、リアハウジング2の端壁46には吐出ポート66が凸設され、この吐出ポート66は冷媒循環経路の往路に連通される一方、吐出室48に連通されている。
The fixed scroll 24 has a discharge hole (not shown) that allows the compression chamber 28 and the discharge chamber 48 to communicate with each other. A discharge valve 54 that opens and closes the discharge hole is disposed in the discharge chamber 48. Its opening degree is regulated.
A refrigerant suction port 58 projects from the outer peripheral wall 4 a of the front housing 4, and the suction port 58 communicates with the return path of the refrigerant circulation path described above. Further, the front housing 4 is provided with a suction chamber 60 communicated with the suction port 58, a communication hole 62 opened to the suction chamber 60, and a suction hole 64. On the other hand, a discharge port 66 is protruded from the end wall 46 of the rear housing 2, and this discharge port 66 communicates with the forward path of the refrigerant circulation path and also communicates with the discharge chamber 48.
 ここで、本実施形態のフロントハウジング4内には、吸入室60に連通孔62を介して連通された内周空間68(環状空間)が区画されている。内周空間68はスラスト面42aの内周縁70に面し、フロントハウジング4内の周方向に沿って環状に形成され、ボス32やカウンタウエイト40が位置づけられている。
 一方、フロントハウジング4の内周壁4bとスラストプレート42との間には、吸入室60に吸入孔64を介して連通された外周空間(環状空間)72が区画されている。外周空間72はスラスト面42aの外周縁74に面し、フロントハウジング4内の周方向に沿って環状に形成されている。
Here, in the front housing 4 of the present embodiment, an inner peripheral space 68 (annular space) communicating with the suction chamber 60 via the communication hole 62 is defined. The inner circumferential space 68 faces the inner circumferential edge 70 of the thrust surface 42a, is formed in an annular shape along the circumferential direction in the front housing 4, and the boss 32 and the counterweight 40 are positioned therein.
On the other hand, between the inner peripheral wall 4 b of the front housing 4 and the thrust plate 42, an outer peripheral space (annular space) 72 communicating with the suction chamber 60 through the suction hole 64 is defined. The outer circumferential space 72 faces the outer peripheral edge 74 of the thrust surface 42 a and is formed in an annular shape along the circumferential direction in the front housing 4.
 前述した圧縮機1によれば、駆動軸8の回転に伴い、可動スクロール26が後述する自転阻止機構76(図2に示す)が機能することにより自転することなく公転旋回運動する。このような可動スクロール26の旋回運動は、吸入ポート58から吸入室60、吸入孔64、及び外周空間72を順次経由した圧縮室28内への冷媒の吸入工程や、吸入した冷媒の圧縮及び吐出工程をもたらし、この結果、高圧の冷媒が圧縮室28から吐出孔、吐出室48及び吐出ポート66を順次経由して圧縮機1から吐出される。 According to the compressor 1 described above, as the drive shaft 8 rotates, the orbiting scroll 26 revolves without rotating due to the rotation prevention mechanism 76 (shown in FIG. 2) described later functioning. Such a swiveling motion of the movable scroll 26 includes a refrigerant suction process from the suction port 58 through the suction chamber 60, the suction hole 64, and the outer peripheral space 72 in sequence, and the compression and discharge of the sucked refrigerant. As a result, a high-pressure refrigerant is discharged from the compressor 1 through the discharge chamber, the discharge chamber 48 and the discharge port 66 in this order.
 ここで、冷媒には潤滑油が含まれているので、冷媒中の潤滑油はフロントハウジング4内の軸受14,38及び摺動部44、その他のスクロールユニット6内の摺動面等を潤滑し、また、圧縮室28のシールにも寄与する。
<実施例1>
 詳しくは図2に示すように、吸入ポート58から吸入孔64を経て圧縮機1に導入された冷媒(一点鎖線で示す)は、流れを遮断されることなく外周空間72を流れ、フロントハウジング4内の下部まで行き渡る。この過程において、冷媒はスクロールユニット6の圧縮室28に適宜取り込まれる一方、冷媒に含まれるミスト状の潤滑油の一部が内周壁4bを含む外周空間72の壁面に付着し、冷媒とともに液状の潤滑油が外周空間72を流下する。
Here, since the refrigerant contains lubricating oil, the lubricating oil in the refrigerant lubricates the bearings 14 and 38 and the sliding portion 44 in the front housing 4 and other sliding surfaces in the scroll unit 6. It also contributes to the sealing of the compression chamber 28.
<Example 1>
In detail, as shown in FIG. 2, the refrigerant (indicated by the alternate long and short dash line) introduced from the suction port 58 through the suction hole 64 into the compressor 1 flows through the outer peripheral space 72 without being blocked. Go to the bottom of the inside. In this process, the refrigerant is appropriately taken into the compression chamber 28 of the scroll unit 6, while a part of the mist-like lubricating oil contained in the refrigerant adheres to the wall surface of the outer peripheral space 72 including the inner peripheral wall 4 b and is liquid with the refrigerant. The lubricating oil flows down the outer peripheral space 72.
 一方、吸入ポート58から吸入孔64を経て圧縮機1に導入された冷媒の一部は、連通孔62を経て、流れを遮断されることなく内周空間68を流れ、ボス32の下部まで行き渡る。この過程において、冷媒に含まれるミスト状の潤滑油の一部がボス32の外周面32aを含む内周空間68の壁面に付着し、冷媒とともに液状の潤滑油が内周空間68を流下する。 On the other hand, a part of the refrigerant introduced into the compressor 1 from the suction port 58 through the suction hole 64 flows through the communication hole 62 through the inner peripheral space 68 without being blocked, and reaches the lower part of the boss 32. . In this process, a part of the mist-like lubricating oil contained in the refrigerant adheres to the wall surface of the inner peripheral space 68 including the outer peripheral surface 32a of the boss 32, and the liquid lubricating oil flows down through the inner peripheral space 68 together with the refrigerant.
 本実施例では、背面26aの周方向に沿って内側環状溝78が背面26aと略同心円状に凹設されている。内側環状溝78は、例えば矩形断面を有し、背面26aの径方向幅中央よりもボス32寄り、すなわち径方向内側に形成されている。
 また、前述した自転阻止機構76は、ホール76a及びピン76bとから構成された、いわゆるピン&ホールタイプの機構を有している。ホール76aは背面26aの内側環状溝78の経路に有底状に凹設され、ピン76bはフロントハウジング4の台座部4c(図1に示す)からスラスト面42aを貫通して凸設されるとともにホール76aに遊嵌されている。
In the present embodiment, an inner annular groove 78 is recessed substantially concentrically with the back surface 26a along the circumferential direction of the back surface 26a. The inner annular groove 78 has, for example, a rectangular cross section, and is formed closer to the boss 32 than the center of the radial width of the back surface 26a, that is, radially inward.
The above-described rotation prevention mechanism 76 has a so-called pin and hole type mechanism including a hole 76a and a pin 76b. The hole 76a is formed in a bottomed shape in the path of the inner annular groove 78 of the back surface 26a, and the pin 76b is provided so as to protrude from the pedestal 4c (shown in FIG. 1) of the front housing 4 through the thrust surface 42a. It is loosely fitted in the hole 76a.
 図3(a)~(d)に示す矢印方向の可動スクロール26の公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において内側環状溝78が内周空間68に露出し、内側環状溝78の露出領域80が形成される。そして、内周空間68の壁面に付着した潤滑油が各象限において矢印で示す方向に露出領域80に順次流入して取り込まれ、摺動部44を可動スクロール26の旋回中心を中心とした放射状に広範囲に亘って潤滑する。 The inner annular groove 78 in each quadrant of the first quadrant to the fourth quadrant of the Cartesian coordinate system formed on the revolution turning surface of the movable scroll 26 in the arrow direction shown in FIGS. 3A to 3D. Is exposed to the inner peripheral space 68, and an exposed region 80 of the inner annular groove 78 is formed. Then, the lubricating oil adhering to the wall surface of the inner peripheral space 68 is sequentially introduced and taken into the exposed region 80 in the directions indicated by the arrows in each quadrant, and the sliding portion 44 is radially centered around the turning center of the movable scroll 26. Lubricate over a wide range.
 好適には、露出領域80は内側環状溝78の全周長さにおける1/5以上、且つ1/2以下程度の領域(例えば図3では全周長さの1/4程度の領域)であり、各象限において互いにオーバーラップするように形成される。
 図4に示すように、各象限において露出領域80を確保するために、内側環状溝78の内周半径Rig、スラスト面42aの内周半径Rith、及び、可動スクロール26の旋回半径Rtにおいて少なくとも以下の関係式(1)が成立する。
Preferably, the exposed region 80 is a region of about 1/5 or more and 1/2 or less of the entire circumferential length of the inner annular groove 78 (for example, a region of about 1/4 of the entire circumferential length in FIG. 3). , Each quadrant is formed to overlap each other.
As shown in FIG. 4, in order to secure the exposed region 80 in each quadrant, at least the inner radius Rig of the inner annular groove 78, the inner radius Rith of the thrust surface 42 a, and the turning radius Rt of the movable scroll 26 are at least below. The following relational expression (1) holds.
 Rith+Rt>Rig   (1)
 なお、内周半径Rigは可動スクロール26の径方向中心線Lmsから内側環状溝78の内周縁82までの距離であり、内周半径Rithは可動スクロール26の旋回中心線Loからスラスト面42aの内周縁70までの距離であり、旋回半径Rtは径方向中心線Lmsから旋回中心線Loまでの距離である。このように、内側環状溝78は、内側環状溝78の内周半径Rigがスラスト面42aの内周半径Rithと可動スクロール26の旋回半径Rtとの和よりも小さくなるように背面26aの所定位置に形成される。
Rith + Rt> Rig (1)
The inner peripheral radius Rig is the distance from the radial center line Lms of the movable scroll 26 to the inner peripheral edge 82 of the inner annular groove 78, and the inner peripheral radius Rith is from the turning center line Lo of the movable scroll 26 to the inner surface of the thrust surface 42a. The turning radius Rt is a distance from the radial center line Lms to the turning center line Lo. Thus, the inner annular groove 78 has a predetermined position on the back surface 26a so that the inner peripheral radius Rig of the inner annular groove 78 is smaller than the sum of the inner peripheral radius Rith of the thrust surface 42a and the turning radius Rt of the movable scroll 26. Formed.
 以上のように本実施例では、可動スクロール26の公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において内側環状溝78が内周空間68に露出する。これにより、可動スクロール26の公転旋回において、内周空間68の潤滑油を内側環状溝78を介してスラスト面42aの内周縁70、すなわち摺動部44の径方向内側から摺動部44に順次取り込むことができる。 As described above, in this embodiment, the inner annular groove 78 is formed in the inner circumferential space 68 in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll 26 with the revolution turning. Exposed to. Thereby, in the revolution turning of the movable scroll 26, the lubricating oil in the inner circumferential space 68 is sequentially applied to the inner peripheral edge 70 of the thrust surface 42 a via the inner annular groove 78, that is, from the radially inner side of the sliding portion 44 to the sliding portion 44. Can be captured.
 また、露出領域80を各象限において互いにオーバーラップするように形成することにより、可動スクロール26の公転旋回中に第1象限~第4象限において順に連なるようにして内側環状溝78が内周空間68に露出するため、内周空間68の潤滑油を内側環状溝78を介して摺動部44に連続的に取り込むことが可能である。
 また、各象限において潤滑油を取り込むことができることから、摺動部44に摺動部44の径方向内側から可動スクロール26の旋回中心を中心とした放射状に広範囲に亘って油膜を形成可能である。従って、圧縮機の起動時であっても、内周空間68の潤滑油を内側環状溝78を介して摺動部44に迅速に供給することができる。
Further, by forming the exposed regions 80 so as to overlap each other in each quadrant, the inner annular groove 78 is formed in the inner circumferential space 68 so as to be successively connected in the first quadrant to the fourth quadrant during the revolution of the movable scroll 26. Therefore, the lubricating oil in the inner circumferential space 68 can be continuously taken into the sliding portion 44 through the inner annular groove 78.
In addition, since the lubricating oil can be taken in each quadrant, it is possible to form an oil film on the sliding portion 44 over a wide range radially from the inside in the radial direction of the sliding portion 44 around the turning center of the movable scroll 26. . Therefore, even when the compressor is started, the lubricating oil in the inner circumferential space 68 can be quickly supplied to the sliding portion 44 via the inner annular groove 78.
 このように可動スクロール26の公転旋回運動を利用し、摺動部44に潤滑油を円滑に取り込んで摺動部44における潤滑油の流動性を高めることにより、内側環状溝78を可動スクロール26の背面26aの所定位置に設けるだけの簡単な構成で、圧縮機1の潤滑性能、耐久性及び圧縮効率を向上することができる。
 また、自転阻止機構76のホール76aが内側環状溝78の経路に凹設されることにより、摺動部44のみならず、自転阻止機構76における潤滑油の流動性をも高めることができるため、圧縮機1の潤滑性能、耐久性及び圧縮効率を更に向上することができる。
In this way, by utilizing the revolving orbiting motion of the movable scroll 26, the lubricating oil is smoothly taken into the sliding portion 44 and the fluidity of the lubricating oil in the sliding portion 44 is increased, whereby the inner annular groove 78 is formed in the movable scroll 26. The lubrication performance, durability, and compression efficiency of the compressor 1 can be improved with a simple configuration that is simply provided at a predetermined position on the back surface 26a.
Further, since the hole 76a of the rotation prevention mechanism 76 is recessed in the path of the inner annular groove 78, not only the sliding portion 44 but also the fluidity of the lubricating oil in the rotation prevention mechanism 76 can be improved. The lubricating performance, durability and compression efficiency of the compressor 1 can be further improved.
<実施例2>
 図5に示すように、本実施例の場合には、背面26aの周方向に沿って外側環状溝84が背面26aと略同心円状に凹設されている。外側環状溝84は内側環状溝78と同様に矩形断面を有し、背面26aの径方向幅中央よりも径方向外側に形成されている。なお、実施例1と同じ構成については図面に同符号を付して説明を省略する。
 図6(a)~(d)に示す矢印方向の可動スクロール26の公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において外側環状溝84が外周空間72に露出し、外側環状溝84の露出領域86が形成される。そして、外周空間72の壁面に付着した潤滑油が各象限において矢印で示す方向に露出領域86に順次流入して取り込まれ、摺動部44を放射状に広範囲に亘って潤滑する。
<Example 2>
As shown in FIG. 5, in the case of the present embodiment, the outer annular groove 84 is recessed substantially concentrically with the back surface 26a along the circumferential direction of the back surface 26a. The outer annular groove 84 has a rectangular cross section like the inner annular groove 78, and is formed radially outward from the radial center of the back surface 26a. In addition, about the same structure as Example 1, the same code | symbol is attached | subjected to drawing and description is abbreviate | omitted.
6A to 6D, the outer annular groove 84 in each quadrant of the first quadrant to the fourth quadrant of the orthogonal coordinate system formed on the revolution swivel plane as the movable scroll 26 revolves in the direction of the arrow shown in FIGS. Is exposed to the outer peripheral space 72, and an exposed region 86 of the outer annular groove 84 is formed. Then, the lubricating oil adhering to the wall surface of the outer peripheral space 72 is sequentially introduced and taken into the exposed region 86 in the directions indicated by the arrows in each quadrant, and the sliding portion 44 is lubricated radially over a wide range.
 露出領域86も、露出領域80と同様に、外側環状溝84の全周長さにおける1/5以上、且つ1/2以下程度の領域(例えば図6では全周長さの1/4程度の領域)であり、各象限において互いにオーバーラップするのが好ましい。
 図7に示すように、各象限において露出領域86を確保するために、外側環状溝84の外周半径Rog、スラスト面42aの外周半径Roth、及び、可動スクロール26の旋回半径Rtにおいて少なくとも以下の関係式(2)が成立する。
Similarly to the exposed region 80, the exposed region 86 is also a region that is about 1/5 or more and 1/2 or less of the entire circumferential length of the outer annular groove 84 (for example, about 1/4 of the entire circumferential length in FIG. 6). Region) and preferably overlap each other in each quadrant.
As shown in FIG. 7, in order to secure the exposed region 86 in each quadrant, at least the following relationship among the outer peripheral radius Rog of the outer annular groove 84, the outer peripheral radius Roth of the thrust surface 42 a, and the turning radius Rt of the movable scroll 26. Formula (2) is materialized.
 Rog>Roth-Rt   (2)
 なお、外周半径Rogは可動スクロール26の径方向中心線Lmsから外側環状溝84の外周縁88までの距離、外周半径Rothは可動スクロール26の旋回中心線Loからスラスト面42aの外周縁74までの距離、旋回半径Rtは径方向中心線Lmsから旋回中心線Loまでの距離である。このように、外側環状溝84は、外側環状溝84の外周半径Rogがスラスト面42aの外周半径Rothから可動スクロール26の旋回半径Rtを差し引いた値よりも大きくなるように背面26aの所定位置に形成される。
Log> Roth-Rt (2)
The outer peripheral radius Rog is the distance from the radial center line Lms of the movable scroll 26 to the outer peripheral edge 88 of the outer annular groove 84, and the outer peripheral radius Roth is from the turning center line Lo of the movable scroll 26 to the outer peripheral edge 74 of the thrust surface 42a. The distance and the turning radius Rt are distances from the radial center line Lms to the turning center line Lo. Thus, the outer annular groove 84 is positioned at a predetermined position on the back surface 26a so that the outer peripheral radius Rog of the outer annular groove 84 is larger than the value obtained by subtracting the turning radius Rt of the movable scroll 26 from the outer peripheral radius Roth of the thrust surface 42a. It is formed.
 以上のように本実施例では、可動スクロール26の公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において外側環状溝84が外周空間72に露出する。これにより、外周空間72の潤滑油を外側環状溝84を介してスラスト面42aの外周縁74、すなわち摺動部44の径方向外側から摺動部44に順次取り込むことができる。また、摺動部44に摺動部44の径方向外側から可動スクロール26の旋回中心を中心とした放射状に広範囲に亘って油膜を形成することができるため、圧縮機1の起動時には摺動部44に潤滑油を迅速に供給することができる。 As described above, in this embodiment, the outer annular groove 84 is formed in the outer circumferential space 72 in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll 26 as the revolution turns. Exposed. Accordingly, the lubricating oil in the outer peripheral space 72 can be sequentially taken into the sliding portion 44 from the outer peripheral edge 74 of the thrust surface 42 a, that is, from the radially outer side of the sliding portion 44 through the outer annular groove 84. Further, since an oil film can be formed on the sliding portion 44 in a wide range radially from the outer side in the radial direction of the sliding portion 44 around the turning center of the movable scroll 26, the sliding portion is activated when the compressor 1 is started. Lubricating oil can be quickly supplied to 44.
 また、露出領域86を各象限において互いにオーバーラップするように形成することにより、可動スクロール26の公転旋回中に第1象限~第4象限において順に連なるようにして外側環状溝84が外周空間72に露出するため、外周空間72の潤滑油を外側環状溝84を介して摺動部44に連続的に取り込むことが可能である。
 また、実施例1の場合と同様に、自転阻止機構76における潤滑油の流動性を高めることもでき、外側環状溝84を可動スクロール26の背面26aの所定位置に設けるだけの簡単な構成で、圧縮機1全体における潤滑油の流動性を高め、ひいては圧縮機1の潤滑性能、耐久性及び圧縮効率を向上することができる。
Further, by forming the exposed region 86 so as to overlap each other in each quadrant, the outer annular groove 84 is formed in the outer peripheral space 72 so as to be sequentially connected in the first quadrant to the fourth quadrant during the revolution of the movable scroll 26. Since it is exposed, the lubricating oil in the outer peripheral space 72 can be continuously taken into the sliding portion 44 via the outer annular groove 84.
Further, as in the case of the first embodiment, the fluidity of the lubricating oil in the rotation prevention mechanism 76 can be increased, and the outer annular groove 84 is simply configured to be provided at a predetermined position on the back surface 26a of the movable scroll 26. The fluidity of the lubricating oil in the entire compressor 1 can be improved, and as a result, the lubricating performance, durability, and compression efficiency of the compressor 1 can be improved.
<実施例3>
 図8に示すように、本実施例の場合には、背面26aの周方向に沿って内側環状溝78及び外側環状溝84が背面26aと略同心円状に凹設されている。なお、実施例1及び2と同じ構成については図面に同符号を付して説明を省略する。
 図9(a)~(d)に示す矢印方向の可動スクロール26の公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において、内側環状溝78が内周空間68に露出するとともに外側環状溝84は外周空間72に露出し、露出領域80,86が形成される。そして、各象限において矢印で示す方向に、内周空間68及び外周空間72の壁面に付着した潤滑油がそれぞれ露出領域80,86に順次流入して取り込まれ、摺動部44を放射状に広範囲に亘って潤滑する。
<Example 3>
As shown in FIG. 8, in the present embodiment, an inner annular groove 78 and an outer annular groove 84 are recessed substantially concentrically with the back surface 26a along the circumferential direction of the back surface 26a. In addition, about the same structure as Example 1 and 2, the same code | symbol is attached | subjected to drawing, and description is abbreviate | omitted.
In accordance with the revolution of the movable scroll 26 in the direction of the arrow shown in FIGS. 9A to 9D, the inner annular groove is formed in each quadrant of the first quadrant to the fourth quadrant of the orthogonal coordinate system formed on the revolution swivel surface. 78 is exposed to the inner peripheral space 68 and the outer annular groove 84 is exposed to the outer peripheral space 72 to form exposed regions 80 and 86. Then, in each quadrant, the lubricating oil adhering to the wall surfaces of the inner peripheral space 68 and the outer peripheral space 72 sequentially flows into the exposed regions 80 and 86 and is taken in in the directions indicated by the arrows, and the sliding portion 44 is radially spread over a wide range. Lubricate over.
 図10に示すように、各象限において露出領域80,86を確保するために、外側環状溝84前述した関係式(1),(2)の両方が少なくとも成立する背面26aの位置に内側環状溝78及び外側環状溝84が形成される。
 以上のように本実施例では、可動スクロール26の公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において内側環状溝78,外側環状溝84がそれぞれ内周空間68,外周空間72に露出する。これにより、内周空間68,外周空間72の潤滑油をそれぞれ内側環状溝78,外側環状溝84を介してスラスト面42aの内周縁70及び外周縁74、すなわち摺動部44の径方向内外から摺動部44に順次取り込むことができる。従って、摺動部44に摺動部44の径方向内外から可動スクロール26の旋回中心を中心とした放射状により一層広範囲に亘って油膜を形成することができるため、圧縮機1の起動時には摺動部44により一層迅速に潤滑油を供給することができる。
As shown in FIG. 10, in order to secure the exposed regions 80 and 86 in each quadrant, the outer annular groove 84 is located at the position of the back surface 26a where at least both of the relational expressions (1) and (2) described above are established. 78 and an outer annular groove 84 are formed.
As described above, in this embodiment, the inner annular groove 78 and the outer annular groove 84 in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll 26 as the revolution turns. Are exposed to the inner space 68 and the outer space 72, respectively. As a result, the lubricating oil in the inner circumferential space 68 and the outer circumferential space 72 is passed from the inner and outer peripheral edges 70 and 74 of the thrust surface 42a through the inner annular groove 78 and the outer annular groove 84, that is, from the inside and outside in the radial direction of the sliding portion 44. The sliding portion 44 can be sequentially loaded. Accordingly, an oil film can be formed on the sliding portion 44 over a wider range from the inside and outside of the sliding portion 44 in the radial direction centering on the turning center of the movable scroll 26. Lubricating oil can be supplied more rapidly by the portion 44.
 また、露出領域80,86を各象限において互いにオーバーラップするように形成することにより、可動スクロール26の公転旋回中に第1象限~第4象限において順に連なるようにして露出領域80,86が形成されるため、摺動部44への潤滑油の連続取り込みが可能である。
 また、自転阻止機構76における潤滑油の流動性を高めることもでき、内側環状溝78及び外側環状溝84を可動スクロール26の背面26aの所定位置に設けるだけの簡単な構成で、圧縮機1全体における潤滑油の流動性を高め、ひいては圧縮機1の潤滑性能、耐久性及び圧縮効率をより一層向上することができる。
Further, by forming the exposed regions 80 and 86 so as to overlap each other in each quadrant, the exposed regions 80 and 86 are formed so as to be sequentially connected in the first quadrant to the fourth quadrant during the revolution of the movable scroll 26. As a result, the lubricating oil can be continuously taken into the sliding portion 44.
In addition, the fluidity of the lubricating oil in the rotation prevention mechanism 76 can be improved, and the entire compressor 1 can be simply configured by simply providing the inner annular groove 78 and the outer annular groove 84 at predetermined positions on the back surface 26a of the movable scroll 26. Thus, the fluidity of the lubricating oil can be improved, and the lubricating performance, durability and compression efficiency of the compressor 1 can be further improved.
 本発明は、前述の実施形態に制約されるものではなく種々の変形が可能である。
 例えば、内側環状溝78や外側環状溝84を背面26aではなくスラスト面42aに設けても良い。また、スラストプレート42を有さないタイプのスクロール型圧縮機の場合には、フロントハウジング4の台座部4cにスラスト面が形成されるため、内側環状溝78や外側環状溝84を台座部4cに形成しても良い。これらの場合であっても圧縮機1全体における潤滑油の流動性を高め、圧縮機1の潤滑性能、耐久性及び圧縮効率を向上することができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, the inner annular groove 78 and the outer annular groove 84 may be provided on the thrust surface 42a instead of the back surface 26a. In the case of a scroll type compressor that does not have the thrust plate 42, a thrust surface is formed on the pedestal portion 4c of the front housing 4. Therefore, the inner annular groove 78 and the outer annular groove 84 are formed in the pedestal portion 4c. It may be formed. Even in these cases, the fluidity of the lubricating oil in the entire compressor 1 can be improved, and the lubricating performance, durability, and compression efficiency of the compressor 1 can be improved.
 また、内側環状溝78及び外側環状溝84の断面形状は矩形に限らず、潤滑油を内周空間68及び外周空間72から取り込み易い形状、例えば図11(a)に示す台形断面、図11(b)に示す三角形断面、図11(c)に示す半円形断面、図11(d)に示す長円形断面等、種々の形状が考えられる。
 最後に、本発明は、横置き型のスクロール圧縮機のみならず、縦置き型にも適用可能であり、冷媒の膨張室が区画形成されるスクロール膨張機などのスクロール型流体機械全般に適用できることは勿論である。
Moreover, the cross-sectional shape of the inner annular groove 78 and the outer annular groove 84 is not limited to a rectangular shape, but a shape that allows easy intake of lubricating oil from the inner peripheral space 68 and the outer peripheral space 72, for example, a trapezoidal cross section shown in FIG. Various shapes such as a triangular cross section shown in b), a semicircular cross section shown in FIG. 11C, and an oval cross section shown in FIG.
Finally, the present invention can be applied not only to a horizontal type scroll compressor but also to a vertical type, and can be applied to all scroll type fluid machines such as a scroll expander in which an expansion chamber for refrigerant is formed. Of course.
  1  スクロール型圧縮機
  4  フロントハウジング(ハウジング)
 4c  台座部(支持部材)
  8  駆動軸
 24  固定スクロール
 26  可動スクロール
26a  背面
 28  圧縮室
 42  スラストプレート(支持部材)
42a  スラスト面
 44  摺動部
 60  吸入室
 68  内周空間(環状空間)
 70  内周縁(周縁)
 72  外周空間(環状空間)
 74  外周縁(周縁)
 76  自転阻止機構
76a  ホール
76b  ピン
 78  内側環状溝(環状溝)
 80  露出領域
 84  外側環状溝(環状溝)
 86  露出領域
1 Scroll compressor 4 Front housing (housing)
4c pedestal (supporting member)
8 Drive shaft 24 Fixed scroll 26 Movable scroll 26a Back surface 28 Compression chamber 42 Thrust plate (support member)
42a Thrust surface 44 Sliding part 60 Suction chamber 68 Inner peripheral space (annular space)
70 Inner periphery (periphery)
72 Peripheral space (annular space)
74 Outer periphery (periphery)
76 Rotation prevention mechanism 76a Hole 76b Pin 78 Inner annular groove (annular groove)
80 Exposed area 84 Outer annular groove (annular groove)
86 Exposed area

Claims (7)

  1.  潤滑油を含む作動流体の吸入室を有するハウジングと、
     前記ハウジングに固定された固定スクロールと、
     駆動軸により回転駆動されて前記固定スクロールに対し公転旋回することにより、前記吸入室から吸入された前記作動流体の圧縮室を形成する可動スクロールと、
     前記可動スクロールを公転旋回可能に支持し、前記可動スクロールの環状の背面から前記駆動軸のスラスト荷重を受け、前記背面とともに摺動部を形成する環状のスラスト面を有した支持部材と、
     前記吸入室に連通されるとともに前記スラスト面の周縁に面し、前記ハウジング内の周方向に沿って区画された環状空間と、
     前記背面及び前記スラスト面の少なくとも何れか一方にこれらの周方向に沿って凹設された環状溝と
    を備え、
     前記可動スクロールの公転旋回に伴い、その公転旋回面に形成される直交座標系の第1象限~第4象限の各象限において前記環状溝が前記環状空間に露出することを特徴とするスクロール型圧縮機。
    A housing having a suction chamber for a working fluid containing lubricating oil;
    A fixed scroll fixed to the housing;
    A movable scroll that is rotated by a drive shaft and revolves around the fixed scroll to form a compression chamber for the working fluid sucked from the suction chamber;
    A support member having an annular thrust surface that supports the movable scroll so as to be capable of revolving, receives a thrust load of the drive shaft from an annular rear surface of the movable scroll, and forms a sliding portion together with the rear surface;
    An annular space that communicates with the suction chamber and faces the periphery of the thrust surface and is partitioned along the circumferential direction in the housing;
    An annular groove recessed along the circumferential direction in at least one of the back surface and the thrust surface;
    A scroll-type compression wherein the annular groove is exposed to the annular space in each quadrant of the first to fourth quadrants of the orthogonal coordinate system formed on the revolution turning surface of the movable scroll. Machine.
  2.  前記環状空間に露出する前記環状溝の露出領域は、前記各象限において互いにオーバーラップしていることを特徴とする請求項1に記載のスクロール型圧縮機。 2. The scroll compressor according to claim 1, wherein exposed regions of the annular groove exposed to the annular space overlap each other in the quadrants.
  3.  前記背面及び前記スラスト面の何れか一方に凹設されたホールと、前記背面及び前記スラスト面の何れか他方から凸設されるとともに前記ホールに遊嵌されるピンとからなる前記可動スクロールの自転阻止機構を更に備え、
     前記ホールは前記環状溝の経路に凹設されることを特徴とする請求項1に記載のスクロール型圧縮機。
    Rotation prevention of the movable scroll comprising a hole recessed in one of the back surface and the thrust surface and a pin protruding from the other of the back surface and the thrust surface and loosely fitted in the hole A mechanism,
    The scroll compressor according to claim 1, wherein the hole is recessed in the path of the annular groove.
  4.  前記環状空間は、前記スラスト面の内周縁に面して区画される内周空間を含み、
     前記環状溝は、前記各象限において前記内周空間に露出する内側環状溝を含むことを特徴とする請求項1から3の何れか一項に記載のスクロール型圧縮機。
    The annular space includes an inner circumferential space defined facing the inner circumferential edge of the thrust surface,
    The scroll compressor according to any one of claims 1 to 3, wherein the annular groove includes an inner annular groove exposed in the inner space in each quadrant.
  5.  前記内側環状溝の内周半径は、前記スラスト面の内周半径と前記可動スクロールの旋回半径との和よりも小さいことを特徴とする請求項4に記載のスクロール型圧縮機。 The scroll compressor according to claim 4, wherein an inner peripheral radius of the inner annular groove is smaller than a sum of an inner peripheral radius of the thrust surface and a turning radius of the movable scroll.
  6.  前記環状空間は、前記スラスト面の外周縁に面して区画される外周空間を含み、
     前記環状溝は、前記各象限において前記外周空間に露出する外側環状溝を含むことを特徴とする請求項1から5の何れか一項に記載のスクロール型圧縮機。
    The annular space includes an outer peripheral space defined facing the outer peripheral edge of the thrust surface,
    The scroll compressor according to any one of claims 1 to 5, wherein the annular groove includes an outer annular groove that is exposed to the outer peripheral space in each quadrant.
  7.  前記外側環状溝の外周半径は、前記スラスト面の外周半径から前記可動スクロールの旋回半径を差し引いた値よりも大きいことを特徴とする請求項6に記載のスクロール型圧縮機。 The scroll compressor according to claim 6, wherein an outer peripheral radius of the outer annular groove is larger than a value obtained by subtracting a turning radius of the movable scroll from an outer peripheral radius of the thrust surface.
PCT/JP2014/059968 2013-04-08 2014-04-04 Scroll-type compressor WO2014168084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480019362.3A CN105074221B (en) 2013-04-08 2014-04-04 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-080375 2013-04-08
JP2013080375A JP6118159B2 (en) 2013-04-08 2013-04-08 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2014168084A1 true WO2014168084A1 (en) 2014-10-16

Family

ID=51689493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059968 WO2014168084A1 (en) 2013-04-08 2014-04-04 Scroll-type compressor

Country Status (3)

Country Link
JP (1) JP6118159B2 (en)
CN (1) CN105074221B (en)
WO (1) WO2014168084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062430A1 (en) * 2017-01-27 2018-08-03 Danfoss Commercial Compressors SPIRAL COMPRESSOR WITH LUBRICATION SYSTEM FOR ORBITAL DISCS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200062A (en) * 2015-04-10 2016-12-01 サンデン・オートモーティブコンポーネント株式会社 Scroll Type Fluid Machine
JP6704751B2 (en) * 2016-02-19 2020-06-03 三菱重工サーマルシステムズ株式会社 Scroll compressor
JP2018013210A (en) * 2016-07-22 2018-01-25 サンデン・オートモーティブコンポーネント株式会社 Seal structure of housing and fluid machine including the same
CN107906002B (en) * 2017-12-15 2024-02-20 山东元清机电科技有限公司 Rotation mechanism is prevented to compressor
KR20230132668A (en) * 2022-03-08 2023-09-18 삼성전자주식회사 Scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261178A (en) * 1995-03-22 1996-10-08 Daikin Ind Ltd Scroll type fluid machine
JPH094576A (en) * 1995-06-19 1997-01-07 Hitachi Ltd Scroll compressor
JP2006316677A (en) * 2005-05-11 2006-11-24 Denso Corp Scroll type compressor
JP2011174453A (en) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd Scroll compressor
WO2012144489A1 (en) * 2011-04-19 2012-10-26 サンデン株式会社 Scroll fluid machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413060B1 (en) * 2001-01-23 2002-07-02 Rechi Precision Co., Ltd. Oil passage for scroll compressor
CN201953656U (en) * 2011-03-16 2011-08-31 南京奥特佳冷机有限公司 Annular-pin structure type scroll compressor with lubrication groove on end face of movable disc

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261178A (en) * 1995-03-22 1996-10-08 Daikin Ind Ltd Scroll type fluid machine
JPH094576A (en) * 1995-06-19 1997-01-07 Hitachi Ltd Scroll compressor
JP2006316677A (en) * 2005-05-11 2006-11-24 Denso Corp Scroll type compressor
JP2011174453A (en) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd Scroll compressor
WO2012144489A1 (en) * 2011-04-19 2012-10-26 サンデン株式会社 Scroll fluid machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062430A1 (en) * 2017-01-27 2018-08-03 Danfoss Commercial Compressors SPIRAL COMPRESSOR WITH LUBRICATION SYSTEM FOR ORBITAL DISCS
US10746174B2 (en) 2017-01-27 2020-08-18 Danfoss Commercial Compressors Scroll compressor with an orbital disc lubrication system

Also Published As

Publication number Publication date
CN105074221A (en) 2015-11-18
CN105074221B (en) 2016-10-26
JP2014202161A (en) 2014-10-27
JP6118159B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2014168084A1 (en) Scroll-type compressor
WO2019044867A1 (en) Scroll-type compressor
JP6554926B2 (en) Scroll compressor
CN106050656B (en) Vortex equipment
WO2013011658A1 (en) Compressor
JP6633305B2 (en) Scroll compressor
CN103459850A (en) Scroll compressor
JP2007247567A (en) Scroll compressor
JP2020148139A (en) Open type compressor
JP2019056336A (en) Scroll type fluid machine
JP6917845B2 (en) Scroll type fluid machine
KR20180028303A (en) Swash plate type compressure
EP3315781B1 (en) Open type compressor
JP7089957B2 (en) Open compressor
WO2018030066A1 (en) Fluid machine
WO2018030065A1 (en) Scroll-type fluid machine
JP6758989B2 (en) Open refrigerant compressor
JP5285339B2 (en) Scroll compressor
JP6004667B2 (en) Compressor
JP2018025150A (en) Scroll Type Fluid Machine
WO2017221835A1 (en) Open-type compressor
JP2007182774A (en) Scroll type fluid machine
JP2005155578A (en) Scroll fluid machinery
JP4547352B2 (en) Fluid machinery
JP2005307948A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019362.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782426

Country of ref document: EP

Kind code of ref document: A1