WO2014166152A1 - 液晶显示面板、显示装置及液晶显示面板的制造方法 - Google Patents

液晶显示面板、显示装置及液晶显示面板的制造方法 Download PDF

Info

Publication number
WO2014166152A1
WO2014166152A1 PCT/CN2013/076886 CN2013076886W WO2014166152A1 WO 2014166152 A1 WO2014166152 A1 WO 2014166152A1 CN 2013076886 W CN2013076886 W CN 2013076886W WO 2014166152 A1 WO2014166152 A1 WO 2014166152A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
quantum dots
display panel
color filter
Prior art date
Application number
PCT/CN2013/076886
Other languages
English (en)
French (fr)
Inventor
董瑞君
孙海威
董学
Original Assignee
北京京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/347,021 priority Critical patent/US9703141B2/en
Publication of WO2014166152A1 publication Critical patent/WO2014166152A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • Liquid crystal display panel display device, and manufacturing method of liquid crystal display panel
  • Embodiments of the present invention relate to a liquid crystal display panel, a display device, and a method of fabricating a liquid crystal display panel. Background technique
  • Quantum Dots also known as nanocrystals, are a collection of a limited number of nanoscale atoms and molecules with a typical particle size range of 2-20 nm. At present, there are mainly Group IV, III-V and II-VI quantum dot materials. II-VI family of quantum dot materials are widely used because they are easy to prepare and their excitation spectrum covers almost visible light.
  • the electron energy level near the metal Fermi level changes from quasi-continuous to discrete energy level, and the nano-semiconductor particles are discontinuous and the highest occupied molecular orbitals and The energy gap of the lowest unoccupied molecular orbital energy level is broadened, causing absorption and the blue shift of the fluorescence peak, a phenomenon known as the quantum size effect.
  • the quantum size effect causes a dramatic change in the optoelectronic properties of semiconductor quantum dots.
  • the quantum size effect produced when the size of the semiconductor quantum dot particles is smaller than the Bohr radius of the excitons changes the energy level structure of the semiconductor material from a continuous band structure to a discrete level structure with molecular characteristics.
  • semiconductor quantum dots of different particle sizes can be prepared in the same reaction, and light emission of different frequencies can be generated, so that various luminescent colors can be conveniently regulated.
  • a liquid crystal display panel of the prior art includes an array substrate 1 and a color filter substrate 6 disposed opposite to each other, and a liquid crystal layer 4 between the array substrate 1 and the color filter substrate 6 .
  • the light emitted by the backlight of the liquid crystal display panel may be white light, which is a mixed light of blue light and yellow light, and the color is impure.
  • the white light is filtered through the red, green and blue primary colors (R ⁇ G ⁇ B) of the color filter layer 22 of the color filter substrate 6, and the monochromatic light obtained contains a plurality of colors other than desired, which results in a relatively low color gamut of the picture.
  • Embodiments of the present invention provide a liquid crystal display panel, a display device, and a method of manufacturing a liquid crystal display panel.
  • quantum dot technology a monochromatic light with a more pure color can be generated, thereby achieving a better color mixing effect and improving a color gamut of the screen. In turn, the picture quality is improved.
  • An aspect of the invention provides a liquid crystal display panel, comprising: an array substrate; a color filter disposed on the array substrate, the color filter comprising a black matrix and quantum dots having different color inches, The different sized quantum dots can be excited to produce a corresponding color; a protective layer over the color filter; a liquid crystal layer over the protective layer; and a transparent protective plate over the liquid crystal layer.
  • a method for fabricating a liquid crystal display panel includes: forming a black matrix on a side of an array substrate on which a thin film transistor is formed; and performing quantum dots of different sizes on the array substrate on the black matrix Exciting to generate a corresponding color; forming a protective layer over the color filter layer and the black matrix; forming a liquid crystal layer over the protective layer; forming a transparent protective plate over the liquid crystal layer LCD case.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel of the prior art
  • FIG. 2 is a schematic structural view of a liquid crystal display panel according to an embodiment of the present invention.
  • the liquid crystal display panel includes: an array substrate; a color filter on the array substrate, the color filter includes a black matrix and a color filter layer having different color regions, wherein the color filter The different color regions of the layer respectively have quantum dots of different sizes, and the quantum dots of different sizes can be excited to generate corresponding colors; a protective layer located above the color filter; and a liquid crystal located above the protective layer a layer; a transparent protective sheet over the liquid crystal layer.
  • the embodiment greatly improves the color gamut of the liquid crystal display panel, enhances color saturation, and improves The display quality of the display panel.
  • the liquid crystal display panel includes an array substrate 1, a color filter 2 disposed on the array substrate 1, and a color filter 2
  • the protective layer 3 on top, the liquid crystal layer 4 on the protective layer 3, and the transparent protective plate 5 on the liquid crystal layer 4.
  • the color filter 2 of the present embodiment includes a black matrix 21 and a color filter layer 22 having three primary colors of red, green and blue, wherein the red and green regions of the color filter layer 22 have red and green light quantum dots, respectively.
  • the transparent protective plate 5 is the display side of the liquid crystal display panel.
  • the red region of the color filter layer 22 has a red light quantum dot
  • the green light region has a green light quantum dot. Since the quantum dot has high luminous efficiency and a narrow emission line, the backlight light can be efficiently converted into The red light R or the green light G close to the monochromatic light expands the color gamut and improves the display quality of the screen.
  • the quantum dots are different in size, so that light can be converted into light of different colors. Generally, the size of the red light quantum dots is about 10 nm, the size of the green light quantum dots is about 8 nm, and the size of the blue quantum dots is about 2-3 nm.
  • the existing blue photoresist can be used to form the color filter layer, and thus Light from the backlight is converted to blue light.
  • red light quantum dots and green light quantum dots can also be formed in the red light region and the green light region, respectively.
  • the protective layer may preferably employ a passivation layer whose main component is, for example, silicon nitride (SiNx) for stabilizing and protecting its surface from moisture, contamination and mechanical damage.
  • a passivation layer whose main component is, for example, silicon nitride (SiNx) for stabilizing and protecting its surface from moisture, contamination and mechanical damage.
  • a high transmittance glass plate can be used for the transparent protective plate.
  • the color filter 2 is directly formed on the array substrate 1, and the liquid crystal layer 4 is provided between the array substrate and the protective plate as the opposite substrate, so that the array substrate and the color film substrate pair in the conventional liquid crystal display panel can be avoided.
  • the deviation of the liquid crystal panel of the embodiment of the present invention can increase the aperture ratio and increase the brightness.
  • the liquid crystal display panel of the embodiment of the present invention may further include a backlight that emits blue light, such as a blue light, which faces away from the color filter 2 of the array substrate 1.
  • a backlight that emits blue light, such as a blue light, which faces away from the color filter 2 of the array substrate 1.
  • the backlight may be further defined, such as blue light emitted by a backlight as a backlight.
  • the blue light has a shorter wavelength and has higher energy, and the red light quantum dot and the green light quantum dot excitation can be converted into red light and green light respectively; moreover, the blue resin of the blue color region of the color filter layer 22 can be produced without being made. It is necessary to pass the blue light of the backlight, which can reduce the cost.
  • the backlight is a blue light emitting diode.
  • the backlight may preferably be a blue light emitting diode. Since the blue light emitted by the light emitting diode is closer to the monochromatic light, the light emitting diode is used to further improve the color gamut and improve the picture quality.
  • the red light quantum dots and the green light quantum dots are core-shell type red light quantum dots and core-shell green light quantum dots, respectively.
  • the core-shell type quantum dots are used to convert the light of the backlight, and the absorption is performed.
  • the quantum-shell structure of the quantum-shell structure has more excellent luminescence properties, which can significantly reduce the surface defects of the nanoparticles and greatly improve the luminescence efficiency. Therefore, the core-shell type red-light quantum dot and the core-shell green quantum are used. Point to improve luminous efficiency.
  • the material of the core-shell type red light quantum dot and the core-shell type green light quantum dot may be the same or different, and the combination of the core material and the shell material may be selected, for example, from one of the following three types: the core material is stone westernization. Cadmium, the shell material is sparse words; or, the nuclear material is cadmium telluride, the shell material is cadmium thinning; or, the nuclear material is cadmium thinning, and the shell material is thinning.
  • red light quantum dots and the green light quantum dots are different, monochromatic red light can be generated in the red light region by the excitation of the backlight blue light, and monochromatic green light can be generated in the green light region.
  • the quantum efficiency of the quantum shell material can reach 80% to 90%, and the light emitted by the backlight can be converted into red light or green light, and the excitation light width is also Continuous distribution, excellent optical characteristics such as narrow and symmetrical emission, adjustable color, high photochemical stability and long fluorescence lifetime.
  • an embodiment of the present invention takes a quantum dot as a red light quantum dot and a green light quantum dot, and obtains light of three primary colors of red, green and blue by using a blue light-emitting backlight as an example.
  • the present invention is not limited thereto, that is, the liquid crystal display panel may include light of a color other than the three primary colors of red, green and blue, such as yellow, and of course, is not limited to three or four, and color mixing of multiple colors is easier. There is a wide color gamut, which can be selected according to actual needs.
  • the backlight is not limited to blue light, and light having a shorter wavelength than blue light can be selected for excitation. If the blue light is selected as the backlight in the embodiment of the present invention, the fabrication of the blue quantum dots can be omitted, and the process can be obtained.
  • the present invention is not limited to these variations.
  • the embodiment further provides a liquid crystal display panel comprising an array substrate and a counter substrate disposed opposite to each other, the color filter substrate comprising a black matrix and a color filter layer having three primary colors of red, green and blue, the color filter layer
  • the red and green regions use red and green quantum dots, respectively.
  • the embodiment of the invention further provides a display device, which comprises any one of the above liquid crystal display panels, and the display device can be: electronic paper, liquid crystal television, liquid crystal display, digital photo frame, mobile phone, tablet computer and the like having any display function. Or parts. Since the red light region and the green light region of the color filter layer in the liquid crystal display panel respectively have red light quantum dots and green light quantum dots, the backlight light can be efficiently converted into near-monochromatic red light and green light, respectively. The picture color gamut is improved, which in turn improves the picture quality of the display device.
  • the embodiment of the invention further provides a method for fabricating a display panel, the method comprising: forming a black matrix on a side of the array substrate on which the thin film transistor is formed; and the same size quantum dot of the black matrix on the array substrate can be excited Generating a corresponding color; forming a protective layer on the color filter layer and the black matrix; providing a liquid crystal layer over the protective layer; and covering a transparent protective plate over the liquid crystal layer to form a liquid crystal box.
  • the liquid crystal display panel includes a red light quantum dot and a green light quantum dot, and the red, green, and blue primary colors are generated by a blue light-emitting backlight as an example for description.
  • the present invention is not limited thereto, that is, the liquid crystal display panel may include light of a color other than the three primary colors of red, green and blue, such as yellow, and of course, is not limited to three or four, and color mixing of multiple colors is easier. There is a wide color gamut, which can be selected according to actual needs.
  • the backlight is not limited to blue light, and light with a shorter wavelength than blue light can be selected for excitation.
  • blue light is selected as the backlight, and blue light quantum can be omitted.
  • the production of dots can be tubular in process.
  • the corresponding processes should also be adjusted accordingly, that is, corresponding to different colors, quantum dots of different sizes need to be fabricated, and adjustments to these structures and processes should be considered as the scope of the present invention.
  • the different color regions of the color filter layer may be disposed in the same layer as the black matrix, or may be set in different layers.
  • the different color regions of the color filter layer may partially overlap the black matrix at the edge portion, and the black matrix may be in different color regions.
  • a black matrix is formed first and then a color filter layer is formed, or a color filter layer is formed first and then a black matrix is formed.
  • Step 101 forming a black matrix on a side of the array substrate on which the thin film transistor is formed;
  • Step 102 forming red light quantum dots on the array substrate in the same layer as the black matrix and corresponding to the positions of the red and green regions of the color filter layer And green light quantum dots;
  • Step 103 forming a protective layer on the color filter layer and the black matrix
  • Step 104 forming a liquid crystal layer above the protective layer
  • Step 105 Cover a transparent protective plate over the liquid crystal layer to form a liquid crystal cell.
  • a structure for controlling a plurality of pixels on a plurality of pixels is formed on the array substrate.
  • a passivation layer is usually formed to complete the fabrication of the array substrate.
  • the square on the passivation layer Forming a black matrix and a color filter layer, the color filter layer corresponding to each pixel includes regions of different colors, such as a red region, a green region, and a blue region, and a black matrix is located around each pixel (so that different color regions are located in black) Between the matrices), separate the pixel areas corresponding to different colors.
  • a protective layer is formed, and then a liquid crystal layer is provided over the protective layer, and finally a transparent protective plate is covered on the liquid crystal layer to form a liquid crystal cell.
  • the red light quantum dots and the green light quantum dots respectively formed in the red light region and the green light region of the color filter layer are used to convert the light of the backlight into red light and green light, respectively, because the quantum dots have The emission spectrum is narrow and the luminous efficiency is also high, and the backlight light can be efficiently converted into red light or green light close to the monochromatic light. Therefore, the color gamut of the liquid crystal display panel can be improved, and the display quality of the screen can be improved.
  • by directly forming a black matrix and a color filter layer on the array substrate, and providing a liquid crystal layer on the array substrate deviations between the array substrate and the color filter substrate in the conventional liquid crystal display panel can be avoided, and the liquid crystal is improved.
  • the black matrix may be formed by printing, and the red light quantum dots and the green light quantum dots in the color filter layer may be prepared by an existing or future developed method, and the protective layer is
  • the material is, for example, silicon nitride, and the transparent protective plate can be a common glass substrate.
  • red and green regions of the color filter layer set over the passivation layer of the array substrate form red and quantum light dots, respectively, is as follows. Forming a red light quantum dot at a position corresponding to a red light region of the color filter layer on the passivation layer by using a mask, and forming a green light quantum dot in the green light region; or, using a mask on the passivation layer A green light quantum dot is formed at a position corresponding to the green light region of the color filter layer, and a red light quantum dot is formed in the red light region.
  • An example of a step of forming a red light quantum dot and a green light quantum dot includes: placing a mask plate over the array substrate, the open area of the mask plate corresponding to the position of the red light region on the array substrate or the position of the green light region; Corresponding to the open area of the mask plate, a gallium arsenide bottom layer is formed on the passivation layer; a plurality of buried islands are formed on the bottom layer of the gallium arsenide; and a gallium arsenide spatial layer covering the plurality of buried islands is formed Forming a plurality of quantum dot nuclei located above the buried layer island of the gallium arsenide spatial layer; forming a quantum dot shell covering a plurality of quantum dot nuclei.
  • red light quantum dots and green light quantum dots are the same, but is formed in order, that is, red light quantum dots can be formed first, then green light quantum dots can be formed, or green light quantum dots can be formed first, and red light quantum dots are formed. , its order is not limited.
  • the open area of the mask corresponds to the red region of the color filter layer, the green region of the color filter layer and the blue The light region is blocked by the mask. Therefore, red light quantum dots are formed only in the red light region.
  • the open area of the mask corresponds to the green light region of the color filter layer, and the color filter The red and blue regions of the light layer are blocked by the mask, so that green light quantum dots are formed only in the green region.
  • the red light quantum dot and the green light quantum dot are controlled by a method of designing a surface atomic structure, that is, a buried island is formed into a spatial layer to generate a quantum dot to control the growth of the red light quantum dot and the green light quantum dot. position.
  • the surface active inducing layer i.e., the buried island, is added in a region where it is desired to grow the quantum dot of the size, so that quantum dots of different sizes are self-growth according to a predetermined position.
  • the method of setting the growth surface active position can solve the problem that the quantum dot growth size is uncontrollable and the growth position distribution is uneven, and the aggregation problem of the quantum dots can be solved.
  • the size of the buried islands in the red and green regions corresponds to the size of the red and green quantum dots, respectively. It is preferable to use molecular beam epitaxy (MBE) to form buried islands, quantum dots, and quantum dot shells.
  • MBE molecular beam epitaxy
  • the formation of buried islands is due to the addition of other elements during the growth of gallium arsenide (GaAs), which causes a certain lattice mismatch with gallium arsenide during the growth of gallium arsenide.
  • a certain degree of lattice mismatch can be It inhibits two-dimensional layered growth and forms three-dimensional island growth.
  • an example of the plurality of buried islands formed on the bottom layer of the gallium arsenide is: doping the silicon or the silicon on the bottom layer of the gallium arsenide for epitaxial growth to form a buried island.
  • the gallium arsenide buried island is grown on the underlying layer of gallium arsenide, and the lattice mismatch of gallium arsenide is formed by adding cerium (Te) or silicon (Si) elements to form an island shape.
  • the material of the plurality of quantum dot cores is cadmium telluride, and the material of the quantum dot shell layer is sulfided; or, the material of the plurality of quantum dot cores is cadmium telluride, and the material of the quantum dot shell layer is cadmium telluride; Alternatively, the material of the plurality of quantum dot cores is cadmium sulfide, and the material of the quantum dot shell layer is a sulfided word.
  • the core material of the red and green quantum dots may be the same or different, the difference being the size.
  • a quantum dot having a core layer of cadmium telluride and a shell layer as a sulfide is formed; a green light quantum dot is first formed to produce a red light quantum dot; and the backlight is a blue light backlight, so that it is not necessary to prepare a blue resin, and the present invention It is not limited to the following examples.
  • the main process flow of the liquid crystal display panel of the embodiment of the present invention is as follows.
  • the array substrate comprising a glass substrate and a plurality of thin film transistors arranged in an array on the glass substrate, the thin film transistor including a gate, a gate insulating layer, an active layer, a source and a drain,
  • the thin film transistor may be of a bottom gate type or a top gate type;
  • a passivation layer of the transistor and the glass substrate, and the material of the passivation layer may preferably be silicon nitride.
  • the array substrate can be prepared in accordance with an existing process, and the present invention is not limited thereto.
  • a black matrix layer is formed over the passivation layer of the array substrate, where a black matrix layer is formed by printing, and the black matrix layer is used to prevent light leakage between the primary colors of the color filter layer.
  • a gallium arsenide (GaAs) substrate layer is formed on the passivation layer of the array substrate corresponding to the green region of the color filter layer by a mask, where the mask is covered by a photoresist covering method corresponding to the corresponding green region.
  • a layer of gallium arsenide is deposited by chemical vapor deposition.
  • gallium arsenide islands ie buried islands
  • doped germanium or silicon forms a buried island with a size of about 8 nm
  • the temperature of MBE is controlled at 360-500 °C, and the growth rate is about 0.2 nm/s, due to germanium or silicon doping arsenic.
  • Gallium will cause a certain lattice mismatch with the underlying layer of GaAs, and a certain degree of lattice mismatch can inhibit two-dimensional layered growth and form three-dimensional island growth.
  • gallium arsenide of about 10-20 nm is grown, and a layer of 10 to 20 nm gallium arsenide is deposited by chemical vapor deposition.
  • the gallium arsenide space layer can be Covering buried islands;
  • a quantum dot core layer is grown on the gallium arsenide spatial layer, where the core layer of the cadmium selenide quantum dot is grown by molecular beam epitaxy. Due to the existence of the buried island, the surface stress field exists in the gallium arsenide space layer, and the buried island top It becomes the pre-nucleation position of the quantum dot layer, and the growth rate of the quantum dot core can be controlled by controlling the temperature of the MBE. For example, the general temperature is controlled at 360-500 ° C, the growth rate is about 0.2 nm/s, and the green light quantum is grown. The size of the dot core is about 5 to 6 nm.
  • a quantum dot shell layer is overlaid on the core layer and above the space layer.
  • molecular layer epitaxy is used to grow a layer of sulfonated quantum dot shell of about 1 ⁇ 2 nm, and the quantum dot size is controlled by the molecular beam epitaxy thickness.
  • red light quantum dots are formed in the red region by masking, and the red light quantum dots in the red region are produced in the same manner as the green light quantum dots, and are not described here, but are buried islands.
  • the size of the red light quantum dots is different.
  • the size of the buried island of the red light quantum dot is about 10 nm
  • the size of the red quantum dot is about 8-9 nm
  • the size of the red quantum dot shell is about l ⁇ 2nm.
  • the photoresist is removed, a silicon nitride protective layer is grown, a liquid crystal layer is dropped on the protective layer, and a glass protective plate is added to form a liquid crystal cell. So far, the liquid crystal display panel using the quantum dot self-grown layer is completed.
  • red light quantum dots and green light quantum dots adopts a self-organized growth mode.
  • a buried island is formed by doping other elements, and then a spatial layer covering the buried island is formed, and then a quantum dot core layer is formed. Due to the stress of the buried island on the surface of the space layer, the quantum dot nucleus is formed above the buried island, thus controlling the formation position of the quantum dot. Since the quantum dots have high light conversion efficiency and a narrow emission spectrum, the light of the backlight can be efficiently converted into red or green light close to monochromatic light, thereby improving the color gamut and improving the picture quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种液晶显示面板、显示装置及液晶显示面板的制造方法,所述液晶显示面板包括:位于阵列基板(1)之上的彩色滤光片(2),彩色滤光片(2)包括黑矩阵(21)和具有不同颜色区域的彩色滤光层(22),其中,彩色滤光层(22)的不同颜色区域分别具有不同尺寸的量子点,不同尺寸的量子点能被激发产生对应的颜色;位于彩色滤光片(2)之上的保护层(3);位于保护层(3)之上的液晶层(4);位于液晶层(4)之上的透明保护板(5)。

Description

液晶显示面板、 显示装置及液晶显示面板的制造方法 技术领域
本发明的实施例涉及一种液晶显示面板、 显示装置及液晶显示面板的制 造方法。 背景技术
半导体量子点 (Quantum Dots, QDs)又称纳米晶,是有限数目的纳米尺度 原子和分子的集合体, 一般粒径范围在 2-20nm。 目前主要有 IV族、 III-V族 和 II -VI族量子点材料。 II -VI族量子点材料由于易于制备, 其激发频谱几乎 覆盖可见光, 因此得到广泛应用。
当纳米材料的粒子尺寸下降到某一数值(一般为 10nm ) 以下时, 金属 费米能级附近的电子能级由准连续变为离散能级, 纳米半导体微粒不连续的 最高被占据分子轨道和最低未被占据的分子轨道能级的能隙变宽, 从而引起 吸收和荧光语峰的蓝移, 这种现象称为量子尺寸效应。
量子尺寸效应使得半导体量子点的光电性质产生了巨大的变化。 当半导 体量子点颗粒的尺寸小于激子的玻尔半径时所产生的量子尺寸效应改变了半 导体材料的能级结构, 使之由一个连续的能带结构转变为具有分子特性的分 立能级结构。 利用这一现象可在同一种反应中制备出不同粒径的半导体量子 点, 产生不同频率的光发射, 从而可以方便的调控多种发光颜色。
如图 1所示, 现有的一种液晶显示面板包括相对设置的阵列基板 1和彩 膜( color filter )基板 6, 以及位于阵列基板 1和彩膜基板 6之间的液晶层 4。 该液晶显示面板的背光源发出的光可为白光, 该白光是蓝光与黄光的混光, 色彩不纯。该白光经过彩膜基板 6中彩色滤光层 22的红绿蓝三原色(R\G\B ) 过滤后所得到单色光包含期望之外的多种颜色, 这样就导致画面的色域比较 低, 颜色不够鲜艳真实; 此外, 阵列基板 1和彩膜基板 6对位时, 设备偏差 较大, 故需将黑矩阵 21做得更宽, 但这样就导致开口率下降。 发明内容 本发明的实施例提供一种液晶显示面板、 显示装置及液晶显示面板的制 造方法, 通过采用量子点技术, 可以产生颜色更纯的单色光, 从而混色效果 更好, 可以提高画面色域, 进而提高画面品质。
本发明的一个方面提供了一种液晶显示面板, 包括: 阵列基板; 位于所 述阵列基板之上的彩色滤光片, 所述彩色滤光片包括黑矩阵和具有不同颜色 寸的量子点, 所述不同尺寸的量子点能被激发产生对应的颜色; 位于所述彩 色滤光片之上的保护层; 位于所述保护层之上的液晶层; 位于所述液晶层之 上的透明保护板。
本发明的另一个方面提供了一种显示装置, 包括上述液晶显示面板。 本发明的再一个方面提供了一种液晶显示面板的制造方法, 包括: 在阵 列基板形成有薄膜晶体管的一面上方形成黑矩阵; 在阵列基板上于所述黑矩 述不同尺寸的量子点能被激发产生对应的颜色; 形成位于所述彩色滤光层和 所述黑矩阵之上的保护层; 形成位于所述保护层之上的液晶层; 将透明保护 板盖于所述液晶层之上形成液晶盒。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术的液晶显示面板结构示意图;
图 2为本发明实施例的液晶显示面板结构示意图。
附图标记:
1-阵列基板 2-彩色滤光片 3-保护层 4-液晶层 5-透明保护板
6-彩膜基板 11-钝化层 21-黑矩阵 22-彩色滤光层 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用于表示相对位置关系, 当被描述对 象的绝对位置改变后, 则该相对位置关系也可能相应地改变。
为了提高画面的色域, 本发明的实施例提供了一种液晶显示面板、 显示 装置及液晶显示面板的制造方法。 所述液晶显示面板包括: 阵列基板; 位于 所述阵列基板之上的彩色滤光片, 所述彩色滤光片包括黑矩阵和具有不同颜 色区域的彩色滤光层, 其中, 所述彩色滤光层的不同颜色区域分别具有不同 尺寸的量子点, 所述不同尺寸的量子点能被激发产生对应的颜色; 位于所述 彩色滤光片之上的保护层; 位于所述保护层之上的液晶层; 位于所述液晶层 之上的透明保护板。
上述实施例由于采用了能被激发产生不同单色光的量子点, 而量子点发 射光谱窄并且发光效率高, 因此该实施例大大提高了液晶显示面板的色域, 增强了色彩饱和度, 提高了显示面板的显示品质。
如图 2所示, 本发明的一个实施例的液晶显示面板的结构示意图, 所述 液晶显示面板, 包括阵列基板 1、位于阵列基板 1之上的彩色滤光片 2、位于 彩色滤光片 2之上的保护层 3、 位于保护层 3之上的液晶层 4、位于液晶层 4 之上的透明保护板 5。本实施例的彩色滤光片 2包括黑矩阵 21和具有红绿蓝 三原色的彩色滤光层 22, 其中, 彩色滤光层 22的红色区和绿色区分别具有 红光量子点和绿光量子点。 透明保护板 5为该液晶显示面板的显示侧。 在本发明实施例中,彩色滤光层 22的红色区具有红光量子点,绿光区具 有绿光量子点, 由于量子点发光效率高并且发射谱线窄, 因此能将背光源的 光高效转化成接近单色光的红光 R或绿光 G, 进而扩大色域, 提高画面的显 示品质。 量子点尺寸不同, 因此可将光转化为不同颜色的光, 一般红光量子 点的尺寸约为 10nm, 绿光量子点的尺寸约为 8nm, 蓝色量子点的尺寸约为 2-3nm。 由于激发蓝光量子点所需的背光源的光能量较高, 因此, 对于彩色 滤光片的蓝色区, 在实施例的示例中可以采用现有的蓝色光阻形成彩色滤光 层, 进而将来自背光源的光转变为蓝光。 对于具有红绿蓝黄四原色的彩色滤 光层也可以在红光区和绿光区分别形成红光量子点和绿光量子点。 黄光区例 如可以是将通过将红光量子点与绿光量子点混合得到 , 二者的体积比例如约 为绿: 红 =5:3或 5:2。
保护层可以优选采用钝化层, 其主要成分例如为氮化硅(SiNx ) , 用来 稳定和保护其表面免受潮湿、 污染和机械损伤。 对于透明保护板可以采用高 透过率的玻璃板。 此外, 在阵列基板 1上直接形成彩色滤光片 2, 在阵列基 板与作为对置基板的保护板之间提供液晶层 4, 可避免现有的液晶显示面板 中阵列基板和彩膜基板对盒的偏差, 因此, 本发明实施例的液晶面板可增大 开口率, 提高亮度。
优选的, 如图 2所示, 本发明实施例的液晶显示面板, 还可包括位于阵 列基板 1背离彩色滤光片 2—面的例如发射蓝光的背光源。
在本发明实施例中, 可对背光源进行了进一步限定, 例如采用背光源发 射的蓝光作为背光。 蓝光波长较短, 具有较高的能量, 可以将红光量子点和 绿光量子点激发分别转化为红光和绿光; 而且,彩色滤光层 22的蓝色区的蓝 色树脂可以不必制作, 只需透过背光源的蓝光即可, 这样可以降低成本。
较佳的, 例如, 所述背光源为发射蓝光的发光二极管。
在本发明实施例中, 背光源可以优选为发射蓝光的发光二极管, 由于发 光二极管的发出的蓝光较接近单色光,因此采用发光二极管进一步提高色域, 提高画面品质。
优选的, 例如, 红光量子点和绿光量子点分别为核壳型红光量子点和核 壳型绿光量子点。
在本发明实施例中, 采用核壳型量子点对背光源的光进行转化, 从吸收 和发射光语来看, 核壳结构的量子点具有更加优异的发光特性, 能够明显减 少纳米颗粒的表面缺陷, 大大提高了发光效率, 因此, 采用核壳型红光量子 点和核壳型绿光量子点利于提高发光效率。
所述核壳型红光量子点和所述核壳型绿光量子点的材质可以相同也可以 不同, 其核材质和壳材质的组合例如可以选自下面三种中的一种: 核材质为 石西化镉, 壳材质为疏化辞; 或者, 核材质为踊化镉, 壳材质为疏化镉; 或者, 核材质为疏化镉, 壳材质为疏化辞。
由于红光量子点和绿光量子点的尺寸不同, 所以通过背光蓝光的激发, 在红光区能产生单色的红光, 在绿光区能产生单色的绿光。
在本发明实施例中, 上述核壳材质的量子点的量子效率可达 80%~90%, 可以将背光源发出的光几乎全部转化为红光或绿光, 并且还具有激发光语宽 且连续分布, 发射光语窄而对称, 颜色可调, 光化学稳定性高, 荧光寿命长 等优越的荧光特性。
由于现有液晶显示面板以红绿蓝三原色混色实现彩色显示, 本发明的一 个实施例以量子点为红光量子点和绿光量子点 , 通过发蓝光的背光来得到红 绿蓝三原色的光为例进行说明。 可以理解的是, 本发明并不限于此, 即所述 液晶显示面板可以包含除红绿蓝三原色以外颜色的光, 例如黄色, 当然也不 限于三种或者四种, 多种颜色的混色更容易有实现宽的色域, 这些可根据实 际需要进行选择, 当然, 所述背光也不限于蓝光, 可以选取比蓝光波长更短 的光进行激发。 如果本发明实施例选取蓝光作为背光, 则可以省去蓝光量子 点的制作, 工艺上可得到筒化。 对于这些变形, 本发明均不做限定。
本实施例还提供一种液晶显示面板, 包括相对设置的阵列基板和对置基 板, 所述彩膜基板包括黑矩阵和具有红、 绿、 蓝三原色的彩色滤光层, 所述 彩色滤光层的红色区和绿色区分别采用红光量子点和绿光量子点。
本发明实施例还提供一种显示装置, 包括上述任一种液晶显示面板, 所 述显示装置可以为: 电子纸、 液晶电视、 液晶显示器、 数码相框、 手机、 平 板电脑等具有任何显示功能的产品或部件。 由于液晶显示面板中的彩色滤光 层的红光区和绿光区分别具有红光量子点和绿光量子点, 因此, 可以将背光 源的光分别高效转化为接近单色的红光和绿光, 提高了画面色域, 进而提高 了显示装置的画面品质。 本发明实施例还提供一种显示面板的制作方法, 该方法包括: 在阵列基 板形成有薄膜晶体管的一面上方形成黑矩阵; 在阵列基板上的所述黑矩阵之 同尺寸的量子点能被激发产生对应的颜色; 形成位于所述彩色滤光层和所述 黑矩阵之上的保护层; 提供位于所述保护层之上的液晶层; 将透明保护板盖 于所述液晶层之上形成液晶盒。
为了方便进行说明, 本发明实施例以液晶显示面板包括红光量子点和绿 光量子点, 通过发蓝光的背光来产生红绿蓝三原色为例进行说明。 可以理解 的是, 本发明并不限于此, 即所述液晶显示面板可以包含除红绿蓝三原色以 外颜色的光, 如黄色, 当然也不限于三种或者四种, 多种颜色的混色更容易 有实现宽的色域, 这些可根据实际需要进行选择, 当然, 所述背光也不限于 蓝光,可以选取比蓝光波长更短的光进行激发,本实施例选取蓝光作为背光, 可以省去蓝光量子点的制作, 工艺上可以筒化。 对于这些结构的变形, 其相 应的工艺也应做相应调整, 即对应不同的颜色,需要制作不同尺寸的量子点, 对于这些结构和工艺上的调整, 均应当视为本发明的范围。
彩色滤光层的不同颜色区域可以与黑矩阵同层设置,也可以不同层设置, 例如彩色滤光层的这些不同颜色区域可以在边缘部分与黑矩阵部分重叠, 黑 矩阵可以在不同颜色区域自下或之上, 相应地在制备时, 先形成黑矩阵然后 形成彩色滤光层, 或者先形成彩色滤光层的然后形成黑矩阵。
本发明实施例的液晶显示面板的制造方法的一个示例包括如下步骤
101~105。
步骤 101、 在阵列基板形成有薄膜晶体管的一面上方形成黑矩阵; 步骤 102、 在阵列基板上与所述黑矩阵同层且对应彩色滤光层的红色区 和绿色区的位置分别形成红光量子点和绿光量子点;
步骤 103、 形成位于所述彩色滤光层和所述黑矩阵之上的保护层; 步骤 104、 形成位于所述保护层之上的液晶层;
步骤 105、 将透明保护板盖于所述液晶层之上形成液晶盒。
通常在阵列基板上用于控制多个像素形成有多个薄膜晶体管和像素电极 等结构, 在形成薄膜晶体管和像素电极等结构之后通常还要形成钝化层, 完 成阵列基板的制作。 为了实现彩膜集成在阵列基板上结构, 在钝化层上方形 成黑矩阵和彩色滤光层, 彩色滤光层对应各个像素包括不同颜色的区域, 如 红光区、 绿光区和蓝光区, 黑矩阵位于每个像素的四周 (从而不同颜色的区 域位于黑矩阵之间) , 将对应不同颜色的像素区域隔开。 完成黑矩阵和彩色 滤光层的制作之后, 再形成一层保护层, 然后在保护层上方提供液晶层, 最 后在液晶层上盖上透明保护板形成液晶盒。 在本发明实施例中, 在彩色滤光 层的红光区和绿光区分别形成的红光量子点和绿光量子点用于将背光源的光 分别转化为红光和绿光, 由于量子点具有发射光谱窄的优点, 并且发光效率 也高, 可以高效地将背光源的光转化为接近单色光的红光或绿光, 因此, 可 以提高液晶显示面板的色域, 提高画面的显示品质。 此外, 采用在阵列基板 上直接形成黑矩阵和彩色滤光层, 再在阵列基板上提供液晶层, 可以避免现 有的液晶显示面板中阵列基板和彩膜基板对盒时的偏差, 提高了液晶显示面 板的开口率, 提高了液晶显示面板的亮度。 在本发明实施例的液晶显示面板 的制造方法中, 黑矩阵可以采用印刷的方式形成, 彩色滤光层中的红光量子 点和绿光量子点可以采用已有或将来开发的方法制备, 保护层的材料例如为 氮化硅, 透明保护板可以采用常见的玻璃基板。
在阵列基板的钝化层之上设定的彩色滤光层的红色区和绿色区分别形成 红光量子点和绿光量子点的示例如下。 采用掩膜的方式在钝化层之上对应彩 色滤光层的红光区的位置形成红光量子点, 再在绿光区形成绿光量子点; 或 者, 采用掩膜的方式在钝化层之上对应彩色滤光层的绿光区的位置形成绿光 量子点, 再在红光区形成红光量子点。
红光量子点和绿光量子点的形成步骤的一个示例包括: 将掩膜板置于阵 列基板上方, 所述掩膜板的开口区域对应阵列基板上红光区的位置或者绿光 区的位置; 在对应掩膜板的开口区域形成位于钝化层之上的砷化镓村底层; 形成位于砷化镓村底层之上的多个埋层岛; 形成覆盖多个埋层岛的砷化镓空 间层; 形成位于砷化镓空间层之上, 位于埋层岛上方的多个量子点核; 形成 覆盖多个量子点核的量子点壳层。
需要说明的是, 红光量子点和绿光量子点的形成过程一致, 只是按先后 顺序形成, 即可以先形成红光量子点, 再形成绿光量子点, 也可以先形成绿 光量子点, 再形成红光量子点, 其先后顺序不限。 在形成红光量子点的过程 中, 掩膜板的开口区域对应彩色滤光层的红光区, 彩色滤光层的绿光区和蓝 光区被掩膜板遮挡, 因此, 只在红光区形成红光量子点, 同理, 在形成绿光 量子点的过程中, 掩膜板的开口区域对应彩色滤光层的绿光区, 彩色滤光层 的红光区和蓝光区被掩膜板遮挡, 因此, 只在绿光区形成绿光量子点。
在本发明实施例中, 将红光量子点和绿光量子点利用设计表面原子结构 的方法, 即先生成埋层岛再形成空间层再生成量子点的方法来控制其红光量 子点和绿光量子点生长位置。 在希望生长该尺寸量子点的区域增加表面活性 诱导层, 即埋层岛, 使不同尺寸的量子点按照预定的位置进行自生长。 在本 发明的实施例中, 通过设定生长表面活性位置的方法可以解决量子点生长尺 寸不可控以及生长位置分布不均等问题, 并可以解决量子点的聚集问题。 红 光区和绿光区埋层岛的尺寸分别对应红光量子点和绿光量子点的尺寸, 可以 优选采用分子束外延生长(MBE )的方式生成埋层岛、 量子点核和量子点壳 层。 埋层岛的形成是由于在砷化镓(GaAs )生长时添加了其它的元素, 使得 砷化镓生长时与砷化镓村底层具有一定的晶格失配, 一定程度的晶格失配可 以抑制二维层状生长, 形成三维岛状生长。
较佳的, 所述形成位于砷化镓村底层之上的多个埋层岛的一个示例为: 在砷化镓村底层之上掺杂碲或硅进行外延生长形成埋层岛。
在本发明实施例中, 在砷化镓村底层上生长砷化镓埋层岛, 可以通过添 加碲(Te )或硅(Si )元素来造成砷化镓的晶格失配, 形成岛状。
例如, 多个量子点核的材质为踊化镉, 量子点壳层的材质为硫化辞; 或 者, 多个量子点核的材质为踊化镉, 量子点壳层的材质为石克化镉; 或者, 多 个量子点核的材质为硫化镉, 量子点壳层的材质为硫化辞。 红光量子点和绿 光量子点的核壳材质可以相同, 也可以不同, 区别在于其尺寸大小。
以下列举一个具体的实施例来说明本发明图 2所示的液晶显示面板的制 造方法。 在该示例中, 形成核层为踊化镉、 壳层为硫化辞的量子点; 先制作 绿光量子点再制作红光量子点; 背光源采用蓝光背光源, 因此无需制备蓝色 树脂, 本发明并不限定于下述实施例。 本发明实施例的液晶显示面板, 其主 要工艺流程如下所述。
制备阵列基板, 该阵列基板包括玻璃基板和形成于玻璃基板之上按阵列 排布的多个薄膜晶体管, 该薄膜晶体管包括栅极、 栅极绝缘层、 有源层、 源 极和漏极, 该薄膜晶体管可以为底栅型, 也可以为顶栅型; 再形成覆盖薄膜 晶体管和玻璃基板的钝化层, 该钝化层的材质可以优选为氮化硅。 该阵列基 板可以按照现有工艺制备, 本发明不限于此。
在制作完阵列基板之后, 在阵列基板的钝化层之上形成黑矩阵层, 这里 采用印刷的方式形成黑矩阵层, 黑矩阵层用于防止彩色滤光层各原色之间的 漏光。
采用掩膜的方式在阵列基板的钝化层之上对应彩色滤光层的绿色区的位 置形成砷化镓( GaAs )村底层, 这里采用光刻胶覆盖的方式覆盖除了对应绿 光区的阵列基板的钝化层上的其它位置, 再采用化学气相沉积的方法沉积一 层砷化镓村底层。
在砷化镓村底层上自组织生长一层砷化镓岛, 即埋层岛, 以获得村底表 面上具有尺寸和密度可控的纳米量子点生长位置, 这里采用分子束外延生长 的方式在形成砷化镓时掺杂碲或硅形成尺寸约为 8nm的埋层岛, 控制 MBE 的温度在 360-500 °C , 生长速率约为 0.2nm/s , 由于碲或硅元素掺杂的砷化镓 会导致与砷化镓村底层具有一定晶格失配, 一定程度的晶格失配可以抑制二 维层状生长, 形成三维岛状生长。
埋层岛生长完成后, 生长一层约 10~20nm的砷化镓空间层, 具体为优选 采用化学气相沉积的方法沉积一层 10~20nm的砷化镓空间层,该砷化镓空间 层可以覆盖埋层岛;
在砷化镓空间层之上生长量子点核心层, 这里采用分子束外延生长硒化 镉量子点核心层, 由于埋层岛的存在, 使得砷化镓空间层存在表面应力场, 埋层岛顶部成为了量子点层的预成核位置, 可以通过控制 MBE的温度来控 制量子点核的生长速率, 例如一般温度控制在 360~500°C , 生长速率约为 0.2nm/s, 生长的绿光量子点核的尺寸约为 5~6nm。
在核心层之上和空间层之上覆盖一层量子点壳层, 这里采用分子束外延 生长一层约 l~2nm的硫化辞量子点壳层,通过分子束外延厚度来控制量子点 尺寸。
制作完成绿光量子点之后 ,再通过掩膜的方式在红色区形成红光量子点 , 红色区中红光量子点的制作和绿光量子点的制作方法一致, 这里就不一一赘 述, 只是埋层岛、 红光量子点的尺寸有不同, 这里红光量子点的埋层岛尺寸 约为 10nm, 红光量子点核尺寸约为 8~9nm, 红光量子点壳层的尺寸约为 l~2nm。
在制作完成红光量子点和绿光量子点之后, 除去光刻胶, 生长一层氮化 硅保护层, 在保护层上滴注一层液晶层, 再加盖一层玻璃保护板, 形成液晶 盒。 至此, 使用量子点自生长层的液晶显示面板即完成。
可见, 红光量子点和绿光量子点的形成采用自组织生长的方式, 首先通 过掺杂其他元素生成埋层岛, 然后形成覆盖埋层岛的空间层, 再形成量子点 核层。 由于埋层岛在空间层表面的应力作用, 使得量子点核在埋层岛的上方 形成, 这样就控制了量子点的形成位置。 由于量子点具有高的光转化效率并 且发射光谱窄,因此可以将背光源的光高效转化为接近单色光的红光或绿光, 因此, 提高了色域, 提高了画面品质。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种液晶显示面板, 包括:
阵列基板,
位于所述阵列基板之上的彩色滤光片, 所述彩色滤光片包括黑矩阵和具 有不同颜色区域的彩色滤光层, 其中, 所述彩色滤光层的不同颜色区域分别 具有不同尺寸的量子点, 所述不同尺寸的量子点能被激发产生对应的颜色; 位于所述彩色滤光片之上的保护层;
位于所述保护层之上的液晶层;
位于所述液晶层之上的透明保护板。
2、如权利要求 1所述的液晶显示面板, 其中, 所述彩色滤光片包括黑矩 阵和具有红绿蓝三原色区域的彩色滤光层 ,
其中, 所述彩色滤光层的红色区和绿色区分别具有红光量子点和绿光量 子点。
3、如权利要求 2所述的液晶显示面板,还包括位于所述阵列基板背离彩 色滤光片一面的发射蓝光的背光源。
4、如权利要求 3所述的液晶显示面板, 其中, 所述背光源为发射蓝光的 发光二极管。
5、 如权利要求 1-4任一所述的液晶显示面板, 其中, 所述量子点为核壳 型量子点。
6、如权利要求 5所述的液晶显示面板, 其中, 所述核壳型量子点的核材 质为踊化镉, 壳材质为硫化辞; 或者,
所述核壳型量子点的核材质为踊化镉, 壳材质为硫化镉; 或者, 所述核壳型量子点的核材质为硫化镉, 壳材质为硫化辞。
7、 一种显示装置, 包括如权利要求 1~6中任一项所述的液晶显示面板。
8、一种液晶显示面板的制造方法, 所述液晶显示面板包括阵列基板, 该 方法包括:
在阵列基板形成有薄膜晶体管的一面上方形成黑矩阵;
在阵列基板上于所述黑矩阵之间且对应彩色滤光层的不同颜色的区域分 别形成不同尺寸的量子点,所述不同尺寸的量子点能被激发产生对应的颜色; 形成位于所述彩色滤光层和所述黑矩阵之上的保护层;
形成位于所述保护层之上的液晶层;
将透明保护板盖于所述液晶层之上形成液晶盒。
9、如权利要求 8所述的液晶显示面板的制造方法, 其中, 在所述阵列基 板上与所述黑矩阵同层且对应彩色滤光层的红光区和绿光区的位置分别形成 红光量子点和绿光量子点, 所述红光量子点和绿光量子点能被激发分别产生 红光和绿光。
10、 如权利要求 9所述的液晶显示面板的制造方法, 其中, 采用掩膜工 艺在阵列基板上与所述黑矩阵同层且对应彩色滤光层的红光区的位置形成红 光量子点, 再在绿光区的位置形成绿光量子点; 或者,
采用掩膜工艺在阵列基板上与所述黑矩阵同层且对应彩色滤光层的绿光 区的位置形成绿光量子点, 再在红光区的位置形成红光量子点。
11、如权利要求 10所述的液晶显示面板的制造方法, 其中, 所述形成红 光量子点或者绿光量子点的步骤包括:
将掩膜板置于阵列基板上方, 所述掩膜板的开口区域对应阵列基板上红 光区的位置或者绿光区的位置;
在对应掩膜板的开口区域形成位于钝化层之上的砷化镓村底层; 形成位于砷化镓村底层之上的多个埋层岛;
形成覆盖多个埋层岛的砷化镓空间层;
形成位于砷化镓空间层之上, 位于埋层岛上方的多个量子点核; 形成覆盖多个量子点核的量子点壳层。
12、如权利要求 11所述的阵列基板的制造方法, 其中, 所述形成位于砷 化镓村底层之上的多个埋层岛为:
在砷化镓村底层之上掺杂碲或硅进行外延生长形成多个埋层岛。
PCT/CN2013/076886 2013-04-09 2013-06-06 液晶显示面板、显示装置及液晶显示面板的制造方法 WO2014166152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/347,021 US9703141B2 (en) 2013-04-09 2013-06-06 Liquid crystal display panel, display device, and manufacturing method of liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310121470.9A CN103226259B (zh) 2013-04-09 2013-04-09 液晶显示面板、显示装置及液晶显示面板的制造方法
CN201310121470.9 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014166152A1 true WO2014166152A1 (zh) 2014-10-16

Family

ID=48836760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076886 WO2014166152A1 (zh) 2013-04-09 2013-06-06 液晶显示面板、显示装置及液晶显示面板的制造方法

Country Status (3)

Country Link
US (1) US9703141B2 (zh)
CN (1) CN103226259B (zh)
WO (1) WO2014166152A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353555A (zh) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
US20170261849A1 (en) * 2015-11-16 2017-09-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing color filter substrate

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353629A (zh) * 2013-07-17 2013-10-16 杭州纳晶科技有限公司 彩色滤光片和显示屏
CN104730614A (zh) * 2013-12-19 2015-06-24 纬创资通股份有限公司 导光单元及侧光式背光模块
CN103730472B (zh) * 2013-12-25 2015-05-06 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN103869530A (zh) * 2014-03-31 2014-06-18 深圳市华星光电技术有限公司 液晶显示器
JP6221914B2 (ja) * 2014-04-11 2017-11-01 日本電気硝子株式会社 発光デバイスの製造方法
CN104021735B (zh) * 2014-05-23 2016-08-17 京东方科技集团股份有限公司 一种量子点发光显示屏及其制备方法
CN104090361B (zh) 2014-06-24 2017-02-15 京东方科技集团股份有限公司 有源基板及显示装置
CN105589245A (zh) * 2014-10-23 2016-05-18 群创光电股份有限公司 显示装置
CN104516039B (zh) * 2014-12-23 2018-04-27 深圳市华星光电技术有限公司 量子点彩色滤光片的制作方法及液晶显示装置
KR102116971B1 (ko) * 2015-01-23 2020-06-02 삼성디스플레이 주식회사 감광성 수지 조성물 및 표시장치
CN104536198A (zh) * 2015-02-03 2015-04-22 京东方科技集团股份有限公司 一种显示基板、显示面板和显示装置
CN104597654A (zh) 2015-02-13 2015-05-06 厦门天马微电子有限公司 液晶显示面板及液晶显示装置
KR102373200B1 (ko) * 2015-07-14 2022-03-17 삼성전자주식회사 디스플레이 패널 및 상기 디스플레이 패널을 이용하는 디스플레이 장치
KR102386109B1 (ko) * 2015-07-20 2022-04-14 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN105093643B (zh) * 2015-08-04 2019-03-12 深圳市华星光电技术有限公司 彩色发光元件及液晶显示装置
CN105093830A (zh) * 2015-08-28 2015-11-25 京东方科技集团股份有限公司 量子点光刻胶、彩膜基板及显示装置
CN105044975A (zh) * 2015-08-31 2015-11-11 京东方科技集团股份有限公司 一种液晶显示装置
CN105183229B (zh) * 2015-09-11 2017-06-09 京东方科技集团股份有限公司 显示面板、触控显示面板及其制作方法、显示装置
CN105185790B (zh) * 2015-09-24 2019-03-12 深圳市华星光电技术有限公司 阵列基板及其制作方法
CN105182601B (zh) * 2015-10-27 2019-01-22 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置及制作方法
KR102461106B1 (ko) 2015-11-27 2022-10-31 삼성디스플레이 주식회사 색변환 패널, 이의 제조 방법 및 이를 포함하는 표시 장치
CN105278155B (zh) * 2015-11-30 2018-06-01 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
CN106707610A (zh) * 2017-03-28 2017-05-24 青岛海信电器股份有限公司 量子点彩色滤光片及制备方法、液晶面板、液晶显示设备
CN106990595A (zh) * 2017-05-02 2017-07-28 深圳市华星光电技术有限公司 一种液晶显示面板及液晶显示器
CN107505767A (zh) * 2017-10-16 2017-12-22 京东方科技集团股份有限公司 光转换结构、背光模组、彩膜基板以及显示装置
CN108165271B (zh) * 2018-02-27 2021-04-27 南方科技大学 一种基于微胶囊电泳彩色量子点光致发光材料及其发光方法和应用
CN111583829A (zh) * 2020-05-13 2020-08-25 西安翻译学院 一种计算机显示屏有害蓝光防护板
CN112002745A (zh) * 2020-08-25 2020-11-27 深圳扑浪创新科技有限公司 一种量子点色彩转换膜及其制备方法和显示面板
CN114566516A (zh) * 2022-02-28 2022-05-31 厦门天马微电子有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114491A1 (en) * 2002-09-19 2004-06-17 Demetri Psaltis High density optical data storage
CN1523436A (zh) * 2003-08-08 2004-08-25 友达光电股份有限公司 彩色滤光片的制造方法以及半透射式液晶显示装置
CN1971360A (zh) * 2005-11-23 2007-05-30 群康科技(深圳)有限公司 液晶显示面板
CN101226946A (zh) * 2008-02-18 2008-07-23 友达光电股份有限公司 主动阵列基板、液晶显示面板及其制作方法
JP2009251129A (ja) * 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association 液晶表示装置用カラーフィルタ、液晶表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599668B2 (en) * 2001-08-03 2003-07-29 Eastman Kodak Company Process for forming color filter array
US7615800B2 (en) * 2005-09-14 2009-11-10 Eastman Kodak Company Quantum dot light emitting layer
KR20070094679A (ko) * 2006-03-18 2007-09-21 삼성전자주식회사 컬러필터 기판
US8947619B2 (en) * 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
TWI345671B (en) * 2007-08-10 2011-07-21 Au Optronics Corp Thin film transistor, pixel structure and liquid crystal display panel
US8865477B2 (en) * 2008-04-22 2014-10-21 Drexel University Water soluble nanocrystalline quantum dots capable of near infrared emissions
US8264637B2 (en) * 2008-10-10 2012-09-11 Samsung Electronics Co., Ltd. Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter
KR20100041122A (ko) * 2008-10-13 2010-04-22 삼성전자주식회사 액정 표시 장치
TWI398700B (zh) * 2009-12-30 2013-06-11 Au Optronics Corp 使用量子點螢光粉之顯示裝置及其製造方法
EP2367203A1 (en) * 2010-02-26 2011-09-21 Samsung LED Co., Ltd. Semiconductor light emitting device having multi-cell array and method for manufacturing the same
KR101636052B1 (ko) * 2010-04-23 2016-07-04 삼성전자주식회사 컬러 필터 및 이를 채용한 디스플레이 장치
US20120050632A1 (en) * 2010-08-31 2012-03-01 Chi Lin Technology Co., Ltd. Display apparatus having quantum dot layer
CN102722056A (zh) * 2011-03-29 2012-10-10 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法和液晶显示面板
CN102290435B (zh) * 2011-09-14 2013-11-06 青岛理工大学 一种大面积量子点及其阵列制造方法
KR101860935B1 (ko) * 2012-03-15 2018-05-25 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN102944943B (zh) * 2012-11-09 2016-03-16 京东方科技集团股份有限公司 量子点彩色滤光片、液晶面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114491A1 (en) * 2002-09-19 2004-06-17 Demetri Psaltis High density optical data storage
CN1523436A (zh) * 2003-08-08 2004-08-25 友达光电股份有限公司 彩色滤光片的制造方法以及半透射式液晶显示装置
CN1971360A (zh) * 2005-11-23 2007-05-30 群康科技(深圳)有限公司 液晶显示面板
CN101226946A (zh) * 2008-02-18 2008-07-23 友达光电股份有限公司 主动阵列基板、液晶显示面板及其制作方法
JP2009251129A (ja) * 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association 液晶表示装置用カラーフィルタ、液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170261849A1 (en) * 2015-11-16 2017-09-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing color filter substrate
CN105353555A (zh) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
WO2017096710A1 (zh) * 2015-12-08 2017-06-15 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法

Also Published As

Publication number Publication date
US20150219965A1 (en) 2015-08-06
CN103226259B (zh) 2015-07-01
CN103226259A (zh) 2013-07-31
US9703141B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2014166152A1 (zh) 液晶显示面板、显示装置及液晶显示面板的制造方法
US11018158B2 (en) Display apparatus
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
KR102510603B1 (ko) 전자 엘리먼트 및 디스플레이
WO2017092131A1 (zh) 彩膜基板的制作方法及液晶显示装置
WO2016026212A1 (zh) Oled像素单元及其制备方法、显示面板和显示装置
WO2016045271A1 (zh) 显示基板及其制备方法、显示装置
WO2017092091A1 (zh) 量子点彩膜基板的制作方法
JP2024037888A (ja) 表示装置
Wu et al. Phosphor-free nanopyramid white light-emitting diodes grown on {101¯ 1} planes using nanospherical-lens photolithography
Wang et al. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire
Li et al. Full-color micro-display by heterogeneous integration of InGaN blue/green dual-wavelength and AlGaInP red LEDs
WO2019001564A1 (zh) Led制造方法及led、显示屏和电子设备
KR101761638B1 (ko) 질화물 반도체 발광소자
CN112970125A (zh) 微型led装置及其制造方法
KR20200040850A (ko) 나노구조 기반 디스플레이 디바이스들
Jang Environmentally friendly quantum dots for display applications
WO2020136846A1 (ja) マイクロledデバイスおよびその製造方法
CN110571312A (zh) 具纳米环的微发光二极管量子点基板结构以及制作方法
Bi et al. Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
CN110837193B (zh) 基于纳米结构的显示设备
Fu et al. Monolithic InGaN Multicolor Light‐Emitting Devices
CN114520278A (zh) 一种掺杂量子点的图形化衬底、制备方法及led外延片
Wang et al. Design of photonic crystals for light‐emitting diodes
Weng et al. Design and fabrication of patterned high performance quantum-dot color conversion films for μLED full color display applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14347021

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881844

Country of ref document: EP

Kind code of ref document: A1