WO2014167851A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2014167851A1
WO2014167851A1 PCT/JP2014/002035 JP2014002035W WO2014167851A1 WO 2014167851 A1 WO2014167851 A1 WO 2014167851A1 JP 2014002035 W JP2014002035 W JP 2014002035W WO 2014167851 A1 WO2014167851 A1 WO 2014167851A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
command
motor
command response
stiffness
Prior art date
Application number
PCT/JP2014/002035
Other languages
English (en)
French (fr)
Inventor
裕介 今田
鈴木 健一
西園 勝
弘 藤原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014532183A priority Critical patent/JP5810283B2/ja
Priority to KR1020157028112A priority patent/KR101597085B1/ko
Priority to US14/782,596 priority patent/US9423786B2/en
Priority to EP14783045.9A priority patent/EP2958229B1/en
Priority to CN201480032976.5A priority patent/CN105284045B/zh
Publication of WO2014167851A1 publication Critical patent/WO2014167851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/10Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for preventing overspeed or under speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/20Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for controlling one motor used for different sequential operations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the present invention relates to a motor drive device that controls a servo motor, and more particularly to servo adjustment.
  • Embedded microcomputers include RISC microcomputers (Reduced Instruction Set Computer-Microcomputer) and DSPs (Digital Signal Processors). Examples of integrated circuits include FPGA (Field Programmable Gate Array) and SoC (System-on-a-Chip).
  • the motor drive device has a function to automatically adjust variously in addition to the basic function when driving the servo motor based on an external command.
  • the basic functions refer to the position, speed, current control, etc. for controlling the drive of the servo motor.
  • FIG. 19 is a block diagram of a conventional motor driving device.
  • the motor driving device 1002 has a basic function for controlling the driving of the motor 3.
  • the basic performance is realized by the following flow in which each block is connected by a solid line using a block surrounded by a single line.
  • the host device 1 transmits an external position command to the motor driving device 1002.
  • the external position command transmitted from the host device 1 is received by the command selection unit 21 of the motor drive device 1002.
  • the command selection unit 21 selects either one of an internal position command transmitted from the trial operation function 211 described later and an external position command transmitted from the host device 1.
  • the command selection unit 21 transmits either the internal position command or the external position command selected by the command selection unit 21 to the command response setting unit 22 as a post-selection position command.
  • the command response setting unit 22 performs a filter calculation process on the post-selection position command. After the filter calculation process is performed by the command response setting unit 22, the command response setting unit 22 transmits the result of the filter calculation process to the position / speed control unit 23 as a post-filter position command.
  • the position speed control unit 23 performs a feedback control calculation using the received post-filter position command and the motor position information transmitted from the encoder 4.
  • the feedback control calculation is represented by PID control (Proportional Integral Derivative Controller).
  • PID control Proportional Integral Derivative Controller
  • the load characteristic compensation unit 24 performs a scaling process corresponding to the total inertia on the torque command transmitted from the position / speed control unit 23.
  • the total inertia means inertia caused by the motor 3 and the load 5.
  • the load characteristic compensator 24 absorbs the difference in load inertia by performing the scaling process.
  • the load characteristic compensation unit 24 estimates the friction torque of the motor 3 and the load 5 from the motor position information transmitted from the encoder 4. The load characteristic compensation unit 24 adds the estimated friction torque in advance to generate a post-compensation torque command. The load characteristic compensation unit 24 transmits the generated post-compensation torque command to the resonance suppression unit 25.
  • Vibration may be caused by the resonance characteristics of the motor 3 and the load 5.
  • the resonance suppression unit 25 performs notch filter processing or low-pass filter processing for removing a specific frequency component from the compensated torque command so that vibration is not excited.
  • the resonance suppression unit 25 transmits the result of the notch filter process or the low-pass filter process to the motor 3 as a post-filter torque command.
  • the motor 3 is controlled through current control using the post-filter torque command transmitted from the resonance suppression unit 25 and a power circuit.
  • the motor 3 is controlled to output torque according to the received post-filter torque command.
  • the movement of the motor 3 is transmitted to the connected load 5 and encoder 4.
  • the movement of the motor 3 is fed back to the motor driving device 1002 as motor position information via the encoder 4.
  • the motor drive device 1002 has an automatic adjustment function.
  • the automatic adjustment function is realized by the following flow in which each block is connected by a broken line using a block surrounded by a double line.
  • the trial operation function 211 generates a reciprocating operation pattern inside the motor drive device 1002.
  • the reciprocating operation pattern is a certain amount of triangular wave having an acceleration / deceleration with a certain inclination.
  • the reciprocating operation pattern has positive and negative.
  • test run function 211 a command pattern is automatically calculated in real time by NC calculation processing built in the motor drive device 1002 by setting parameters from the outside.
  • the parameters from the outside are the movement amount, maximum speed, acceleration time, deceleration time, stop time, and the like.
  • the test run function 211 is a function that generates an internal position command at regular intervals.
  • test operation function 211 can also transmit additional information such that the command selection unit 21 selects the internal position command. In this way, if the additional information is transmitted, the operation of the command selection unit 21 can be designated from the test run function 211.
  • the command response setting function 221 determines the cutoff frequency of the command pre-filter that determines the responsiveness of the position command.
  • the command response setting function 221 is given one index called a stiffness value from the outside of the motor drive device 1002.
  • the command response setting function 221 determines the cutoff frequency of the command pre-filter from the given stiffness value and a table built in the motor drive device 1002.
  • the command response setting function 221 automatically sets one or a plurality of parameters of the command response setting unit 22 by receiving one or a plurality of command response indexes shown in the following form. To do. That is, there is a form in which a command response indicator is received, in which a finer frequency characteristic is indicated by a filter time constant of a first-order lag or a second-order lag, or an attenuation ratio. Alternatively, there is a form in which the command response indicator is received instructing a transient characteristic of time response such as a rise time, a delay time, and an overshoot amount. The command response setting function 221 automatically sets one or a plurality of parameters of the command response setting unit 22 so that the transmission / reception relationship with the command response setting unit 22 matches the command response index as much as possible.
  • the stiffness setting function 231 uses one parameter representing servo stiffness as an index.
  • the stiffness setting function 231 multiplies one parameter representing servo stiffness by a certain ratio and sets a speed proportional gain, a speed integral gain, and a position proportional gain in conjunction with each other.
  • the gain setting of the position / speed control unit may be determined from a table corresponding to the stiffness value.
  • the stiffness setting function 231 receives one or a plurality of stiffness indicators, and one of the position / speed control units 23 or the like so that the disturbance response of the position / velocity control unit 23 matches the stiffness index as much as possible. , Set multiple parameters automatically.
  • the load characteristic measurement function 241 includes a post-filter torque command transmitted to the motor 3, motor position information transmitted from the encoder 4, and a speed / Friction characteristics are automatically estimated from acceleration using least squares estimation.
  • the friction characteristics refer to total inertia including inertia due to the motor 3 and the load 5, etc., an eccentric load torque that always works constant, a dynamic friction torque that depends on the operation direction, a viscous friction torque that is proportional to the operation speed, and the like.
  • the load characteristic measuring function 241 reflects the estimated result on the load characteristic compensator 24 in real time. Therefore, whatever load 5 is connected, the load characteristic measurement function 241 has adaptive robustness that can obtain the same responsiveness specified by the command response indicator and the stiffness indicator.
  • the adaptive filter function 251 sets the parameters of the resonance suppression unit 25 so that the high-frequency component extracted from the motor speed is as close to 0 as possible by an adaptive algorithm using a recursive notch filter. Adjust automatically.
  • the adaptive filter function 251 has the following variations. That is, one of the variations extracts a vibration component from the torque command. Other variations extract the vibration component from the difference from the model response. Alternatively, other variations have a plurality of adaptive filters. Still other variations include not only the notch frequency but also automatic adjustment of width, depth, and Q value.
  • the adaptive filter function 251 extracts a vibration component caused by the resonance characteristics of the motor 3 and the load 5 by some method.
  • the adaptive filter function 251 automatically adjusts the filter parameter of the resonance suppression unit 25 by an adaptive algorithm that minimizes the difference from the reference input.
  • the oscillation detection function 26 extracts fluctuations from the motor position information transmitted from the encoder 4.
  • the oscillation detection function 26 detects the oscillation state of the motor 3 and the load 5 by comparing the extracted fluctuation amount with a threshold value, determining the duration, or the like.
  • the oscillation detection function 26 When the oscillation detection function 26 detects oscillation, the oscillation detection function 26 transmits oscillation detection information to the stiffness setting function 231 described above. In this way, the oscillation detection function 26 selects a stiffness value that reduces the frequency bandwidth of the feedback loop, and automatically suppresses oscillation.
  • the evaluation index measurement function 27 periodically measures and stores input / output data.
  • the evaluation index measurement function 27 is a function for calculating, displaying, and accumulating evaluation values from input / output data corresponding to the evaluation index.
  • the input / output data refers to a position command output from the command selection unit 21, a motor position output from the encoder 4, a torque command output from the load characteristic compensation unit 24, and the like.
  • the evaluation index means settling time, overshoot, torque fluctuation, and the like. An important aspect of this function is to compress data from a huge amount of motor control information that can be acquired in real time into a small number of more meaningful evaluation indexes.
  • Patent Document 8 discloses a method for adjusting a gain parameter value corresponding to a stiffness index and a target response characteristic adjustment gain corresponding to a command response index.
  • the motor drive device targeted by the present invention drives a motor.
  • the motor drive device includes a command response setting unit, a position / speed control unit, a load characteristic compensation unit, a servo adjustment unit, a command response setting function, a stiffness setting function, an evaluation index measurement function, and a storage unit. Prepare.
  • the command response setting unit receives the position command and performs filter processing to remove a specific frequency band. Further, the command response setting unit transmits the result of the filtering process as a post-filter position command.
  • the position speed control unit receives the post-filter position command and the motor position information transmitted from the encoder.
  • the position speed control unit generates a torque command such that the deviation between the post-filter position command and the motor position information is zero.
  • the position speed control unit transmits the generated torque command.
  • the load characteristic compensation unit receives the torque command and multiplies the estimated inertia value of the motor and the load applied to the motor.
  • the load characteristic compensation unit multiplies the estimated inertia value and then adds the estimated friction torque value of the load to generate a post-compensation torque command for driving the motor.
  • the load characteristic compensator transmits the generated post-compensation torque command.
  • the servo adjustment unit stores a plurality of command response indicators and a plurality of stiffness indicators. Further, the servo adjustment unit generates an evaluation index measurement pattern by combining each command response index and the stiffness index.
  • the command response setting function automatically sets the filter characteristics of the command response setting unit according to the command response index that constitutes the evaluation index measurement pattern transmitted from the servo adjustment unit.
  • the stiffness setting function automatically sets the parameters of the position / speed control unit according to the stiffness index that constitutes the evaluation index measurement pattern transmitted from the servo adjustment unit.
  • the evaluation index measurement function automatically measures an evaluation index derived from at least one of a position command, motor position information, and a compensated torque command.
  • the storage unit stores the results measured by the evaluation index measurement function.
  • the motor driving device drives the motor while sequentially changing the command response index and the stiffness index according to the generated evaluation index measurement pattern.
  • FIG. 1A is a block diagram of a motor drive device according to Embodiment 1 of the present invention.
  • FIG. 1B is a block diagram of another motor driving apparatus according to Embodiment 1 of the present invention.
  • FIG. 2A is a principal block diagram illustrating the command response setting unit 22 shown in FIGS. 1A and 1B.
  • FIG. 2B is a characteristic diagram illustrating the moving average filter step response 22a shown in FIG. 2A.
  • FIG. 2C is a characteristic diagram illustrating the temporary delay filter step response 22b shown in FIG. 2A.
  • FIG. 2D is a characteristic diagram illustrating the second-order filter frequency characteristic 22c shown in FIG. 2A.
  • FIG. 2E is a characteristic diagram for explaining the damping filter frequency characteristic 22d shown in FIG. 2A.
  • FIG. 3 is a principal block diagram illustrating the position / velocity control unit 23 shown in FIGS. 1A and 1B.
  • FIG. 4 is a principal block diagram for explaining another embodiment of the position / speed control unit 23 shown in FIGS. 1A and 1B.
  • FIG. 5 is a principal block diagram illustrating the load characteristic compensator 24 shown in FIGS. 1A and 1B.
  • FIG. 6 is a principal block diagram illustrating the command response setting function 221 shown in FIGS. 1A and 1B.
  • FIG. 7A is a principal block diagram illustrating the stiffness setting function 231 shown in FIGS. 1A and 1B.
  • FIG. 7B is an explanatory diagram illustrating the rigidity table 231a illustrated in FIG. 7A.
  • FIG. 8 is a principal block diagram illustrating the evaluation index measurement function 27 shown in FIGS. 1A and 1B.
  • FIG. 9A is a flowchart illustrating servo adjustment of the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 9B is a flowchart for explaining servo adjustment of the servo drive device according to the first exemplary embodiment of the present invention together with FIG. 9A.
  • FIG. 10A is an explanatory diagram illustrating an example in which the command response index range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 9A is a flowchart illustrating servo adjustment of the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 9B is a flowchart for explaining servo adjustment of the servo drive device according to the first exemplary embodiment of the present invention together with FIG. 9A.
  • FIG. 10A is an explanatory diagram illustrating an example in
  • FIG. 10B is an explanatory diagram illustrating an example in which the stiffness indicator range including the maximum stiffness is determined in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 11A is an explanatory diagram illustrating an example in which the command response indicator range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 11B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the stiffness indicator range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 12A is an explanatory diagram illustrating an example in which the command response indicator range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 11A is an explanatory diagram illustrating an example in which the command response indicator range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 12B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the minimum stiffness indicator of the stiffness indicator range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 13A is an explanatory diagram illustrating an example in which the command response indicator range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 13B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the minimum stiffness indicator of the stiffness indicator range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 13A is an explanatory diagram illustrating an example in which the command response indicator range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 13B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the minimum stiffness indicator of the stiffness indicator range
  • FIG. 14A is an explanatory diagram showing the measurement result of the evaluation index of the positioning settling time combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 14B is an explanatory diagram illustrating the measurement result of the evaluation index of the overshoot amount combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 14C is an explanatory diagram illustrating the measurement result of the evaluation index of the vibration level combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 14A is an explanatory diagram showing the measurement result of the evaluation index of the positioning settling time combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 14B is an explanatory diagram illustrating the measurement result of the
  • FIG. 15A is an explanatory diagram showing a tendency of an evaluation index of a combination pattern of positioning settling time in a stiffness index range and a command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 15B is an explanatory diagram illustrating the tendency of the evaluation index of the overshoot amount combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 15C is an explanatory diagram illustrating the tendency of the evaluation index of the vibration level combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 16 is an explanatory diagram showing a position deviation at the time of positioning settling according to the friction compensation value in the servo drive device according to the first embodiment of the present invention.
  • FIG. 17A is an explanatory diagram illustrating an example in which the command response indicator range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 17B is an explanatory diagram illustrating an example of determining the vibration suppression search stiffness index range from the maximum stiffness index of the stiffness index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 18 is an explanatory diagram showing the position deviation at the time of positioning settling according to the depth setting of the damping filter in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 19 is a block diagram of a conventional motor driving device.
  • the motor driving apparatus can easily obtain a result relating to servo adjustment even by an operator who does not have detailed knowledge or sufficient experience with respect to servo adjustment by the configuration described later.
  • the obtained results relating to servo adjustment satisfy requirements for different evaluation indexes for each application, and are more stable.
  • the conventional motor driving device had the following points to be improved. That is, in the conventional motor drive device, various automatic adjustment functions are individually optimized. Therefore, the conventional motor drive device is not matched to a series of servo adjustment flows.
  • the command response setting function 221 can shorten the settling time in the positioning control (PTP control: also referred to as Point To Point Control) as the command response index is increased.
  • the command response setting function 221 can reduce the tracking error in the trajectory control (CP control: Continuous Path Control) as the command response index is increased.
  • CP control Continuous Path Control
  • the command response setting function 221 is restricted by discretizing the external position command and setting the command resolution.
  • the command response setting function 221 may lower the command response index in consideration of the machine base vibration.
  • the worker is required to have an understanding of the host device and experience of operating an actual machine.
  • the rigidity setting function 231 improves the disturbance suppression characteristics as the rigidity index is increased. Therefore, the rigidity setting function 231 can reduce the overshoot amount in the PTP control as compared with the CP control.
  • the rigidity setting function 231 can reduce the tracking error in the CP control as compared with the PTP control.
  • how much the rigidity index can be increased greatly depends on the stability of the feedback control of the position / speed control unit 23. Therefore, in order to perform the optimum adjustment, the worker is required to have knowledge about the control theory.
  • the settings of the position / velocity control unit 23, the total inertia of the load characteristic compensation unit 24, and the resonance suppression unit 25 must be set in the correct order. If these settings are not set in the correct order, the stability of the feedback is impaired, and the responsiveness specified by the stiffness index may not be obtained. Alternatively, in the worst case, the motor 3 may become unstable and oscillate. That is, the operator is required to know not only the control theory but also the servo adjustment procedure.
  • the evaluation index measurement function 27 does not affect the basic function of controlling the motor. However, depending on the evaluation index, there are cases where certain restrictions are imposed on the setting of the command pattern and the basic function in order to obtain a correct measurement result.
  • positioning settling time in PTP control can be mentioned. The positioning settling time is defined as from the time when the external position command is stopped to the time when the motor position enters the positioning completion range.
  • the next external position command change may start before the motor position enters the positioning complete range.
  • the positioning settling time cannot be measured. That is, unless the operator understands the meaning of the evaluation index and the measurement method of the evaluation index measurement function, the result of servo adjustment cannot be determined correctly.
  • Patent Document 8 discloses a method for adjusting a gain parameter value corresponding to a stiffness index and a target response characteristic adjustment gain corresponding to a command response index.
  • the motor drive device requires different evaluation indices depending on the application used. It was difficult to obtain optimum adjustment results for all applications.
  • the gain parameter value is set to a level that does not cause mechanical vibration. Therefore, the gain parameter value does not always obtain an adjustment result with high stability as control while satisfying the required evaluation index.
  • the gain parameter value does not have a sufficient width in the range in which the set value is selected.
  • FIG. 1A is a block diagram of a motor drive device according to Embodiment 1 of the present invention.
  • FIG. 1B is a block diagram of another motor driving apparatus according to Embodiment 1 of the present invention.
  • the motor drive device 2 in Embodiment 1 of the present invention drives the motor 3.
  • the motor drive device 2 includes a command response setting unit 22, a position / speed control unit 23, a load characteristic compensation unit 24, a servo adjustment unit 6, a command response setting function 221, a stiffness setting function 231, and an evaluation index measurement function. 27 and a storage unit 28.
  • the command response setting unit 22 receives the position command and performs a filter process for removing a specific frequency band.
  • the command response setting unit 22 transmits the result of the filter process as a post-filter position command.
  • the position / speed control unit 23 receives the post-filter position command and the motor position information transmitted from the encoder 4.
  • the position speed control unit 23 generates a torque command such that the deviation between the post-filter position command and the motor position information is zero.
  • the position / speed control unit 23 transmits the generated torque command.
  • the load characteristic compensator 24 receives the torque command and multiplies the estimated inertia value of the motor 3 and the load 5 applied to the motor 3.
  • the load characteristic compensation unit 24 multiplies the estimated inertia value and then adds the estimated friction torque value of the load 5 to generate a compensated torque command for driving the motor 3.
  • the load characteristic compensation unit 24 transmits the generated post-compensation torque command.
  • Servo adjustment unit 6 stores a plurality of command response indicators 61 and a plurality of stiffness indicators 62. In addition, the servo adjustment unit 6 generates an evaluation index measurement pattern 63 by combining the command response index 61 and the stiffness index 62.
  • the command response setting function 221 automatically sets the filter characteristic of the command response setting unit in accordance with the command response index constituting the evaluation index measurement pattern 63 transmitted from the servo adjustment unit 6.
  • the stiffness setting function 231 automatically sets the parameters of the position / speed control unit 23 in accordance with the stiffness index 62 constituting the evaluation index measurement pattern 63 transmitted from the servo adjustment unit 6.
  • the evaluation index measurement function 27 automatically measures an evaluation index derived from at least one of a position command, motor position information, and a compensated torque command.
  • the storage unit 28 stores the results measured by the evaluation index measurement function 27.
  • the motor drive device 2 drives the motor 3 while sequentially changing the command response index 61 and the stiffness index 62 according to the generated evaluation index measurement pattern 63.
  • At least one of positioning settling time, overshoot amount, vibration level, and positioning completion output signal change count can be used.
  • Embodiment 1 of the present invention even a worker who does not have detailed knowledge about servo adjustment can perform servo adjustment with higher stability while satisfying different evaluation indexes for each application. Can do.
  • the difference between the motor drive device 2 shown in FIG. 1A and the motor drive device 2 shown in FIG. 1B is the difference in the position where the storage unit 28 is installed.
  • the motor drive unit 2 a having a basic function for driving the motor 3 and the storage unit 28 are configured by different structures.
  • a portion having a basic function for driving the motor 3 and a storage unit 28 are integrally formed.
  • the main features of the motor drive device 2 in the first embodiment are as follows. That is, transmission / reception with the outside regarding the automatic adjustment function is performed via the servo adjustment unit 6.
  • the servo adjustment unit 6 can control the automatic adjustment function.
  • the following components that are not necessarily required are omitted from the conventional motor driving apparatus 1002 shown in FIG. That is, the command selection unit 21, the resonance suppression unit 25, the oscillation detection function 26, the test operation function 211, the load characteristic measurement function 241 and the adaptive filter function 251 are omitted from the conventional motor driving device 1002.
  • the basic function of driving and controlling the motor 3 is realized by connecting the host device 1, the motor driving unit 2a, and the motor 3.
  • the motor drive unit 2 a includes a command response setting unit 22, a position / speed control unit 23, and a load characteristic compensation unit 24.
  • the motor drive device 2 has a basic performance for controlling the drive of the motor 3.
  • the basic performance is realized by the following flow in which each block is connected by a solid line using a block surrounded by a single line.
  • the host device 1 transmits an external position command to the motor drive device 2.
  • the external position command transmitted from the host device 1 is received by the command response setting unit 22 of the motor drive device 2.
  • the command response setting unit 22 may use an internal position command instead of the external position command.
  • FIG. 2A is a principal block diagram illustrating the command response setting unit 22 shown in FIGS. 1A and 1B.
  • FIG. 2B is a characteristic diagram illustrating the moving average filter step response 22a shown in FIG. 2A.
  • FIG. 2C is a characteristic diagram illustrating the temporary delay filter step response 22b shown in FIG. 2A.
  • FIG. 2D is a characteristic diagram illustrating the second-order filter frequency characteristic 22c shown in FIG. 2A.
  • FIG. 2E is a characteristic diagram for explaining the damping filter frequency characteristic 22d shown in FIG. 2A.
  • the command response setting unit 22 receives the external position command transmitted from the host device 1, and transmits the post-filter position command after going through the following steps.
  • the moving average filter step response 22a receives the external position command and the moving average number transmitted from the command response setting function 221 described later.
  • the moving average filter step response 22a performs a moving average process for the number of moving averages designated by the command response setting function 221.
  • the first-order lag filter step response 22b receives the result of the moving average process performed by the moving average filter step response 22a and the command response time constant transmitted from the command response setting function 221. To do.
  • the first-order lag filter step response 22b adds a step response characteristic to the command response time constant.
  • the second-order filter frequency characteristic 22c includes the result obtained from the first-order lag filter step response 22b and the second-order filter frequency and attenuation ratio transmitted from the command response setting function 221. Receive.
  • the secondary filter frequency characteristic 22c transmits a result defined by the secondary filter frequency and the attenuation ratio.
  • the vibration suppression filter frequency characteristic 22d receives the result obtained from the secondary filter frequency characteristic 22c and the vibration suppression frequency and depth transmitted from the command response setting function 221. .
  • the damping filter frequency characteristic 22d obtains a post-filter position command as a result of passing through the damping filter defined by the damping frequency and the depth.
  • the command response setting unit 22 transmits the post-filter position command obtained by the damping filter frequency characteristic 22d to the next step.
  • FIG. 3 is a principal block diagram illustrating the position / speed control unit 23 shown in FIGS. 1A and 1B.
  • the position / speed control unit 23 receives motor position information from the encoder 4 connected to the motor 3 to be driven together with the post-filter position command.
  • the position speed control unit 23 transmits a torque command in which the deviation between the post-filter position command and the motor position information is zero.
  • a position deviation that is a difference between the post-filter position command and the motor position information is calculated. Further, a position loop gain is transmitted to the position / speed control unit 23 from a stiffness setting function 231 described later.
  • the position / velocity control unit 23 performs position proportional processing 23a in which the position deviation is multiplied by the position loop gain designated by the stiffness setting function 231. In the position / speed control unit 23, a speed command is obtained as a result of the position proportional processing 23a.
  • the position / speed control unit 23 performs a realizable speed detection process 23e based on the difference of the motor position information.
  • the motor speed is obtained as a result of the speed detection process 23e.
  • the position speed control unit 23 calculates a speed deviation which is a difference between the speed command and the motor speed.
  • the speed loop gain and the speed loop integration time constant are transmitted from the rigidity setting function 231 to the position speed control unit 23.
  • the position speed control unit 23 performs a speed proportional process 23b using the calculated speed deviation and the speed loop gain designated by the rigidity setting function 231. Further, the position / speed control unit 23 performs speed integration processing 23c using the calculated speed deviation and the speed loop integration time constant. In the position / speed control unit 23, as a result of adding the values transmitted from the speed proportional process 23b and the speed integration process 23c, an internal torque command is obtained.
  • the torque filter time constant is transmitted from the stiffness setting function 231 to the position / speed controller 23.
  • the position / speed control unit 23 uses the torque filter time constant specified by the stiffness setting function 231 to perform torque filter processing 23d between the internal torque command and the first-order lag filter. In the position / speed controller 23, a torque command is obtained as a result of the torque filter process 23d. The position / speed control unit 23 transmits the obtained torque command to the next step.
  • the speed command may be obtained by adding the result of the speed feedforward process 23f that can be realized based on the difference between the post-filter position commands.
  • FIG. 4 is a principal block diagram for explaining another embodiment of the position / speed control unit 23 shown in FIGS. 1A and 1B.
  • the position / velocity control unit 123 simultaneously generates the following three commands that can be realized by performing feedforward command generation processing by combining the first-order difference or second-order difference after filtering and the filter processing. Is done.
  • the first generated command is a feedforward position command received by the position proportional process 23a.
  • the second generated command is a feedforward speed command received by the speed feedforward process 23f.
  • the third generated command is a feedforward torque command received by the torque feedforward process 23g.
  • the position speed control unit 123 receives the motor position information transmitted from the encoder 4 connected to the motor 3 to be driven.
  • the position / velocity control unit 123 calculates a position deviation that is a difference from the feedforward position command.
  • a position loop gain is transmitted to the position / velocity control unit 123 from a stiffness setting function 231 described later.
  • the position / velocity control unit 123 performs position proportional processing 23a in which the calculated position deviation is multiplied by the position loop gain designated by the stiffness setting function 231.
  • a speed command is obtained as a result of the position proportional processing 23a.
  • the position / speed controller 123 adds the speed command to the value transmitted by the speed feedforward process 23f that receives the feedforward speed command.
  • the motor speed is obtained from the difference in the motor position information through the realizable speed detection processing 23e.
  • the position speed control unit 123 calculates a speed deviation which is a difference between the speed command and the motor speed.
  • the speed loop gain and the speed loop integration time constant are transmitted from the stiffness setting function 231 to the position speed control unit 123.
  • the position speed control unit 123 performs a speed proportional process 23b using the calculated speed deviation and the speed loop gain designated by the stiffness setting function 231. Further, the position / speed control unit 123 performs speed integration processing 23c using the calculated speed deviation and the speed loop integration time constant. In the position / speed control unit 123, as a result of adding the values transmitted from the speed proportional process 23b and the speed integration process 23c, an internal torque command is obtained.
  • the position / speed controller 123 adds the internal torque command to the value transmitted by the torque feedforward process 23g that receives the feedforward torque command.
  • a torque filter time constant is transmitted from the stiffness setting function 231 to the position speed control unit 123.
  • a torque command is obtained as a result of the torque filter process 23d. The position / speed control unit 123 transmits the obtained torque command to the next step.
  • the position / speed control unit 123 can completely follow the motor position with respect to the post-filter position command in an ideal state without considering the influence of disturbance torque. .
  • the motor drive device 2 can obtain two control elements that can be set independently of each other. One is that a command response indicator by a command response setting function 221 described later can freely control the command response. The other is that a stiffness indicator by a stiffness setting function 231 described later can freely control the disturbance response.
  • FIG. 5 is a principal block diagram illustrating the load characteristic compensation unit 24 shown in FIGS. 1A and 1B.
  • an inertia compensation process 24a is performed on the torque command.
  • the inertia compensation process 24a is a process in which the torque command is multiplied by an estimated inertia value specified by a preset load characteristic.
  • the load characteristic compensation unit 24 can improve the responsiveness and reduce the difference in response depending on the operation direction or speed by performing friction compensation within a conceivable range as in a specific example described later. That is, as the first friction compensation, there is an offset load compensation process 24b in which an offset load estimated value specified by the load characteristic is added to the torque command. As the second friction compensation, there is a dynamic friction compensation process 24c. The dynamic friction compensation process 24 c calculates the motor speed from the motor position information transmitted from the encoder 4. The dynamic friction compensation process 24c adds or subtracts the estimated dynamic friction value to the torque command according to the motor speed direction.
  • the third friction compensation includes viscous friction compensation processing 24d. The viscous friction compensation process 24d multiplies the estimated value of the viscous friction coefficient and the motor speed and adds the result to the torque command.
  • the load characteristic compensator 24 transmits a post-compensation torque command as a result of performing the various load characteristic compensations described above.
  • the motor speed information used for dynamic friction compensation and viscous friction compensation follows the speed command as long as the position speed control unit 23 operates. Therefore, if the load characteristic compensator 24 uses a speed command calculated from a position command difference or the like instead of the motor speed information, the load characteristic compensation unit 24 is not affected by the load fluctuation. As a result, the load characteristic compensation unit 24 can also obtain a stable compensation value.
  • the motor 3 is supplied with voltage and current via current control and a power circuit. In accordance with the post-compensation torque command transmitted from the load characteristic compensation unit 24, the voltage and current supplied to the motor 3 are adjusted. Therefore, the output torque of the motor 3 changes according to the compensated torque command. As a result, the load 5 connected to the motor 3 operates.
  • vibration may be caused by the resonance characteristics of the motor 3 and the load 5 connected to the motor 3. Therefore, when the resonance suppression unit is attached to the motor drive device 2, the resonance suppression unit removes a specific frequency component from the post-compensation torque command transmitted from the load characteristic compensation unit 24. That is, by performing the filtering process by the resonance suppression unit, it is possible to prevent excitation of vibration that causes resonance.
  • the motor drive device 2 has an automatic adjustment function.
  • the automatic adjustment function is realized by the following flow in which each block is connected by a broken line using a block surrounded by a double line.
  • FIG. 6 is a principal block diagram illustrating the command response setting function 221 shown in FIGS. 1A and 1B.
  • the command response setting function 221 receives the following signal from the servo adjustment unit 6 as a command response index. That is, the command response index includes a moving average time and a time constant, and a vibration suppression frequency and a depth. Further, the command response indicator includes a signal indicating an opportunity to reflect the command response indicator received by the command response setting function 221 to the command response setting unit 22. A signal indicating an opportunity to reflect the command response index received by the command response setting function 221 to the command response setting unit 22 is referred to as a command response index reflection start signal.
  • the moving average time setting process 221a transmits the moving average number to the command response setting unit 22. If the moving average time is divided by the calculation cycle of the moving average filter step response 22a included in the command response setting unit 22, the moving average number is calculated.
  • the secondary filter setting process 221c fixes the attenuation ratio of the secondary filter to 1.
  • the secondary filter setting process 221c sets the frequency of the secondary filter to a value obtained by dividing the reciprocal of the time constant included in the command response index by 2 ⁇ .
  • the vibration suppression filter setting process 221d transmits the settings related to the vibration suppression frequency and depth included in the command response indicator to the vibration suppression filter 22d as they are.
  • the command response setting unit 22 includes a first-order lag filter step response 22b having a step response characteristic of a command response time constant.
  • the command response time constant of the first order lag filter step response 22b may not be calculated in the command response setting function 221.
  • the command response time constant of the first-order lag filter step response 22b may be set from a first-order lag smoothing time constant, which is a manually set parameter.
  • the command response index is set in various forms and combinations.
  • the command response indicator is simply set as a single value such as a command response cutoff frequency.
  • the command response index is set in such a manner as to indicate the entire frequency characteristics such as a first-order lag filter time constant, a second-order lag filter time constant, or an attenuation ratio.
  • the command response index is set in a form that indicates transient characteristics such as a rise time, a delay time, and an overshoot amount.
  • the command response setting unit 22 may automatically set the filter characteristics so that the transmission / reception relationship of the entire command response setting unit 22 matches the command response index as much as possible.
  • FIG. 7A is a principal block diagram illustrating the stiffness setting function 231 shown in FIGS. 1A and 1B.
  • FIG. 7B is an explanatory diagram illustrating the rigidity table 231a illustrated in FIG. 7A.
  • the stiffness setting function 231 receives a stiffness index from the servo adjustment unit 6.
  • the stiffness table 231a refers to the table stored in the stiffness table 231a and transmits a parameter set to the position / speed control unit 23.
  • the stiffness index is composed of 32 levels from 0 to 31.
  • a parameter set is transmitted such that the greater the stiffness index value, the higher the characteristic of suppressing the disturbance of the position / speed control unit 23.
  • the parameter set has a position loop gain Kp, a speed loop gain Kvp, a speed loop integration time constant Ti, and a torque filter time constant TF.
  • the stiffness index generally inputs a stiffness index related to the characteristic of suppressing disturbance, and automatically sets the parameter set of the position / speed control unit 23 so that the transmission / reception relationship of the position / speed control unit 23 matches the stiffness index as much as possible. You may make it set.
  • the stiffness index related to the characteristic for suppressing the disturbance includes an index related to the entire frequency response from the disturbance torque to the motor speed, and an index related to steady characteristics such as a speed fluctuation rate and jitter.
  • the internal parameter is uniquely determined from the stiffness index as illustrated here.
  • this process can use various automatic setting methods as shown below. That is, in this process, only the relationship between one internal parameter and the stiffness index is defined, and the other can be calculated from the ratio between the internal parameters. Further, in this step, not only the stiffness index but also the setting of the load characteristic compensation unit 24 can be used as input, and an internal parameter determined from a calculation formula including a plurality of parameters can be used.
  • FIG. 8 is a principal block diagram illustrating the evaluation index measurement function 27 shown in FIGS. 1A and 1B.
  • the evaluation index measurement function 27 receives the motor position information from the encoder 4, the external position command from the host device 1, and the post-compensation torque command from the load characteristic compensator 24.
  • the evaluation index measurement function 27 receives measurement threshold values such as a positioning completion range, a maximum torque limit, and a vibration detection level from the servo adjustment unit 6.
  • the evaluation index measurement function 27 transmits various evaluation indexes to the servo adjustment unit 6 in accordance with the control signal transmitted from the servo adjustment unit 6.
  • the control signal includes a measurement start signal, the number of measurements, a maximum stop time, and the like.
  • the evaluation index itself and the calculation method of the evaluation index are diverse. As an example, the calculation method of the evaluation index shown in the embodiment will be described below with reference to FIG.
  • the positioning settling time is a time until the position deviation falls within the positioning completion range transmitted from the servo adjustment unit 6 after the external position command transmitted from the host device 1 stops. it can.
  • the position deviation is a deviation between the external position command and the motor position information transmitted from the encoder 4.
  • the overshoot amount can be defined as the maximum position deviation and the minimum position deviation between tacts in the direction opposite to the direction of the external position command.
  • vibration level and vibration frequency there are several calculation methods for vibration level and vibration frequency.
  • the vibration level and the vibration frequency there is a method of extracting a vibration component based on the motor position information transmitted from the encoder 4.
  • the vibration level and the vibration frequency there is a method of extracting a vibration component in a specific frequency band from the post-compensation torque command transmitted from the load characteristic compensator 24. If the vibration detection level transmitted from the servo adjustment unit 6 is compared with the vibration level and vibration frequency, vibration detection is possible.
  • the positioning completion output signal is generally a signal that turns on when the position deviation enters the positioning completion range and turns off when the position deviation is outside the positioning completion range.
  • the positioning completion output signal is sometimes referred to as INP.
  • the INP can also use the number of INP signal changes between tacts as an index for positioning settling. The number of INP changes may be limited after the external position command stops.
  • the command speed and motor speed are calculated from the difference between the external position command transmitted from the host device 1 and the motor position information transmitted from the encoder 4.
  • the torque command can be obtained from the post-compensation torque command transmitted from the load characteristic compensation unit 24.
  • the position deviation is a deviation between the external position command and the motor position information transmitted from the encoder 4.
  • the value that is the maximum value or the minimum value between tacts is used as an evaluation index. If such an evaluation index is used, a considerable part of the operations occurring between the tacts can be grasped.
  • the effective value of the torque command can be obtained from the square root sum of squares between tacts.
  • the obtained torque command is a very useful evaluation index when selecting the capacity of the motor 3 or the motor drive device 2.
  • the evaluation index measurement function 27 is required to compress the information related to the enormous amount of motor control as a small number of evaluation indices that are more meaningful by a certain algorithm.
  • 9A and 9B are flowcharts for explaining the servo adjustment of the servo drive device according to the first exemplary embodiment of the present invention.
  • FIGS. 9A and 9B show steps for performing servo adjustment on the basic function and the automatic adjustment function of the motor drive device 2 shown in FIGS. 1A and 1B.
  • the servo adjustment step described later is performed in the servo adjustment unit 6 shown in FIGS. 1A and 1B.
  • the motor driving device 2 performs the following operations before driving the motor 3 while sequentially changing the command response index 61 and the stiffness index 62 according to the generated evaluation index measurement pattern 63. I do.
  • the first friction compensation measurement pattern is a combination of the command response index 61 having the minimum time constant and the stiffness index 62 corresponding to the command response index 61 having the minimum time constant. It is determined.
  • the motor 3 is driven while sequentially changing the rigidity index 62.
  • the positioning index is measured in all combinations, and the result is stored.
  • each first friction compensation measurement pattern a friction compensation value with the best positioning index is searched, and the result is stored.
  • the motor drive device 2 performs the following before driving the motor 3 while sequentially changing the command response index 61 and the stiffness index 62 according to the generated evaluation index measurement pattern 63. Perform the operation.
  • the second friction compensation measurement pattern is determined by combining the stiffness index 62 having the lowest responsiveness and the command response index 61 corresponding to the stiffness index 62 having the lowest responsiveness. Is done.
  • the motor 3 is driven while sequentially changing the command response index 61.
  • the positioning index is measured in all combinations, and the result is stored.
  • the motor drive device 2 performs the following before driving the motor 3 while sequentially changing the command response index 61 and the stiffness index 62 according to the generated evaluation index measurement pattern 63. Perform the operation.
  • the third friction compensation measurement pattern is determined by combining, in the evaluation index measurement pattern 63, the command response index 61 that minimizes the time constant and the stiffness index 62 that minimizes responsiveness.
  • the motor 3 is driven using the command response setting function 221 and the rigidity setting function 231.
  • the positioning index is measured, and the result is stored.
  • the friction compensation value with the best positioning index is searched for, and the result is stored.
  • the positioning index can be at least one of positioning settling time, overshoot amount, and number of positioning completion output signal changes.
  • the search for the friction compensation value is performed by increasing or decreasing the friction compensation value so that the positioning index is the best.
  • the search for the friction compensation value is performed by repeatedly increasing or decreasing the friction compensation value in a direction in which the positioning index is improved.
  • the direction in which the positioning index improves is not limited to the following contents.
  • the number of positioning completion output signal changes is preferably changed only once after the external position command becomes zero. The smaller the vibration level, the better the positioning index.
  • the motor drive device in Embodiment 1 of the present invention there is no overshoot in all patterns within the measurement range. Or according to the motor drive device in Embodiment 1 of this invention, the measurement result in which an overshoot is settled in the positioning completion range can be obtained. Therefore, the range of options when the operator selects the final adjustment result can be widened.
  • a stiffness indicator range for performing command response measurement and a command response indicator range are determined from the maximum stiffness determined in advance.
  • the determination of the maximum stiffness is performed as follows. First, a predetermined initial command response index is set in the command response setting unit 22. In addition, a predetermined initial stiffness index is set in the stiffness setting function 231. It is desirable that the initial command response index and the initial stiffness index have low responsiveness so that the motor 3 and the load 5 do not oscillate.
  • the operation pattern of the external position command transmitted from the host device 1 is determined. Based on the operation pattern, the load characteristic is measured. It is desirable that the operation pattern is set so that the acceleration, the maximum speed, or the torque command becomes large so that the load characteristic is appropriately measured. As load characteristics, estimated values of inertia, partial load, dynamic friction, and viscous friction coefficient are measured. Each estimated value measured is set in the inertia compensation process 24a, the partial weight compensation process 24b, the dynamic friction compensation process 24c, and the viscous friction compensation process 24d of the load characteristic compensation unit 24.
  • the load characteristics are measured for the determined operation pattern while increasing the stiffness index.
  • a low rigidity index with a certain margin secured is adopted from the rigidity index at which oscillation of the motor 3 and the load 5 occurs.
  • the stiffness index immediately before the stiffness index when the vibration level exceeds the limit value is employed as the maximum stiffness.
  • a filter process may be performed to remove a specific frequency component from the compensated torque command.
  • measurement of load characteristics is performed while using filter processing. That is, the stiffness index can be increased while utilizing the filter processing.
  • FIG. 10A is an explanatory diagram illustrating an example in which the command response index range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 10B is an explanatory diagram illustrating an example in which the stiffness indicator range including the maximum stiffness is determined in the servo drive device according to the first exemplary embodiment of the present invention.
  • the stiffness index range and the command response index range are determined from the maximum stiffness.
  • the command response index range ranges from the highest rigidity to the command response index No. 1 to command response index No.
  • Six patterns up to six are selected.
  • FIG. 10B six patterns from the highest rigidity to the five-stage lower rigidity index including the highest rigidity are selected as the rigidity index range.
  • 36 patterns are set by combining the selected stiffness index range and the selected command response index range.
  • step 4-2 described later for the set 36 patterns, the evaluation index is measured while the command response index and the stiffness index are sequentially changed. Also in step 2-2 and step 3-2 described later, the set stiffness index range and command response index range in the 36 patterns are used.
  • this combination is arranged so as to be arranged in a grid when the rigidity index is the vertical axis and the command response index is the horizontal axis.
  • the optimum value of the friction compensation value which is the dynamic friction compensation process 24c and the viscous friction compensation process 24d set before step 1, is searched.
  • step 2-1 the friction compensation search stiffness index range and the friction compensation search command when the optimum value of the friction compensation value is searched based on the stiffness index range and the command response index range determined in step 1 are determined.
  • a response index range is determined.
  • 11A to 13B show an example in which the friction compensation search stiffness indicator range and the friction compensation search command response indicator range are determined.
  • FIGS. 11A, 12A, and 13A are explanatory diagrams illustrating an example in which the command response index range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 11B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the stiffness indicator range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 12B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the minimum stiffness indicator of the stiffness indicator range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 13B is an explanatory diagram illustrating an example in which the friction compensation search stiffness indicator range is determined from the minimum stiffness indicator of the stiffness indicator range in the servo drive device according to the first exemplary embodiment of the present invention.
  • the stiffness index range is determined as it is as the friction compensation search stiffness index range.
  • the command response index No. 6 is determined as the friction compensation search command response indicator range.
  • step 2-2 which will be described later, for the set six patterns, the optimum value of the friction compensation value in each pattern is searched while being sequentially changed.
  • the smallest stiffness index in the stiffness index range is determined as the friction compensation search stiffness index range.
  • the command response index No. which is the command response index range. 1 to command response index No. 6 is determined as the friction compensation search command response index range as it is.
  • step 2-2 which will be described later, for the set six patterns, the optimum value of the friction compensation value in each pattern is searched while being sequentially changed.
  • the smallest stiffness index in the stiffness index range is determined as the friction compensation search stiffness index range.
  • the command response index No. 6 is determined as the friction compensation search command response indicator range.
  • the optimum value of the friction compensation value is searched for one pattern determined by the determined friction compensation search stiffness indicator range and the friction compensation search command response indicator range.
  • the friction compensation search stiffness indicator range is set narrower than the stiffness indicator range.
  • the friction compensation search command response index range is set narrower than the command response index range.
  • the optimum value of the friction compensation value in all the combination patterns may be searched using the stiffness index range as the friction compensation search stiffness index range and the command response index range as the friction compensation search command response index range. That is, the range in which the optimum value of the friction compensation value is searched may be expanded as necessary in consideration of the measurement time.
  • step 2-2 the friction compensation search stiffness index range and the friction compensation search command response determined in step 2-1 before actual operation is performed in step 2-3 described later.
  • the combination of the stiffness index and the command response index is changed according to the combination pattern with the index range.
  • the command response setting unit 22 is set according to the command response index by the command response setting function 221.
  • the position / speed control unit 23 is set according to the stiffness index by the stiffness setting function 231.
  • step 2-3 the motor is driven according to the operation pattern determined before step 1.
  • the evaluation index is measured by the evaluation index measurement function 27.
  • the evaluation index includes a settling time related to positioning accuracy, an overshoot amount, the number of INP changes, and the like. If the storage capacity of the storage unit 28 is not limited, it is preferable to collect as many evaluation indexes as possible.
  • the measured result is stored in the storage unit 28 together with the friction compensation value in association with the combination pattern of the stiffness index and the command response index.
  • the storage unit 28 may be located away from the basic function for driving the motor 3 as long as the measured result can be stored.
  • step 2-4 it is determined whether or not the search has been completed for the optimum friction compensation value. If the search is completed in the flowchart, the process proceeds to step 2-6. If the search is not completed in the flowchart, the process proceeds to step 2-5.
  • step 2-5 the estimated values of the dynamic friction and viscous friction coefficients are changed.
  • step 2-5 the dynamic friction compensation process 24c and the viscous friction compensation process 24d are reset.
  • the estimated value can be changed by adding or subtracting an operation amount obtained by integrating a constant magnification with respect to the load characteristic measured before Step 1 from the current estimated value. If the change is completed, the flowchart returns to step 2-3.
  • step 2-3 the motor is driven again according to the operation pattern determined before step 1.
  • the evaluation index is measured by the evaluation index measurement function 27.
  • step 2-6 whether the optimum search for the friction compensation value has been completed for all the combinations of the friction compensation search stiffness indicator range and the friction compensation search command response indicator range determined in step 2-1. Is determined. If the search is not complete, the flowchart returns to step 2-2. In step 2-2, the combination of the stiffness indicator and the command response indicator is changed again. If the full search has been completed, the flowchart proceeds to step 3-1.
  • step 2-1 the reason why the friction compensation search stiffness index range and the friction compensation search command response index range are determined through the process from FIG. 11A to FIG. 13B will be described with reference to FIGS. 14A to 15C. I will explain.
  • FIG. 14A is an explanatory diagram showing the measurement result of the evaluation index of the combination pattern of positioning settling time in the rigidity index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 14B is an explanatory diagram illustrating the measurement result of the evaluation index of the overshoot amount combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 14C is an explanatory diagram illustrating the measurement result of the evaluation index of the vibration level combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 15A is an explanatory diagram showing the tendency of the evaluation index of the combination pattern of positioning settling time in the rigidity index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 15B is an explanatory diagram illustrating the tendency of the evaluation index of the overshoot amount combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 15C is an explanatory diagram illustrating the tendency of the evaluation index of the vibration level combination pattern in the stiffness index range and the command response index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • 14A to 14C show actual measurement results of positioning settling time, overshoot amount, and vibration level in the combination pattern of the stiffness index range and the command response index range.
  • the numerical value indicating the positioning settling time means that the larger the numerical value, the longer the time from when the external position command is stopped until the position deviation is within the positioning completion range.
  • the numerical value indicating the overshoot amount means that the larger the numerical value, the larger the amount of overshooting the target position.
  • the numerical value indicating the vibration level means that the larger the numerical value, the larger the amplitude of the vibration component with respect to the position deviation.
  • the hatched portion means that a positioning completion output signal crack (INT crack) has occurred through the following process. That is, after the external position command is stopped, the position deviation is within the positioning completion range. Thereafter, since the target position has been exceeded, the position deviation is outside the positioning completion range. Thereafter, the position deviation is again within the positioning completion range.
  • INT crack positioning completion output signal crack
  • the occurrence of INP cracks can also be determined from the number of changes in the positioning completion output signal. If the number of changes in the positioning completion output signal is one after the external position command is stopped, there will be no INP cracking. If the number of changes in the positioning completion output signal is greater than one after the external position command stops, an INP crack has occurred.
  • FIG. 15A shows a tendency that can be understood from the measurement result of FIG. 14A with respect to the positioning settling time in the combination pattern of the stiffness index range and the command response index range.
  • the command response is dominant for the positioning settling time. Therefore, the positioning settling time becomes shorter as the command response index is larger, that is, the time constant is smaller. Regarding the positioning settling time, the influence of the stiffness index is small. However, the larger the stiffness index, the shorter the positioning settling time.
  • FIG. 15B shows a tendency that can be understood from the measurement result of FIG. 14B with respect to the overshoot amount in the combination pattern of the stiffness index range and the command response index range.
  • FIG. 15C shows a tendency that can be understood from the measurement result of FIG. 14C with respect to the vibration level in the combination pattern of the stiffness indicator range and the command response indicator range.
  • FIG. 16 is an explanatory diagram showing a position deviation during positioning settling according to the friction compensation value in the servo drive device according to the first embodiment of the present invention.
  • the position deviation becomes the state shown in (2).
  • the overshoot amount is just within the positioning completion range. Further, the positioning settling time is the shortest.
  • the position deviation becomes a state indicated by (3) or (4). In these cases, overshoot does not occur.
  • the positioning settling time is longer than the state indicated by the position deviation (2).
  • step 2-5 the change of the friction compensation value in step 2-5 can be performed as follows.
  • the friction compensation value is increased. Further, if the INP crack does not occur, the friction compensation value is decreased. This adjustment is repeated until a change occurs between the occurrence of the INP crack and the occurrence of the INP crack.
  • the following combinations (a) to (c) are used for the overshoot amount, the command response index, and the stiffness index. That is, this is a combination of three conditions: (a) the amount of overshoot is large, (b) the command response index is large, and (c) the stiffness index is small.
  • a combination with a large command response index and a small stiffness index can be selected. Therefore, the operator can obtain a highly stable adjustment result when controlling the servo motor without making the positioning settling time very long.
  • the motor drive device 2 performs the following before driving the motor 3 while sequentially changing the command response index 61 and the stiffness index 62 according to the generated evaluation index measurement pattern 63. Perform the operation.
  • the vibration suppression measurement pattern is determined by combining the stiffness indicator 62 having the highest responsiveness and the command response indicator 61 corresponding to the stiffness indicator 62 having the highest responsiveness in the evaluation indicator measurement pattern 63.
  • the motor 3 is driven using the command response setting function 221 and the rigidity setting function 231.
  • the vibration suppression measurement pattern the positioning index is measured, and the result is stored.
  • a vibration suppression frequency and a depth setting value that provide the best positioning index are searched, and the result is stored.
  • the positioning index can use at least one of positioning settling time, vibration level, and vibration frequency.
  • the search for the vibration suppression frequency and the depth setting value is performed by increasing or decreasing the depth setting value so that the positioning index is the best.
  • the search for the vibration suppression frequency and the depth setting value is performed by repeatedly increasing or decreasing the depth setting value in the direction in which the positioning index improves.
  • a measurement result with a low vibration level can be obtained in all patterns within the measurement range. Therefore, when the operator selects the final adjustment result, the range of options can be expanded.
  • step 3-1 the vibration suppression search stiffness index range when the optimum values of the vibration suppression frequency and the depth setting are searched based on the stiffness index range and the command response index range determined in step 1.
  • a vibration suppression search command response index range is determined.
  • the initial value of the vibration suppression frequency is set to a frequency at which the vibration suppression filter is disabled.
  • the initial value of the depth setting is set to a depth at which the output relationship with respect to the input of the damping filter is 0 times.
  • this approximate value may be used as the initial value.
  • FIG. 17A is an explanatory diagram illustrating an example in which the command response index range is determined from the maximum rigidity in the servo drive device according to the first exemplary embodiment of the present invention.
  • FIG. 17B is an explanatory diagram illustrating an example of determining the vibration suppression search stiffness index range from the maximum stiffness index of the stiffness index range in the servo drive device according to the first exemplary embodiment of the present invention.
  • the maximum stiffness index in the stiffness index range is determined as the vibration suppression search stiffness index range.
  • the command response index No. 6 is determined as the vibration suppression search command response index range.
  • the optimum values of the vibration suppression frequency and depth setting are searched for one pattern determined by the vibration suppression search stiffness index range and the vibration suppression search command response index range.
  • the vibration suppression search stiffness index range is set narrower than the stiffness index range.
  • the vibration suppression search command response index range is set narrower than the command response index range.
  • the optimum values of the vibration suppression frequency and depth setting in all combination patterns may be searched using the rigidity index range as the vibration suppression search rigidity index range and the command response index range as the vibration suppression search command response index range. . That is, the range in which the optimum values of the vibration suppression frequency and the depth setting are searched may be expanded as necessary in consideration of the measurement time.
  • step 3-2 before the actual operation is performed in step 3-3 described later, the vibration suppression search stiffness index range and the vibration suppression search command response determined in step 3-1.
  • the combination of the stiffness index and the command response index is changed according to the combination pattern with the index range.
  • the command response setting unit 22 is set according to the command response index by the command response setting function 221.
  • the position / speed control unit 23 is set according to the stiffness index by the stiffness setting function 231.
  • step 3-3 the motor is driven in accordance with the operation pattern determined before step 1.
  • the evaluation index is measured by the evaluation index measurement function 27.
  • the evaluation index includes a settling time related to positioning accuracy, an overshoot amount, the number of INP changes, a vibration level, a vibration frequency, and the like. If the storage capacity of the storage unit 28 is not limited, it is preferable to collect as many evaluation indexes as possible.
  • the measured result is stored in the storage unit 28 together with the vibration suppression frequency and the depth setting in association with the combination pattern of the stiffness index and the command response index.
  • the storage unit 28 may be located away from the basic function for driving the motor 3 as long as the measured result can be stored.
  • step 3-4 it is determined whether or not the search is completed for the optimum values of the vibration suppression frequency and the depth setting. If the search is complete, the flowchart proceeds to step 3-6. If the search is not complete, the flowchart proceeds to step 3-5.
  • step 3-5 the damping frequency and depth settings are changed.
  • the frequency characteristic of the damping filter 22d is changed via the damping filter setting process 221d.
  • the vibration suppression frequency may be changed by setting the vibration frequency of the evaluation index as the vibration suppression frequency.
  • the depth setting may be changed shallowly until the relationship of the output with respect to the input of the damping filter becomes 0 to 1 times. For example, the depth setting may be changed at a constant interval such as 0.1 or 0.01 times. If the change is completed, the flowchart returns to step 3-3. In step 3-3, the motor is driven again according to the operation pattern determined before step 1.
  • the evaluation index is measured by the evaluation index measurement function 27.
  • step 3-6 for all combinations of the vibration suppression search stiffness index range and the vibration suppression search command response index range determined in step 3-1, an optimal value search for the vibration suppression frequency and depth setting is performed. It is determined whether it is completed. If the search is not complete, the flowchart returns to step 3-2. In step 3-2, the combination of the stiffness index and the command response index is changed again. If the full search has been completed, the flowchart proceeds to step 4-1.
  • vibration suppression search stiffness index range and the vibration suppression search command response index range are determined in the step 3-1 through the process shown in FIGS. 17A and 17B will be described with reference to FIGS. 18 will be described.
  • the vibration level when the stiffness index and the command response index are changed is as described above with reference to FIGS. 14A to 15C. That is, the vibration level increases as the stiffness index increases. In addition, the vibration level is hardly affected by the command response index.
  • FIG. 18 is an explanatory diagram showing a position deviation at the time of positioning settling according to the depth setting of the vibration suppression filter in the servo drive device according to the first exemplary embodiment of the present invention.
  • the positioning settling time is longer than (2) due to the occurrence of the INP crack, as shown in (1) and (3).
  • step 3-5 the change of the damping filter depth setting in step 3-5 can be performed as follows.
  • the depth setting of the damping filter when the initial value of the depth setting of the damping filter is set to a depth at which the relationship of the output to the input of the damping filter is 0 times, the depth setting is gradually increased so as to approach 1 time. Shallow.
  • the depth setting is made shallower in the direction of decreasing the vibration level. Or deepen. This adjustment is repeated until the vibration level changes from decreasing to increasing.
  • the vibration suppression frequency may be set by extracting the vibration frequency from the vibration component of the position deviation and setting it as the vibration suppression frequency.
  • the damping frequency need only be set once at the beginning.
  • the setting of the vibration suppression frequency may be reset every time the depth setting is changed.
  • the following combinations (a) and (b) are used for the vibration level and the stiffness index. That is, it is a combination of two conditions: (a) the vibration level is large, and (b) the stiffness index is large.
  • steps 2-1 to 2-6 and steps 3-1 to 3-6 may be reversed.
  • evaluation indexes are measured for all combination patterns of the stiffness index range and the command response index range determined in step 1.
  • Step 4-1 before actually performing the operation in Step 4-2, the combination of the stiffness index and the command response index is changed based on the stiffness index range and the command response index range determined in Step 1. Is done.
  • the command response setting unit 22 is set according to the command response index by the command response setting function 221.
  • the position / speed control unit 23 is set according to the stiffness index by the stiffness setting function 231.
  • the estimated values of the dynamic friction and the viscous friction coefficient are changed based on the optimum value of the friction compensation value in the combination of the stiffness index and the command response index searched in Step 2-1 to Step 2-6.
  • the dynamic friction compensation process 24c and the viscous friction compensation process 24d are set based on the optimum value of the friction compensation value.
  • step 4-2 the motor is driven according to the operation pattern determined before step 1.
  • the evaluation index for each operation is measured by the evaluation index measurement function 27.
  • the evaluation index includes a settling time relating to positioning accuracy, an overshoot amount, the number of INP changes, a vibration level, and the like. If the storage capacity of the storage unit 28 is not limited, it is preferable to collect as many evaluation indexes as possible.
  • the measured result is stored in the storage unit 28 in association with the combination pattern of the stiffness index and the command response index.
  • Step 4-3 it is determined whether or not the measurement has been completed for all the combination patterns of the stiffness index range determined in Step 1 and the command response index range. If the measurement is not complete, the flowchart returns to step 4-1. In step 4-1, the combination of the stiffness index and the command response index is changed again. If the measurement is complete, the flowchart proceeds to step 5.
  • a recommended condition is selected.
  • the recommended conditions are selected from predefined options depending on the application. Further, the recommended condition may be selected graphically by displaying an evaluation index in a graph. Alternatively, as the recommended condition, an evaluation index is displayed with respect to a matrix of the command response index and the stiffness index. As the recommended condition, a combination of the command response index and the stiffness index may be directly specified. By displaying the evaluation index for the matrix of the command response index and the stiffness index, it is possible to grasp the tendency of the evaluation index when the stiffness index or the command response index is changed.
  • any method is acceptable as long as one or more candidates are selected from the combination pattern of the command response indicator and the stiffness indicator.
  • step 6 based on the evaluation index measurement results from step 4-1 to step 4-3, the command response index and the stiffness index having the highest priority according to the recommended conditions selected in step 5 Is selected as the final adjustment result.
  • the recommended condition includes a rearrangement condition
  • the second and subsequent candidates for priority may be indicated.
  • the evaluation index is displayed for the matrix of the command response index and the stiffness index, a combination of the command response index and the stiffness index having a lower stiffness index is selected while the request is satisfied. . Therefore, the operator can obtain a highly stable adjustment result when controlling the servo motor.
  • step 6 ends.
  • the reflection start signal is turned off so that the command response index is not reflected in the actual command response setting unit 22. Also, the stiffness setting function 231 turns off the reflection start signal so that the stiffness index is not reflected in the actual position / speed control unit 23.
  • the motor drive device of the present invention can easily obtain a highly stable adjustment result while satisfying evaluation indexes different for each application even for an operator who does not have sufficient knowledge and experience about servo adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本発明のモータ駆動装置(2)は、指令応答設定部(22)と、位置速度制御部(23)と、負荷特性補償部(24)と、サーボ調整部(6)と、指令応答設定機能(221)と、剛性設定機能(231)と、評価指標測定機能(27)と、記憶部(28)と、を備える。サーボ調整部(6)は、複数の指令応答指標(61)と、複数の剛性指標(62)と、を記憶する。また、サーボ調整部(6)は、各々の指令応答指標(61)と剛性指標(62)とを組み合わせて評価指標測定パターン(63)を生成する。生成された評価指標測定パターン(63)に従って、順次、指令応答指標(61)と剛性指標(62)とを変更しながらモータ(3)を駆動する。

Description

モータ駆動装置
 本発明は、サーボモータを制御するモータ駆動装置に関するものであり、特に、サーボ調整に関する。
 近年、組み込みマイコン(Microcomputer)が高性能化している。また、従来のASIC(Application Specific Integrated Circuit)に対してカスタマイズ可能な要素を組み合わせた集積回路が発展している。組み込みマイコンには、RISCマイコン(Reduced Instruction Set Computer-Microcomputer)やDSP(Digital Signal Processor)などがある。集積回路には、FPGA(Field Programmable Gate Array)やSoC(System-on-a-Chip)などがある。
 現在、これらの組み込みマイコンや集積回路を用いることで、モータ駆動装置は、サーボモータを外部からの指令に基いて駆動するにあたり、基本機能に加えて、さまざまに自動調整する機能を有している。基本機能とは、サーボモータを駆動制御する位置、速度、電流制御などをいう。
 図19は、従来のモータ駆動装置のブロック図である。
 図19に示すように、モータ駆動装置1002は、モータ3を駆動制御する基本機能を有する。図中、基本性能は、一重線で囲われたブロックを用いて、各ブロックが実線で接続された、つぎの流れにより、実現される。
 上位装置1は、モータ駆動装置1002に外部位置指令を送信する。上位装置1から送信された外部位置指令は、モータ駆動装置1002の指令選択部21によって受信される。指令選択部21は、後述する試運転機能211から送信される内部位置指令と、上位装置1から送信された外部位置指令とのいずれか一方を選択する。指令選択部21は、指令選択部21にて選択された、内部位置指令と外部位置指令とのうちいずれか一方を、選択後位置指令として指令応答設定部22に送信する。
 指令応答設定部22では、選択後位置指令に対してフィルタ演算処理を行う。指令応答設定部22にてフィルタ演算処理が行われた後、指令応答設定部22は、フィルタ演算処理した結果をフィルタ後位置指令として位置速度制御部23に送信する。
 位置速度制御部23は、受信したフィルタ後位置指令と、エンコーダ4から送信されたモータ位置情報とを用いて、フィードバック制御演算を行う。フィードバック制御演算は、PID制御(Proportional Integral Derivative Controller)に代表される。位置速度制御部23にてフィードバック制御演算が行われた後、位置速度制御部23は、位置偏差が0となるようなトルク指令を負荷特性補償部24に送信する。
 負荷特性補償部24は、位置速度制御部23から送信されたトルク指令に対して、総イナーシャに応じたスケーリング処理を行う。総イナーシャとは、モータ3および負荷5などによるイナーシャをいう。負荷特性補償部24は、スケーリング処理を行うことで、負荷イナーシャの差異を吸収する。
 また、負荷特性補償部24は、エンコーダ4から送信されたモータ位置情報より、モータ3および負荷5の摩擦トルクを推定する。負荷特性補償部24は、推定した摩擦トルクをあらかじめ加算して、補償後トルク指令を生成する。負荷特性補償部24は、生成された補償後トルク指令を共振抑制部25に送信する。
 モータ3と負荷5との共振特性により、振動が引き起こされることがある。振動が励起されないよう、共振抑制部25は、補償後トルク指令から特定の周波数成分を除去する、ノッチフィルタ処理、あるいは、ローパスフィルタ処理を行う。共振抑制部25は、ノッチフィルタ処理、あるいは、ローパスフィルタ処理を行った結果を、フィルタ後トルク指令としてモータ3に送信する。
 共振抑制部25から送信されたフィルタ後トルク指令が用いられる電流制御や、パワー回路を介して、モータ3は、制御される。モータ3は、受信したフィルタ後トルク指令どおりのトルクを出力するように制御される。モータ3の動きは、接続された負荷5やエンコーダ4に伝えられる。モータ3の動きは、エンコーダ4を介して、モータ位置情報としてモータ駆動装置1002にフィードバックされる。
 次に、図19に示すように、モータ駆動装置1002は、自動調整機能を有する。図中、自動調整機能は、二重線で囲われたブロックを用いて、各ブロックが破線で接続された、つぎの流れにより、実現される。
 例えば、特許文献1に示されるように、試運転機能211は、モータ駆動装置1002の内部で、往復運転パターンを生成する。往復運転パターンは、ある傾きの加減速度を有する、一定量の三角波である。往復運転パターンは、正負を有する。
 一般的に、試運転機能211は、外部からのパラメータが設定されることにより、モータ駆動装置1002が内蔵するNC演算処理によって指令パターンがリアルタイムに自動で計算される。外部からのパラメータとは、移動量、最高速度、加速時間、減速時間、停止時間などをいう。試運転機能211は、一定周期毎に内部位置指令を生成する機能である。
 なお、試運転機能211から指令選択部21に内部位置指令を送信する際、試運転機能211は、指令選択部21が内部位置指令を選択するような付加情報を送信することもできる。このように、付加情報を送信すれば、試運転機能211から指令選択部21の動作を指定できる。
 例えば、特許文献2に示されるように、指令応答設定機能221は、位置指令の応答性を決める指令前置フィルタの遮断周波数を決定する。指令応答設定機能221は、モータ駆動装置1002の外部から剛性値という1つの指標が与えられる。指令応答設定機能221は、与えられた剛性値と、モータ駆動装置1002に内蔵されるテーブルから、指令前置フィルタの遮断周波数を決定する。
 一般的に、指令応答設定機能221は、つぎの形態で示す、1つ、あるいは、複数の指令応答指標を受信することで、指令応答設定部22の1つ、または、複数のパラメータを自動設定する。つまり、指令応答指標が受信される形態は、一次遅れや二次遅れのフィルタ時定数や、減衰比で、より細かい周波数特性を指示するものがある。あるいは、指令応答指標が受信される形態は、立ち上がり時間や遅延時間、オーバーシュート量などの時間応答の過渡特性を指示するものがある。指令応答設定機能221は、指令応答設定部22に対する送信や受信の関係が、指令応答指標とできる限り一致するよう、指令応答設定部22の1つ、または、複数のパラメータを自動設定する。
 例えば、特許文献3に示されるように、剛性設定機能231は、サーボ剛性を代表する1パラメータを指標としている。剛性設定機能231は、サーボ剛性を代表する1パラメータに一定の比率を掛けて、速度比例ゲインや速度積分ゲイン、位置比例ゲインを連動して設定する。また、先に示した特許文献2のように、剛性値に対応したテーブルから、位置速度制御部のゲイン設定を決定してもよい。
 一般的に、剛性設定機能231は、1つ、あるいは、複数の剛性指標を受信し、位置速度制御部23の外乱応答が剛性指標にできるだけ一致するよう、位置速度制御部23の1つ、または、複数のパラメータを自動設定する。
 例えば、特許文献4に示されるように、負荷特性測定機能241は、モータ3に送信されるフィルタ後トルク指令、および、エンコーダ4から送信されるモータ位置情報と、その高次差分である速度・加速度から、最小二乗推定を用いて、摩擦特性を自動で推定する。摩擦特性とは、モータ3および負荷5などによるイナーシャを合わせた総イナーシャや、常に一定で働く偏荷重トルク、動作方向に依存する動摩擦トルク、動作速度に比例する粘性摩擦トルクなどをいう。
 また、負荷特性測定機能241は、推定された結果を負荷特性補償部24に対して、リアルタイムに反映させる。よって、どのような負荷5が接続されても、負荷特性測定機能241は、指令応答指標や剛性指標で指定された同じ応答性を得ることができる、適応ロバスト性を有する。
 例えば、特許文献5に示されるように、適応フィルタ機能251は、再帰型のノッチフィルタを用いた適応アルゴリズムにより、モータ速度から抽出した高周波成分をできるだけ0に近づけるよう、共振抑制部25のパラメータを自動調整する。また、適応フィルタ機能251は、つぎのバリエーションを有する。つまり、バリエーションのひとつは、トルク指令から振動成分を抽出する。他のバリエーションは、モデル応答との差から振動成分を抽出する。あるいは、他のバリエーションは、適応フィルタを複数持つ。さらに他のバリエーションは、ノッチ周波数だけではなく、幅や深さ、Q値を自動調整する、というものなどがある。
 一般的に、適応フィルタ機能251は、何らかの方法で、モータ3と負荷5との共振特性に起因する振動成分を抽出する。適応フィルタ機能251は、規範入力との差を最小にする適応アルゴリズムにより、共振抑制部25のフィルタパラメータを自動調整する。
 例えば、特許文献6に示されるように、発振検知機能26は、エンコーダ4から送信されたモータ位置情報から変動分を抽出する。発振検知機能26は、抽出された変動分と、しきい値との比較、継続時間の判定などにより、モータ3および負荷5の発振状態を検出する。
 発振検知機能26が発振を検知した場合、発振検知機能26は、前述の剛性設定機能231に発振検知情報を伝達する。このようにして、発振検知機能26は、フィードバックループの周波数帯域幅が狭くなるような剛性値を選択して、発振を自動的に抑制する。
 例えば、特許文献7に示されるように、評価指標測定機能27は、入出力データを周期的に測定して記憶する。評価指標測定機能27は、評価指標に対応した入出力データから、評価値を算出、表示、蓄積する機能である。入出力データとは、指令選択部21の位置指令出力、エンコーダ4のモータ位置出力、負荷特性補償部24のトルク指令出力などをいう。評価指標とは、整定時間やオーバーシュート、トルク変動などをいう。本機能の重要な側面は、いずれもリアルタイムに取得できる膨大なモータ制御情報から、より意味のある少数の評価指標にデータ圧縮することである。
 また、例えば、特許文献8には、剛性指標に相当するゲインパラメータ値と、指令応答指標に相当する目標応答特性調整ゲインの調整方法が示されている。
特開平5-346359号公報 特開2007-336792号公報 特開平6-319284号公報 特開2005-168166号公報 特開2004-274976号公報 国際公開第2008/087893号 国際公開第2009/096169号 特開2006-254630号公報
 本発明が対象とするモータ駆動装置は、モータを駆動する。モータ駆動装置は、指令応答設定部と、位置速度制御部と、負荷特性補償部と、サーボ調整部と、指令応答設定機能と、剛性設定機能と、評価指標測定機能と、記憶部と、を備える。
 指令応答設定部は、位置指令を受信し、特定の周波数帯域を除去するフィルタ処理を行う。また、指令応答設定部は、フィルタ処理を行なった結果をフィルタ後位置指令として送信する。
 位置速度制御部は、フィルタ後位置指令と、エンコーダから送信されたモータ位置情報と、を受信する。位置速度制御部は、フィルタ後位置指令とモータ位置情報との偏差を0とするようなトルク指令を生成する。位置速度制御部は、生成したトルク指令を送信する。
 負荷特性補償部は、トルク指令を受信し、モータとモータに加えられた負荷とのイナーシャ推定値を乗じる。負荷特性補償部は、イナーシャ推定値を乗じた後、負荷の摩擦トルク推定値を加算して、モータを駆動する補償後トルク指令を生成する。負荷特性補償部は、生成した補償後トルク指令を送信する。
 サーボ調整部は、複数の指令応答指標と、複数の剛性指標と、を記憶する。また、サーボ調整部は、各々の指令応答指標と剛性指標とを組み合わせて評価指標測定パターンを生成する。
 指令応答設定機能は、サーボ調整部より送信される、評価指標測定パターンを構成する指令応答指標に従い、指令応答設定部のフィルタ特性を自動で設定する。
 剛性設定機能は、サーボ調整部より送信される、評価指標測定パターンを構成する剛性指標に従い、位置速度制御部のパラメータを自動で設定する。
 評価指標測定機能は、位置指令と、モータ位置情報と、補償後トルク指令と、の少なくとも一つから導き出された評価指標を自動で測定する。
 記憶部は、評価指標測定機能で測定された結果を記憶する。
 特に、モータ駆動装置は、生成された評価指標測定パターンに従って、順次、指令応答指標と剛性指標とを変更しながらモータを駆動する。
図1Aは、本発明の実施の形態1におけるモータ駆動装置のブロック図である。 図1Bは、本発明の実施の形態1における他のモータ駆動装置のブロック図である。 図2Aは、図1A、図1Bに示す指令応答設定部22を説明する要部ブロック図である。 図2Bは、図2Aに示す移動平均フィルタステップ応答22aを説明する特性図である。 図2Cは、図2Aに示す一時遅れフィルタステップ応答22bを説明する特性図である。 図2Dは、図2Aに示す2次フィルタ周波数特性22cを説明する特性図である。 図2Eは、図2Aに示す制振フィルタ周波数特性22dを説明する特性図である。 図3は、図1A、図1Bに示す位置速度制御部23を説明する要部ブロック図である。 図4は、図1A、図1Bに示す位置速度制御部23の他の実施の形態を説明する要部ブロック図である。 図5は、図1A、図1Bに示す負荷特性補償部24を説明する要部ブロック図である。 図6は、図1A、図1Bに示す指令応答設定機能221を説明する要部ブロック図である。 図7Aは、図1A、図1Bに示す剛性設定機能231を説明する要部ブロック図である。 図7Bは、図7Aに示す剛性テーブル231aを説明する説明図である。 図8は、図1A、図1Bに示す評価指標測定機能27を説明する要部ブロック図である。 図9Aは、本発明の実施の形態1におけるサーボ駆動装置のサーボ調整を説明するフローチャートである。 図9Bは、図9Aとともに本発明の実施の形態1におけるサーボ駆動装置のサーボ調整を説明するフローチャートである。 図10Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。 図10Bは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性を含む剛性指標範囲を決定する例を示す説明図である。 図11Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。 図11Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲から摩擦補償探索剛性指標範囲を決定する例を示す説明図である。 図12Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。 図12Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲の最小剛性指標から摩擦補償探索剛性指標範囲を決定する例を示す説明図である。 図13Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。 図13Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲の最小剛性指標から摩擦補償探索剛性指標範囲を決定する例を示す説明図である。 図14Aは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、位置決め整定時間の組み合わせパターンの評価指標の測定結果を示す説明図である。 図14Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、オーバーシュート量の組み合わせパターンの評価指標の測定結果を示す説明図である。 図14Cは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、振動レベルの組み合わせパターンの評価指標の測定結果を示す説明図である。 図15Aは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、位置決め整定時間の組み合わせパターンの評価指標の傾向を示す説明図である。 図15Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、オーバーシュート量の組み合わせパターンの評価指標の傾向を示す説明図である。 図15Cは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、振動レベルの組み合わせパターンの評価指標の傾向を示す説明図である。 図16は、本発明の実施の形態1におけるサーボ駆動装置において、摩擦補償値に応じた位置決め整定時の位置偏差を示す説明図である。 図17Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。 図17Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲の最大剛性指標から制振探索剛性指標範囲を決定する例を示す説明図である。 図18は、本発明の実施の形態1におけるサーボ駆動装置において、制振フィルタの深さ設定に応じた位置決め整定時の位置偏差を示す説明図である。 図19は、従来のモータ駆動装置のブロック図である。
 本発明の実施の形態におけるモータ駆動装置は、後述する構成により、サーボ調整について、細かな知識や十分な経験を持たない作業者でも、簡単にサーボ調整に関する結果を得ることができる。得られたサーボ調整に関する結果は、用途毎に異なる評価指標の要求を満足するとともに、より安定性が高い。
 つまり、従来のモータ駆動装置は、つぎの改善すべき点を有していた。すなわち、従来のモータ駆動装置は、各種の自動調整機能が個別に最適化される。よって、従来のモータ駆動装置は、サーボ調整の一連の流れに対して、整合がとれていない。
 例えば、指令応答設定機能221は、指令応答指標を高くするほど、位置決め制御(PTP制御:Point To Point Controlともいう。)では、整定時間を短くできる。指令応答設定機能221は、指令応答指標を高くするほど、軌跡制御(CP制御:Continuous Path Control)では、追従誤差を小さくできる。しかし、指令応答設定機能221では、外部位置指令の離散化や指令分解能の設定により、制約を受ける。
 また、モータ3と負荷5とが固定される装置自体の剛性によって、指令応答設定機能221は、機台振動を考慮して指令応答指標を低くする場合もある。このような判断を行う場合、作業者には、上位装置の理解や、実機を運用した経験が求められる。
 つぎに、剛性設定機能231は、剛性指標を高くするほど、外乱抑圧特性が改善する。よって、剛性設定機能231は、PTP制御では、CP制御と比べてオーバーシュート量を小さくできる。剛性設定機能231は、CP制御では、PTP制御と比べて追従誤差を小さくできる。しかし、剛性指標をどこまで高くできるかは、位置速度制御部23のフィードバック制御の安定性に大きく依存する。よって、最適な調整を行うために、作業者には、制御理論に関する知識が求められる。
 また、位置速度制御部23と、負荷特性補償部24の総イナーシャと、共振抑制部25の設定は、正しい順番で設定しなければならない。これらの設定が、正しい順番で設定されない場合、フィードバックの安定性が損なわれ、剛性指標で指定した応答性が得られないことがある。あるいは、最悪の場合、モータ3が不安定化して発振することもある。つまり、作業者には、制御理論だけでなく、サーボ調整の手順を把握していることが求められる。
 つぎに、評価指標測定機能27は、モータを制御する基本機能には影響を与えない。しかし、評価指標によっては、正しい測定結果を得るために、指令パターンや基本機能の設定に一定の制約がかかる場合がある。一例として、PTP制御における位置決め整定時間が挙げられる。位置決め整定時間は、外部位置指令が停止した時点から、モータ位置が位置決め完了範囲内に入った時点までと定義される。
 ところが、指令応答指標や剛性指標が低いため、モータ位置が位置決め完了範囲に入る前に、次の外部位置指令変化が始まることがある。このような場合、当然ながら、位置決め整定時間は、測定できない。つまり、作業者が、評価指標の意味や、評価指標測定機能の測定方法を理解していないと、サーボ調整の結果を正しく判定することはできない。
 これら個々の自動調整機能を有効、無効とする、あるいは、モード設定を行うなどの操作は、通常、個別にモータ駆動装置の外部から行われる。しかし、サーボ調整を行うために、作業者が、すべての自動調整機能を正しい順番で操作することは、非常に困難であった。
 つぎに、特許文献8には、剛性指標に相当するゲインパラメータ値と、指令応答指標に相当する目標応答特性調整ゲインの調整方法が示されている。しかし、モータ駆動装置は、用いられる用途によって、求められる評価指標は異なる。すべての用途に対して、最適な調整結果を得ることは困難であった。
 また、ゲインパラメータ値は、機械振動が発生しない限度まで高められた設定となる。よって、ゲインパラメータ値は、求められる評価指標を満足しつつ、制御として安定性が高い、調整結果が得られるとは限らない。
 また、剛性指標に相当するゲインパラメータ値と、指令応答指標に相当する目標応答特性調整ゲインと、を変更した際の評価指標の傾向を知ることはできない。よって、ゲインパラメータ値は、設定値を選択する範囲において、十分な幅がない。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術範囲を限定するものではない。
 (実施の形態1)
 図1Aは、本発明の実施の形態1におけるモータ駆動装置のブロック図である。図1Bは、本発明の実施の形態1における他のモータ駆動装置のブロック図である。
 図19に示した、従来のモータ駆動装置1002と同様の構成要素には、同じ符号を付与し、説明を援用する。
 本発明の実施の形態1におけるモータ駆動装置2は、モータ3を駆動する。モータ駆動装置2は、指令応答設定部22と、位置速度制御部23と、負荷特性補償部24と、サーボ調整部6と、指令応答設定機能221と、剛性設定機能231と、評価指標測定機能27と、記憶部28と、を備える。
 指令応答設定部22は、位置指令を受信し、特定の周波数帯域を除去するフィルタ処理を行う。また、指令応答設定部22は、フィルタ処理を行なった結果をフィルタ後位置指令として送信する。
 位置速度制御部23は、フィルタ後位置指令と、エンコーダ4から送信されたモータ位置情報と、を受信する。位置速度制御部23は、フィルタ後位置指令とモータ位置情報との偏差を0とするようなトルク指令を生成する。位置速度制御部23は、生成したトルク指令を送信する。
 負荷特性補償部24は、トルク指令を受信し、モータ3とモータ3に加えられた負荷5とのイナーシャ推定値を乗じる。負荷特性補償部24は、イナーシャ推定値を乗じた後、負荷5の摩擦トルク推定値を加算して、モータ3を駆動する補償後トルク指令を生成する。負荷特性補償部24は、生成した補償後トルク指令を送信する。
 サーボ調整部6は、複数の指令応答指標61と、複数の剛性指標62と、を記憶する。また、サーボ調整部6は、各々の指令応答指標61と剛性指標62とを組み合わせて評価指標測定パターン63を生成する。
 指令応答設定機能221は、サーボ調整部6より送信される、評価指標測定パターン63を構成する指令応答指標に従い、指令応答設定部のフィルタ特性を自動で設定する。
 剛性設定機能231は、サーボ調整部6より送信される、評価指標測定パターン63を構成する剛性指標62に従い、位置速度制御部23のパラメータを自動で設定する。
 評価指標測定機能27は、位置指令と、モータ位置情報と、補償後トルク指令と、の少なくとも一つから導き出された評価指標を自動で測定する。
 記憶部28は、評価指標測定機能27で測定された結果を記憶する。
 特に、本発明の実施の形態1におけるモータ駆動装置2は、生成された評価指標測定パターン63に従って、順次、指令応答指標61と剛性指標62とを変更しながらモータ3を駆動する。
 評価指標は、少なくとも位置決め整定時間と、オーバーシュート量と、振動レベルと、位置決め完了出力信号変化回数とのうち、ひとつ以上を用いることができる。
 本発明の実施の形態1におけるモータ駆動装置によれば、サーボ調整について、詳細な知識を持たない作業者でも、用途毎に異なった評価指標を満たしつつ、より安定性が高いサーボ調整を行うことができる。
 以下、図1Aから図8を用いて、主にハードウェア構成について、詳細に説明する。
 はじめに、図1Aに示すモータ駆動装置2と図1Bに示すモータ駆動装置2との違いは、記憶部28を設置する位置の違いである。図1Aに示すモータ駆動装置2は、モータ3を駆動する基本機能を有するモータ駆動部2aと、記憶部28とが、別の構造体で構成される。図1Bに示すモータ駆動装置2は、モータ3を駆動する基本機能を有する部分と、記憶部28とが、一体で構成される。
 図1A、図1Bに示すように、本実施の形態1におけるモータ駆動装置2の主な特徴は、つぎのとおりである。すなわち、自動調整機能に関する外部との送受信が、サーボ調整部6を介して行われる。サーボ調整部6によって、自動調整機能に関する制御が可能となる。
 また、本実施の形態1において、図19で示した従来のモータ駆動装置1002から、必ずしも必要ではない、つぎの構成要素を省いている。すなわち、従来のモータ駆動装置1002から、指令選択部21と、共振抑制部25と、発振検知機能26と、試運転機能211と、負荷特性測定機能241および適応フィルタ機能251と、が省かれる。
 図1Aに示すように、本実施の形態1において、モータ3を駆動制御する基本機能は、上位装置1と、モータ駆動部2aと、モータ3と、を接続して実現される。モータ駆動部2aは、指令応答設定部22と、位置速度制御部23と、負荷特性補償部24と、を有する。
 まず、図1Aに示すように、モータ駆動装置2は、モータ3を駆動制御する基本性能を有する。図中、基本性能は、一重線で囲われたブロックを用いて、各ブロックが実線で接続された、つぎの流れにより、実現される。
 上位装置1は、モータ駆動装置2に外部位置指令を送信する。上位装置1から送信された外部位置指令は、モータ駆動装置2の指令応答設定部22によって受信される。
 なお、モータ駆動装置2の内部において、内部位置指令を生成する試運転機能を有する場合、指令応答設定部22は、外部位置指令に代えて、内部位置指令を用いてもよい。
 図2Aは、図1A、図1Bに示す指令応答設定部22を説明する要部ブロック図である。図2Bは、図2Aに示す移動平均フィルタステップ応答22aを説明する特性図である。図2Cは、図2Aに示す一時遅れフィルタステップ応答22bを説明する特性図である。図2Dは、図2Aに示す2次フィルタ周波数特性22cを説明する特性図である。図2Eは、図2Aに示す制振フィルタ周波数特性22dを説明する特性図である。
 図2Aに示すように、指令応答設定部22は、上位装置1から送信される外部位置指令を受けて、つぎの工程を経た後、フィルタ後位置指令を送信する。
 すなわち、図2A、図2Bに示すように、移動平均フィルタステップ応答22aは、外部位置指令と、後述する指令応答設定機能221から送信された移動平均回数と、を受信する。移動平均フィルタステップ応答22aは、指令応答設定機能221から指定された移動平均回数の移動平均処理を行う。
 図2A、図2Cに示すように、一次遅れフィルタステップ応答22bは、移動平均フィルタステップ応答22aで移動平均処理された結果と、指令応答設定機能221から送信された指令応答時定数と、を受信する。一次遅れフィルタステップ応答22bは、指令応答時定数にステップ応答特性を加える。
 図2A、図2Dに示すように、2次フィルタ周波数特性22cは、一次遅れフィルタステップ応答22bから得た結果と、指令応答設定機能221から送信された、2次フィルタ周波数と減衰比と、を受信する。2次フィルタ周波数特性22cは、2次フィルタ周波数と減衰比とで規定された結果を送信する。
 図2A、図2Eに示すように、制振フィルタ周波数特性22dは、2次フィルタ周波数特性22cから得た結果と、指令応答設定機能221から送信された、制振周波数と深さと、を受信する。制振フィルタ周波数特性22dは、制振周波数と深さとで定義される制振フィルタを経た結果、フィルタ後位置指令を得る。指令応答設定部22は、制振フィルタ周波数特性22dが得たフィルタ後位置指令を、つぎの工程へ送信する。
 図3は、図1A、図1Bに示す位置速度制御部23を説明する要部ブロック図である。
 図3に示すように、位置速度制御部23は、フィルタ後位置指令とともに、駆動対象であるモータ3に接続されたエンコーダ4より、モータ位置情報を受信する。位置速度制御部23は、フィルタ後位置指令とモータ位置情報との偏差が0となるトルク指令を送信する。
 具体的には、フィルタ後位置指令とモータ位置情報との差異である位置偏差が計算される。また、位置速度制御部23には、後述する剛性設定機能231から位置ループゲインが送信される。
 位置速度制御部23では、位置偏差に対して、剛性設定機能231から指定された位置ループゲインを乗じる、位置比例処理23aが行われる。位置速度制御部23では、位置比例処理23aの結果として、速度指令が得られる。
 また、位置速度制御部23では、モータ位置情報の差分などから、実現可能な速度検出処理23eが行われる。位置速度制御部23では、速度検出処理23eの結果として、モータ速度が得られる。
 位置速度制御部23では、速度指令とモータ速度との差異である、速度偏差が算出される。
 位置速度制御部23には、剛性設定機能231から速度ループゲインと速度ループ積分時定数とが送信される。
 位置速度制御部23では、算出された速度偏差と、剛性設定機能231から指定された速度ループゲインとによる速度比例処理23bが行われる。また、位置速度制御部23では、算出された速度偏差と、速度ループ積分時定数とによる速度積分処理23cが行われる。位置速度制御部23では、速度比例処理23bと速度積分処理23cから送信される値が加算された結果、内部トルク指令が得られる。
 位置速度制御部23には、剛性設定機能231からトルクフィルタ時定数が送信される。
 位置速度制御部23では、剛性設定機能231から指定されたトルクフィルタ時定数を用いて、内部トルク指令と一次遅れフィルタとのトルクフィルタ処理23dが行われる。位置速度制御部23では、トルクフィルタ処理23dの結果として、トルク指令が得られる。位置速度制御部23は、得たトルク指令を、つぎの工程へ送信する。
 なお、応答性を改善するため、速度指令は、フィルタ後位置指令の差分より、実現可能な、速度フィードフォワード処理23fを経た結果を加算してもよい。
 図4は、図1A、図1Bに示す位置速度制御部23の他の実施の形態を説明する要部ブロック図である。
 ここで、図4に示す、他の位置速度制御部123の具体例について、説明する。位置速度制御部123では、フィルタ後位置指令の一階差分や二階差分と、フィルタ処理とを組み合わせて、フィードフォワード指令生成処理を行うことにより、実現可能な、つぎの3つの指令が、同時に生成される。
 すなわち、第1の生成される指令は、位置比例処理23aが受信するフィードフォワード位置指令である。第2の生成される指令は、速度フィードフォワード処理23fが受信するフィードフォワード速度指令である。第3の生成される指令は、トルクフィードフォワード処理23gが受信するフィードフォワードトルク指令である。
 位置速度制御部123は、駆動対象であるモータ3に接続されたエンコーダ4から送信されたモータ位置情報を、受信する。位置速度制御部123では、フィードフォワード位置指令との差異である位置偏差が算出される。また、位置速度制御部123には、後述する剛性設定機能231から位置ループゲインが送信される。位置速度制御部123では、算出された位置偏差に対して、剛性設定機能231から指定された位置ループゲインを乗じる、位置比例処理23aが行われる。位置速度制御部123では、位置比例処理23aの結果として、速度指令が得られる。
 本構成において、位置速度制御部123では、フィードフォワード速度指令を受信する速度フィードフォワード処理23fが送信する値に対して、速度指令が加算される。位置速度制御部123では、モータ位置情報の差分などから、実現可能な速度検出処理23eを経て、モータ速度が得られる。位置速度制御部123では、速度指令とモータ速度との差異である速度偏差が算出される。
 位置速度制御部123には、剛性設定機能231から速度ループゲインと速度ループ積分時定数とが送信される。
 位置速度制御部123では、算出された速度偏差と、剛性設定機能231から指定された速度ループゲインとによる速度比例処理23bが行われる。また、位置速度制御部123では、算出された速度偏差と、速度ループ積分時定数とによる速度積分処理23cが行われる。位置速度制御部123では、速度比例処理23bと速度積分処理23cから送信される値が加算された結果、内部トルク指令が得られる。
 本構成において、位置速度制御部123では、フィードフォワードトルク指令を受信するトルクフィードフォワード処理23gが送信する値に対して、内部トルク指令が加算される。
 また、位置速度制御部123には、剛性設定機能231からトルクフィルタ時定数が送信される。
 位置速度制御部123では、内部トルク指令が加算されたトルクフィードフォワード処理23gが送信する値に対して、剛性設定機能231から指定されたトルクフィルタ時定数を有する、一次遅れフィルタによるトルクフィルタ処理23dが行われる。位置速度制御部123では、トルクフィルタ処理23dの結果として、トルク指令が得られる。位置速度制御部123は、得られたトルク指令を、つぎの工程へ送信する。
 本構成において、フィルタ後位置指令が十分滑らかであれば、位置速度制御部123は、外乱トルクによる影響を考慮しない理想的な状態で、フィルタ後位置指令に対するモータ位置を完全に追従することができる。
 モータ駆動装置2は、それぞれに独立して設定できる2つの制御要素を得ることができる。ひとつは、後述する指令応答設定機能221による指令応答指標が、指令応答を自由に制御できる。もうひとつは、後述する剛性設定機能231による剛性指標が、外乱応答を自由に制御できる。
 図5は、図1A、図1Bに示す負荷特性補償部24を説明する要部ブロック図である。
 図5に示すように、負荷特性補償部24では、トルク指令に対してイナーシャ補償処理24aが施される。イナーシャ補償処理24aとは、トルク指令に対して、事前に設定された負荷特性が指定するイナーシャ推定値が乗じられるものである。このように、モータ3および負荷5の総イナーシャに応じたスケーリング処理を行うことで、負荷特性補償部24では、さまざまな負荷5によって異なる、モータを等価したイナーシャの差異が吸収できる。
 また、負荷特性補償部24では、後述する具体例のような、想定できる範囲の摩擦補償を行うことにより、即応性の改善や、動作方向または速度による応答の差異を軽減できる。すなわち、第1の摩擦補償としては、負荷特性が指定する偏荷重推定値をトルク指令に加算する、偏荷重補償処理24bがある。第2の摩擦補償としては、動摩擦補償処理24cがある。動摩擦補償処理24cは、エンコーダ4から送信されたモータ位置情報からモータ速度を算出する。動摩擦補償処理24cは、動摩擦推定値をモータ速度方向に応じてトルク指令に加減算する。第3の摩擦補償としては、粘性摩擦補償処理24dがある。粘性摩擦補償処理24dは、粘性摩擦係数推定値とモータ速度とを乗じて、トルク指令に加算する。
 負荷特性補償部24は、上述した、さまざまな負荷特性補償を行った結果として、補償後トルク指令を送信する。
 なお、動摩擦補償、粘性摩擦補償に用いられるモータ速度情報は、位置速度制御部23が動作する限り、速度指令に追従する。よって、負荷特性補償部24は、モータ速度情報に代えて、位置指令の差分などから算出される速度指令を用いれば、負荷変動による影響を受けることがない。その結果、負荷特性補償部24は、安定した補償値を得ることも可能である。
 モータ3には、電流制御やパワー回路を介して、電圧や電流が供給される。負荷特性補償部24から送信された補償後トルク指令に従って、モータ3に供給される電圧や電流が調整される。よって、補償後トルク指令に応じて、モータ3の出力トルクは変化する。この結果、モータ3に接続された負荷5が、動作する。
 ところで、モータ3と、モータ3に接続された負荷5との共振特性により、振動が引き起こされることがある。そこで、共振抑制部がモータ駆動装置2に取り付けられると、共振抑制部が、負荷特性補償部24より送信された補償後トルク指令から、特定の周波数成分を除去する。つまり、共振抑制部によるフィルタ処理を行うことで、共振を引き起こす振動が励起されないようにできる。
 次に、図1Aに示すように、モータ駆動装置2は、自動調整機能を有する。図中、自動調整機能は、二重線で囲われたブロックを用いて、各ブロックが破線で接続された、つぎの流れにより、実現される。
 図6は、図1A、図1Bに示す指令応答設定機能221を説明する要部ブロック図である。
 図6に示すように、指令応答設定機能221は、サーボ調整部6から、指令応答指標として、つぎの信号を受信する。すなわち、指令応答指標は、移動平均時間と時定数、および、制振周波数と深さ、を含む。また、指令応答指標は、指令応答設定機能221が受け取った指令応答指標を、指令応答設定部22へ反映する機会を示す信号を含む。指令応答設定機能221が受け取った指令応答指標を、指令応答設定部22へ反映する機会を示す信号を、指令応答指標反映開始信号という。
 この指令応答指標反映開始信号がオンの場合、移動平均時間設定処理221aは、指令応答設定部22に向けて、移動平均回数を送信する。指令応答設定部22内に含まれる移動平均フィルタステップ応答22aの演算周期で、移動平均時間を除すれば、移動平均回数が算出される。
 例えば、2次フィルタ設定処理221cは、2次フィルタの減衰比を1に固定する。例えば、2次フィルタ設定処理221cは、2次フィルタの周波数を、指令応答指標に含まれる時定数の逆数を2πで割った値とする。
 制振フィルタ設定処理221dは、指令応答指標に含まれる、制振周波数と深さに関する設定を、そのまま制振フィルタ22dに送信する。
 その他に、指令応答設定部22は、指令応答時定数のステップ応答特性を有する、一次遅れフィルタステップ応答22bがある。この一次遅れフィルタステップ応答22bの指令応答時定数は、指令応答設定機能221内で演算しなくてもよい。一次遅れフィルタステップ応答22bの指令応答時定数は、手動設定パラメータである、一次遅れスムージング時定数から設定してもよい。
 なお、指令応答指標は、さまざまな形や組み合わせで設定される。例えば、指令応答指標は、単に、指令応答カットオフ周波数といった単一の値で設定される。また、指令応答指標は、一次遅れのフィルタ時定数や、二次遅れのフィルタ時定数、あるいは、減衰比といった周波数特性の全体を指示する形で設定される。あるいは、指令応答指標は、立ち上がり時間や遅延時間、オーバーシュート量などの過渡特性を指示する形で設定される。指令応答設定部22全体の送受信関係が指令応答指標にできるだけ一致するよう、指令応答設定部22は、フィルタ特性を自動で設定されるようにしてもよい。
 図7Aは、図1A、図1Bに示す剛性設定機能231を説明する要部ブロック図である。図7Bは、図7Aに示す剛性テーブル231aを説明する説明図である。
 図7に示すように、剛性設定機能231は、サーボ調整部6から剛性指標を受信する。
 サーボ調整部6から送信された剛性指標反映開始信号がオンの場合、剛性テーブル231aは、剛性テーブル231a内に記憶されたテーブルを参照して、位置速度制御部23へのパラメータセットを送信する。本実施の形態では、剛性指標は、0から31までの32段階の値から成る。剛性指標は、剛性指標の値が大きいほど、位置速度制御部23の外乱を抑圧する特性が高くなるような、バラメータセットを送信する。パラメータセットは、位置ループゲインKp、速度ループゲインKvp、速度ループ積分時定数Ti、トルクフィルタ時定数TFを有する。
 なお、剛性指標は、一般に外乱を抑圧する特性に関係する剛性指標を入力して、位置速度制御部23の送受信関係が剛性指標にできるだけ一致するよう、位置速度制御部23のパラメータセットを自動で設定するようにしてもよい。一般的に、外乱を抑圧する特性に関係する剛性指標には、外乱トルクからモータ速度までの周波数応答全体に関する指標や、速度変動率やジッタなどの定常特性に関する指標などがある。
 また、剛性設定機能231が剛性指標を受信してから、剛性設定機能231が位置速度制御部23にパラメータセットを送信する工程において、今回、例示したように、剛性指標から一義的に内部パラメータが決められる剛性テーブルを用いるものがある。その他、本工程は、つぎに示すような、さまざまな自動設定方法を用いることができる。すなわち、本工程は、ある一つの内部パラメータと剛性指標との関係だけが定義されており、その他は内部パラメータ間の比率から計算されるものを用いることができる。さらに、本工程は、剛性指標だけではなく、負荷特性補償部24の設定も入力として、複数のパラメータを含む計算式から内部パラメータを決めるものなども、用いることができる。
 図8は、図1A、図1Bに示す評価指標測定機能27を説明する要部ブロック図である。
 図8に示すように、評価指標測定機能27は、エンコーダ4からモータ位置情報を、上位装置1から外部位置指令を、負荷特性補償部24から補償後トルク指令を、受信する。評価指標測定機能27は、サーボ調整部6から、位置決め完了範囲、最大トルク制限、振動検知レベルなどの測定閾値を受信する。評価指標測定機能27は、サーボ調整部6から送信された制御信号に応じて、サーボ調整部6に対して、各種評価指標を送信する。制御信号には、測定開始信号、測定回数、最大停止時間などがある。
 評価指標そのものや、評価指標の計算方法は、多岐にわたる。一例として、図8を用いて、実施の形態に示した評価指標の計算方法について、以下に説明する。
 図8に示すように、位置決め整定時間は、上位装置1から送信された外部位置指令が停止した後、位置偏差がサーボ調整部6から送信される位置決め完了範囲以内となるまでの時間で、測定できる。位置偏差とは、外部位置指令とエンコーダ4から送信されたモータ位置情報との偏差である。
 オーバーシュート量は、タクト間における最大位置偏差と最小位置偏差のうち、外部位置指令の方向と逆向きのものと定義できる。
 振動レベルおよび振動周波数は、いくつかの計算方法がある。振動レベルおよび振動周波数は、エンコーダ4から送信されたモータ位置情報に基いて、振動成分を抽出する方法がある。振動レベルおよび振動周波数は、負荷特性補償部24から送信された補償後トルク指令から、特定周波数帯域の振動成分を抽出する方法もある。サーボ調整部6から送信された振動検知レベルと、振動レベルおよび振動周波数とを比較すれば、振動検出が可能である。
 位置決め完了出力信号は、位置偏差が位置決め完了範囲内に入るとオンし、位置偏差が位置決め完了範囲外ではオフする信号として、一般的である。以下、位置決め完了出力信号をINPということもある。INPは、タクト間のINP信号変化回数を、位置決め整定の指標とすることもできる。INP変化回数は、外部位置指令が停止した後に限定してもよい。
 指令速度やモータ速度は、上位装置1から送信された外部位置指令や、エンコーダ4から送信されたモータ位置情報の差分から計算される。
 トルク指令は、負荷特性補償部24から送信された補償後トルク指令から得ることができる。
 位置偏差は、外部位置指令と、エンコーダ4から送信されたモータ位置情報との偏差となる。
 これらの値のうち、タクト間で最大値あるいは最小値となるものを評価指標とする。このような評価指標を用いれば、タクト間で生じる動作のうち、かなりの部分が把握される。
 トルク指令は、タクト間の2乗積算平方根より実効値が求められる。求められたトルク指令は、モータ3やモータ駆動装置2の容量を選定する際などで、非常に有用な評価指標となる。
 上述したように、リアルタイムに取得できる、膨大な量のモータ制御に関する情報が存在する。評価指標測定機能27では、これら膨大な量のモータ制御に関する情報を、一定のアルゴリズムで、より意味のある、少ない数の評価指標として、圧縮することが求められる。
 図9A、図9Bは、本発明の実施の形態1におけるサーボ駆動装置のサーボ調整を説明するフローチャートである。
 図9A、図9Bには、図1A、図1Bで示したモータ駆動装置2が有する基本機能と自動調整機能について、サーボ調整する際のステップが示される。本実施の形態1におけるモータ駆動装置2では、後述するサーボ調整のステップが、図1A、図1Bで示されたサーボ調整部6内で実施される。
 本発明の実施の形態1におけるモータ駆動装置2は、生成された評価指標測定パターン63に従って、順次、指令応答指標61と剛性指標62とを変更しながらモータ3を駆動する前に、以下の動作を行う。
 第1の摩擦補償測定パターンが、評価指標測定パターン63において、時定数が最小となる指令応答指標61と、時定数が最小となる指令応答指標61に対応する剛性指標62と、を組み合わせて、決定される。
 指令応答設定機能221と剛性設定機能231とを用いて、剛性指標62を、順次、変更しながら、モータ3が駆動される。第1の摩擦補償測定パターンは、すべての組み合わせで位置決め指標が測定されて、その結果が記憶される。
 各々の第1の摩擦補償測定パターンにおいて、位置決め指標が最良となる摩擦補償値が探索されて、その結果が記憶される。
 または、本発明の実施の形態1におけるモータ駆動装置2は、生成された評価指標測定パターン63に従って、順次、指令応答指標61と剛性指標62とを変更しながらモータ3を駆動する前に、以下の動作を行う。
 第2の摩擦補償測定パターンが、評価指標測定パターン63において、応答性が最低となる剛性指標62と、応答性が最低となる剛性指標62に対応する指令応答指標61と、を組み合わせて、決定される。
 指令応答設定機能221と剛性設定機能231とを用いて、指令応答指標61を、順次、変更しながら、モータ3が駆動される。第2の摩擦補償測定パターンは、すべての組み合わせで位置決め指標が測定されて、その結果が記憶される。
 各々の第2の摩擦補償測定パターンにおいて、位置決め指標が最良となる摩擦補償値が探索されて、その結果が記憶される。
 あるいは、本発明の実施の形態1におけるモータ駆動装置2は、生成された評価指標測定パターン63に従って、順次、指令応答指標61と剛性指標62とを変更しながらモータ3を駆動する前に、以下の動作を行う。
 第3の摩擦補償測定パターンが、評価指標測定パターン63において、時定数が最小となる指令応答指標61と、応答性が最低となる剛性指標62と、を組み合わせて、決定される。
 指令応答設定機能221と剛性設定機能231とを用いて、モータ3が駆動される。第3の摩擦補償測定パターンは、位置決め指標が測定されて、その結果が記憶される。
 第3の摩擦補償測定パターンにおいて、位置決め指標が最良となる摩擦補償値が探索されて、その結果が記憶される。
 位置決め指標は、少なくとも位置決め整定時間と、オーバーシュート量と、位置決め完了出力信号変化回数とのうち、ひとつ以上を用いることができる。
 摩擦補償値の探索は、位置決め指標が最良となるように、摩擦補償値を増加または減少させて探索される。摩擦補償値の探索は、位置決め指標が良化する方向に、摩擦補償値を増加または減少させることを繰り返すことで、探索される。
 ところで、位置決め指標が良化する方向の具体例として、以下にその一例を示す。なお、位置決め指標が良化する方向は、以下の内容に限定されるものではない。
 位置決め整定時間が短いほど、位置決め指標は良化する。オーバーシュート量が小さいほど、位置決め指標は良化する。位置決め完了出力信号変化回数は、外部位置指令が0となってから、1回だけ変化することが望ましい。振動レベルが小さいほど、位置決め指標は良化する。
 本発明の実施の形態1におけるモータ駆動装置によれば、測定範囲内の全パターンにおいて、オーバーシュートがない。または、本発明の実施の形態1におけるモータ駆動装置によれば、オーバーシュートが位置決め完了範囲内に収まる測定結果を得ることができる。よって、作業者が、最終調整結果を選択する際の選択肢の幅を広げることができる。
 以下、図9Aから図16を用いて、主にソフトウェア構成について、詳細に説明する。
 図9Aに示すように、ステップ1では、事前に決定された最高剛性より、指令応答測定を行う剛性指標範囲と指令応答指標範囲とが決定される。
 最高剛性の決定は、次のように行われる。まず、予め定められた初期指令応答指標が指令応答設定部22に設定される。また、予め定められた初期剛性指標が剛性設定機能231に設定される。初期指令応答指標および初期剛性指標は、モータ3および負荷5の発振が起こらないよう、応答性を低くしておくことが望ましい。
 次に、上位装置1から送信された外部位置指令の動作パターンが、決定される。動作パターンに基いて、負荷特性が測定される。負荷特性の測定が適切に行われるよう、動作パターンは、加速度や最高速度、あるいは、トルク指令が大きくなるように設定されることが望ましい。負荷特性として、イナーシャ、偏加重、動摩擦、および、粘性摩擦係数の各推定値が測定される。測定された各推定値は、負荷特性補償部24のイナーシャ補償処理24a、偏加重補償処理24b、動摩擦補償処理24c、および、粘性摩擦補償処理24dに設定される。
 次に、決定された動作パターンについて、剛性指標を上げながら、負荷特性が測定される。最高剛性には、モータ3および負荷5の発振が起こる剛性指標から、一定のマージンが確保された低い剛性指標が採用される。なお、モータ3および負荷5の振動レベルに制限値が規定されている場合、最高剛性には、振動レベルが制限値を超えたときの剛性指標、の直前の剛性指標が採用される。
 モータ3と、モータ3に接続される負荷5との共振特性により引き起こされる振動が励起されないよう、補償後トルク指令から特定の周波数成分を除去する、フィルタ処理が施されることがある。フィルタ処理が施される共振抑制部が存在する場合、負荷特性の測定は、フィルタ処理を活用しながら、行われる。すなわち、フィルタ処理を活用しながら剛性指標が上げられる。負荷特性の測定は、剛性指標毎に、共振抑制部の設定値を記憶しておくことが望ましい。
 図10Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。図10Bは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性を含む剛性指標範囲を決定する例を示す説明図である。
 図10A、図10Bに示すように、最高剛性から、剛性指標範囲と指令応答指標範囲とが、決定される。図10Aに示すように、指令応答指標範囲は、最高剛性から指令応答指標No.1から指令応答指標No.6までの6パターンが選び出される。図10Bに示すように、剛性指標範囲は、最高剛性を含む、最高剛性から5段階下の剛性指標までの6パターンが選択される。選択された剛性指標範囲と、選び出された指令応答指標範囲とを組み合わせて、36パターンが設定される。後述するステップ4-2において、設定された36パターンについては、順次、指令応答指標と剛性指標とが変更されながら、評価指標が測定される。また、後述するステップ2-2およびステップ3-2においても、設定された36パターンにおける剛性指標範囲と指令応答指標範囲とが、用いられる。
 なお、当然のことながら、設定されたパターンの組み合わせ数は、測定精度と測定時間との兼ね合いにより、必要に応じて増減してもよい。図10Bに示すように、この組み合わせは、剛性指標を縦軸、指令応答指標を横軸とした場合、碁盤目に並ぶように配置される。
 図9Aに示すように、ステップ2-1からステップ2-6では、ステップ1の前に設定された、動摩擦補償処理24cおよび粘性摩擦補償処理24dである、摩擦補償値の最適値が、探索される。
 ステップ2-1では、ステップ1で決定された、剛性指標範囲と指令応答指標範囲とに基いて、摩擦補償値の最適値が探索される際の、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲とが、決定される。
 図11Aから図13Bには、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲とが決定される例が、示される。
 具体的には、図11A、図12A、図13Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。図11Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲から摩擦補償探索剛性指標範囲を決定する例を示す説明図である。図12Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲の最小剛性指標から摩擦補償探索剛性指標範囲を決定する例を示す説明図である。図13Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲の最小剛性指標から摩擦補償探索剛性指標範囲を決定する例を示す説明図である。
 図11Bに示すように、剛性指標範囲が、そのまま摩擦補償探索剛性指標範囲と決定される。また、指令応答指標範囲の中で、時定数が最小となる指令応答指標No.6が、摩擦補償探索指令応答指標範囲と決定される。
 決定された、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲とに基いて、6パターンが設定される。後述するステップ2-2において、設定された6パターンについては、順次変更されながら、各パターンにおける摩擦補償値の最適値が探索される。
 図12Bに示すように、剛性指標範囲の中で最小の剛性指標が、摩擦補償探索剛性指標範囲と決定される。また、指令応答指標範囲である、指令応答指標No.1から指令応答指標No.6が、そのまま摩擦補償探索指令応答指標範囲と決定される。
 決定された、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲とに基いて、6パターンが設定される。後述するステップ2-2において、設定された6パターンについては、順次変更されながら、各パターンにおける摩擦補償値の最適値が探索される。
 図13Bに示すように、剛性指標範囲の中で最小の剛性指標が、摩擦補償探索剛性指標範囲と決定される。また、指令応答指標範囲の中で、時定数が最小となる指令応答指標No.6が、摩擦補償探索指令応答指標範囲と決定される。
 決定された、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲とで決められる1パターンについて、摩擦補償値の最適値が探索される。
 この具体例では、剛性指標範囲よりも摩擦補償探索剛性指標範囲が、狭く設定される。また、指令応答指標範囲よりも摩擦補償探索指令応答指標範囲が、狭く設定される。
 しかし、剛性指標範囲を摩擦補償探索剛性指標範囲とし、かつ、指令応答指標範囲を摩擦補償探索指令応答指標範囲として、全組み合わせパターンにおける摩擦補償値の最適値が探索されてもよい。つまり、摩擦補償値の最適値が探索される範囲は、測定時間との兼ね合いにより、必要に応じて拡大してもよい。
 図9Aに示すように、ステップ2-2では、後述するステップ2-3で実際の動作が行われる前に、ステップ2-1で決定された、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲との組み合わせパターンに従って、剛性指標と指令応答指標との組み合わせが変更される。指令応答設定部22は、指令応答設定機能221により、指令応答指標に従って設定される。位置速度制御部23は、剛性設定機能231により、剛性指標に従って設定される。
 ステップ2-3では、ステップ1の前に決定された動作パターンに従って、モータが駆動される。評価指標は、評価指標測定機能27によって測定される。ここで、評価指標は、位置決め精度に関する整定時間、オーバーシュート量、INP変化回数などがある。記憶部28の記憶容量に制限がなければ、できるだけ多くの評価指標が収集されることが好ましい。測定された結果は、剛性指標と指令応答指標との組み合わせパターンと対応付けて、摩擦補償値とともに記憶部28に記憶される。
 なお、図1A、図1Bに示すように、測定された結果が記憶できるのであれば、記憶部28は、モータ3を駆動する基本機能から離れた場所でもよい。
 ステップ2-4では、摩擦補償値の最適値について、探索が完了したかどうか、が判定される。フローチャートは、探索が完了していれば、ステップ2-6へ進む。フローチャートは、探索が完了していなければ、ステップ2-5へ進む。
 ステップ2-5では、動摩擦、および、粘性摩擦係数の推定値が変更される。ステップ2-5では、動摩擦補償処理24c、および、粘性摩擦補償処理24dが再設定される。推定値の変更は、ステップ1の前に測定された負荷特性に対して一定の倍率が積算された操作量を、現在の推定値から加減算すればよい。変更が完了すれば、フローチャートは、ステップ2-3に戻る。ステップ2-3では、再び、ステップ1の前に決定された動作パターンに従って、モータが駆動される。評価指標は、評価指標測定機能27によって測定される。
 ステップ2-6では、ステップ2-1で決定された、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲との全ての組み合わせに対して、摩擦補償値の最適値探索が完了したか、が判定される。探索が完了していなければ、フローチャートは、ステップ2-2に戻る。ステップ2-2では、再び、剛性指標と指令応答指標との組み合わせが変更される。全探索が完了していれば、フローチャートは、ステップ3-1へ進む。
 ここで、ステップ2-1において、図11Aから図13Bに至る過程を経て、摩擦補償探索剛性指標範囲と摩擦補償探索指令応答指標範囲とが、決定される理由について、図14Aから図15Cを用いて説明する。
 図14Aは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、位置決め整定時間の組み合わせパターンの評価指標の測定結果を示す説明図である。図14Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、オーバーシュート量の組み合わせパターンの評価指標の測定結果を示す説明図である。図14Cは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、振動レベルの組み合わせパターンの評価指標の測定結果を示す説明図である。
 図15Aは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、位置決め整定時間の組み合わせパターンの評価指標の傾向を示す説明図である。図15Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、オーバーシュート量の組み合わせパターンの評価指標の傾向を示す説明図である。図15Cは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲と指令応答指標範囲のうち、振動レベルの組み合わせパターンの評価指標の傾向を示す説明図である。
 図14Aから図14Cには、剛性指標範囲と指令応答指標範囲との組み合わせパターンにおける、位置決め整定時間、オーバーシュート量、振動レベルについて、実際に測定した結果が示される。
 図14Aに示すように、位置決め整定時間を示す数値は、数値が大きいほど、外部位置指令が停止してから位置偏差が位置決め完了範囲以内となるまでの時間が長いことを意味する。図14Bに示すように、オーバーシュート量を示す数値は、数値が大きいほど、目標位置を行き過ぎた量が大きいことを意味する。図14Cに示すように、振動レベルを示す数値は、数値が大きいほど、位置偏差について、振動成分の振幅が大きいことを意味する。
 斜線部分は、つぎの経過を経て、位置決め完了出力信号割れ(INT割れ)が発生していることを意味する。すなわち、外部位置指令が停止してから、位置偏差が位置決め完了範囲以内となる。その後、目標位置を行き過ぎたため、位置偏差が位置決め完了範囲以外となる。その後、再び、位置偏差が位置決め完了範囲以内となる。
 実際に測定した今回の場合、位置決め完了範囲を5と設定した。よって、図14Bに示すように、オーバーシュート量が6以上でINP割れが発生していることが分かる。
 なお、INP割れの発生は、位置決め完了出力信号の変化回数からも判断できる。外部位置指令が停止してから、位置決め完了出力信号の変化回数が1回であれば、INP割れの発生はない。外部位置指令が停止してから、位置決め完了出力信号の変化回数が1回より大きければ、INP割れが発生していることになる。
 図15Aには、剛性指標範囲と指令応答指標範囲との組み合わせパターンにおける位置決め整定時間について、図14Aの測定結果から分かる傾向が示される。
 位置決め整定時間については、指令応答性が支配的である。よって、指令応答指標が大きい、つまり時定数が小さいほど、位置決め整定時間は短くなる。位置決め整定時間については、剛性指標の影響は小さい。しかし、剛性指標が大きくなるほど、位置決め整定時間は短くなる。
 図15Bには、剛性指標範囲と指令応答指標範囲との組み合わせパターンにおけるオーバーシュート量について、図14Bの測定結果から分かる傾向が示される。
 剛性指標が小さいほど、オーバーシュート量は大きくなる。また、指令応答指標が大きい、つまり時定数が小さいほど、オーバーシュート量は大きくなる。
 図15Cには、剛性指標範囲と指令応答指標範囲との組み合わせパターンにおける振動レベルについて、図14Cの測定結果から分かる傾向が示される。
 振動レベルについては、外乱応答性が支配的である。よって、剛性指標が大きいほど、振動レベルは大きくなる。なお、振動レベルについて、指令応答指標の影響はほとんどない。
 ここで、図9Aに示したステップ2-5における、摩擦補償値の変更方法について、図16を用いて説明する。
 図16は、本発明の実施の形態1におけるサーボ駆動装置において、摩擦補償値に応じた位置決め整定時の位置偏差を示す説明図である。
 摩擦補償値が小さすぎると、位置偏差は、(1)で示される状態となる。この場合、オーバーシュート量が大きく、INP割れが発生する。
 摩擦補償値を大きくしていくと、位置偏差は、(2)で示される状態となる。この場合、オーバーシュート量は、ちょうど位置決め完了範囲内に収まる。また、位置決め整定時間は、最短となる。
 さらに、摩擦補償値を大きくしていくと、位置偏差は、(3)あるいは(4)で示される状態となる。これらの場合、オーバーシュートは発生しなくなる。位置決め整定時間は、位置偏差が(2)で示される状態よりも長くなる。
 以上のことから、ステップ2-5における、摩擦補償値の変更は、次のように行えばよいことがわかる。
 すなわち、オーバーシュートが許容できる場合、INP割れが発生していれば、摩擦補償値を大きくする。また、INP割れが発生していなければ、摩擦補償値を小さくする。この調整を、INP割れの発生とINP割れの未発生について、変化が発生するまで、繰り返し行う。
 オーバーシュートが許容できない場合、オーバーシュートが発生していれば、摩擦補償値を大きくする。また、オーバーシュートが発生していなければ、摩擦補償値を小さくする。この調整を、オーバーシュートの発生とオーバーシュートの未発生について、変化が発生するまで、繰り返し行う。
 以上の説明から明らかなように、オーバーシュート量、指令応答指標、剛性指標について、つぎの(a)から(c)の組み合わせとする。すなわち、(a)オーバーシュート量は大きい、(b)指令応答指標は大きい、(c)剛性指標は小さい、という3つの条件の組み合わせである。
 本組み合わせにより、摩擦補償値を最適に調整すれば、剛性指標範囲と指令応答指標範囲との全ての組み合わせにおいて、INP割れがない、あるいは、オーバーシュートがない、測定結果を得ることができる。よって、作業者が、最終の調整結果を選出する際、選択の幅が広くなる。
 また、指令応答指標が大きく、剛性指標が小さい、組み合わせを選出することができる。よって、作業者は、位置決め整定時間をあまり長くすることなく、サーボモータを制御するにあたり、安定性が高い調整結果を得ることができる。
 さらに、本発明の実施の形態1におけるモータ駆動装置2は、生成された評価指標測定パターン63に従って、順次、指令応答指標61と剛性指標62とを変更しながらモータ3を駆動する前に、以下の動作を行う。
 制振測定パターンが、評価指標測定パターン63において、応答性が最高となる剛性指標62と、応答性が最高となる剛性指標62に対応する指令応答指標61と、を組み合わせて、決定される。
 指令応答設定機能221と剛性設定機能231とを用いて、モータ3が駆動される。制振測定パターンは、位置決め指標が測定されて、その結果が記憶される。
 制振測定パターンにおいて、位置決め指標が最良となる制振周波数と深さ設定値とが探索されて、その結果が記憶される。
 位置決め指標は、少なくとも位置決め整定時間と、振動レベルと、振動周波数とのうち、ひとつ以上を用いることができる。
 制振周波数と深さ設定値との探索は、位置決め指標が最良となるように、深さ設定値を増加または減少させて探索される。制振周波数と深さ設定値との探索は、位置決め指標が良化する方向に、深さ設定値を増加または減少させることを繰り返すことで、探索される。
 本発明の実施の形態1におけるモータ駆動装置によれば、測定範囲内の全パターンにおいて、振動レベルが低い測定結果を得ることができる。よって、作業者が、最終調整結果を選択する際、選択肢の幅を広げることができる。
 以下、図9B、図17Aから図18を用いて、主にソフトウェア構成について、さらに、詳細に説明する。
 図9Bに示すように、ステップ3-1からステップ3-6では、制振周波数と深さ設定の最適値が探索される。
 ステップ3-1では、ステップ1で決定された、剛性指標範囲と指令応答指標範囲とに基いて、制振周波数と深さ設定の最適値が探索される際の、制振探索剛性指標範囲と制振探索指令応答指標範囲とが、決定される。このとき、制振周波数の初期値は、制振フィルタが無効となる周波数に設定する。また、深さ設定の初期値は、制振フィルタの入力に対する出力の関係が0倍となる深さに設定する。
 なお、制振周波数および深さ設定について、適切な値の概算値が分かっていれば、この概算値を初期値としてもよい。
 図17Aは、本発明の実施の形態1におけるサーボ駆動装置において、最高剛性から指令応答指標範囲を決定する例を示す説明図である。図17Bは、本発明の実施の形態1におけるサーボ駆動装置において、剛性指標範囲の最大剛性指標から制振探索剛性指標範囲を決定する例を示す説明図である。
 図17Bに示すように、剛性指標範囲の中で最大の剛性指標が、制振探索剛性指標範囲と決定される。また、指令応答指標範囲の中で、時定数が最小となる指令応答指標No.6が、制振探索指令応答指標範囲と決定される。
 決定された、制振探索剛性指標範囲と制振探索指令応答指標範囲とで決められる1パターンについて、制振周波数と深さ設定の最適値が探索される。
 この具体例では、剛性指標範囲よりも制振探索剛性指標範囲が、狭く設定される。また、指令応答指標範囲よりも制振探索指令応答指標範囲が、狭く設定される。
 しかし、剛性指標範囲を制振探索剛性指標範囲とし、かつ、指令応答指標範囲を制振探索指令応答指標範囲として、全組み合わせパターンにおける制振周波数と深さ設定の最適値が探索されてもよい。つまり、制振周波数と深さ設定の最適値が探索される範囲は、測定時間との兼ね合いにより、必要に応じて拡大してもよい。
 図9Bに示すように、ステップ3-2では、後述するステップ3-3で実際の動作が行われる前に、ステップ3-1で決定された、制振探索剛性指標範囲と制振探索指令応答指標範囲との組み合わせパターンに従って、剛性指標と指令応答指標との組み合わせが変更される。指令応答設定部22は、指令応答設定機能221により、指令応答指標に従って設定される。位置速度制御部23は、剛性設定機能231により、剛性指標に従って設定される。
 ステップ3-3では、ステップ1の前に決定された動作パターンに従って、モータが駆動される。評価指標は、評価指標測定機能27によって測定される。ここで、評価指標は、位置決め精度に関する整定時間、オーバーシュート量、INP変化回数、振動レベル、振動周波数などがある。記憶部28の記憶容量に制限がなければ、できるだけ多くの評価指標が収集されることが好ましい。測定された結果は、剛性指標と指令応答指標との組み合わせパターンと対応付けて、制振周波数と深さ設定とともに記憶部28に記憶される。
 なお、図1A、図1Bに示すように、測定された結果が記憶できるのであれば、記憶部28は、モータ3を駆動する基本機能から離れた場所でもよい。
 ステップ3-4では、制振周波数と深さ設定の最適値について、探索が完了したかどうか、が判定される。探索が完了していれば、フローチャートは、ステップ3-6へ進む。探索が完了していなければ、フローチャートは、ステップ3-5へ進む。
 ステップ3-5では、制振周波数と深さ設定が変更される。ステップ3-5では、制振フィルタ設定処理221dを介して、制振フィルタ22dの周波数特性が変更される。制振周波数の変更は、評価指標の振動周波数を制振周波数として設定すればよい。深さ設定の変更は、制振フィルタの入力に対する出力の関係が0倍から1倍となるまで、浅くすればよい。例えば、深さ設定の変更は、0.1倍や0.01倍といった一定間隔で、浅くすればよい。変更が完了すれば、フローチャートは、ステップ3-3に戻る。ステップ3-3では、再び、ステップ1の前に決定された動作パターンに従って、モータが駆動される。評価指標は、評価指標測定機能27によって測定される。
 ステップ3-6では、ステップ3-1で決定された、制振探索剛性指標範囲と制振探索指令応答指標範囲との全ての組み合わせに対して、制振周波数と深さ設定の最適値探索が完了したか、が判定される。探索が完了していなければ、フローチャートは、ステップ3-2に戻る。ステップ3-2では、再び、剛性指標と指令応答指標との組み合わせが変更される。全探索が完了していれば、フローチャートは、ステップ4-1へ進む。
 ここで、ステップ3-1において、図17A、図17Bに示す過程を経て、制振探索剛性指標範囲と制振探索指令応答指標範囲とが、決定される理由について、図14Aから図15C、図18を用いて説明する。
 剛性指標と指令応答指標とを変更した際の振動レベルについては、図14Aから図15Cを用いて、先に説明した通りである。すなわち、振動レベルは、剛性指標が大きいほど振動が大きい。また、振動レベルは、指令応答指標の影響はほとんどない。
 図18は、本発明の実施の形態1におけるサーボ駆動装置において、制振フィルタの深さ設定に応じた位置決め整定時の位置偏差を示す説明図である。
 位置偏差の振動周波数が制振周波数として正しく設定されている場合、制振フィルタの深さ設定を浅くする。つまり、制振フィルタの入力に対する出力が、1倍に近づけられる。この場合、振動成分が完全に除去されず、位置偏差は、(3)で示されるように振動状態となる。
 また、制振フィルタの深さ設定を深くする。つまり、制振フィルタの入力に対する出力が、0倍に近づけられる。この場合、振動成分が過剰に除去されると、応答の遅れは大きくなる。位置偏差は、(1)で示されるように振動状態となる。
 つぎに、制振フィルタの深さ設定を、適切に設定する。この場合、振動成分が適切に除去される。位置偏差は、(2)で示されるように振動がなくなる。
 つまり、位置偏差の振動が大きいと、INP割れの発生によって、位置決め整定時間が(2)よりも長い、(1)および(3)のようになる。
 以上のことから、ステップ3-5における、制振フィルタの深さ設定の変更は、次のように行えばよいことがわかる。
 すなわち、制振フィルタの深さ設定の初期値が、制振フィルタの入力に対する出力の関係が0倍となる深さに設定されている場合、深さ設定が1倍に近づくように、徐々に浅くする。
 制振フィルタの深さ設定の初期値が、制振フィルタの入力に対する出力の関係が0倍となる深さに設定されていない場合、振動レベルが減少する方向に、深さ設定を浅くする、あるいは、深くする。この調整を、振動レベルが減少から増加に転じるまで、繰り返し行う。
 なお、制振フィルタの深さ設定の変更に伴う、振動周波数の変動は、基本的には発生しない。よって、制振周波数の設定は、位置偏差の振動成分から振動周波数を抽出して、制振周波数として設定すればよい。制振周波数の設定は、最初に1回のみ設定すればよい。あるいは、制振周波数の設定は、深さ設定の変更が発生する毎に、都度、設定し直してもよい。
 以上の説明から明らかなように、振動レベル、剛性指標について、つぎの(a)(b)の組み合わせとする。すなわち、(a)振動レベルは大きい、(b)剛性指標は大きい、の2つの条件の組み合わせである。
 本組み合わせにより、制振周波数と深さ設定を最適に調整すれば、剛性指標範囲と指令応答指標範囲との全ての組み合わせにおいて、振動レベルが小さい、測定結果を得ることができる。よって、作業者が、最終の調整結果を選出する際、選択の幅が広くなる。
 なお、ステップ2-1からステップ2-6までと、ステップ3-1からステップ3-6までとは、順番を逆にしても良い。
 図9Bに示すように、ステップ4-1からステップ4-3では、ステップ1で決定された、剛性指標範囲と指令応答指標範囲との全組み合わせパターンについて、評価指標が測定される。
 ステップ4-1では、ステップ4-2で実際に動作が行われる前に、ステップ1で決定された剛性指標範囲と指令応答指標範囲とに基いて、剛性指標と指令応答指標との組み合わせが変更される。指令応答設定部22は、指令応答設定機能221により、指令応答指標に従って設定される。位置速度制御部23は、剛性設定機能231により、剛性指標に従って設定される。
 また、ステップ2-1からステップ2-6で探索された、剛性指標と指令応答指標との組み合わせにおける摩擦補償値の最適値に基いて、動摩擦、および、粘性摩擦係数の推定値が変更される。また、摩擦補償値の最適値に基いて、動摩擦補償処理24c、および、粘性摩擦補償処理24dが設定される。
 ステップ4-2では、ステップ1の前に決定された動作パターンに従って、モータが駆動される。各動作の評価指標は、評価指標測定機能27によって測定される。ここで、評価指標は、位置決め精度に関する整定時間、オーバーシュート量、INP変化回数、振動レベルなどがある。記憶部28の記憶容量に制限がなければ、できるだけ多くの評価指標が収集されることが好ましい。測定された結果は、剛性指標と指令応答指標との組み合わせパターンと対応付けて、記憶部28に記憶される。
 ステップ4-3では、ステップ1で決定された剛性指標範囲と指令応答指標範囲との全組み合わせパターンについて、測定が完了したかどうか、が判定される。測定が完了していなければ、フローチャートは、ステップ4-1に戻る。ステップ4-1では、再び、剛性指標と指令応答指標との組み合わせが変更される。測定が完了していれば、フローチャートは、ステップ5へ進む。
 図9Bに示すように、ステップ5では、まず、推奨条件が選択される。推奨条件は、用途に応じて、予め定義された選択肢から選択される。また、推奨条件は、評価指標がグラフ表示されて、図的に選択されてもよい。あるいは、推奨条件は、指令応答指標と剛性指標とのマトリクスに対して評価指標が表示される。そして、推奨条件は、指令応答指標と剛性指標との組み合わせが、直接、指定されてもよい。指令応答指標と剛性指標とのマトリクスに対して評価指標が表示されることで、剛性指標または指令応答指標が変更された際の、評価指標の傾向が把握できる。
 換言すれば、指令応答指標と剛性指標との組み合わせパターンの中から、1つ以上の候補が選出される方法であれば、どのような方法でも許容される。
 図9Bに示すように、ステップ6では、ステップ4-1からステップ4-3の評価指標測定結果に基いて、ステップ5で選択された推奨条件に従って、最も優先順位が高い指令応答指標と剛性指標との組み合わせが、最終調整結果として選出される。推奨条件が並べ替え条件を含む場合、優先順位の2番目以降の候補について、示してもよい。
 また、指令応答指標と剛性指標とのマトリクスに対して評価指標が表示されていれば、要求が満足される中で、より剛性指標が低い、指令応答指標と剛性指標との組み合わせが選出される。よって、作業者は、サーボモータを制御するにあたり、安定性が高い調整結果を得ることができる。
 最後に、モータ駆動装置2のすべての自動調整機能が無効化されて、ステップ6が終了する。
 指令応答設定機能221は、指令応答指標が、実際の指令応答設定部22に反映されないよう、反映開始信号がオフにされる。また、剛性設定機能231は、剛性指標が、実際の位置速度制御部23に反映されないよう、反映開始信号をオフにしておく。
 本発明のモータ駆動装置は、サーボ調整について、十分な知識や経験を持たない作業者でも、用途毎に異なった評価指標を満足しつつ、安定性が高い調整結果を簡単に得ることができる。
 1  上位装置
 2,1002  モータ駆動装置
 2a  モータ駆動部
 3  モータ
 4  エンコーダ
 5  負荷
 6  サーボ調整部
 22  指令応答設定部
 23,123  位置速度制御部
 24  負荷特性補償部
 27  評価指標測定機能
 28  記憶部
 61  指令応答指標
 62  剛性指標
 63  評価指標測定パターン
 221  指令応答設定機能
 231  剛性設定機能

Claims (10)

  1. モータを駆動するモータ駆動装置であって、
    位置指令を受信し、特定の周波数帯域を除去するフィルタ処理を行うとともに、前記フィルタ処理を行なった結果をフィルタ後位置指令として送信する指令応答設定部と、
    前記フィルタ後位置指令と、エンコーダから送信されたモータ位置情報と、を受信し、前記フィルタ後位置指令と前記モータ位置情報との偏差を0とするようなトルク指令を生成し、生成した前記トルク指令を送信する位置速度制御部と、
    前記トルク指令を受信し、前記モータと前記モータに加えられた負荷とのイナーシャ推定値を乗じた後、前記負荷の摩擦トルク推定値を加算して、前記モータを駆動する補償後トルク指令を生成し、生成した前記補償後トルク指令を送信する負荷特性補償部と、
    複数の指令応答指標と、複数の剛性指標と、を記憶するとともに、各々の前記指令応答指標と前記剛性指標とを組み合わせて評価指標測定パターンを生成するサーボ調整部と、
    前記サーボ調整部より送信される、前記評価指標測定パターンを構成する前記指令応答指標に従い、前記指令応答設定部のフィルタ特性を自動で設定する指令応答設定機能と、
    前記サーボ調整部より送信される、前記評価指標測定パターンを構成する前記剛性指標に従い、前記位置速度制御部のパラメータを自動で設定する剛性設定機能と、
    前記位置指令と、前記モータ位置情報と、前記補償後トルク指令と、の少なくとも一つから導き出された評価指標を自動で測定する評価指標測定機能と、
    前記評価指標測定機能で測定された結果を記憶する記憶部と、
    を備え、
    生成された前記評価指標測定パターンに従って、順次、前記指令応答指標と前記剛性指標とを変更しながら前記モータを駆動するモータ駆動装置。
  2. 前記評価指標は、少なくとも位置決め整定時間と、オーバーシュート量と、振動レベルと、位置決め完了出力信号変化回数とのうち、ひとつ以上を用いる、請求項1に記載のモータ駆動装置。
  3. 生成された前記評価指標測定パターンに従って、順次、前記指令応答指標と前記剛性指標とを変更しながら前記モータを駆動する前に、
    前記評価指標測定パターンにおいて、時定数が最小となる前記指令応答指標と、時定数が最小となる前記指令応答指標に対応する前記剛性指標と、を組み合わせて第1の摩擦補償測定パターンを決定し、
    前記指令応答設定機能と前記剛性設定機能とを用いて、前記剛性指標を、順次、変更しながら前記モータを駆動させ、すべての組み合わせで位置決め指標を測定して記憶し、各々の前記第1の摩擦補償測定パターンにおいて、前記位置決め指標が最良となる摩擦補償値を探索して記憶する、請求項1に記載のモータ駆動装置。
  4. 生成された前記評価指標測定パターンに従って、順次、前記指令応答指標と前記剛性指標とを変更しながら前記モータを駆動する前に、
    前記評価指標測定パターンにおいて、応答性が最低となる前記剛性指標と、応答性が最低となる前記剛性指標に対応する前記指令応答指標と、を組み合わせて第2の摩擦補償測定パターンを決定し、
    前記指令応答設定機能と前記剛性設定機能とを用いて、前記指令応答指標を、順次、変更しながら前記モータを駆動させ、すべての組み合わせで位置決め指標を測定して記憶し、各々の前記第2の摩擦補償測定パターンにおいて、前記位置決め指標が最良となる摩擦補償値を探索して記憶する、請求項1に記載のモータ駆動装置。
  5. 生成された前記評価指標測定パターンに従って、順次、前記指令応答指標と前記剛性指標とを変更しながら前記モータを駆動する前に、
    前記評価指標測定パターンにおいて、時定数が最小となる前記指令応答指標と、応答性が最低となる前記剛性指標と、を組み合わせて第3の摩擦補償測定パターンを決定し、
    前記指令応答設定機能と前記剛性設定機能とを用いて前記モータを駆動させて、位置決め指標を測定して記憶し、前記第3の摩擦補償測定パターンにおいて、前記位置決め指標が最良となる摩擦補償値を探索して記憶する、請求項1に記載のモータ駆動装置。
  6. 前記位置決め指標は、少なくとも位置決め整定時間と、オーバーシュート量と、位置決め完了出力信号変化回数とのうち、ひとつ以上を用いる、請求項3から請求項5のいずれか一項に記載のモータ駆動装置。
  7. 前記位置決め指標が最良となるように、前記摩擦補償値を増加または減少させて探索する、請求項3から請求項5のいずれか一項に記載のモータ駆動装置。
  8. 生成された前記評価指標測定パターンに従って、順次、前記指令応答指標と前記剛性指標とを変更しながら前記モータを駆動する前に、
    前記評価指標測定パターンにおいて、応答性が最高となる前記剛性指標と、応答性が最高となる前記剛性指標に対応する前記指令応答指標と、を組み合わせて制振測定パターンを決定し、
    前記指令応答設定機能と前記剛性設定機能とを用いて前記モータを駆動させ、位置決め指標を測定して記憶し、前記制振測定パターンにおいて、前記位置決め指標が最良となる制振周波数と深さ設定値とを探索して記憶する、請求項1に記載のモータ駆動装置。
  9. 前記位置決め指標は、少なくとも位置決め整定時間と、振動レベルと、振動周波数とのうち、ひとつ以上を用いる、請求項8に記載のモータ駆動装置。
  10. 前記位置決め指標が最良となるように、前記深さ設定値を増加または減少させて探索する、請求項8に記載のモータ駆動装置。
PCT/JP2014/002035 2013-04-10 2014-04-09 モータ駆動装置 WO2014167851A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014532183A JP5810283B2 (ja) 2013-04-10 2014-04-09 モータ駆動装置
KR1020157028112A KR101597085B1 (ko) 2013-04-10 2014-04-09 모터 구동 장치
US14/782,596 US9423786B2 (en) 2013-04-10 2014-04-09 Motor drive device
EP14783045.9A EP2958229B1 (en) 2013-04-10 2014-04-09 Motor drive device
CN201480032976.5A CN105284045B (zh) 2013-04-10 2014-04-09 电动机驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-081918 2013-04-10
JP2013081918 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014167851A1 true WO2014167851A1 (ja) 2014-10-16

Family

ID=51689272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002035 WO2014167851A1 (ja) 2013-04-10 2014-04-09 モータ駆動装置

Country Status (6)

Country Link
US (1) US9423786B2 (ja)
EP (1) EP2958229B1 (ja)
JP (1) JP5810283B2 (ja)
KR (1) KR101597085B1 (ja)
CN (1) CN105284045B (ja)
WO (1) WO2014167851A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034852A (ja) * 2015-07-31 2017-02-09 ファナック株式会社 機械指令に応じたフィルタを学習する機械学習装置、機械学習装置を備えたモータ駆動装置及びモータ駆動システム並びに機械学習方法
JP2018186659A (ja) * 2017-04-26 2018-11-22 ファナック株式会社 サーボモータ制御装置、及び、サーボモータ制御システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212068B2 (ja) * 2015-04-24 2017-10-11 ファナック株式会社 機械の周波数特性をオンラインで取得する機能を有するサーボ制御装置
JP6443365B2 (ja) 2016-03-10 2018-12-26 オムロン株式会社 モータ制御装置、制御方法、情報処理プログラム、および記録媒体
JP6400750B2 (ja) * 2017-01-26 2018-10-03 ファナック株式会社 学習制御機能を備えた制御システム及び制御方法
JP6420388B2 (ja) * 2017-03-13 2018-11-07 ファナック株式会社 サーボモータ制御装置、及び、サーボモータ制御システム
JP6474460B2 (ja) * 2017-06-21 2019-02-27 ファナック株式会社 モータ制御装置
JP6856469B2 (ja) * 2017-07-19 2021-04-07 ファナック株式会社 サーボモータ制御装置
CN111587530B (zh) * 2018-01-09 2023-12-22 松下知识产权经营株式会社 电动机的控制装置
EP3778123B1 (en) * 2018-04-10 2023-03-01 Panasonic Intellectual Property Management Co., Ltd. Signal processing apparatus and electric tool
JP7119760B2 (ja) * 2018-08-21 2022-08-17 オムロン株式会社 設定支援装置
CN109338607A (zh) * 2018-10-11 2019-02-15 浙江众邦机电科技有限公司 一种缝纫机的电机重载控制方法、装置、介质、设备
CN109145522B (zh) * 2018-10-29 2023-04-07 苏州科技大学 基于可扩缩式动态性能评价函数的进给系统伺服优化方法
JP7238673B2 (ja) * 2019-07-30 2023-03-14 ブラザー工業株式会社 数値制御装置及び制御方法
JP7264776B2 (ja) * 2019-09-04 2023-04-25 ファナック株式会社 パラメータの設定方法、及び、制御装置
CN111258339B (zh) * 2019-11-25 2022-12-09 天津津航技术物理研究所 基于步进电机和光电开关的随动控制装置
CN113162478B (zh) * 2021-04-15 2022-03-29 深圳赛美控电子科技有限公司 电机启动参数的测试方法、系统、终端设备及存储介质
TWI805353B (zh) * 2022-01-25 2023-06-11 台達電子工業股份有限公司 伺服驅動器及其增益快速自調整方法
TWI815739B (zh) * 2022-11-29 2023-09-11 士林電機廠股份有限公司 伺服馬達驅動控制系統及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346359A (ja) 1992-06-16 1993-12-27 Matsushita Electric Ind Co Ltd 負荷イナーシャ測定装置
JPH06319284A (ja) 1992-12-10 1994-11-15 Matsushita Electric Ind Co Ltd サーボモータの制御パラメータ調整装置及び調整方法
JP2004274976A (ja) 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd 電動機の制御装置
JP2005168166A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 負荷特性演算装置及びモータ制御装置
JP2006254630A (ja) 2005-03-11 2006-09-21 Yaskawa Electric Corp モータ制御装置およびその制御方法
JP2007034781A (ja) * 2005-07-28 2007-02-08 Fuji Electric Fa Components & Systems Co Ltd 位置決め制御装置の制御パラメータ調整方法
JP2007336792A (ja) 2006-05-18 2007-12-27 Matsushita Electric Ind Co Ltd サーボモータの制御装置
JP2008087893A (ja) 2006-09-29 2008-04-17 Toshiba Elevator Co Ltd エレベータの遠隔監視システム
JP2009096169A (ja) 2007-09-28 2009-05-07 Fujifilm Corp 加圧成形装置及び加圧成形方法ならびに成形品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235242B2 (ja) 1992-11-30 2001-12-04 株式会社明電舎 2慣性ねじり振動系の速度制御におけるイナーシャ推定方法
US5475291A (en) 1992-12-10 1995-12-12 Matsushita Electric Industrial Co., Ltd. Adjustment device for adjusting control parameters of a servo motor and an adjustment method therefor
JP3575148B2 (ja) 1995-11-27 2004-10-13 日本精工株式会社 サーボ機構の自動ゲイン調整方法及び装置
JP3235535B2 (ja) * 1997-09-26 2001-12-04 松下電器産業株式会社 ロボット制御装置とその制御方法
DE112008000194B4 (de) 2007-01-17 2022-02-24 Panasonic Corporation Servomotorsteuervorrichtung und Steuerverfahren
JP5146467B2 (ja) 2008-01-29 2013-02-20 パナソニック株式会社 モータ制御特性評価装置およびモータ制御特性の提示方法
JP5273575B2 (ja) 2011-09-01 2013-08-28 株式会社安川電機 電動機制御装置
JP5384608B2 (ja) * 2011-12-13 2014-01-08 東芝機械株式会社 サーボ制御装置およびその調整方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346359A (ja) 1992-06-16 1993-12-27 Matsushita Electric Ind Co Ltd 負荷イナーシャ測定装置
JPH06319284A (ja) 1992-12-10 1994-11-15 Matsushita Electric Ind Co Ltd サーボモータの制御パラメータ調整装置及び調整方法
JP2004274976A (ja) 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd 電動機の制御装置
JP2005168166A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 負荷特性演算装置及びモータ制御装置
JP2006254630A (ja) 2005-03-11 2006-09-21 Yaskawa Electric Corp モータ制御装置およびその制御方法
JP2007034781A (ja) * 2005-07-28 2007-02-08 Fuji Electric Fa Components & Systems Co Ltd 位置決め制御装置の制御パラメータ調整方法
JP2007336792A (ja) 2006-05-18 2007-12-27 Matsushita Electric Ind Co Ltd サーボモータの制御装置
JP2008087893A (ja) 2006-09-29 2008-04-17 Toshiba Elevator Co Ltd エレベータの遠隔監視システム
JP2009096169A (ja) 2007-09-28 2009-05-07 Fujifilm Corp 加圧成形装置及び加圧成形方法ならびに成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2958229A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034852A (ja) * 2015-07-31 2017-02-09 ファナック株式会社 機械指令に応じたフィルタを学習する機械学習装置、機械学習装置を備えたモータ駆動装置及びモータ駆動システム並びに機械学習方法
CN106409119A (zh) * 2015-07-31 2017-02-15 发那科株式会社 机械学习装置及方法、电动机驱动装置及电动机驱动系统
CN106409119B (zh) * 2015-07-31 2019-04-12 发那科株式会社 机械学习装置及方法、电动机驱动装置及电动机驱动系统
US10338541B2 (en) 2015-07-31 2019-07-02 Fanuc Corporation Machine learning to establish optimal filter for removing external noise without degrading responsivity
JP2018186659A (ja) * 2017-04-26 2018-11-22 ファナック株式会社 サーボモータ制御装置、及び、サーボモータ制御システム

Also Published As

Publication number Publication date
JP5810283B2 (ja) 2015-11-11
KR20150119497A (ko) 2015-10-23
EP2958229B1 (en) 2017-03-08
JPWO2014167851A1 (ja) 2017-02-16
US20160070252A1 (en) 2016-03-10
CN105284045A (zh) 2016-01-27
KR101597085B1 (ko) 2016-02-23
US9423786B2 (en) 2016-08-23
EP2958229A1 (en) 2015-12-23
CN105284045B (zh) 2017-03-08
EP2958229A4 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5810283B2 (ja) モータ駆動装置
JP6664107B2 (ja) モータ駆動装置のサーボ調整方法およびモータ駆動装置のサーボ調整を行うサーボ調整装置
EP2955842B1 (en) Motor drive device
KR101460463B1 (ko) 모터 제어 장치
US9690281B2 (en) Machine tool and machining control device thereof
US8638058B2 (en) Positioning control device
US9465381B2 (en) Servo control device having automatic filter adjustment function based on experimental modal analysis
US20120194121A1 (en) Position control apparatus
EP2985907B1 (en) Motor drive device
CN107196581B (zh) 用于微调伺服马达的控制装置、方法及计算机可读介质
JP6118988B2 (ja) モータ駆動装置
US20140253010A1 (en) Control device for servomotor
JP2007306753A (ja) ノッチフィルタのパラメータ調整方法、プログラムおよびモータ制御装置
JP2014007900A (ja) モータ制御装置
US10969755B2 (en) Semi-automatic, interactive tool to identify physical parameters of a mechanical load
JP2007185014A (ja) モータ制御装置の制御パラメータ算出方法、算出プログラムおよびモータ制御装置
JP5865116B2 (ja) 位置制御装置
JP5316424B2 (ja) モータ制御装置
JP5948165B2 (ja) 馬力制限装置及び馬力制限方法
Gude et al. Kappa-tau type PI tuning rules for specified robust levels
JP7156184B2 (ja) パラメータ調整方法
JP5865138B2 (ja) 制御パラメータの決定方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032976.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014532183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783045

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014783045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014783045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14782596

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157028112

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE