WO2014166296A1 - 梳形功能化聚氨酯材料及其制备方法 - Google Patents

梳形功能化聚氨酯材料及其制备方法 Download PDF

Info

Publication number
WO2014166296A1
WO2014166296A1 PCT/CN2014/000067 CN2014000067W WO2014166296A1 WO 2014166296 A1 WO2014166296 A1 WO 2014166296A1 CN 2014000067 W CN2014000067 W CN 2014000067W WO 2014166296 A1 WO2014166296 A1 WO 2014166296A1
Authority
WO
WIPO (PCT)
Prior art keywords
comb
polyurethane
polyethylene glycol
solvent
reaction
Prior art date
Application number
PCT/CN2014/000067
Other languages
English (en)
French (fr)
Inventor
谢兴益
张泽
武向阳
傅强
钟银屏
Original Assignee
四川大学
拉瓦尔大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学, 拉瓦尔大学 filed Critical 四川大学
Publication of WO2014166296A1 publication Critical patent/WO2014166296A1/zh
Priority to US14/880,306 priority Critical patent/US9631044B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the invention belongs to the technical field of polyurethane elastomers and preparation thereof, and particularly relates to a comb-shaped functionalized polyurethane material and a preparation method thereof.
  • Polyurethane (FU) as a block copolymer is generally formed by polymerizing short-segment raw materials and long-chain raw materials, and micro-phase separation of hard and soft segments is not only good biocompatibility, It also has excellent wear resistance, flexing resistance, moisture resistance and resistance to various chemicals. In addition, it has the advantages of easy processing and sterilization by conventional methods, making it widely used in the preparation of interventional catheters and cardiac pacing. Medical devices such as insulated wires are one of the most widely studied biomedical devices. However, as long-term implanted products, such as small-diameter artificial blood vessels, their anticoagulant properties still cannot meet clinical requirements, so their biocompatibility still needs to be further improved.
  • Polyethylene glycol is a hydrophilic, non-invasive and non-immunogenic biocompatible material. It has been found that grafting polyethylene glycol on the surface of polyurethane membrane can reduce protein adsorption and blood platelet. Active, thereby improving its blood compatibility. For example, Lee et al. found that the surface of polyurethane modified with polyethylene glycol having a molecular weight of less than 10,000 has significant anti-protein adsorption and anti-platelet adhesion. Uoutnal of Biomedical Materials Research, 1998, 40: 314-323.
  • This diol is a chain extender that attaches the polyethylene glycol chain to the hard segment of the polyurethane [Biomaterials 2002, 23: 2015 ⁇ 2025] o
  • the terminal group of the polyethylene glycol side chain used in these methods is a formazan group, and the obtained polyglycol ester has no reactive 3 ⁇ 4 group.
  • a more common method is to directly graft the polyethylene glycol chain to the polyurethane backbone by chemical reaction.
  • This method requires that the end groups of the polyurethane backbone and/or polyethylene glycol contain active reaction sites.
  • a carbamate group on the polyzide backbone is usually used as an active site to graft the isononate end capping.
  • Polyethylene glycol oligomer [Biomaterkls 1995, 16: 467-471].
  • the end group of the ethylene glycol side chain is either a sulfonic acid group or a methoxy group, that is, there is no reactive group to further graft bioactive macromolecules, such as growth factors, etc.; Active, enabling long-term use of implanted products
  • the object of the present invention is to address the deficiencies of the prior art.
  • a method for preparing a comb-shaped functional polyurethane material with a polyethylene glycol side chain is provided, which is not only a single tube, but also can obtain a polyethylene glycol side chain end.
  • Another object of the present invention is to provide a method for preparing a comb-shaped functionalized polyurethane material with a polyethylene glycol side chain, which is not only simple, but also obtains an ethylene glycol side chain group.
  • Comb-shaped functionalized polyurethane 3 ⁇ 4 material with carboxyl groups are not only simple, but also obtains an ethylene glycol side chain group.
  • the end group of the polyethylene glycol side chain is a reactive group.
  • the first solvent is used in the above method to make the polyurethane elastomer solution have a solid content of 26 to 39%; the second solvent is used in an amount of 2 to 10 by weight of the carboxyl group-containing polydecyl ester elastomer. %.
  • the first solvent described in the above method is a mixed solvent of water and any one of tetrahydrofuran, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethyl acetamide or dimethyl sulfoxide, wherein water The weight percentage is 10-30%; the second bath is any one of hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethyl acetamide or dimethyl sulfoxide.
  • the terminal epoxy-based polyethylene glycol or the terminal amino polyethylene glycol described in the above method preferably has a number average molecular weight of More preferably, the number average molecular weight is from 1000 to 4,000.
  • the tetrahydrofuran or the second solvent in the above method is used in an amount such that the total weight of the reactants added is 30%/50%, and the amount of water is 10% of the second solvent. ⁇ 30%.
  • the second solvent described in the above method is any one of -dimethylformamide, N,N-dimethylacetamide or dimethyl sulfoxide; diamine extension containing polyethylene glycol side chain
  • the chemical structure of the chain agent (Lysine-NH-PEG) is as follows.
  • 1 is a positive 1 ⁇ 2 number from 4 to 180.
  • N°, N e - bis(tert-butoxycarbonyl)-lysine and ethylenediamine are passed through a conventional carbonic acid.
  • preparation of the imine condensation N a, N e - bis (tert-butoxycarbonyl) - lysine ethylenediamine monoamide (DiBOC-lysine-NH 2) structure of the compound is:
  • N a , ⁇ ⁇ - bis ( tert-butoxycarbonyl ) - lysine ethylene diamine monoamide and terminal carboxyl polyethylene glycol are again passed through a conventional carbodiimide condensation method to obtain polyethyl b.
  • a diamine chain extender of a diol side chain is again passed through a conventional carbodiimide condensation method to obtain polyethyl b.
  • the comb-shaped functionalized polyurethane material prepared by the above method is characterized in that the polyurethane material has a polyethylene glycol side chain with a functionalized end group, and the side of the side chain has a work force of an epoxy group.
  • Any one of a base group, an amino group or a carboxy group, and its nuclear magnetic resonance spectrum shows a polyethylene glycol absorption peak at a chemical shift of 3.50 ppm and an infrared spectrum of around 11 ⁇ 1 .
  • the present invention has the following advantages:
  • the end group of the polyethylene glycol side chain of the comb-shaped functionalized polyester provided by the present invention is a reactive group such as a cyclodecyl group, an amino group and a carboxyl group, it can provide a reaction site for further grafting of the bioactive molecule. It not only improves the biological activity of the material, but also prolongs the service life of the implanted body. It also expands the application range of polydecyl ester in the medical field and solves the problem that the anticoagulant performance of small-diameter artificial blood vessels cannot meet the clinical use requirements.
  • the preparation method provided by the present invention skillfully adopts a mixed solvent composed of water and a solvent, it not only solves the problem that lysine is not dissolved in the solvent for preparing polyurethane as an inner salt, and Both lysine and polyurethane can be co-dissolved in it, and the possibility of using lysine as a polyurethane chain extender is realized, and the reactive site of the polyurethane is also provided by the carboxyl group of the lysine to graft the polyethylene. Alcohol is provided for convenience.
  • lysine is a natural amino acid, and the polyurethane material prepared from the raw material has better internal safety and is more suitable for medical materials implanted in the body.
  • the preparation method provided by the present invention is a method different from the prior art, it provides a new alternative route for preparing a comb-shaped functionalized polyester ester having a polyethylene glycol side chain.
  • the preparation method provided by the invention has fewer process steps and simple operation, and is therefore easy to apply and easy to popularize.
  • Figure 1 is a schematic view showing the structure of DiBoc-Lysinc_NH 2 prepared in the practice of the present invention, in which the various types of hydrogen in the structure are indicated by the italic lowercase U, which is assigned to the nuclear magnetic oxygen spectrum in the figure.
  • 2 is a schematic view showing the structure of Lysine-H-PEG prepared in Example 48H53 of the present invention, wherein various types of hydrogen in the structure are indicated in italic lowercase letters, which are assigned to the nuclear magnetic spectroscopy spectrum in the figure.
  • Example 4 is a comb-shaped functionalized 3 ⁇ 4 ester of an amino polyethylene glycol oxime chain prepared according to Example 31 of the present invention, a functionalized polyglycol ester having an epoxy group-containing polyethylene glycol side chain prepared in Example 39, and an example thereof.
  • 2 Schematic diagram of the structure of the carboxyl group-containing polyurethane elastomer, in which the various types of hydrogen in the structure are indicated in italic lowercase letters, which are assigned to the nuclear magnetic spectrum of Fig. 4.
  • Example 5 is a comb-shaped functionalized polyurethane with an amino polyethylene disaccharide side chain prepared according to Example 31 of the present invention, a functionalized polyurethane having an epoxy group-containing polyethylene glycol side chain prepared in Example 39, and prepared in Example 2.
  • the soft-segment hydrogen peaks (a, ti, c > and hard-ring hydrogen peaks (d, e > g) from the material structure are visible in all three materials, but grafted polyethylene
  • the hydrogen peak f chemical shift of 3,51 ppm
  • DMSO solvent peak
  • Chemical shift 3.36 ppm is the water peak in the solvent.
  • Example 6 is a comb-shaped functionalized polyurethane with an amino polyethylene disaccharide side chain prepared according to Example 31 of the present invention, a functionalized polyammonia with an epoxy group having an epoxy group prepared in Example 39, and a preparation example 2 Infrared spectrum of a polyurethane elastomer with a carboxyl group.
  • the infrared spectra of the three polyurethanes are similar.
  • the main peaks are assigned as follows (unit cnT 1 ): 3341, hydrogen-bonded NH stretching vibration, carbamate and urea groups from hard segments; 2939 , for -C - expansion and expansion; ⁇ 743, for the soft section of the polycarbonate C) stretching vibration; 1644, for the hard segment urea-based CK) stretching vibration, hydrogen bonding; 1599, for the benzene ring respiratory vibration; 1537, NH bending vibration and C-N stretching vibration, ⁇ 1465, for - C - bending vibration: 1408, for benzene ring vibration; ⁇ 260, soft segment carbonate extension PT/CN2014/000067 shrinkage vibration; iii4 (Example 2), C(H 2 H) stretching vibration from carbonate and carbamate; mo (Examples 31 and 39), polyethylene glycol C (H 2 >O stretching vibration of ether bond; 1070
  • Example 2 Compared with the spectrum of Example 2, the comb function of grafting polyethylene glycol side chain
  • the spectra of Examples 31 and 39 of the polyurethane showed the C (H Z H3 stretching vibration of the ether bond of 1110 cm" 1 of polyethylene glycol, and the peak of the original ilM cnT 1 (Example 2) , the superimposed peak (still at nn ciif 1 ) is significantly increased in intensity relative to the adjacent 1070 cm -1 peak.
  • Examples 3! and 39 are significantly weakened at 1644 cm- 1 because of grafting.
  • the polyethylene glycol side chain destroys the hydrogen bond of the hard segment urea group, resulting in a decrease in peak intensity.
  • Figure 7 is a schematic view showing the structure and nucleation magnetic hydrogen spectroscopy of a functionalized polyester-depleted ester having a fluorenyl-based poly(ethylene glycol) side chain prepared according to Example 65 of the present invention, which also has a characteristic polyethylene chain in the chemical shift of 3.50 ppm. The ammonia peak.
  • Figure 8 is an infrared spectrum of a functionalized polyurethane having a carboxyl group of a polyethylene glycol prepared in Example 65 of the present invention, in which the bees of the bees are shown in Fig. 3, and the vicinity of 11 ⁇ 1 is also shown.
  • the absorption peak of the drunken key is also shown.
  • Figure 9 is a particle size distribution diagram of a functionalized polyurethane hydrocolloid having an amino group, an epoxy group prepared in Example 39, prepared in Example 39, and having a carboxyl group-containing polyethylene glycol side chain prepared in Example 65; .
  • Figure 10 is a graph showing the kinematic potential distribution of a functionalized polyurethane hydrocolloid having an amino group, a cyclic gas group prepared in Example 39, and a carboxyl group-containing polyethylene glycol side chain prepared in Example 35, prepared in Example 31 of the present invention.
  • the average particle size of the three colloids is less than 200 nm, and in the phosphonium buffer solution with a pH of 7.4, the colloid with amino group is positively charged (motor potential +32_7 m V), which is due to The amino group ionizes the ammonium-based cation; the epoxy group-containing colloid should be electrically neutral, but since the polyethylene glycol chain adsorbs a small amount of cations, it is measured with a weak positive charge (motorized potential + 5.5 mV): The steroid 5 with a carboxyl group is negatively charged (motorized potential - 19 mV) because the carboxyl group ionizes the carboxylate anion.
  • Figure 11 is a 1000-fold fluorescence micrograph of functionalized polyurethane colloid-grafted white egg yolk and corresponding blank colloids prepared in Examples 31, 39 and 65 of the present invention, with a scale of 10 microns.
  • the blank colloid shows weak autofluorescence under a fluorescence microscope, and only large particle size particles are visible.
  • the fluorescence of the colloidal particles is greatly enhanced, so that the particles of various particle sizes have strong fluorescence and are clearly visible.
  • the fluorescence micrograph shows that the functionalized polyurethane foam synthesized by the invention has a reactive base closure, and can react with biological molecules such as albumin, which provides a possibility for further biological modification of the functionalized polyurethane material.
  • the embodiment of preparing a comb-shaped functionalized polyurethane material having a polyethylene glycol side chain end group of an epoxy group or an amidine group is respectively given according to the process steps of the preparation method, that is, the embodiment is
  • the first and second process steps of the first and second processes in the preparation method include a carboxyl group-containing polynitrogen-based elastomer; and examples 31 to 37 are combs for preparing a polyethylene glycol side chain end group to an amino group.
  • Example 38- ⁇ 6 is a comb-shaped functionalized polyurethane material for preparing a polyethylene glycol side chain end group which is an epoxy group In the method, 3) an embodiment of the specific operation of the process steps.
  • An example of this set is an example of preparing a polyurethane elastomer having a backbone having a carboxyl group.
  • the present embodiment is an embodiment in which the main chain carboxyl group-containing polyurethane elastomer prepared in the previous embodiment is used to prepare a comb-shaped functionalized polyurethane material having a polyethylene glycol side chain end group as an amino group. ;
  • 0.1 M of dilute hydrochloric acid which was 1% by weight of the second solvent, was added to the reaction liquids of Examples 31 to 36, and the reaction was continued for 3 hours, and the reaction mixture was added to the reaction solution of Example 37.
  • the second solvent is 3% by weight of 0.1 M dilute hydrochloric acid, and the reaction is continued for 6 hours.
  • the precipitate is removed by filtration, and the filtrate is dropped into the stirred steaming water to form a uniformly dispersed colloid, which is then filtered to charge the filtrate.
  • Molecular weight is S000 ⁇ i4000 in dialysis bag, dialysis in distilled water, every hour of changing distilled water, 5 ⁇ 7 days ⁇ take out (depending on the amount of impurities in the filtrate), the solution in the dialysis bag is really S frozen After drying, the comb-shaped functionalized poly(ester) of the side chain of the polyethylene glycol side chain is amino group, -'
  • the present embodiment is an embodiment in which the main chain carboxyl group-containing polyurethane elastomer of the previous embodiment is used to prepare a comb-shaped functionalized polyurethane crucible having a polyethylene glycol side chain end group which is an epoxy group.
  • the carboxyl group-containing polyurethane elastomer is dissolved in the second solvent, and then the epoxy group of the epoxy group is added, and the temperature is raised under the protection of nitrogen. After the refluxing reaction is completed, the reaction mixture is dropped into the stirred steaming water to form it. homogeneous colloidal dispersion, and then filtered, and the filtrate was charged with 4000 molecular weight cutoff dialysis bag 8000 ⁇ 1, in distilled water and dialyzed to remove solvent and unreacted terminal epoxy groups of polyethylene glycol Na, every 4 ⁇ 6 Change the hour-' distilled water, take it out after 5 ⁇ 7 days (depending on the amount of excess epoxy group contained in the filtrate), and freeze the solution in the dialysis bag to obtain polyethylene glycol.
  • the side chain end group is a comb-shaped functionalized urethane of an epoxy group.
  • This example is the preparation of 6 , N 6 -bis(tert-butoxycarbonyl)-lysine ethylenediamine monoamide (DiBOC-Lysine>N).
  • This group of examples is the preparation of a diamine chain extender (L sine-H-PEG) containing a polyethylidene side chain.
  • Molar amount DiBoc-Lysine-NH Preparation of 472 completely dissolved in the distilled IHF at room temperature, of PEG: according to the formulation given in Table 4 of the terminal carboxyl group of the bifunctional drunk polyethylene (PEG)
  • PEG bifunctional drunk polyethylene
  • the filtrate was evaporated to dryness at 50 ° C and then the product was dissolved in chloroform.
  • the organic phase was dehydrated with anhydrous sodium sulfate and stirred overnight. Filtration, the filtrate was retained, the solvent was removed by evaporation, and the product was applied to a silica gel column using chloroform and methanol as eluent to obtain Dffi OC -Lysin e -NH-PEG.
  • DiBoc-Lysine-NH-PEG was dissolved in the formula amount of dichloromethane, and then stirred under the formula amount of trifluorohydrazine for 24 hours, 60'C suspension.
  • the agent is distilled off, and the vacuum oven oven gOO can be smelted for 24 hours to obtain Lysine-NH-PEG.
  • the structure diagram and nuclear magnetic nitrogen spectrum are shown in Fig. 2, and the infrared spectrum is shown in Fig. 3.
  • An example of this set is an embodiment of a comb-shaped functionalized polyurethane material having a carboxyl group end group which is a carboxyl group.
  • the diamine chain extender of the polyethylene glycol side chain prepared in the foregoing examples is dissolved in tetrahydrofuran or a second solvent to be added to the polyurethane prepolymer, and the heating is stopped, and the reaction of Examples 64 to 7 is carried out for 10 minutes.
  • Examples 68, 69 and 73 are reacted for 13 minutes, and examples 70-72 are reacted for 15 minutes.
  • the lysine acid is dissolved in water and added to the reaction system for chain extension reaction, and the reaction is stopped and left for 10 to 12 hours.
  • the reaction mixture is dropped into the stirred distilled water to form a uniformly dispersed colloid, and then filtered, and the filtrate is placed in a dialysis bag with a molecular weight of 8000 to 14000, and placed in a steaming water for dialysis every 4 hours. Change the steaming water, take it after 5 ⁇ 7 ⁇ (depending on the amount of excess material contained in the filtrate), and freeze the solution in the bag.
  • the comb-shaped functionalized polyglycol ester having a carboxyl group side chain end group is a carboxyl group.
  • the types and amounts of materials in the reaction of each example are shown in Table 5.
  • the preparation process is shown in Table 6 .
  • the present invention confirmed the structure of the comb-shaped functionalized polyurethane material obtained by instrumental analysis, and the test results are shown in Fig. 8 respectively.
  • This application example uses a comb-shaped functionalized polyurethane colloid-grafted albumin with an epoxy group.
  • This application example uses a comb-shaped functionalized polyurethane colloid grafted albumin with a carboxyl group or an amino group.
  • EDC> water-soluble 1-ethyl-( 3-Dimethylaminopropyl)carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • PCD Polycarbonate Binary Fermentation: TMG: Polytetrahydrofuran Ether Diol: PCL ; Polycaprolide Binary Fermentation: PPG: Polypropylene oxide Fermentation: HAPHD: Polyadipate-1,6 - Alkali leaven.
  • MEI 4, '-diphenylmethyl ⁇ :isomeric acid ester: H0I: 1,6-hexane diisoxanthate; TDIt 2,4-toluene diiso-ester or 2,6-toluene
  • Isophthalic acid ester IPDI: isophorone diiso-K acid ester; LDI: teach nitrogen acid Z' diiso-f-acid
  • TKF tetra 'furan
  • DHF 5 ⁇ -dimethyl ke earn i
  • DMAc ⁇ , ⁇ -dimethylacetamide
  • DMSO dimethyl sarcoplasm.
  • the molar ratio in the table is a macromolecular diol: diisoacid: lysine.
  • PEG a difunctional terminal carboxyl group polyethylene glycol.
  • is the raw material double ⁇ polyfluorene or the ⁇ structure single number of products, table 5
  • PCD polycarbonate binary fermentation
  • PTMG polytetrafluorofuran ether glycol
  • PCL polycaprolactone binary Xue
  • PPG polypropylidene chloride
  • HAPHD poly Diacid ⁇ t 6-hexane 2
  • ti is the number of repeating structural units of the chain extender 1 ⁇ ! ⁇ -?50 in 3 ⁇ 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Vascular Medicine (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开的一种梳形功能化聚氨酯材料具有带功能化端基的聚乙二醇侧链,其侧链的功能化端基为氨基、环氧基或羧基中的任一种,且其核磁氢谱在化学位移3.50 ppm、红外光谱在1110 cm-1附近均显示有聚乙二醇吸收峰。本发明还分别公开了制备聚乙二醇侧链端基为氨基或环氧基的梳形功能化聚氨酯的二步法和制备聚乙二醇侧链端基为羧基的梳形功能化聚氨酯的一步法。本发明提供的端基为活性基团的梳形功能化聚氨酯不仅可为进一步接枝生物活性分子提供反应位点,提高材料的生物活性,延长植入体内制品的使用期,还可扩大聚氨酯在医用领域的应用范围,同时制备方法工艺步骤少,操作也较为简单,因而易于实施,便于推广。

Description

说 明 书 梳形功能化聚氨酯材料及 制各方法 技术懒
本发明属于聚氨酯弹性体及其制备技术领域, 具体涉及一种梳形功能化聚氨酯 材料及其制备方法。
背景技术
聚氨酯 (FU)作为嵌段共聚物一般是由短链段原料和长链段原料聚合而成, ¾ 其中的硬段和软段会发生微相分离不仅使其具有较好的生物相容性, 还具有优良的 耐磨性、 耐挠曲、 耐湿气和耐多种化学品性能, 此外它还具有易于加工, 能采用常 规方法消毒等优点, 使之被广泛用于制备介入导管、 心脏起搏器绝缘线等医疗器械, 是研究和应用最为广泛的生物医用髙分于材料之一。然而作为长期植入体内的制品, 如小直径人工血管, 因其抗凝血性能仍不能满足临床要求, 故其的生物相容性仍需 要进一步提高。
聚乙二醇是一种亲水性, 无毐性和无免疫扳性的生物相容性材料, 人们发现在 聚氮酯膜的表面接枝聚乙二醇, 可以降低蛋白吸附和血小扳活性, 从而提髙其血液 相容性。 如 Lee等人发现用分子量小 Τ· 10000的聚乙二醇改性后的聚氨酯表面具有 显著的抗蛋白吸附和抗血小板黏附作用 Uoutnal of Biomedical Materials Research, 1998, 40: 314-323.)。 另外, 有研究者将磺酸基、赖氨酸、精氨酸-甘氨酸 -谷氨酸多肽 以及肝素等接枝到聚氨酯表面的聚乙二醇链端,也能进一步提商生物相容性 (Bae JS , Seo EJ , Kang IK. Synthesis and characterization ofheparinized olyurethanes using plasma glow discharge. Biomaterials 1999; 20(6):529 -537〉。 但遗憾的是这些表面改性 方法复杂, 首先需要用等离子处理或者高温下与二异银酸酯反应 活化表面, 然后 才能接枝聚乙二醇。这种方法很显然用于人工血管的内表面改性就显得更不方便了。
为了避免复杂的表面改性过程, 很多研究者开始采用本体改性 (即将聚乙二醇 链接枝到聚氨酯主链上)来提高其生物相容性。 计剑等将四氢呋喃和单环氧基聚乙 二醇迸行开环反应, 先得到带聚乙二醇侧链的聚醚二元醇, 然后再以该聚醚二元醇 为软段合成聚氨酯, 从而将聚乙二醇接枝到聚氨酯软段上 [高等学校化学学报, 1999, 20(5): 814-818] Kim JH等通过化学反应得到含聚乙二醇侧链的二元醉, 此二元醇 为扩链剂将聚乙二醇链的连接到聚氨酯的硬段区 [Biomaterials 2002, 23: 2015~2025]o这些方法所用的聚乙二醇侧链的端基为甲氡基, 所得到的聚氣酯没有可 反应的 ¾团。
但更常用的方法是通过化学反应将聚乙二酵链直接接枝到聚氨酯主链上。这种方 法霈要聚氨酯主链和 /或聚乙二醇的端基含有活性反应点, 例如聚氮酯主链上的 基 甲酸酯基团通常作为活性点来接枝异観酸酯封端的聚乙二醇低聚物 [Biomaterkls 1995, 16: 467- 471]. 当仲胺作为活性点被引入到聚氨酯扩链剂中, 氯甲酸酯封端的聚 乙二醇链就可以和仲胺反应, 从而得到聚乙二醇接枝的聚氦酯 [Journal of Polymer Science, Part A: Polymer Chemistry 1999, 37, 3441-3448]。 但这种方法需要 对仲胺进 行保护, 合成得到聚氨酯主链后再脱保护, 才能得到仲胺反应位点, 故步骤较复杂。 这些研究虽在一定程度上提髙了聚氨酴的血液相容性,但在引入聚乙二醇接枝的反应 位点时, 都需要多步化学反应, 操作复杂, 且得到的聚氨酯的聚乙二醇侧链的端基要 么是磺酸基, 要么是甲氧基, 也就是说没有可反应的基团来进一步接枝生物活性大分 子, 如生长因子等, 来提; ^材料的生物活性, 使植入体内制品能长期使用
因此,迫切需要寻找一种在聚氨酯的聚乙二醇侧链的端棊上具有可反应基团, 以 为进一歩接枝生物大分子或接枝生物活性分予提供反应位点,同时制备又 为简单的 方法。
发明内容
本发明的目的是针对现有技术的不足, 首先提供一种带聚乙二醇侧链的梳形功 能化聚氨酯材料的制备方法, 该方法不仅筒单, 且可获得聚乙二醇侧链端基为氨基 或环氧基的梳形功能化聚氨酯材料。
本发明的另一目的是针对现 *技术的不足, 提供一种带聚乙二醇侧链的梳形功 能化聚氨酯材料的制备方法, 该方法不仅简单, 且可获得 乙二醇侧链 基为羧基 的梳形功能化聚氨 ¾材料。
Figure imgf000004_0001
-' Tfffi上 二醇恻犍》«¾功¾ 化聚氨酯材料, 该材料聚乙二醇侧链的端基为可反应基团。
本发明首先提供的带聚乙二醇侧链的梳形功能化聚氨酯材料的制备方法, 其特 征在于该方法的工艺步骤和条件如下:
( 1 )将 1摩尔份数均分子量为 5OC 0OO的二元酵加入反应容器中, 搅拌并升 温至 10( 20'C, 真空脱水 9( 240分钟后降温至 50~80'C, 入 1.58〜7 10摩尔份 二异 酸酯, 在保持 50~S0O , 真空下预聚反应 1~ 小时得聚氨酯预聚物; (2)先将 0.5〜6摩尔份赖氨酸加入笫一溶剂中至溶解,然后在搅拌 "^将其加入 聚氨酯预聚物中扩链反应 10~30分钟, 停止搅拌并放置 10〜12h, 再倒入水中沆淀, 沉淀物室温下干燥后即得带羧基的聚氨酯弹性体:
(3) 先将以羧基的摩尔计为 0.5〜2份带羧基的聚氨酯弹性体溶解在第二溶剂 中, 然后依次加入以聚氨酯弹性体中所含羧基摩尔份至少 1.2倍的二环己基碳二亚 胺、 至少 1.2倍的 N-羟基琥珀酰亚胺和 0.5〜2摩尔份端氨基聚乙二醇, 室温下搅拌 反应 20~30小时, 其中二环己基碳二亚胺和 轻基琥珀酰亚胺为等摩尔;
(4)在上述反应液中加入为第二溶剂重量 的 0.1 M的稀盐酸, 继续反应 3〜6个小时, 过滤除去沉淀, 将滤液滴入搅拌中的蒸馆水中, 使之形成均勾分散的 胶体, 然后过滤, 将滤液装入截留分子量为 8000〜 000的透析袋内, 于蒸馏水中 透析, 每隔 4 ~6个小时换一次蒸馏水, 5~7夭后取出, 将透析袋内的溶液真空冷冻 干燥后即得聚乙二醇侧链端基为氨基的梳形功能化聚氨酯, 或
( 1 )将 1庠尔份数均分子量为 500~4000的二元醇加入反应容器中, 搅拌并升 温至 100 12CTC, 真空脱水 90~240分钟后降温至 50~80"C, 加入 1.58〜7.10摩尔份 二异氰酸酯, 在保持 50~80'C, 真空下预聚反应 1 小时得 氨酯预聚物;
(2)先将 0.5〜6摩尔份赖氨酸加入第一溶剂中至溶解,然后在搅拌 ΐ'将其加入 聚氨酡预聚物中扩链反应 10~30分钟, 停止搅拌并放置 10〜12h, 再倒入水中沉淀' 沉淀物室温下千燥后即得带羧基的聚氨酯弹性体;
(3)先将 摩尔份带羧基的聚氨酯弹性体溶解在第二溶剂中,然后加入】〜 4摩尔份的端环氧基聚乙二醇, 氮气保护下升温至 110~130 , 搅拌回流反应 20~30 小时后, 将反应混合物装入截留分子量为 8000〜: U000的透析袋内' 于蒸馏水中透 析, 每隔 4〜6个小时换一次蒸馆水, 5〜7天后取出, 将透析袋内的溶液真空冷冻 千燥后即得聚乙二醇恻链端棊为环氡革的梳形功能化聚氨豳。
上述方法中所述的第一溶剂的用量为使聚氨酯弹性体溶液的固含量为 26~39%; 第二溶剂的用量为使带羧基的聚弒酯弹性体的重量百分含量为 2~10%。
上述方法中所述的第—溶剂为水和四氢呋喃、 Ν-二甲基甲酰胺、 Ν,Ν-二甲棊 乙酰胺或二甲基亚砜中的任一种组成的混合溶剂, 其中水的重量百分含量为 10-30%; 第二浴剂为 Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲棊乙跣胺或二甲基亚砜中的任一 种。
上述方法中所述的端环氧基聚乙二醇或端氨基聚乙二醇优选数均分子量为 200〜8000的, 更优选数均分子量为 1000〜4000的。
本发明提供的另一梳形功能化聚氨酯材料的制备方法, 其特征在于该方法的工 艺歩骤和条件如下:
( 1 )将 1摩尔份数均分于量为 500-4000二元酵加入反应容器中, 搅泮并升温 至 100~120'C, 真空脱水 90 240分钟后降温至 50~80'C, 加入 2.2〜7.08摩尔份二 异氡酸酯, 在保持 50~80Ό , 真空下预聚反应 1~ 小时得聚氨酯预聚物;
(2)先将 0.15~2.ώ摩尔份含聚 Λ二醇侧链的二元胺扩链剂溶解在四氢呋喃或 第二溶剂中, 然后在搅拌下将其加入上述聚 酯预聚物中, 停止加热, 反应 10〜15 分钟, 再将 0.5-4.5摩尔份赖氨酸溶于水中并加入到反应体系中, 水的用量为能使 赖氨酸溶解即可, 扩链反应 10~30分钟后, 停止搅拌并放置 10〜12h,将 K应混合物 装入截留分子量为 8000〜14000的透析袋内, 丁蒸馏水中透析, 毎隔 4 ~6个小时换 一次蒸馏水, 5~7天后取出,将透析袋内的溶液真空冷冻干燥后即得聚乙二醇侧链端 基为羧基的梳形功能化聚氨酯。
上述方法中所述的四氢呋喃或第二溶剂的用量为使己加的反应物总重量在其内 的重童百分含童为 30°/^50%, 水的用量为第二溶剂质量的 10~30%。
上述方法中所述的第二溶剂为 -二甲基甲酰胺、 N,N-二甲基乙酰胺或二甲基 亚砜中的任一种; 含聚乙二醇侧链的二元胺扩链剂(Lysine-NH-PEG)的化学结构如 下,
Figure imgf000006_0001
其中!1为4~180的正 ½数。
为了制备上述含聚乙二醇侧链的二元胺扩链剂的, 首先霈耍将 N°, Ne-双 (叔丁氧 羰基) -赖氨酸和乙二胺通过常规的碳二酰亚胺缩合法制备 Na, Ne -双 (叔丁氧羰基) -赖 氨酸乙二胺单酰胺 (DiBOC-Lysine-NH2), 该化合物的结构为:
Figure imgf000007_0001
然后将所得的 Na, Νε-双 (叔丁氧羰基) -赖氨酸乙二胺单酰胺和端羧基聚乙二醇再次通 过常规的碳二酰亚胺缩合法即可得到含聚乙二醇侧链的二元胺扩链剂。
本发明提供的由上述方法分别制各的梳形功能化聚氨酯材料, 其特征在于该聚 氨酯材料具有带功能化端基的聚乙二醇侧链, 其侧链的功 φ化端棊为环氧基、 氨基 或羧棊中的任一种, 且其核磁氢谱在化学位移 3.50 ppm、 红外光谱在 11 αη·1附近 均显示有聚乙二醇吸收峰。
与现有技术相比, 本发明具有以下优点:
Κ 由于本发明提供的梳形功能化聚 ^酯的聚乙二醇側链的端基为环氡基、 氨基 和羧基等活性基团, 因而可为进一歩接枝生物活性分子提供反应位点, 不仅可提高 材料的生物活性, 延长植入体内制品的使用期, 还' 扩大聚気酯在医用领域的应用 范围, 解决如小直径人工血管抗凝血性能不能满足临床使用要求的问题。
2、 由于本发明提供的制备方法中巧妙的采用了水和有^ I溶剂组成的混合溶剂, 不仅解决了赖氨酸作为一个内盐, 在制备聚氨酯的溶剂中不溶解的问题, 且可使赖 氨酸和聚氨酯均可在其中共溶, 实现了将赖氨酸作为聚氨酯扩链剂来使用的可能, 时也为利用赖氰酸的羧基提供聚氨酯的反应活性位点来接枝聚乙二醇提供了方 便。 加之赖氨酸是一种天然的氨基酸, 以此为原料制备的聚氨酯材料 Λ有更好的体 内安全性, 更适合作植入体内的医用材料。
3、 由于本发明提供的制备方法是一种不同于现有技术的方法, 因而为制备带聚 乙二醇侧链的梳形功能化聚贫酯提供了一种新的选择途径。
4、 本发明提供的制备方法工艺步骤少, 操作也较为简单, 因而易于^施, 便于 推广。
附图说明
图 1为本发明实施铡 47制备的 DiBoc-Lysinc_NH2的结构示意图,其中以斜体小 写宇母标出的是结构中各种类型的氢, 其归属见图中的核磁氧谱。 图 2为本发明实施例 48H53制备的 Lysine- H-PEG的结构示意图, 其中以斜体 小写字母标出的是结构中各种类型的氢, 其归属见图中的核磁氡谱。
图 3为本发明实施例 47~63分别制备的 DiBoc-Lysine-NH2和 Lysine-NH-PEG的 红外谱图。 由图可知, 该两种物质的红外谱图相似, 其主要峰的归属如下:
DiBoc-Lysine- H2的红外谱图中: 3312 cm"1,酷胺中 N-H的伸缩振动; 2976 cm'1, 2933 cm 1, 甲基和亚甲基中 C-H的伸缩振动; 1694 cm 1 , 酰胺中羰基的伸縮振动; 1528 cm"1, N- H的弯曲振动和 C (H2) -N的伸缩振动; 1170 cm'1, 酸酐中 C-O-C的 伸缩振动。与 DiBoc- Lysine-N¾的红外谱图相比, Lysine-NH-PEG的红外谱图中 3323 cm— 1处较宽, 为接枝端羧基聚乙二醇后羧基上 0-H的伸缩振动; 1716 cm-1,羧基上的 0=0伸縮振动; 1699 cm—1, 酰胺上 0=0的仲縮振动变小, 是由于脱除了 Boc保护基 团; l l B cm—1, 此处的强峰为接枝上的 PEG中醚键 C-O的 缩振动。
图 4为本发明实施例 31制备的带氨基聚乙二醇恻链的梳形功能化 ¾酯、 实施 例 39制备的带环氧基聚乙二醇侧链的功能化聚氣酯和实施例 2制备的带羧基的聚氮 酯弹性体的结构示意图,其中以斜体小写字母标出的是结构中各种类型的氢, 其归属 见图 4的核磁谱图。
图 5为本发明实施例 31制备的带氨基聚乙二醉侧链的梳形功能化聚氨酯、实施 例 39制备的带环氧基聚乙二醇侧链的功能化聚氨酯和实施例 2制备的带羧基的聚氨 酯弹性体的核磁氢谱图。
结合图 4、 5可知, 来自于材料结构中的软段氢峰(a, ti, c >和硬段 环氢峰 (d, e> g)在三种材料中均可见,但接枝聚乙二醇侧链后的实施例 31和 39的结构中明显多 出了聚乙二醇链的氢峰 f (化学位移为 3,51 ppm) ,这说明聚乙二醇已接枝于聚氨酯 主链上了。 图中 DMSO为溶剂峰。 化学位移 3.36 ppm为溶剂中的水峰。
图 6为本发明实施例 31制备的带氨基聚乙二醉侧链的梳形功能化聚氨酯、实施 例 39制备的带环氧基聚乙二醉侧链的功能化聚氨靡和实 例 2制备的带羧基的聚氨 酯弹性体的红外光谱图。
由图可知,三种聚氨酯的红外谱图相似》主要峰的归属如下(单位 cnT1): 3341 , 氢键结合的 N-H伸缩振动, 來自于硬段的氨基甲酸酯和脲基基团; 2939, 为 -C - 伸缩搌动; 〗743, 为聚碳酸酯软段的 C )伸縮振动; 1644, 为硬段脲基的 CK)伸 缩振动, 氢键键合; 1599, 为苯环呼吸振动; 1537, N-H弯曲振动和 C- N伸缩振动 ,· 1465, 为- C -弯曲振动: 1408, 为苯环 振动; ί260, 软段碳酸酯的 伸 P T/CN2014/000067 缩振动; iii4(实施例 2),为 C(H2H)伸缩振动,来自于碳酸酯和氨基甲酸酯; mo (实 施例 31和 39), 为聚乙二醇的醚键的 C(H2>O伸缩振动; 1070, 来自于氨棊甲酸酯 的 C~0- C。 与实施例 2的谱图枏比, 接枝聚乙二醇侧链的梳形功能化聚氨酯的实施 例 31和 39的谱图出现了 1110 cm"1 的聚乙二醇的醚键的 C(HZH3伸缩振动, 和原 有的 ilM cnT1的峰(实施例 2)甍加, 使叠加峰(仍在 n n ciif1处)相对于旁边的 1070 cm— 1峰, 强度明显增加。 另外, 实施例 3!和 39在 1644 cm—1处的 ^明显减弱, 这是因为接枝聚乙二醇侧链后破坏了硬段脲基的氫键, 导致其峰强度减弱。
图 7 为本发明实施例 65制备的带竣基聚乙二酵侧链的功能化聚贫酯的结构示意 图和核磁氢谱图, 其在化学位移 3.50 ppm处也有显示特征的聚乙二醉链的氨峰。
图 8为本发明实施例 65制备的带羧基聚乙二醇側链的功能化聚氨酯的红外光 谱, 图中各蜂的归厲与图 3 , 且在 11 ΙΟαη·1附近也显示山聚乙二醉歷键的吸收 峰。
图 9为本发明实施例 31制备的带氨基、 实施例 39制备的带环氧棊: Ρ实施例 65 制各的带羧基的聚乙二醇侧链的功能化聚氨酯水胶体的粒径分布图。
图 10为本发明实施例 31制备的带氨基、实施例 39制备的带环氣基和实施例 65 制备的带羧基的聚乙二醇侧链的功能化聚氨酯水胶体的电动电位分布图。
由图 9、 10可知,三种胶体的平均粒径均小于 200 nm, 且在 pH为 7.4的磷荦缓 冲溶液中, 带氨基的胶体带正电荷(电动电位 +32_7mV),这是由于氨基电离出铵基 正离子; 带环氧基的胶体本应显电中性, 但由于聚乙二醇链吸附了少量的阳离子, 因此测出其带弱正电 (电动电位 +5.5mV) : 带羧基的晈体5带负电荷(电动电位 -19 mV) , 这是由于羧基电离出羧酸根负离子。
图 11为用本发明实施例 31、 39和 65制备的功能化聚氨酯胶体接枝白蛋 ή和相 应空白胶体的 1000倍荧光显微照片, 图中标尺为 10微米。
从图中照片可见, 空白胶体在荧光显微镜下显示徼弱的自荧光, 只有大粒径的 颗粒才可见。 而接枝白蛋白的样品, 由于白蛋 已事先用荧光素标记, 使胶体颗粒 的荧光大大增强, 因此各种粒径的颗粒均有较强的荧光, 且清晰可见。 荧光显微照 片说明本发明所合成的功能化聚氨酷材料具有可反应的基闭, 均可以和白蛋白等生 物分子发生反应, 为功能化聚氨酯材料的进一步生物改性提供了可能。
具体实旆方弍
下面给出实施例以对木发明进行 体描述, 但值锊指出的是以下实施例只用于 对本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术熟 练人员根据上述本发明内容对本发明作出的一些非本质的改进和调整仍属于本发明 的保护范围。
另外, 值得说明的是, 制备聚乙二醇侧链端基为环氧基或氨棊的梳形功能化聚 氨酯材料的实施例是按照其制备方法的工艺步骤分别给出的, 即实施例 是其制 备方法中的第 1 )、 2)两个工艺步骤所得主链带羧基的聚氮 ϋ旨弹性体的实施例;实施 例 31~37是制备聚乙二醇侧链端基为氨基的梳形功能化聚氨酯材料方法中第 3)、 4) 两个工艺步骤具体操作的实施例; 实施例 38-^6是制备聚乙二醇侧链端基为环氧基 的梳形功能化聚氨酯材料方法中笫 3)工艺步骤具体操作的实施例。
实施例 1-30
本组实施例是制备主链带羧基的聚氨酯弹性体的实施例。
( 1 )将 1摩尔份大分子二元醇加入反应容器中,搅拌并升温,真空脱水后降温, 再加入二异氟酸酯, 在保持温度, 真窆下预聚反应得聚氨酡预聚物;
(2)先将赖氨酸加入第一溶剂中至溶解, 然后在搅拌下将其加入聚 it酯预聚物 中扩链反应, 停止搅拌并放置相应时间, 再倒入水中沉淀, 沉淀物室温下干燥后即 得带羧基的聚 酯弹性体,
各实施例反应中的物料的种类及用量见表 1 , 制备工艺参数见表 2。
实施例 31~37
本组实施例是将前面部分实施例制备的主链带羧基的聚氨酯弹性体用来制备聚 乙二醇侧链端基为氨基的梳形功能化聚氨酯材料的实施例。;
( 1 )先将带羧 S的荥氮酯弹性体瘠解在第二溶前中, ^后依次加入 摩尔的二 环己基碳二亚胺 (DCC,分子量 206.33 )与 N-羟基琥珀酰亚胺 (NHS,分子量 115.09) 以及端氨基聚乙二醇, 室温下搅拌反应, 其中实施例 31~36所用的 DCC、 HS的摩 尔量为聚氨酯弹性体所含羧基摩尔量的 1.2倍, 具体加入暈以实施例 31为例, DCC 的摩尔量为表 3中聚氨酯的质量乘以表 2中聚氨酯的敫基当量再乘以 I.2倍,即 0.78 X 0.642X 1.2 = 0.601毫摩尔, 即 0.124克, 按此计算 NHS为 0.069克。 同理, 其它 实施例也可按此计算加入量; 实施例 37所用的 DCC、 NHS的摩尔量为聚氨酯弹性 体所含羧基的摩尔量的 1.3倍, 故 DCC的摩尔晕为表 3中 ¾氨酯的质 乘以表 2中 聚氨酯的羧基当量再乘以 1.3倍, 即 2.42X0.828X 1.3 =2.605亳摩尔, 即 0.537克, 相应的的 NHS为 0.781克。 (2)反应结朿后, 在实施例 31~36上述反应液中加入为第二溶剂重曩 1%的 0.1 M的稀盐酸, 继续反应 3小时, 在实 ½例 37上述反应液中加入为第二溶剂重量 3% 的 0.1 M的稀盐酸, 继续反应 6小时, 过滤除去沉淀后将滤液滴入搅袢的蒸馄水中, 使之形成均匀分散的胶体, 然后再过滤, 将滤液装入截留分子量为 S000〜i4000 透析袋内, 于蒸镏水中透析, 每隔 "个小时换一次蒸馏水, 5~7天^取出(具体根 据滤液中杂质多少进行选择〉,将透析袋内的溶液真 S冷冻千燥后即得聚乙二醇侧链 端基为氨基的梳形功能化聚 ^酯, -'
各实施例反应中物料的种类、 用量及制备工艺参数见表 3
实施例 38^ 6
本组实施例是将前面部分实施例^备的主链带羧基的聚氨酯弹性体用来制备聚 乙二醇侧链端基为环氧基的梳形功能化聚氨靡材枓的实施例。
将带羧基的聚氨酯弹性体溶解在第二溶剂中, 然后加入端环氧基聚乙二醇, 氮 气保护下升温, 搅拌回流反应结束后, 将反应混合物滴入搅拌的蒸馆水中, 使之形 成均匀分散的胶体, 然后再过滤, 将滤液装入截留分子量为 8000〜14000的透析袋 内,于蒸馏水中透析除去溶剂和未反应的端环氧基聚乙二鎿,每隔 4〜6 小时换 -' 次蒸馏水, 5〜7天后取出 (具体根据滤液中所含过量端环氧基聚乙二醇多少进行选 择), 将透析袋内的溶液真空冷冻千燥后即得聚乙二醇侧链端基为环氧基的梳形功能 化^氨酯。
各实施例反应中物料的种类、 用量及制各工艺参数见表 3。
实施例 7
本实施例为 6, N6-双 (叔丁氧羰基) -赖氨酸乙二胺单酰胺 (DiBOC-Lysine>N )的 制备。
先将 10.5 g Να, Νε -双 (叔丁氧羰基) -赖氨酸(30 mmol,來自于 Aldrich公司〉用 60 mL氯仿溶解, 然后加入 3.48 gNH? (30mmol)搅拌反应半小时后加入 9.3 gDCC (45 mmol)继续反应 2小时,过程中产生的大量白色沉淀为二环己基脲(DCU)'过滤, 将滤液滴加到溶有 4.5 g乙二胺(75 nunol)的 60mL氯仿中, 搅拌反应 48小时' 过 滤, 向上述滤液中加入 60mL蒸馏水, 搅拌至少 30分钟, 然后置于分液漏斗内静賈 分层, 分液, 保留有机相。 有机相再用蒸馆水萃取 3次, 弃水相。 在搅拌情况下先 向有机相中加入 50mL蒸馏水, 再滴加 pH=l的盐酸溶液, 将溶液 pH调至 3左右, 搅拌 30分钟, 若有白色浑浊产生, 则过滤。滤液静置分层, 保留水相, 之后再将有 014 000067
10 机相如此萃取 3次, 并将所得的水相合并。 向所得的水相中加 60mL氯', , 搅拌下, 用氢氧化钠溶液将 pH调到 11左右 · 继续搅拃至少 1小时铮置分层, 收集有机相。 多次萃取水相, 收集氯仿溶液, 最好加入 60g无水硫酸钠干燁过夜。 次日, 过滤除 去硫酸钠, 40-50Ό悬蒸, 除去氯仿。 60X:下真空干燥 24小时, 得到黄色固体的 DiBoc-Lysine-NH2 (产率: 56%),其结构示意图和核磁 谱见图 1,红外谱图见图 3。
实施例 48~63
本组实施例为含聚乙二醉侧链的二元胺扩链剂(L sine- H-PEG) 的制备。 按表 4给出的配方将双官能度端羧基聚乙二醉 (PEG) 与实施例: 47制备的 DiBoc-Lysine-NH2在室温下完全溶解于蒸过的 IHF 中, 使 PEG 的摩尔量为 DiBoc-Lysine-NH2的 2倍, 然后加入与 PEG端羧基庠尔量相同的 HS, 半小时后加 入 NHS摩尔量 1.5倍的 DCC, 搅拌反应 48小时, 过滤产生的 DCU沉淀, 得滤液。 将滤液于 50'C旋蒸除去溶剂, 再将产物溶于氯仿中。 将 0.1 M的盐酸溶液滴加到产 物的氯仿溶液中, 调 pH=3左右, 搅拌 2小时,保留有机相。有机相用无水硫酸钠除 水, 拨拌过夜。 过滤, 保留滤液, 悬蒸除去溶剂, 产物用氯仿和甲醇作淋洗液 过硅胶柱, 得 DffiOC-Lysine-NH-PEG。 为了脱除叔丁氧羰 (Boc)保护基团, 将 DiBoc-Lysine-NH-PEG溶于配方量的二氯甲烷中,再加入配方量的三氟 窒温下 搅拌 24小时, 60'C悬蒸除去洛剂,真空烘箱 gOO千煉 24小时即可 Lysine-NH-PEG, 其结构示意图和核磁氮谱见图 2, 红外谱图见图 3。
实施例 64^ 3
本组实施例是制备聚乙二醉侧链端基为羧基的梳形功能化聚氨酯材料的实施 例。
( 1)将大分子二元醇加入反应容瓶中, 搅拌并升温, 真空脱水, 降温, 加入二 异银酸 g§, 真空下预聚反应得聚氨酯预聚物;. R
(2)将前述实施例制备的聚乙二醇侧链的二元胺扩链剂溶于在四氢呋喃或第二 溶剂加入聚氨酯预聚物中, 停止加热, 实施例 64~^7反应 10分钟, 实施例 68、 69 和 73反应 13分钟, 实施例 70~72反应 15分钟, 然后将赖氧酸溶于水中并加入到反 应体系中进行扩链反应, 停止反应后放置 10〜12h即可, 将反应浪合物滴入搅拌的 蒸馏水中,使之形成均匀分散的胶体,然后再过滤,将滤液装入截留分子景为 8000〜 14000的透析袋内,置于蒸馆水中透析,每隔 4 个小时换一次蒸馆水, 5^7夭后取 出 (具体根据滤液中所含过量原料多少进行选择) , 将透^袋内的溶液真空冷冻干 煉后即聚乙二醇侧链端基为羧基的梳形功能化聚氣酯。 ;
各实施例反应中物料的种类、 用量见表 5, 制备工艺 ^数见表 6。 . - 为了考察所制备的梳形功能化聚氨酯材料的结抅,本发明将部分所得的梳形功辯 化聚氨酯材料通过仪器分析证实了其结构, 其测试结果分别见图^ 8
为了获得用于接枝白蛋白的功能化聚氨酯的胶体' 本发明从实施例 3139和 制备的梳形功能化聚氨酯材料各取 O.lg, 将其分别溶于 5 mL N,N-二甲基甲酰胺中, 然后将溶液在搅拌下滴入 20 蒸馏水中, 形成胶体, 过滤,将滤液装入透析袋, 在 蒸馏水中透析 5天,每 4小时换一次蒸馏水*如此将溶剂去除干净,然后于 50.C旋转 蒸发, 将胶体浓缩至约 5mL, 得到约 2%的胶体溶液。 取少 ¾胶体并用 水稀释至 质量浓度为 0.5%, 测定胶体粒径和电动电位(Malvern 3000 HSa Zetasizer激光粒度 仪)。 结果见图 9、 iOo
库用例 1
本应用例是用带环氧基的梳形功能化聚氨酯胶体接枝白蛋白。
将以异硫氣酸荧光素标记的猪白蛋白 (Sigma)作为模型蛋白, 溶于 50mM磷酸 缓冲液中(pH=7.4), 浓度为 lmg/mL, 然后向 2mL的棕色玻瑀小瓶中加入 0.6mL磷 酸缓冲液(50mM, pH=7.4), 0.2mL功能化聚氨酯胶体(取自于实施例 39制备的胶 体, ~2%)和 0.2mL白蛋白溶液, 在磁力拨拌下室温反应 30小时, 于 13000转 /分下 离心 20分钟, 然后用 0,8mL磷酸缓冲液分散成胶体, 如此反复离心 6次, 最后一次 用 0.2mL磷酸缓沖液分散成胶体溶液 >用荧光显微镜观察胶体粒子。 同吋'用荧光显 微镜观察未加白蛋白的空白胶体(即在棕色小瓶中加入 O.&nL磷酸缓冲液和 0.2mL 功能化聚氨酯胶体' 用同样的方法搅拌离心处理)进行对比, 结果见图 11。
应用例 2
本应用例是用带羧基或氨基的梳形功能化聚氨酯胶体接枝白蛋白。
将以异硫氮酸罗丹明标记的猪白蛋白(Sigma)作为模型蛋白,溶于^ 磷酸 缓冲液中 (ρΗ=7.4), 浓度为 lmg/mL, 并以水溶性的 1-乙基 -(3-二甲基氨基丙基)碳 二亚胺盐酸盐(EDC〉和 N-羟基琥珀酰亚胺 (NHS)作为缩合剂。 向 2mL的棕色玻 璃小瓶中分别侬次加入 0.6 mL磷酸缓冲液(50 mM, pH=7.4)、 0.2mL功能化聚氮 酯胶体(取自于实施例 31或 65制备的胶体, ~2 %)、 EDCVNHS缩合剂〈EDC 82mg; NHS 49 mg) 和 0.2mL白蛋白溶液, 磁力搅拌下室温反应 30小时, 于 13000转 /分 下离心 20分钟, 然后用 0.8mL磷酸缓冲液分散成胶体' 如此反复离心 6次' 最后一 次用( mL磷酸缓冲液分散成胶体溶液, 用荧光显微镜观察胶体粒子。 未加白蛋白 和缩合剂的空白胶体 (即棕色小瓶中加入 0.8mL磯酸缓冲液和 O mL功能化聚氨酯 胶体), 用同样的方法搅拌离心处理)进行对比> 结果见图 11,
表 1
Figure imgf000015_0001
Figure imgf000016_0001
注: 1) PCD: 聚碳酸酯二元酵: TMG: 聚四氢呋喃醚二元醇: PCL; 聚己内酷二元酵: PPG: 聚氧化丙烯 元酵: HAPHD: 聚己二酸 -1,6-己二酵。
2) MEI: 4, ' -二苯基甲^:异氛酸酯: H0I: 1,6-己二异氣酸瓊; TDIt 2,4-甲苯二异 «酸酯或 2, 6-甲苯二异戮酸酯: IPDI:异佛尔酮二异 K酸酯; LDI: 教氮酸 Z' 二异 ft酸翻 *
3) TKF: 四' 呋喃; DHF5 ,Ν-二甲基甲赚 i DMAc: Ν,Ν-二甲基乙酰胺; DMSO: 二甲基亚讽。
4)表中的靡尔比为大分子二元醇:二异 酸 :赖氨酸。
表 2:
Figure imgf000017_0001
注: 羧基当 ¾等于赖氨酸的摩尔数除以聚合 ¾¾3¾总质量。 表 3
Figure imgf000018_0001
注: 1) PN: 双官能度的端 基聚乙二醇; po: 欢官能度的端环 基聚乙二醉。
2) THF-. 四¾呋喃; D F: Ν,Ν-二甲基甲號胺; DMAc: N,N-二甲基乙酰胺: DMSO: 二甲甚亚砜 表 4
Figure imgf000019_0001
注- 1) NHS Ν-羟 二 ; D 》
2) PEG: 双官能度的端羧基聚乙二醇。
3) π为原料双钺 聚 ώ二眸或产物的茧 结构单 ά数, 表 5
合成带端羧基聚乙二醇侧链的聚氨酯的反应
Figure imgf000020_0001
注-' 1) PCD: 聚碳酸酯二元酵; PTMG: 聚四氣呋喃醚二元醇; PCL: 聚己内酯二元薛; PPG: 聚氯化丙秌二元醇; HAPHD: 聚己二酸 ~t 6-己二 2
2) «DI: 4, 4' -二苯基甲烷二异 ¾酸酯; HDI: 1, 6-己二异铕酸 : TDI: 2, 4-甲苯二异 «;酸酯或 2 6-甲苯二异镇 ¾蕺; Ιί¾ί: 异 ^尔蹈" 赖 酸乙酷二异氣酸酷《 ~
3) THF: 四氢呋喃; DMF: Ν, Ν-二甲基甲酰胺; DMAc: , Κ-二甲基乙酰胺; DMSO; 二甲基亚砜,
4) ti为扩链剂 1^^!^-?50中¾乙二酵的重复结构单元数。
5) 表中的摩尔比为大分子二元醉: 二异 酸酯: 赖氨酸: Lysin€-NH-PB30
表 6 合成带端羧基聚乙二醉侧链的聚氣酯的; E艺 实 大分子二; ni睜脱水 预! ^反 '■·'■ 扩链反应 施
例 温度 时间 温度 时间 时间 ('C) (分钟) CO (分钟) <分钟)
64 110 180 70 150 20
65 110 240 55 180 15
66 120 90 50 180 15
67 100 180 70 60 10
68 110 180 60 180 20
69 100 240 60 210 10
70 120 180 70 150 25
71 110 150 80 120 20
72 120 180 60 240 30
73 110 240 70 180 25

Claims

杈利要求书
1、 一种梳形功能t聚鉍酯材料的制备方法, 其特钲在于该方法的工艺步骤和条 件如下:
( 1 )将 1摩尔份数均分子量为 500-4000的二元醇加入反应容器中, 搅拌并升 温至 i00〜120'C , 真空脱水 90~240分钟后降温至 50~80'C, 加入 1.58-7.10摩尔份 二异氰酸酯, 在保持 50~80'C, 真空下预聚反应 1 小时得聚氨酯预聚物;
(2)先将 0.5〜6摩尔份赖氨酸加入第一溶剂中至溶解,然; 5在搅拌下将其加入 聚氨酯预聚物中扩链反应 1( β0分钟, 停止搅拌并放置 l( l2h, 再倒入水中沉淀, 沉淀物室温下干燥后即得带羧基的聚氨酯弹性体:
(3)先将以羧基的摩尔计为 0.5〜2份带羧基的聚氣酯弹性体溶解在第二溶剂 中, 然后依次加入以聚氨酯弹性体中所含羧基摩尔份至少 '..2倍的二环己基碳二亚 胺、 至少 1.2倍的 N-羟基琥珀酰亚按和 0.5〜2摩尔份端氨棊聚乙二醇, :¾温下搅拌 反应 20 30小时, 其中二环己棊碳二亚胺和 N-羟基琥珀酰亚胺为等摩尔;
(4)在上述反应液中加入为第二溶剂重量 1〜3%的 0.1 M的稀盐酸, 继续反应
3〜6个小时, 过滤除去沉淀, 将滤液滴入搅拌中的蒸馏水中, 使之形成均匀分散的 胶体, 然后过滤, 将滤液装入截留分子量为 8000〜14000的透析袋内, 于蒸馏水中 透析, 每隔 4 ~6个小时换一次蒸馏水, 5~7天后取出, 将透析袋内的溶液兵空冷冻 千燥后即得聚乙二醇侧链端棊为氨基的梳形功能化聚氨酯, 或
( 1 )将 摩尔份数均分子量为 500~4000的二元醇加入反应容器牛, 搅拌并升 温至 100~120'C, 真空脱氷 90-240分钟后降温至 50~80Ό , 加入 1.58〜7,10摩尔份 二异氡酸酯, 在保持 50~8(TC, 真空下预聚反应 1~ 小时得聚氨酯预聚物;
(2)先将 0.5〜6摩尔份赖氨酸加入第一溶剂中至溶解,然后在搅拌下将其加入 聚氨酯预聚物中扩链反应 10~30分钟, 停止搅拌并放置 10〜12h, 再倒入水中沉淀, 沉淀物室温下干燥后即得带羧基的聚氨酯弹性体;
(3 )先将 ί〜4摩尔份带羧基的聚氨酯弹性体溶解在第二溶剂中,然后加入!〜 4摩尔份的端环氧基聚乙二醇, 氮气保护下升温至 110~130'C , 搅拌回淹反应 20~30 小时后, 将反应混合物装入截留分子量为 8000〜14000的透析袋内, 于蒸馏水中透 析, 每隔 4〜6个小时换一次蒸馏水, 5〜7天后取出, 将透析袋内的溶液真空冷冻 干燥后即得聚乙二醇侧链端基为环氧基的梳形功能化聚氨酯。
2、 根据权利要求 1所述梳形功能化聚氨酯材料的制各方法, 其特征在于该方法 中所述的第一溶剂的用量为使聚氨酯弹性体溶液的固含 ¾为 26-39%;第二溶剂的用 量为使带羧棊的聚氨酯弹性体的重量百分含量为 240。/。。
3、根据权利要求 1或 2所述梳形功能化聚氨酯材料的制备方法, 其特征在于该 方法中所述的第一溶剂为水和四氢呋喃、 N,N -二甲基甲酰胺、 Ν,Ν-—甲基乙酰胺或 二甲基亚砜中的任一种组成的混合溶剂,其中水的重量百 含量为 1( ?0%;第二溶 剂为 Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺或二甲基亚砜中的任一种。
4、根据权利要求 1或 2所述梳形功能化聚氨醐材料的制备方法, 其特征在于该 方法中所述的端坏氣基荥乙二醇或端氨基聚乙二醇的数均分子纛为 200〜$000。
5、 根据权利要求 3所述梳形功能化聚氨酯材料的制备方法, 其特征在于该方法 中所述的端环氧基菜乙二醇或端氨基聚乙二醉的数均分子量为 200〜8000。
6、一种梳形功能化聚氨酯材料的制备方法, 其特征在于该方法的工艺歩骤和条 件如下: '
(1 )将 1摩尔份数均分子量为 500~4000二元醇加入反应容器中, 換拌并升温 至〗00 120'C, 真空脱水 90~240分钟后降温至 5Ο~80Ό, 加入 2.2~7.08摩尔份二 异 f 酯, 在保持 50~80 , 真空下预聚反应 1 小时得聚氨酯预聚物;
(2)先将 0.15〜2.10摩尔份含聚乙二醉侧链的二元胺扩链剂溶解在四氢呋喃或 第二溶剂中, 然后在搅拌下将其加入上述聚氨酯预聚物中, 停止加热, 反应 10〜15 分钟, 再将 0.5〜4.5摩尔份赖氨酸溶于水中并加入到反应体系中, 水的用量为能使 赖氨酸溶解即可,扩链反应 1(^30分钟后,停止搅拌并放置 10〜12h,将反应混合物 装入截留分子量为 8000〜14000的透析袋内, 于蒸馏水中透析, 每隔 4 . f个小时换 —次蒸馏水, 5~7天后取出,将透析袋内的溶液真空冷冻千燥后即得聚乙二醇侧链端 基为羧基的梳形功能化聚氨酯。
7、 根据权利要求 6所述梳形功能化聚氨酯材料的制备方法, 其特征在于该方法 中所述的四氢呋喃或第二溶剂的用量为便己加的反应物总重量在其内的重量百分含 量为 30%~50%, 水的用暈为第二溶剂质量的 10~30%。
S.根据权利要求 6或 7所述梳形功能化聚氨騮材料的制备方法, 其特征在于该 方法中所述的第二溶剂为 Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲基 酰胺或二甲.基亚砜中的 任一种; 含聚乙二醉侧链的二元胺扩链剂的化学结构如下- Η2Ν~(0Η2¾ Η~0 N HCH2CH2-NHC -CH2" OCH2CH2 oCH2COOH NH2
其中 n为 4~180的正整数。
9、 一种由权利要求 1或 6所述方法制备的梳形功能化聚氨酯材料, 其特征在于 该聚氨酯材料具有带功能化端基的聚乙二醇侧链,其侧链的功能化端基为氨基、环氧 基或羧基中的任一种, 且其核磁 谱在化学位移 3.50Ppm、 红外光谱在 r. cm-1附 近均显示有聚乙二醇吸收峰。
PCT/CN2014/000067 2013-04-10 2014-01-20 梳形功能化聚氨酯材料及其制备方法 WO2014166296A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/880,306 US9631044B2 (en) 2013-04-10 2015-10-12 Comb-like polyurethane and methods for preparing and using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310123610.6A CN103224607B (zh) 2013-04-10 2013-04-10 梳形功能化聚氨酯材料及其制备方法
CN201310123610.6 2013-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/880,306 Continuation-In-Part US9631044B2 (en) 2013-04-10 2015-10-12 Comb-like polyurethane and methods for preparing and using the same

Publications (1)

Publication Number Publication Date
WO2014166296A1 true WO2014166296A1 (zh) 2014-10-16

Family

ID=48835265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000067 WO2014166296A1 (zh) 2013-04-10 2014-01-20 梳形功能化聚氨酯材料及其制备方法

Country Status (3)

Country Link
US (1) US9631044B2 (zh)
CN (1) CN103224607B (zh)
WO (1) WO2014166296A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224607B (zh) * 2013-04-10 2014-10-29 四川大学 梳形功能化聚氨酯材料及其制备方法
CN105601549B (zh) * 2015-12-25 2020-06-16 四川大学 刺激敏感型二异氰酸酯
CN105601550B (zh) * 2015-12-25 2020-06-16 四川大学 具有活性基团的刺激敏感多功能多异氰酸酯
CN106916273B (zh) * 2015-12-28 2021-06-15 科思创德国股份有限公司 聚氨酯脲水性分散体
CN111690111B (zh) * 2020-07-30 2021-07-27 中国科学院兰州化学物理研究所 一种梳型聚合物及其制备方法和应用
CN112898517B (zh) * 2021-01-23 2022-06-21 湖北世丰新材料有限公司 一种生物型聚氨酯及其制备方法及其应用
CN113509550B (zh) * 2021-06-10 2023-04-14 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种分子刷纳米粒子及其制备方法和应用
CN115637124B (zh) * 2021-07-19 2023-09-22 沃顿科技股份有限公司 双组分环氧树脂胶粘剂的制备方法及由其制备的双组分环氧树脂胶粘剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109700A1 (de) * 1981-03-13 1982-09-30 Th. Goldschmidt Ag, 4300 Essen Verfahren zur herstellung von polymerisaten mit seitenstaendig gebundenen polyalkylenoxidketten
US4496708A (en) * 1983-12-14 1985-01-29 Union Carbide Corporation Water-soluble polyurethane comb polymer production
CN102181061A (zh) * 2011-03-20 2011-09-14 山东理工大学 聚氨酯-聚肽接枝共聚物及其制备方法
EP2431398A1 (en) * 2010-09-15 2012-03-21 Lamberti SPA Comb polyurethanes for paper coating
CN102516553A (zh) * 2011-11-18 2012-06-27 上海珀理玫化学科技有限公司 侧链含有大量羟基的亲水性聚氨酯的制备方法
CN103224607A (zh) * 2013-04-10 2013-07-31 四川大学 梳形功能化聚氨酯材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109700A1 (de) * 1981-03-13 1982-09-30 Th. Goldschmidt Ag, 4300 Essen Verfahren zur herstellung von polymerisaten mit seitenstaendig gebundenen polyalkylenoxidketten
US4496708A (en) * 1983-12-14 1985-01-29 Union Carbide Corporation Water-soluble polyurethane comb polymer production
EP2431398A1 (en) * 2010-09-15 2012-03-21 Lamberti SPA Comb polyurethanes for paper coating
CN102181061A (zh) * 2011-03-20 2011-09-14 山东理工大学 聚氨酯-聚肽接枝共聚物及其制备方法
CN102516553A (zh) * 2011-11-18 2012-06-27 上海珀理玫化学科技有限公司 侧链含有大量羟基的亲水性聚氨酯的制备方法
CN103224607A (zh) * 2013-04-10 2013-07-31 四川大学 梳形功能化聚氨酯材料及其制备方法

Also Published As

Publication number Publication date
US9631044B2 (en) 2017-04-25
US20160102167A1 (en) 2016-04-14
CN103224607A (zh) 2013-07-31
CN103224607B (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2014166296A1 (zh) 梳形功能化聚氨酯材料及其制备方法
Leigh et al. Helical polymers for biological and medical applications
Ye et al. Self-healing pH-sensitive cytosine-and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding
CA2505821C (en) Control of polymer surface molecular architecture via amphipathic endgroups
CN101503501B (zh) 可生物降解的无毒两亲性多嵌段聚氨酯材料及其制备方法
Wu et al. Tumor-targeted aggregation of pH-sensitive nanocarriers for enhanced retention and rapid intracellular drug release
CN105348157B (zh) 胱胺二异氰酸酯单体、基于该单体的聚合物及其制备方法和应用
Yu et al. Fabrication and evaluation of reduction-sensitive supramolecular hydrogel based on cyclodextrin/polymer inclusion for injectable drug-carrier application
JP2009518520A (ja) 重合体用の表面を修飾する末端基としての自己組織化する単量体及びオリゴマー
Ogueri et al. Synthesis, physicochemical analysis, and side group optimization of degradable dipeptide-based polyphosphazenes as potential regenerative biomaterials
Zhang et al. Biocompatible and pH-sensitive PEG hydrogels with degradable phosphoester and phosphoamide linkers end-capped with amine for controlled drug delivery
Tanaka et al. Precise synthesis of ABA triblock copolymers comprised of poly (ethylene oxide) and poly (β-benzyl-l-aspartate): a hierarchical structure inducing excellent elasticity
WO2010141667A1 (en) Therapeutic agent delivery system and method
Shi et al. Synthesis and properties of mono-or diamine-initiated imidazolium-based cationic polypeptides
Liu et al. Nondegradable magnetic poly (carbonate urethane) microspheres with good shape memory as a proposed material for vascular embolization
Luo et al. Structure-dependent nontraditional intrinsic fluorescence of aliphatic hyperbranched polyureas
CN108546321B (zh) 一种高生物相容性可生物降解骨填充材料的制备及应用
WO2017118842A1 (en) Branched polyester carrying dendrons
CN112898532B (zh) 一种磁性聚合物水凝胶及其制备方法和应用
CN111423571B (zh) 一种生物可降解两性离子聚碳酸酯及其应用
Deng et al. Hydrophilic Porous Poly (l‐Lactic Acid) Nanomembranes: Self‐Assembly, and Anti‐Biofouling and Anti‐Thrombosis Effects
KR101815780B1 (ko) 온도 및 피에이치 민감성 하이드로겔 및 그의 제조방법
Huang et al. Self-assembled particles of N-phthaloylchitosan-g-polycaprolactone molecular bottle brushes as carriers for controlled release of indometacin
CN115991938B (zh) 一种聚磷腈聚合物水凝胶及其制备方法与应用
Zhang et al. Functional Covalent Organic Framework (COF) Nanoparticles for Biomimic Mineralization and Bacteria Inhabitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782815

Country of ref document: EP

Kind code of ref document: A1