WO2014163175A1 - Dehydrator - Google Patents

Dehydrator Download PDF

Info

Publication number
WO2014163175A1
WO2014163175A1 PCT/JP2014/059927 JP2014059927W WO2014163175A1 WO 2014163175 A1 WO2014163175 A1 WO 2014163175A1 JP 2014059927 W JP2014059927 W JP 2014059927W WO 2014163175 A1 WO2014163175 A1 WO 2014163175A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
heater
solid film
dehydration
nozzle
Prior art date
Application number
PCT/JP2014/059927
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 藤田
良夫 近藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015510150A priority Critical patent/JP6072900B2/en
Publication of WO2014163175A1 publication Critical patent/WO2014163175A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/14Rollers, drums, cylinders; Arrangement of drives, supports, bearings, cleaning
    • F26B13/145Rollers, drums, cylinders; Arrangement of drives, supports, bearings, cleaning on the non-perforated outside surface of which the material is being dried by convection or radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements

Definitions

  • the present invention relates to a dehydration apparatus.
  • Patent Document 1 describes that heat treatment of a PET film is performed using hot air and a far infrared heater in combination.
  • the solid film after dehydration is used for a liquid crystal display, an organic EL, or the like by forming a transparent conductive film on the surface by sputtering or the like to form a transparent conductive film.
  • the moisture in the solid film is large, the transparent conductive film on the surface may be adversely affected. Therefore, it has been desired to further reduce the water content inside the solid film.
  • the present invention has been made to solve such problems, and has as its main purpose to further reduce the water content inside the solid film.
  • the dehydrator of the present invention is A dehydrating apparatus for dehydrating a solid film that transmits at least a part of near infrared rays and has an internal water content of more than 0% by mass and not more than 1% by mass, A dehydration chamber for dehydrating the solid film; An infrared heater that is disposed in the dehydration chamber and has a heating element that emits electromagnetic waves including infrared rays, and a tube that absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m and covers the heating element; It is equipped with.
  • This dehydrating apparatus of the present invention radiates infrared rays to the solid film whose internal moisture content before dehydration is more than 0 mass% and 1 mass% or less by an infrared heater. Since this infrared heater has a heating element that emits electromagnetic waves including infrared rays and a tube that absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m and covers the heating element, infrared rays having a wavelength of 3.5 ⁇ m or less (near infrared rays) ). Infrared light having this wavelength can selectively give energy to water molecules and can efficiently dehydrate the solid film.
  • the near infrared rays from an infrared heater act on the water
  • the solid film whose internal moisture content is more than 0 mass% and 1 mass% or less can be further dehydrated, and the moisture content inside the solid film can be further reduced.
  • the solid film may be dehydrated to a water content of 100 ppm or less in the dehydration chamber, or may be dehydrated to 10 ppm or less.
  • the solid film may be dense.
  • the solid film may be a PET film.
  • the PET film has a relatively low glass transition point of, for example, about 70 ° C., but is hardly heated by near infrared rays. Therefore, it is easy to keep the PET film during dehydration below the glass transition point, and the present invention is highly meaningful.
  • the dehydrating apparatus includes a conveying unit that zigzags the solid film in the dehydrating chamber, and a plurality of the infrared heaters are arranged so as to form a plurality of rows. Are arranged side by side in the zigzag overlapping direction so that one or more of the plurality of columns are arranged with respect to an infrared heater in which at least one of the infrared heaters constituting the row constitutes an adjacent row. They may be arranged so as to be shifted in a direction perpendicular to the overlapping direction.
  • a solid film is transported in a zigzag, and there is an infrared heater arranged in a direction perpendicular to the zigzag stacking direction with respect to the infrared heaters constituting the adjacent rows. It is easy to irradiate even the solid film which penetrates through the point. Thereby, the infrared rays from one infrared heater can be radiated to the solid film more efficiently, and the dehydration can be performed more efficiently.
  • it is preferable that one or more rows of the plurality of rows are arranged such that all infrared heaters constituting the row are shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row. .
  • any of the infrared heaters constituting the row are arranged so as to be shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row, It is more preferable that any of the infrared heaters constituting the row is shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row.
  • “transporting the solid film in a zigzag” may be transporting the solid film while being folded back in the thickness direction (transporting in a zigzag so that the surface of the solid film faces).
  • the dehydrating apparatus includes a conveying unit that zigzags the solid film in the dehydrating chamber, and a plurality of the infrared heaters are arranged so as to form a plurality of rows.
  • the plurality of rows have outer rows arranged on one or both of the outer sides of the zigzag portion of the solid film in the overlapping direction.
  • One or more of the configured infrared heaters may include a reflective layer that reflects at least a part of the near-infrared rays of the electromagnetic waves on the side opposite to the zigzag portion of the solid film as viewed from the heating element.
  • column can be reflected by a reflection layer, and dehydration of a solid film can be performed more efficiently.
  • the reflective layer may be formed on the outer surface of the tube of the infrared heater constituting the outer row, or may be formed on the inner surface. Further, the reflective layer may be configured independently of the tube.
  • the outer row is arranged both outside the zigzag portion of the solid film in the overlapping direction, and the infrared heater constituting the outer row is a zigzag portion of the solid film as viewed from the heating element.
  • a reflective layer that reflects at least a part of the near-infrared ray of the electromagnetic wave may be provided on the opposite side of the electromagnetic wave. In this way, the solid film can be dehydrated more efficiently by the reflective layers on both sides of the zigzag portion.
  • the dehydrating apparatus may include a conveying unit that conveys the solid film in the dehydrating chamber, and the infrared heater may be arranged so that the downstream side in the conveying direction of the conveying unit tends to be dense.
  • the dewatering function can be improved efficiently by densely arranging the infrared heaters on the downstream side to increase the near-infrared radiation intensity.
  • the rows on the downstream side in the transport direction may have a tendency that the infrared heaters are densely arranged.
  • the downstream row may have a large number of infrared heaters.
  • the dehydrating apparatus may include a conveying unit that conveys the solid film in the dehydrating chamber, and the infrared heater may be arranged so that the upstream side in the conveying direction of the conveying unit tends to be dense.
  • the upstream side in the transport direction that is, at the beginning of the dehydration process in the dehydration chamber, moisture may adhere to the surface of the solid film, but by placing an infrared heater so that the upstream side in the transport direction tends to be dense
  • moisture can be quickly evaporated at the beginning of dehydration.
  • the rows on the upstream side in the transport direction may be arranged so that the infrared heaters are densely arranged.
  • the upstream row may have a large number of infrared heaters.
  • the infrared heater may be arranged such that the upstream side and the downstream side in the transport direction tend to be denser than the center in the transport direction.
  • the solid film is disposed in one or both of the zigzag overlapping direction of the zigzag portion of the solid film in a zigzag overlapping direction in the dehydration chamber,
  • a reflecting plate that reflects at least a part of near infrared rays, and the infrared heater may be disposed between the reflecting plate and a zigzag portion of the solid film. If it carries out like this, the near infrared rays radiated
  • the dehydrating apparatus of the present invention may include a blowing means capable of blowing a fluid in the dehydrating chamber.
  • a blowing means capable of blowing a fluid in the dehydrating chamber.
  • the infrared heater In the dehydrating apparatus of the present invention having a blowing means, the infrared heater, one or more nozzles as the blowing means capable of blowing fluid to the solid film, and a nozzle-equipped heater are provided. Also good.
  • the heater with a nozzle includes the nozzle and an infrared transmission exposed surface that is exposed to the outside and transmits at least a part of the near infrared ray of the electromagnetic wave to irradiate the solid film.
  • overheating of the infrared rays transmission exposure surface which is a surface exposed outside can be suppressed more by circulation of a refrigerant.
  • the overheating of the atmosphere in the solid film or the dehydration chamber can be further suppressed, or the distance between the heater with the nozzle and the solid film can be reduced to improve the dehydration efficiency.
  • the apparatus includes a conveying unit that zigzags the solid film in the dehydration chamber, and the heater with the nozzle has one infrared heater, A plurality of nozzles may be provided so that the fluid can be blown to each of the solid films sandwiched between the solid films of the zigzag portion.
  • near infrared irradiation and ventilation can be performed with respect to the solid film of the both sides which pinch
  • Dehydration can be performed with a smaller number of infrared heaters than when a heater is provided.
  • the above-described heater with nozzle has the outer peripheral portion
  • a plurality of the outer peripheral portions can irradiate near infrared rays from the infrared heater to each of the solid films sandwiching itself.
  • the infrared transmission exposed surface may be provided.
  • the dehydration chamber may have an atmosphere other than vacuum.
  • the dehydration apparatus of the present invention can further reduce the moisture content inside the solid film even in an atmosphere other than vacuum, and performs dehydration with a simple apparatus configuration compared to a case where the dehydration chamber is in a vacuum atmosphere. Can do.
  • the dehydration chamber may have an atmosphere with a dew point of ⁇ 60 ° C. or less. By doing so, it becomes easy to dehydrate the moisture content inside the solid film to a lower value.
  • the dehydration chamber may be an air atmosphere having a dew point of ⁇ 60 ° C. or lower.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a longitudinal cross-sectional view of the dehydration apparatus 110 of 2nd Embodiment. It is an expanded sectional view of heater 30a with a nozzle.
  • FIG. 5 is a BB view of the nozzle-equipped heater 30a of FIG. 4 viewed from the BB plane. It is an expanded sectional view of heater 30d with a nozzle.
  • FIG. 1 is a longitudinal sectional view of a dehydrating apparatus 10 according to an embodiment of the present invention.
  • the dehydrator 10 performs dehydration of the solid film 80 using infrared rays and cold air, and includes a dehydration chamber 14, an exhaust device 25, a plurality of infrared heaters 40, a transport roller 87, and a controller 70. ing. Further, the dehydrating apparatus 10 includes a roll 84 provided in front of the dehydrating chamber 14 (left side in FIG. 1) and a roll 86 provided in the rear of the dehydrating chamber 14 (right side in FIG. 1).
  • the dehydrating apparatus 10 is configured as a roll-to-roll type dehydrating apparatus that continuously dehydrates the solid film 80 to be dehydrated by rolls 84 and 86 and a plurality of conveying rollers 87 in the conveying direction.
  • the transport direction is the front-rear direction (left-right direction in FIG. 1), and the solid film 80 is transported from the front to the rear.
  • the dehydration chamber 14 is for dehydrating the solid film 80.
  • the dehydration chamber 14 is a heat insulating structure formed in a substantially rectangular parallelepiped shape, and has openings 17 and 18 on the front end face 15 and the rear end face 16, respectively.
  • the dehydration chamber 14 has a length from the front end face 15 to the rear end face 16 of, for example, 2 to 10 m.
  • a punching plate 19 In the dehydration chamber 14, a punching plate 19, a plurality of blower nozzles 20, reflection plates 22 a and 22 b, a plurality of infrared heaters 40, and a plurality of transport rollers 87 are disposed.
  • a first transport roller 87a to a seventh transport roller 87g as a plurality of transport rollers 87 are arranged.
  • the first, third, fifth, and seventh transport rollers 87a, 87c, 87e, and 87g are disposed below the dehydration chamber 14, and the second, fourth, and sixth transport rollers 87b, 87d, and 87f are dewatered.
  • the plurality of transport rollers 87 support the solid film 80 in a state where it floats from the transport rollers 87 by allowing a fluid (for example, room temperature or air of 50 ° C. or less) to flow out from a large number of holes in the cylindrical main body.
  • a fluid for example, room temperature or air of 50 ° C. or less
  • the solid film 80 is conveyed substantially horizontally from the roll 84 through the opening 17 to the first conveying roller 87a, and the first conveying roller 87a to the seventh conveying roller are transferred to the upper conveying roller 87 and the lower conveying roller 87. It is passed in the order of 87 g, passes through the opening 18 from the seventh transport roller 87 g, and is transported substantially horizontally to the roll 86. Since the first transport roller 87a to the seventh transport roller 87g are alternately arranged up and down, the solid film 80 is transported so as to have a zigzag portion 81 that reciprocates up and down in the dehydration chamber. In addition, you may comprise the conveyance roller 87 as a contact-type roller.
  • the blower nozzle 20 can blow fluid into the dehydration chamber 14.
  • the blower nozzles 20 are arranged one by one so as to sandwich each of the solid films 80 stretched above and below the zigzag portion 81 from the front-rear direction, and a total of twelve nozzles are arranged.
  • the blower nozzle 20 is disposed above the zigzag portion 81 and slightly below the second, fourth, and sixth transport rollers 87b, 87d, and 87f.
  • An air supply fan and a pipe (not shown) are connected to the blower nozzle 20, and the fluid flowing from the air supply fan through the pipe is blown into the dehydration chamber 14.
  • the fluid is cold air that can cool the solid film 80, and is, for example, room temperature or air of 50 ° C. or lower.
  • the blow nozzle 20 blows air (dry air) having a dew point of ⁇ 60 ° C. or less.
  • Each of the blow nozzles 20 has an opening formed in the direction of the exhaust port 28 of the exhaust device 25 (downward in FIG. 1), and blows fluid from the upper side of the zigzag portion 81 of the solid film 80 downward.
  • the air blown from the blower nozzle 20 flows downward along the surface of the solid film 80 of the zigzag portion 81, passes through the punching plate 19 attached below the dehydration chamber 14, and reaches the bottom of the dehydration chamber 14. To flow.
  • blowing nozzle 20 is attached so that the longitudinal direction is parallel to the left-right direction (the direction perpendicular to the paper surface of FIG. 1), and the opening of the blowing nozzle 20 is parallel to the left-right direction. Open in a slit shape.
  • the punching plate 19 is a plate-like member having a large number of holes.
  • the exhaust device 25 is a device that discharges the atmospheric gas in the dehydration chamber 14.
  • the exhaust device 25 includes an exhaust fan 26, a pipe structure 27, and a plurality of exhaust ports 28.
  • a plurality (five in this embodiment) of exhaust ports 28 are provided at the bottom of the dehydration chamber 14 and open toward the direction of the solid film 80 and the transport roller 87 (upward direction in FIG. 1).
  • the exhaust port 28 is attached to the pipe structure 27, and sucks in the atmospheric gas in the dehydration chamber 14 (mainly, the air blown from the blower nozzle 20 after flowing along the surface of the sheet 50) to suck the pipe structure 27. Lead in.
  • the pipe structure 27 serves as a flow path for the atmospheric gas from the exhaust port 28 to the exhaust fan 26.
  • the pipe structure 27 forms a passage from the exhaust port 28 through the bottom of the dehydration chamber 14 to the exhaust fan 26 outside the dehydration chamber 14.
  • the exhaust fan 26 is attached to the pipe structure 27 and exhausts the atmospheric gas inside the pipe structure 27.
  • the plurality of infrared heaters 40 irradiate electromagnetic waves including near infrared rays (infrared rays having a wavelength of 0.7 to 3.5 ⁇ m) to dehydrate the solid film 80.
  • the infrared heaters 40 are arranged to form a plurality of rows (seven rows of first to seventh heater rows 29a to 29g in this embodiment).
  • the first to seventh heater rows 29a to 29f are also collectively referred to as a heater row 29.
  • Each row of the heater rows 29 is composed of three infrared heaters 40 that are equally arranged in the vertical direction (a total of 21 infrared heaters 40).
  • the first, third, fifth, and seventh heater rows 29a, 29c, 29e, and 29g are disposed immediately above the first, third, fifth, and seventh transport rollers 87a, 87c, 87e, and 87g, respectively.
  • the second, fourth, and sixth heater rows 29b, 29d, and 29f are disposed directly below the second, fourth, and sixth transport rollers 87b, 87d, and 87f, respectively.
  • the heater row 29 is arranged alternately with the solid film 80 of the zigzag portion 81. That is, each row of the heater rows 29 is arranged side by side in the zigzag stacking direction (front-rear direction in FIG. 1) so that the solid film 80 of the zigzag portion 81 is sandwiched between the adjacent rows.
  • the blower nozzle 20 is disposed between the heater row 29 and the solid film 80 in the front-rear direction, and fluid flows from the blower nozzle 20 into the space between each row of the heater row 29 and the solid film 80 of the zigzag portion 81. Is to be blown.
  • each row of the heater rows 29 has a direction perpendicular to the overlapping direction with respect to the infrared heaters 40 constituting the adjacent rows (up and down direction in FIG. 1). ).
  • the infrared heaters 40 in each row of the heater rows 29 are alternately arranged above and below the adjacent infrared heaters 40, and are arranged in a staggered manner in a side view.
  • the first infrared heater 40 from the top of the second heater row 29b is arranged in the middle in the vertical direction of the first and second infrared heaters 40 from the top of the first heater row 29a. As shown in FIG.
  • the first infrared heater 40 from the top of the second heater array 29 b is separated from the first and second infrared heaters 40 from the top of the first heater array 29 a by a distance d ( ⁇ 0) apart.
  • the other infrared heaters 40 are also arranged away from each other in the vertical direction by a distance d with respect to the infrared heaters 40 closest to the vertical direction of adjacent rows.
  • the first, third, fifth, and seventh heater rows 29a, 29c, 29e, and 29g have the same arrangement in the vertical direction of the infrared heater 40.
  • the arrangement of the infrared heaters 40 in the vertical direction is the same.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the infrared heater 40 includes a heater body 43 formed so that an inner tube 42 surrounds a tungsten filament 41 that is a heating element, and an outside of the heater body 43. And an outer tube 44 formed so as to surround the inner tube 42, and caps 50 are attached to both ends thereof.
  • the infrared heater 40 includes a temperature sensor 59 that detects the surface temperature of the outer tube 44 (see FIG. 2).
  • the temperature sensor 59 is disposed below the outer tube 44 as shown in FIG. 2, but may be disposed on the outer tube 44 closest to the solid film 80.
  • the inner tube 42 and the outer tube 44 are arranged concentrically, and the filament 41 is positioned at the center of the circle.
  • the heater body 43 is supported at both ends by holders 55 arranged inside the cap 50.
  • the heater body 43 is supplied with electric power from the power supply source 60 (see FIG. 2) disposed outside the dehydration chamber 14 to the filament 41, and the filament 41 is heated to a predetermined temperature (eg, 1200 to 1700 ° C.). And radiates electromagnetic waves including infrared rays.
  • the electromagnetic wave radiated by the filament 41 is not particularly limited.
  • the peak wavelength is in the infrared region (the wavelength is 0.7 ⁇ m to 8 ⁇ m) or the near infrared region (the wavelength is 0.7 ⁇ m to 3.5 ⁇ m).
  • an electromagnetic wave having a peak wavelength of about 3 ⁇ m is emitted.
  • the inner tube 42 is a tube having a circular cross section surrounding the filament 41, and is formed of an infrared transmitting material that absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m and transmits at least near infrared rays among electromagnetic waves radiated from the filament 41. Yes.
  • examples of such an infrared transmitting material used for the inner tube 42 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, transparent alumina ceramics, and near infrared rays.
  • quartz glass that can transmit light can be used.
  • the inner tube 42 is formed of quartz glass that absorbs infrared light having a wavelength exceeding 3.5 ⁇ m as a part of the electromagnetic wave and transmits infrared light having a wavelength of 3.5 ⁇ m or less as a part of the electromagnetic wave. It was supposed to be. Further, the inside of the inner tube 42 is a vacuum atmosphere or a halogen atmosphere.
  • the electric wiring 41 a connected to the filament 41 is drawn out to the outside airtightly via a wiring drawing portion 57 provided in the cap 50, and is connected to the power supply source 60.
  • the cap 50 is formed by integrally molding a disc-shaped lid 54 and a cylindrical portion 52 erected on the lid 54. The left and right ends of the outer tube 44 are fixed to the cylindrical portion 52.
  • the outer tube 44 is a tube formed of the above-described infrared transmitting material. In the present embodiment, like the inner tube 42, it is formed of quartz glass that absorbs infrared light having a wavelength exceeding 3.5 ⁇ m and transmits infrared light having a wavelength of 3.5 ⁇ m or less.
  • the outer tube 44 can be cooled to, for example, 200 ° C. or less by the refrigerant flowing through the refrigerant flow path 49.
  • the refrigerant channel 49 is a space between the inner tube 42 and the outer tube 44, and the refrigerant can flow through the fluid inlet / outlet 58 provided in the cap 50.
  • the refrigerant is a fluid such as air.
  • the fluid inlet / outlet port 58 is connected to a refrigerant supply source 65 disposed outside the dehydration chamber 14.
  • the refrigerant supplied from the refrigerant supply source 65 flows into the refrigerant channel 49 from one fluid inlet / outlet 58, flows through the refrigerant channel 49, and flows out from the other fluid inlet / outlet 58.
  • the refrigerant flowing through the refrigerant flow path 49 plays a role of directly reducing the temperature of the outer tube 44 that is the outer surface of the infrared heater 40.
  • the reflection plates 22a and 22b are plate-like members capable of reflecting at least a part of near infrared rays among electromagnetic waves radiated from the infrared heater 40.
  • the reflecting plates 22a and 22b are arranged on both outer sides (both outer sides) in the zigzag overlapping direction of the zigzag portion 81 of the solid film 80, and are arranged so that the plate surfaces face each other.
  • the reflection plate 22 a is disposed in front of the zigzag portion 81 and in front of the first heater row 29 a located in the foremost position in the heater row 29.
  • the reflection plate 22 b is disposed behind the zigzag portion 81 and behind the seventh heater row 29 g located most rearward among the heater rows 29.
  • the upper ends of the reflection plates 22a and 22b are located above the infrared heater 40 located at the top of the heater row 29 (for example, the uppermost infrared heater 40 of the first heater row 29a), and the reflection plate 22a. , 22b is located below the lowermost infrared heater 40 in the heater row 29 (for example, the lowermost infrared heater 40 in the second heater row 29b).
  • the material of the reflecting plates 22a and 22b include metals such as SUS304 and aluminum.
  • the reflecting plates 22a and 22b are obtained by coating the surface of the plate-like member (the surface on the zigzag portion 81 side) with an infrared reflecting material that reflects at least near infrared rays among electromagnetic waves radiated from the infrared heater 40. Also good.
  • the infrared reflecting material include gold, platinum, and aluminum.
  • the coating may be performed using a film forming method such as sputtering, CVD, or thermal spraying.
  • the solid film 80 is a dense film that transmits at least part of near infrared rays. Further, the solid film 80 has an internal water content of more than 0% by mass and 1% by mass or less before dehydration such as before being carried into the dehydration chamber.
  • the solid film 80 is used for a liquid crystal display, an organic EL, or the like by forming a transparent conductive film on the surface by sputtering or the like after dehydration in the dehydration chamber 14.
  • the solid film 80 is used for such a transparent conductive film, and is, for example, a resin film such as a PET film. In the present embodiment, the solid film 80 is a PET film.
  • the solid film 80 is not particularly limited, but has a thickness of 10 to 100 ⁇ m and a width of 200 to 1000 mm, for example.
  • the controller 70 is configured as a microprocessor centered on a CPU.
  • the controller 70 outputs a control signal to an air supply fan and an exhaust fan 26 (not shown) of the air blowing nozzle 20 to control the temperature and air volume of the fluid blown from the air blowing nozzle 20 and exhaust the atmosphere of the dehydration chamber 14.
  • the amount of exhaust from the port 28 is controlled.
  • the controller 70 inputs the temperature of the outer pipe 44 detected by the temperature sensor 59 that is a thermocouple, and the on-off valve 67 and the flow rate provided in the middle of the pipe connecting the refrigerant supply source 65 and the fluid inlet / outlet 58.
  • a control signal is output to the adjustment valve 68 to individually control the flow rate of the refrigerant flowing through the refrigerant flow path 49 of the infrared heater 40 (see FIG. 2). Further, the controller 70 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 60 to the filament 41 to the power supply source 60 to individually control the filament temperature of the infrared heater 40 ( (See FIG. 2). Further, the controller 70 adjusts the passage time of the solid film 80 in the dehydration chamber 14 and the tension applied to the solid film 80 by controlling the rotation speed of the rolls 84 and 86 and the flow rate of the fluid flowing out from the transport roller 87. be able to.
  • a solid film 80 having an internal moisture content of more than 0 mass% and 1 mass% or less is prepared and wound around a roll 84.
  • the solid film 80 having a moisture content exceeding 0% by mass and 1% by mass or less is a film having a moisture content exceeding 1% by mass, for example, by a biaxial stretching method (in this embodiment, a PET film).
  • the film can be prepared and dried by a known drying apparatus such as a drying furnace that performs hot-air drying.
  • the solid film 80 having an internal moisture content of 0.1% by mass or more and 1% by mass or less is prepared using such a drying apparatus.
  • the interior of the dehydration chamber 14 is set to a predetermined atmosphere during dehydration.
  • the inside of the dehydration chamber 14 is an air atmosphere having a dew point of ⁇ 60 ° C. or less.
  • the atmosphere in the dehydration chamber 14 may be adjusted by, for example, blowing air having a dew point of ⁇ 60 ° C. or less from the blow nozzle 20, or supplying the atmosphere during dehydration by another air supply device (not shown). May be performed.
  • the controller 70 operates the rolls 84 and 86 and the transport roller 87 to start transporting the solid film 80.
  • the solid film 80 is unwound from the roll 84 disposed in front of the dehydrating apparatus 10 in FIG. 1 and carried into the dehydrating chamber 14 through the opening 17 of the dehydrating chamber 14. Then, the solid film 80 is conveyed zigzag by the plurality of conveying rollers 87 so as to have the zigzag portion 81. Thereafter, the solid film 80 is unloaded from the dehydration chamber 14 through the opening 18 of the dehydration chamber 14, and is taken up by a roll 86 installed behind the dehydration chamber 14.
  • the controller 70 controls the intake fan, the opening / closing valve 67, the flow rate adjustment valve 68, the power supply source 60, and the exhaust fan 26 of the blower nozzle 20 which are not shown.
  • the infrared heater 40 in each row of the heater row 29 approaches the solid film 80 in the zigzag portion 81. Irradiation with infrared rays dehydrates the water inside the solid film 80.
  • the filament 41 is covered with the inner tube 42 and the outer tube 44 that absorb infrared rays having a wavelength exceeding 3.5 ⁇ m and transmit infrared rays having a wavelength of 3.5 ⁇ m or less as described above. Therefore, electromagnetic waves including infrared rays (near infrared rays) having a wavelength of 3.5 ⁇ m or less are radiated from the infrared heater 40 to the solid film 80. That is, due to the presence of the inner tube 42 and the outer tube 44, an electromagnetic wave in which the proportion of infrared rays having a wavelength of 3.5 ⁇ m or less among the electromagnetic waves emitted from the filament 41 is increased is emitted to the solid film 80.
  • the near infrared rays emitted from the infrared heater 40 in the direction opposite to the zigzag portion 81 are reflected to the zigzag portion 81 side by the reflecting plates 22a and 22b.
  • near infrared rays emitted forward (leftward in FIG. 1) from the first heater row 29a are reflected backward (rightward in FIG. 1) by the reflector 22a.
  • Near infrared rays emitted backward from the seventh heater row 29g are reflected forward by the reflecting plate 22b.
  • the moisture that has come out of the solid film 80 due to dehydration is removed by blowing air from the blowing nozzle 20.
  • the air blown from the blower nozzle 20 containing moisture passes through the punching plate 19 and is exhausted by the exhaust device 25.
  • the air blown from the blower nozzle 20 is cold air and also cools the solid film 80.
  • the controller 70 controls the flow rate of the blast from the blast nozzle 20 to a predetermined value, and a predetermined value (for example, 60) below the glass transition point (about 70 ° C.) of the solid film 80 (PET).
  • the flow rate of the air blown from the blower nozzle 20 is controlled so that the air flow rate becomes 50 ° C, 50 ° C, 45 ° C, or the like.
  • the flow rate is adjusted so that the temperature of the solid film 80 is kept below the glass transition point based on the temperature detected by the temperature sensor provided in the dehydration chamber 14 such as near the solid film 80. Also good.
  • the moisture content of the solid film 80 after being dehydrated is from 0.1% by mass to 1% by mass before dehydration. It will be in a state where moisture content is lower.
  • the output of the infrared heater 40 by the controller 70 and the blow nozzle so that the water content of the solid film 80 after dehydration is less than a predetermined target value (for example, 100 ppm) less than a predetermined 0.1 mass%.
  • the amount of air blown from 20, the conveyance speed of the solid film 80, and the like were determined in advance by experiments.
  • the solid film 80 after being dehydrated by the dehydrating apparatus 10 has a transparent conductive film formed on the surface by sputtering or the like to become a transparent conductive film, and is used for, for example, a liquid crystal display or an organic EL.
  • an infrared ray having a wavelength of 3.5 ⁇ m or less by the infrared heater 40 is applied to a solid film having an internal water content before dehydration exceeding 0% by mass and 1% by mass or less. Radiates electromagnetic waves including (near infrared). The infrared rays having this wavelength can selectively give energy to water molecules, and the solid film 80 can be efficiently dehydrated. In addition, since the solid film 80 transmits at least part of the near infrared rays, the near infrared rays from the infrared heater 40 easily act on the moisture in the solid film 80 directly.
  • the moisture content is further reduced, for example, by dehydrating the solid film 80 having an internal moisture content of more than 0% by mass and not more than 1% by mass so that the moisture content in the solid film 40 is 100 ppm or less. be able to.
  • the dehydration apparatus 10 of the present embodiment can selectively dehydrate the water molecules, and therefore the significance of applying the present invention. Is expensive.
  • the solid film 80 is a PET film and has a relatively low glass transition point, for example, about 70 ° C., but since the PET film is hardly heated in the near infrared, it is easy to keep the solid film 80 during dehydration below the glass transition point, The significance of applying the present invention is high.
  • a transport roller 87 for transporting the solid film 80 in a zigzag manner in the dehydration chamber 14 is provided, and a plurality of infrared heaters 40 are arranged so as to form a plurality of heater rows 29, and the plurality of heater rows 29 sandwich the solid film 80.
  • a plurality of infrared heaters 40 are arranged so as to form a plurality of heater rows 29, and the plurality of heater rows 29 sandwich the solid film 80.
  • the heater 40 is arranged so as to be shifted in the direction perpendicular to the stacking direction.
  • the infrared rays from the infrared heaters 40 that are displaced are transmitted through the solid film 80 and are easily irradiated to the solid film beyond the infrared rays.
  • the infrared rays from the infrared heater 40 of the first heater row 29a are not only the zigzag portion 81, but the zigzag portion 81 as well as the solid film 80 spanned between the first conveyance roller 87a and the second conveyance roller 87b. Of these, the solid film 80 stretched between the second transport roller 87b and the third transport roller 87c is easily irradiated.
  • the infrared rays from one infrared heater 40 can be radiated to the solid film 80 more efficiently, and the dehydration can be performed more efficiently.
  • the infrared heater 40 in a direction perpendicular to the overlapping direction with respect to the infrared heater 40 constituting the adjacent row, the region that absorbs near infrared rays in the solid film 80 is easily dispersed. The variation in the temperature distribution of the solid film 80 can be further suppressed.
  • any of the infrared heaters 40 constituting the row is shifted in a direction perpendicular to the stacking direction with respect to the infrared heater 40 constituting the adjacent row. Therefore, these effects are higher.
  • reflectors 22a and 22b that reflect at least a part of near infrared rays among the electromagnetic waves from the infrared heater 40 are provided. Is disposed between the reflecting plates 22 a and 22 b and the zigzag portion 81 of the solid film 80. For this reason, the near infrared rays radiated from the infrared heater 40 in the direction opposite to the zigzag portion 81 of the solid film 80 can be reflected by the reflectors 22a and 22b, and the solid film 80 can be dehydrated more efficiently. .
  • a blower nozzle 20 capable of blowing fluid in the dehydration chamber 14 is provided.
  • the solid film 80 can be dehydrated by the infrared heater 40, and the moisture removed from the solid film 80 by dehydration can be removed by blowing air from the blower nozzle 20, whereby the dehydration can be performed more efficiently.
  • the solid film 80 is cooled by blowing a fluid from the blowing nozzle 20, overheating of the solid film 80 can be suppressed by blowing while the solid film 80 is dehydrated by the infrared heater 40.
  • the interior of the dehydration chamber 14 is an atmosphere other than vacuum during dehydration.
  • the dehydration apparatus 10 of this embodiment can further reduce the moisture content inside the solid film 80 even in an atmosphere other than vacuum by irradiating near infrared rays, and the interior of the dehydration chamber 14 is a vacuum atmosphere. Compared to the above, dehydration can be performed with a simple apparatus configuration. Further, since the inside of the dehydration chamber 14 has an atmosphere having a dew point of ⁇ 60 ° C. or lower during dehydration, the water content in the solid film 80 can be easily dehydrated to a lower value.
  • FIG. 3 is a longitudinal sectional view of the dehydrating apparatus 110 of the second embodiment.
  • the dehydrating device 110 does not include the blower nozzle 20 and the reflection plates 22a and 22b, includes a plurality of nozzle-equipped heaters 30 including the infrared heaters 40 in place of the plurality of infrared heaters 40, and includes a plurality of heater rows 29.
  • the configuration is the same as that of the first embodiment except that a plurality of heater rows 129 each including the nozzle-equipped heater 30 are provided. Therefore, among the components of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, description thereof is omitted, and differences from the first embodiment will be described.
  • the heater 30 with a nozzle is capable of irradiating infrared light and blowing air, and is attached so that the longitudinal direction is orthogonal to the transport direction (front-rear direction) of the solid film 80.
  • the nozzle-equipped heater 30 includes two types of nozzle-equipped heaters 30a, 30b, and 30c that can blow air from only one surface, and a nozzle-equipped heater 30d that can blow air from two surfaces.
  • the nozzle-equipped heater 30 is arranged in the dehydration chamber 14 so as to form a plurality of rows (seven rows of first to seventh heater rows 129a to 129g in this embodiment).
  • the first to seventh heater rows 129a to 129g are collectively referred to as a heater row 129.
  • Each row of the heater rows 129 is composed of three nozzle-equipped heaters 30 that are equally arranged in the vertical direction.
  • the first heater row 129a located in the foremost position among the heater rows 29 is composed of three nozzle-equipped heaters 30a arranged in a direction capable of blowing air toward the rear solid film 80.
  • the seventh heater row 129g located on the rearmost side includes three heaters 30b with nozzles arranged in a direction in which air can be blown toward the front solid film 80.
  • the other second to sixth heater rows 129b to 129f are each composed of three nozzle-equipped heaters 30d arranged in a direction capable of blowing air toward the front and rear solid films 80.
  • the arrangement of the heater rows 129 and the arrangement of the heaters 30 with the nozzles constituting each row are the same as the arrangement of the heater rows 29 and the infrared heaters 40 in the first embodiment.
  • the first nozzle-equipped heater 30d from the top of the second heater row 129b has a vertical distance d from the first and second nozzle-equipped heater 30a from the top of the first heater row 129a. They are separated by ( ⁇ 0).
  • the nozzle-equipped heater 30 that constitutes the heater row 129 the nozzle-equipped heater 30 that irradiates and blows infrared rays to portions other than the zigzag portion 81 of the solid film 80 is disposed in the dehydration chamber 14.
  • one nozzle-equipped heater 30c capable of blowing air toward the lower solid film 80 is disposed between the opening 17 and the transport roller 87a, and between the opening 18 and the transport roller 87g. ing.
  • FIG. 4 is an enlarged cross-sectional view of the nozzle-equipped heater 30a.
  • FIG. 5 is a BB view of the nozzle-equipped heater 30a of FIG. 4 as viewed from the BB plane.
  • the nozzle-equipped heater 30b constituting the seventh heater row 129g has a configuration in which the front and rear of the nozzle-equipped heater 30a constituting the first heater row 129a are reversed.
  • the nozzle-equipped heater 30c disposed between the opening 17 and the conveyance roller 87a and between the opening 18 and the conveyance roller 87g is the right of the nozzle-equipped heater 30a constituting the first heater row 129a in FIG. It has a configuration rotated 90 ° around.
  • the nozzle-equipped heater 30 a includes an infrared heater 40 and an outer peripheral portion 31 a that covers the infrared heater 40.
  • the outer peripheral portion 31a includes first to fourth members 32 to 35, a tubular member 36a having an infrared transmission exposed surface 37, a reflective layer 38, nozzles 39a and 39b, and a sealing member 90a. , 90b.
  • the 1st member 32 is a member which comprises the outermost periphery of the heater 30a with a nozzle, and has an opening in back (right side of FIG. 4). From the rear opening of the first member 32, the rear ends of the second and third members 33 and 34 and the infrared transmission exposed surface 37 are exposed.
  • the second member 33 and the third member 34 are bent plate-like members, and are disposed between the first member 32 and the tubular member 36a, respectively, and are tubular between the second member 33 and the third member 34. It arrange
  • the fourth member 35 is a plate-like member that is bent so that the rear side is open. The fourth member 35 covers the front side and the top and bottom of the infrared heater 40 while covering the front side of the tubular member 36a.
  • the fourth member 35 has an upper rear end joined to the front end of the second member 33 and a lower rear side joined to the front end of the third member 34.
  • the fourth member 35, the second member 33, and the third member 34 are joined together by welding, for example.
  • a space 91 surrounded by the inner peripheral surface of the first member 32 and the outer peripheral surfaces of the second to fourth members 33 to 35 is formed.
  • the first member 32 is connected to an unillustrated air supply fan and piping similar to the air blowing nozzle 20 of the first embodiment, and the space 91 is a flow path for air flow from the air supply fan to the nozzles 39a and 39b. Yes.
  • the first member 32 has a side portion at the end in the left-right direction (the left-right direction in FIG. 5), and the left-right direction of the space (spaces 91, 92) inside the first member 32. The end is closed by this side. Further, the end portions of the second to fourth members 33 to 35 in the left-right direction are welded to the side portions.
  • the material of the first to fourth members 32 to 35 is, for example, a metal.
  • the first to fourth members 32 to 35 are preferably formed of a material capable of reflecting at least a part of near infrared rays, such as SUS304 or aluminum, as in the case of the reflectors 22a and 22b of the first embodiment.
  • the nozzle 39 a is formed by the first and second members 32 and 33.
  • the nozzle 39 b is formed by the first and third members 32 and 34. That is, the first and second members 32 and 33 are nozzle forming members that form the nozzles 39a, and the first and third members 32 and 34 are nozzle forming members that form the nozzles 39b.
  • the rear upper end of the first member 32 and the rear end of the second member 33 are separated from each other, so that the longitudinal direction is parallel to the left-right direction (left-right direction in FIG. 5) as shown in FIG.
  • a slit-shaped nozzle 39 a is formed on the infrared transmission exposed surface 37.
  • the rear lower end of the first member 32 and the rear end of the third member 34 are separated from each other.
  • the longitudinal direction is a slit shape parallel to the left-right direction (left-right direction in FIG. 5).
  • Nozzle 39b is formed below the infrared transmissive exposed surface 37.
  • a surface of the rear upper end portion of the first member 32 that faces the rear end portion of the second member 33 and a surface of the rear end portion of the second member 33 that faces the rear upper end portion of the first member 32 are , Both are inclined from the horizontal direction (front-rear direction) so as to approach the infrared transmission exposed surface 37 side (downward) as proceeding backward.
  • the fluid flowing through the space 91 and flowing from the nozzle 39a mainly flows out backward and downward (lower right in FIGS.
  • the surface of the rear lower end portion of the first member 32 that faces the rear end portion of the third member 34, and the surface of the rear end portion of the third member 34 that faces the rear lower end portion of the first member 32 are inclined from the horizontal direction (front-rear direction) so as to approach the infrared transmission exposed surface 37 side (upward) as they progress backward.
  • the fluid flowing through the space 91 and flowing from the nozzle 39b mainly flows out rearward upward (upper right direction in FIGS. 3 and 4) along this inclination.
  • the fluid blown from the nozzle 39a and the nozzle 39b is the same as the fluid blown from the blow nozzle 20 of the first embodiment.
  • the first to third members 32 to 34 that are nozzle forming members are arranged so as not to cover the infrared transmission exposed surface 37.
  • the tubular member 36 a is a tubular member that covers the periphery of the infrared heater 40.
  • the tubular member 36a is a member that is capable of transmitting at least a part of near-infrared rays among electromagnetic waves from the infrared heater 40 and is integrally formed with the above-described infrared transmitting material.
  • the tubular member 36a is made of quartz glass that absorbs infrared light having a wavelength exceeding 3.5 ⁇ m and transmits infrared light having a wavelength of 3.5 ⁇ m or less, like the outer tube 44 and the inner tube 42 of the infrared heater 40. It was assumed that it was formed.
  • the tubular member 36a has an infrared transmission exposed surface 37 on the rear side.
  • the infrared transmission exposed surface 37 is formed in a planar shape, and the plane is a surface parallel to the vertical direction (the vertical direction in FIGS. 3 and 4).
  • the infrared transmissive exposed surface 37 and the rear ends of the first to third members 32 to 34 are located on the same plane.
  • the front side of the tubular member 36a has a cross-sectional shape of a curved shape such as a parabola, an elliptical arc, or an arc. In the present embodiment, it is assumed that it has a parabolic shape.
  • the tubular member 36a has a side portion at the end portion in the left-right direction (left-right direction in FIG. 5), and the end portion in the left-right direction is substantially closed by this side portion in the space inside the tubular member 36a.
  • the cap 50 (FIG. 2) of the infrared heater 40 passes through the side portion of the tubular member 36 a, and this side portion supports the infrared heater 40.
  • the tubular member 36 a is sandwiched between the side portions at both ends of the first member 32, and the tubular member 36 a is held by the side portions of the first member 32.
  • a reflective layer 38 is formed on the front outer surface of the tubular member 36a.
  • the reflection layer 38 is provided on the side opposite to the infrared transmission exposed surface 37 when viewed from the filament 41, and is formed of the above-described infrared reflection material that reflects at least a part of the near infrared ray among the electromagnetic waves radiated from the filament 41.
  • the reflective layer 38 can be formed by depositing an infrared reflective material on the surface of the tubular member 36a using a film deposition method such as coating and drying, sputtering, CVD, or thermal spraying. Since the reflective layer 38 is formed on the front surface of the tubular member 36a, the cross section has a shape along the curved shape of the front side of the tubular member 36a.
  • the infrared heater 40 (filament 41) is arrange
  • the tubular member 36a and the reflective layer 38 are parabolic, the near infrared light reflected by the reflective layer 38 proceeds horizontally backward, and in the solid film 80, the infrared transmissive exposed surface 37 and the front-rear direction. The opposite area is irradiated.
  • the refrigerant flowing through the refrigerant flow path 49 of the infrared heater 40 not only directly lowers the temperature of the outer tube 44, which is the outer surface of the infrared heater 40, but also reduces the temperature of the outer tube 44.
  • the temperature of the infrared transmission exposed surface 37 is indirectly lowered.
  • the space between the tubular member 36a and the outer tube 44 may be a refrigerant flow path, and the temperature of the infrared transmission exposed surface 37 may be lowered directly by circulating the refrigerant through the refrigerant flow path.
  • the sealing members 90a and 90b are members that seal the space 92 surrounded by the second to fourth members 33 to 35.
  • the sealing member 90a is a rod-like member whose longitudinal direction is parallel to the left-right direction, and the rear upper side (upper right side in FIG. 4) of the tubular member 36a having the rear end portion of the second member 33 and the infrared transmission exposed surface 37. A slit-shaped opening between the two is sealed.
  • the sealing member 90b is a rod-like member whose longitudinal direction is parallel to the left-right direction, and the rear lower side of the tubular member 36a having the rear end portion of the third member 34 and the infrared transmission exposed surface 37 (lower right side in FIG. 4). ) Is sealed with a slit-shaped opening.
  • the sealing members 90 a and 90 b prevent the air from the nozzles 39 a and 39 b from entering the space 92.
  • the sealing members 90a and 90b are elastic bodies, such as resin, for example.
  • the sealing members 90a and 90b may be solid members with solid contents, or may be hollow members such as tubes.
  • FIG. 6 is an enlarged cross-sectional view of the nozzle-equipped heater 30d.
  • the nozzle-equipped heater 30 d includes an infrared heater 40 and an outer peripheral portion 31 b that covers the infrared heater 40.
  • the outer peripheral portion 31b includes an upper first member 32a, a lower first member 32b, a front second member 33a, a rear second member 33b, a front third member 34a, and a rear third member 34b. , An upper fourth member 35a and a lower fourth member 35b.
  • the outer peripheral portion 31b includes a tubular member 36b having infrared transmission exposed surfaces 37a and 37b, nozzles 39c to 39f, and sealing members 90c to 90f.
  • the upper first member 32a and the lower first member 32b are members constituting the outermost periphery of the nozzle-equipped heater 30d, and have openings formed in the front and rear (left and right in FIG. 6).
  • the front second member 33a and the front third member 34a are bent plate-shaped members, and are respectively between the upper first member 32a and the tubular member 36b and between the lower first member 32b and the tubular member 36b.
  • the tubular member 36a may be pinched
  • the rear second member 33b and the rear third member 34b are also arranged in the same manner except for the front second member 33a, the front third member 34a, and the front / rear object (left-right symmetry in FIG. 6).
  • the upper fourth member 35 a and the lower fourth member 35 b are plate-like members, and are disposed above and below the tubular member 36 b and the infrared heater 40.
  • the upper fourth member 35a is joined to the front second member 33a and the rear second member 33b.
  • the lower fourth member 35b is joined to the front third member 34a and the rear third member 34b.
  • a space 91a surrounded by the upper first member 32a, the front second member 33a, the rear second member 33b, and the upper fourth member 35a is formed, and the lower first member 32b, the front third member 34a, and the rear A space 91b surrounded by the third side member 34b and the lower fourth member 35b is formed.
  • the upper first member 32a and the lower first member 32b are connected to an unillustrated air supply fan and piping similar to the blower nozzle 20 of the first embodiment, and the spaces 91a and 91b are connected to the nozzles 39c to 39c through the air supply fan. It becomes the flow path of the ventilation to 39f.
  • the nozzle 39c is formed by the front end of the upper first member 32a and the front end of the front second member 33a.
  • the nozzle 39d is formed by the front end of the lower first member 32b and the front end of the front third member 34a.
  • the nozzle 39e is formed by the rear end of the upper first member 32a and the rear end of the rear second member 33b.
  • the nozzle 39f is formed by the rear end of the lower first member 32b and the rear end of the rear third member 34b. That is, the upper first member 32a, the lower first member 32b, the front second member 33a, the rear second member 33b, the front third member 34a, and the rear third member 34b form nozzles 39c to 39f. It is a member.
  • nozzles 39c to 39f are formed as slit-like nozzles whose longitudinal direction is parallel to the left-right direction, similarly to the nozzles 39a and 39b of the nozzle-equipped heater 30a. Also, the front and rear ends of the upper first member 32a, the front and rear ends of the lower first member 32b, the front end of the front second member 33a, the rear end of the rear second member 33b, the front end of the front third member 34a, and the rear first Each surface of the rear end of the three members 34b is inclined from the horizontal direction. As a result, the fluid that passes through the spaces 91a and 91b and flows from the nozzles 39c and 39d flows out so as to approach the infrared transmission exposed surface 37a along this inclination.
  • the fluid that passes through the spaces 91a and 91b and flows from the nozzles 39e and 39f flows out so as to approach the infrared transmission exposed surface 37b along this inclination.
  • the fluid flowing from the nozzle 39c flows out forward and downward, and the fluid flowing from the nozzle 39d flows out forward and upward.
  • the fluid flowing from the nozzle 39e flows backward and downward, and the fluid flowing from the nozzle 39f flows backward and upward.
  • the fluid blown from the nozzles 39c to 39f is the same as the fluid blown from the blow nozzle 20 of the first embodiment.
  • the upper first member 32a, the lower first member 32b, the front second member 33a, the rear second member 33b, the front third member 34a, and the rear third member 34b, which are nozzle forming members, are exposed to infrared rays. It arrange
  • the tubular member 36 b is a tubular member that covers the periphery of the infrared heater 40.
  • the tubular member 36b is a member formed by integrally forming an infrared transmitting material in the same manner as the tubular member 36a of the nozzle-equipped heater 30a.
  • the tubular member 36b is formed of the same quartz glass as the tubular member 36a.
  • the tubular member 36b has an infrared transmission exposed surface 37a on the front side and an infrared transmission exposed surface 37b on the rear side.
  • the infrared transmissive exposed surfaces 37a and 37b are formed in a planar shape, and the plane is a surface parallel to the vertical direction (the vertical direction in FIGS. 3 and 6).
  • the infrared transmission exposed surface 37a and the front ends of the upper first member 32a, the lower first member 32b, the front second member 33a, and the front third member 34a are located on the same plane.
  • the infrared transmission exposed surface 37b and the rear ends of the upper first member 32a, the lower first member 32b, the rear second member 33b, and the rear third member 34b are located on the same plane.
  • Electromagnetic waves including near infrared rays emitted from the infrared heater 40 pass through these infrared transmission exposed surfaces 37a and 37b and are irradiated to regions of the solid film 80 facing the infrared transmission exposed surfaces 37a and 37b in the front-rear direction.
  • the refrigerant flowing through the refrigerant flow path 49 of the infrared heater 40 not only plays a role of directly lowering the temperature of the outer tube 44 that is the outer surface of the infrared heater 40, but also reduces the temperature of the outer tube 44.
  • the temperature of the infrared transmissive exposed surfaces 37a and 37b is indirectly lowered.
  • the space between the tubular member 36b and the outer tube 44 may be a refrigerant flow path, and the temperature of the infrared transmission exposed surfaces 37a and 37b may be lowered directly by circulating the refrigerant through the refrigerant flow path.
  • the sealing members 90c to 90f include the space 92a surrounded by the front second member 33a, the rear second member 33b, the upper fourth member 35a, and the tubular member 36b, the front third member 34a, the rear third member 34b, It is a member that seals the space 92b surrounded by the lower fourth member 35b and the tubular member 36b.
  • the sealing members 90c to 90f are rod-shaped members whose longitudinal direction is parallel to the left-right direction, and seal the slit-shaped openings in the spaces 91a and 91b. As a result, the sealing members 90c to 90f suppress the blowing of air from the nozzles 39c to 39f from entering the spaces 92a and 92b.
  • the sealing members 90c to 90f can be the same as the sealing members 90a and 90b of the nozzle-equipped heater 30a.
  • the dehydrator 110 adjusts the atmosphere of the dehydration chamber 14 in the same manner as the dehydrator 10 described above, conveys the solid film 80, and the heater 30 with the nozzle emits near-infrared rays from the infrared heater 40 and the nozzles 39a to 39f.
  • the solid film 80 can be dehydrated to a water content of 100 ppm or less, for example, in the same manner as the dehydrator 10.
  • the outer rows arranged in the zigzag overlapping direction of the zigzag portion 81 of the solid film 80 in the heater row 129 that is, the first heater row 129a and the seventh heater row 129 are arranged.
  • the infrared heater 40 of the nozzle-equipped heaters 30a and 30b constituting the heater row 129g has a reflective layer 38 formed on the tubular member 36a as shown in FIG.
  • the reflection layer 38 is formed on the side opposite to the zigzag portion 81 of the solid film 80 when viewed from the filament 41.
  • near infrared rays radiated from the infrared heater 40 of the first heater row 129a and the infrared heater 40 of the seventh heater row 129g in the direction opposite to the zigzag portion 81 are reflected by the reflective layer 38 toward the zigzag portion 81 side.
  • the near infrared rays from the infrared heater 40 can be irradiated to the solid film 80 more efficiently, and the solid film can be dehydrated more efficiently.
  • the heaters 30a to 30c with nozzles are provided with nozzles 39a and 39b capable of blowing fluid to the infrared heater 40 and the solid film 80, and the heater 30d with nozzle blows fluid to the infrared heater 40 and the solid film 80.
  • Possible nozzles 39c to 39f. Therefore, the solid film 80 can be dehydrated by the infrared heater 40, and moisture removed from the solid film 80 by dehydration can be removed by blowing air from the nozzles 39a to 39f, so that the dehydration can be performed more efficiently.
  • the solid film 80 can be dehydrated by the infrared heater 40, and overheating of the solid film 80 can be suppressed by blowing.
  • the nozzle 39a blows fluid toward the rear lower direction (lower right direction in FIG. 4), and the nozzle 39b blows fluid toward the rear upper direction (upper right direction in FIG. 4).
  • a fluid is directly applied to a region (a region facing the infrared transmissive exposed surface 37 in FIG. 4 and a peripheral region thereof) that is irradiated with near infrared rays through the infrared transmissive exposed surface 37 from the infrared heater 40. You will win.
  • the region of the solid film 80 where the near infrared ray is irradiated and the region where the fluid directly hits overlap.
  • the inclination angle of the rear ends of the first to third members 32 to 34 and the distance between the nozzle-equipped heater 30a and the solid film 80 are adjusted in advance. Thereby, the water
  • the heaters 30b and 30c with nozzles and the heater 30d with nozzles overlap.
  • the heaters 30a to 30c with nozzles include nozzles 39a and 39b and an infrared transmission exposed surface 37 that is exposed to the outside and can transmit at least a part of near infrared rays of the electromagnetic waves from the filament 41 and irradiate the solid film 80. And an outer peripheral portion 31a covering at least a part of the periphery of the infrared heater 40 and a refrigerant flow path 49 through which a refrigerant for cooling the infrared transmission exposed surface 37 can flow.
  • the nozzle-equipped heater 30d includes an outer peripheral portion 31b having nozzles 39c to 39f and infrared ray transmission exposed surfaces 37a and 37b, and a refrigerant flow path 49.
  • overheating of the infrared transmission exposed surfaces 37, 37a, and 37b that are surfaces exposed to the outside can be further suppressed by circulation of the refrigerant.
  • the overheating of the atmosphere in the solid film 80 or the dehydration chamber 14 can be suppressed more by suppressing the overheating of the infrared transmission exposed surfaces 37, 37a, and 37b more.
  • the distance between the nozzle-equipped heater 30 and the solid film 80 is further reduced to efficiently irradiate near infrared rays, thereby improving the dehydration efficiency. Can do.
  • the nozzle-equipped heater 30d has one infrared heater 40 and is sandwiched between the solid films 80 of the zigzag portion 81, and can blow fluid to each of the solid films 80 sandwiching itself.
  • a plurality of nozzles 39c to 39f are provided.
  • the nozzle-equipped heater 30d includes nozzles 39c to 39d capable of blowing fluid to the front solid film 80 and nozzles 39e to 39f capable of blowing fluid to the rear solid film 80. If it carries out like this, near infrared irradiation and ventilation can be performed with respect to the solid film 80 of the both sides which pinch
  • the dehydration chamber 14 of the first to second embodiments corresponds to the dehydration chamber of the present invention
  • the filament 41 of the first to second embodiments corresponds to a heating element
  • the inner tube 42 of the first to second embodiments corresponds to tubes
  • the infrared heater 40 of the first and second embodiments corresponds to an infrared heater.
  • the transport roller 87 of the first and second embodiments corresponds to a transport unit
  • the reflective layer 38 of the second embodiment corresponds to a reflective layer
  • the reflective plates 22a and 22b of the first embodiment correspond to reflective plates.
  • the blowing nozzle 20 of the first embodiment and the nozzles 39a to 39f of the second embodiment correspond to blowing means. Furthermore, the nozzles 39a to 39f of the second embodiment correspond to nozzles, the heater 30 with nozzles of the second embodiment corresponds to a heater with nozzles, and the infrared transmission exposed surfaces 37, 37a, 37b of the second embodiment are infrared rays. It corresponds to a transmission exposed surface, the outer peripheral portions 31a and 31b of the second embodiment correspond to the outer peripheral portion, and the refrigerant channel 49 of the second embodiment corresponds to the refrigerant channel.
  • the number of the infrared heaters 40 provided in each row of the heater rows 29 is the same, but the present invention is not limited to this.
  • the infrared heater 40 may be disposed so that the downstream side in the transport direction (front-rear direction) is dense, or the infrared heater 40 may be disposed so that the upstream side in the transport direction is dense.
  • FIG. 7 is a longitudinal sectional view of a dehydrating apparatus 210 according to a modification. As shown in FIG. 7, in the dehydrating apparatus 210, the innermost seventh heater row 29g in the transport direction is composed of six infrared heaters 40, compared to the second to sixth heater rows 29b to 29f. The infrared heater 40 is dense.
  • the moisture of the solid film 80 is reduced, and problems such as deformation of the solid film 80 are unlikely to occur. Therefore, it is possible to efficiently improve the dehydration function and shorten the dehydration time by closely arranging the infrared heaters 40 on the downstream side to increase the near-infrared radiation intensity.
  • the first heater row 29a in the foremost direction in the transport direction is composed of six infrared heaters 40, and the infrared heaters 40 are denser than the second to sixth heater rows 29b to 29f. It has become.
  • the infrared heaters 40 when the infrared heaters 40 are arranged so that the downstream side tends to be dense, the infrared heaters 40 gradually become dense toward the downstream side (the number of infrared heaters 40 in each row gradually increases). May be.
  • the infrared heaters 40 when the infrared heaters 40 are arranged so that the upstream side tends to be dense, the infrared heaters 40 gradually become dense toward the upstream side (the number of infrared heaters 40 in each row gradually increases). It may be.
  • the infrared heaters 40 are arranged so as to be dense in the vertical direction. However, the infrared heaters 40 may be arranged so as to be dense in the front-rear direction.
  • the modification of 1st Embodiment was shown in FIG. 7, it is the same also about arrangement
  • the reflective layer 38 is formed on the outer surface of the tubular member 36a, but may be formed on the inner surface. Further, the reflective layer 38 may be formed on the outer surface or the inner surface of the outer tube 44, or may be formed on the outer surface of the inner tube 42. Moreover, it is good not only as what is formed in the surface but the infrared heater 40 may be provided with a reflective layer as an independent member. Similarly, the infrared heater 40 of the first embodiment may be formed by forming a reflective layer on the outer tube 44 or the inner tube 42 or may include the reflective layer as an independent member.
  • the infrared heater 40 constituting the outer row disposed outside the zigzag overlapping direction of the zigzag portion 81 of the solid film 80 includes a reflective layer.
  • the infrared heater 40 constituting the first heater row 29a of FIG. 1 and the infrared heater 40 constituting the seventh heater row 29g are preferably provided with a reflective layer, and the infrared heaters 40 of these two rows are provided. More preferably, all have a reflective layer.
  • the infrared heaters 40 constituting each heater row 29 are arranged away from each other in the vertical direction by a distance d with respect to the infrared heater 40 closest to the vertical direction of the adjacent row.
  • the vertical position may partially overlap with the infrared heater 40 closest to the vertical direction of the adjacent row.
  • the heater 30 with a nozzle according to the second embodiment is not limited to this.
  • any row of the plurality of heater rows 29 all of the infrared heaters 40 constituting the row are shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater 40 constituting the adjacent row.
  • it is assumed that it is arranged it is not limited to this.
  • heater rows 29 there may be one or more heater rows 29 that do not exist that are shifted in the direction perpendicular to the overlapping direction with respect to the infrared heaters 40 constituting the adjacent rows.
  • the interior of the dehydration chamber 14 is set to an atmospheric atmosphere having a dew point of ⁇ 60 ° C. or lower during dehydration, but is not limited thereto.
  • the dew point may not be ⁇ 60 ° C. or lower.
  • atmospheres other than vacuum for example, inert gas atmosphere etc.
  • the atmospheric pressure in the dehydration chamber 14 is not limited to the atmospheric pressure, and may be a state where the pressure is reduced from the atmospheric pressure.
  • the interior of the dehydration chamber 14 may be a vacuum atmosphere.
  • the blow nozzle 20 blows the fluid downward in FIG. 1, but is not limited thereto.
  • the air may be blown obliquely downward toward the solid film 80.
  • it is good also as a thing provided with the ventilation nozzle 20 also in 2nd Embodiment.
  • the transport roller 87 is configured to transport the solid film 80 up and down in the dehydration chamber 14 in a zigzag manner, but is not limited thereto.
  • the solid film 80 may be stretched from side to side in the dehydration chamber 14 and conveyed zigzag.
  • the solid film 80 may be transported in a straight line from the opening 17 to the opening 18 without being transported in a zigzag manner in the dehydration chamber 14.
  • the nozzle-equipped heater 30a is provided with the infrared transmission exposure surface 37, but the infrared heater 40 may be exposed to the outside of the nozzle-equipped heater 30a without this.
  • the heaters 30b to 30d with nozzles are provided with the infrared transmission exposure surface 37, but the infrared heater 40 may be exposed to the outside of the nozzle-equipped heater 30a without this.
  • the heaters 30b to 30d with nozzles are provided with the infrared transmission exposure surface 37, but the infrared heater 40 may be exposed to the outside of the nozzle-equipped heater 30a without this.
  • the heaters 30b to 30d with nozzles are the same applies.
  • the outer peripheral portion 31a of the nozzle-equipped heater 30a has the first to third members 32 to 34 as nozzle forming members separately from the tubular member 36a having the infrared transmission exposed surface 37.
  • FIG. For example, you may employ
  • the nozzle-equipped heater 130 includes an infrared heater including a heater main body 43 including a filament 41 and an inner pipe 42, and an outer pipe 144 provided outside the heater main body 43 so as to surround the inner pipe 42. 140.
  • the outer tube 144 can transmit at least a part of near infrared rays in the electromagnetic waves from the filament 41 as in the tubular member 36a described above, and the outer peripheral surface is an infrared transmission exposed surface 137.
  • the outer tube 144 has a plurality of nozzles 144a.
  • a space between the inner tube 42 and the outer tube 144 serves as a refrigerant flow path 49.
  • the refrigerant flowing through the refrigerant flow path 49 flows out from the nozzle 144 a to the outside of the nozzle-equipped heater 130, and this is blown to the solid film 80.
  • the refrigerant from the refrigerant flow path 49 can serve both as cooling itself and blowing air to the solid film 80. Even with the nozzle-equipped heater 130, both near-infrared irradiation and air blowing can be performed.
  • the nozzle-equipped heater 30d performs near-infrared irradiation and ventilation on the solid films 80 on both sides sandwiching itself, but the nozzle-equipped heaters 30a and 30b are used instead of the nozzle-equipped heater 30d. May be placed back to back.
  • the heater 30d with a nozzle is provided with one infrared heater 40, it may be provided with a plurality of infrared heaters 40.
  • the heater 30d with a nozzle has two infrared heaters: an infrared heater 40 that irradiates one of the solid films 80 on both sides sandwiching itself with the infrared heater 40 and an infrared heater 40 that irradiates the other with near infrared. 40 may be provided.
  • the transport roller 87 transports the solid film 80 while supporting the solid film 80 in a state of floating from the transport roller 87 itself by causing the fluid to flow out to the surroundings. May be used as air blow to the solid film 80.
  • W tungsten
  • Mo molybdenum
  • Ta molybdenum
  • Fe—Cr—Al alloy molybdenum
  • Ni—Cr alloy may be used.
  • air is used as the refrigerant flowing through the refrigerant flow path 49 and the cold air, but an inert gas such as nitrogen may be used.
  • the dehydrating device 310 includes the dehydrating chamber 14, the three infrared heaters 40, the exhaust device 25, and the air supply device 29.
  • the dehydration chamber 14 has openings 17 and 18 on the front end surface and the rear end surface, respectively.
  • the infrared heater 40 has the same configuration as the infrared heater 40 of the first embodiment.
  • the filament 41 of the infrared heater 40 was used with a 100% output of 750 W.
  • the three infrared heaters 40 are arranged at equal intervals in the front-rear direction.
  • the exhaust device 25 exhausts the atmosphere of the dehydration chamber 14 through the opening 17.
  • the air supply device 29 supplies hot air (air) into the dehydration chamber 14 through the opening 18.
  • the solid film 80 is a PET film having a thickness of 175 mm ⁇ 145 mm and a thickness of 38 ⁇ m, and was placed on a table in the dehydration chamber 14.
  • the water content of the solid film 80 was 1% by mass or less.
  • Comparative Example 1 A dehydrating apparatus having the same configuration as the dehydrating apparatus 310 was prepared except that the infrared heater 40 was not provided and dehydration was performed only with hot air from the air supply apparatus 29, and Comparative Example 1 was obtained.
  • Example 1 For Example 1 and Comparative Example 1, the solid film 80 placed in the dehydration chamber 14 was dehydrated, and the water content of the solid film 80 after dehydration was compared.
  • the temperature of the hot air supplied by the air supply device 29 was 30 ° C.
  • the air volume was 37.6 m 3 / h
  • the wind speed was 1.9 m / s.
  • the air volume exhausted by the exhaust device 25 was set to 29.2 m 3 / h.
  • the infrared heater 40 had an output of 78%, and the flow rate of air flowing through the refrigerant flow path 49 was 300 L / min (per one infrared heater 40).
  • the exhaust temperature of the exhaust device 25 was 70 ° C.
  • the surface temperature of the outer tube 44 of the infrared heater 40 was 184 ° C.
  • the temperature of the hot air supplied by the air supply device 29 was 82 ° C.
  • the air volume was 37.6 m 3 / h
  • the wind speed was 1.9 m / s.
  • the air volume exhausted by the exhaust device 25 was set to 28.6 m 3 / h.
  • the exhaust temperature of the exhaust device 25 was 64 ° C.
  • Table 1 The dehydration conditions of Example 1 and Comparative Example 1 are summarized in Table 1. Under these dehydration conditions, the test was performed by changing the dehydration time to 30 minutes, 60 minutes, and 90 minutes, and the water content of the solid film 80 at each dehydration time was measured.
  • Example 1 As a result of the evaluation test, in Example 1, assuming that the moisture content of the solid film 80 before dehydration is 100, the moisture content of the solid film 80 at the dehydration time of 30 minutes, 60 minutes, and 90 minutes is about 35 respectively. , About 20, about 20. In Comparative Example 1, assuming that the moisture content of the solid film 80 before dehydration is 100, the moisture content of the solid film 80 at the dehydration time of 30 minutes, 60 minutes, and 90 minutes is about 70, about 45, and about 45, respectively. there were. As can be seen from this result, the moisture content of the solid film 80 was lower in the dehydrating apparatus of Example 1 that performed dehydration using the infrared heater 40 at any of the dehydration times of 30 minutes, 60 minutes, and 90 minutes. .
  • Example 1 even when the dehydration time was 30 minutes, the moisture content of the solid film 80 was lower than in the case of Comparative Example 1 where the dehydration time was 30 minutes, 60 minutes, or 90 minutes. . Further, in both Example 1 and Comparative Example 1, the water content of the solid film 80 became a substantially constant value in the region where the dehydration time was 60 minutes or more. From these, even if the dehydration time is increased in Comparative Example 1, it is considered that the water content of the solid film 80 cannot be reduced to the same level as in Example 1.
  • the moisture content inside the solid film can be further reduced by absorbing infrared rays exceeding 3.5 ⁇ m using the infrared heater 40 and irradiating the solid film 80 with near infrared rays. It is thought that.
  • the present invention can be used in a dehydrating apparatus that performs heat treatment such as dehydration on a film such as a PET film used for a liquid crystal display or an organic EL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Textile Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

A dehydrator (10) is provided with a dehydration chamber (14) for dehydrating a solid film (80), and an infrared heater (40). The infrared heater (40) has: a filament (41) for emitting electromagnetic waves including infrared light, the filament (41) being disposed inside the dehydration chamber (14); and an inner tube (42) and an outer tube (44) for absorbing infrared light having a wavelength exceeding 3.5 μm and covering the filament (41). The solid film (80) transmits at least some near-infrared light, and the pre-dehydration moisture content of the solid film (80) is greater than 0% by mass and equal to or less than 1% by mass. In any of a plurality of heater rows (29), any of the infrared heaters (40) constituting the row is disposed so as to be misaligned in the overlapping direction and in the perpendicular direction relative to the infrared heaters (40) constituting an adjacent row.

Description

脱水装置Dehydrator
 本発明は、脱水装置に関する。 The present invention relates to a dehydration apparatus.
 従来、PETフィルムなどのフィルムに対して脱水などの熱処理を行う熱処理装置が知られている。例えば、特許文献1には、熱風及び遠赤外ヒーターを併用してPETフィルムの熱処理を行うことが記載されている。 Conventionally, a heat treatment apparatus for performing heat treatment such as dehydration on a film such as a PET film is known. For example, Patent Document 1 describes that heat treatment of a PET film is performed using hot air and a far infrared heater in combination.
特開平1-275031号公報Japanese Patent Laid-Open No. 1-275031
 ところで、このような従来の熱処理装置では、熱処理(脱水)後の固体フィルムの内部にわずか(例えば1質量%程度)ではあるが水分が残ってしまい、十分な脱水ができない場合があった。例えば、脱水後の固体フィルムは、表面にスパッタリング等で透明導電膜を形成して透明導電フィルムとし、液晶ディスプレイや有機ELなどに用いられる。この場合、固体フィルム中の水分が多いと表面の透明導電膜に悪影響を与える場合があった。そのため、固体フィルム内部の水分含有量をより低減させることが望まれていた。 By the way, in such a conventional heat treatment apparatus, although there is a slight amount (for example, about 1% by mass) of moisture inside the solid film after heat treatment (dehydration), sufficient dehydration may not be possible. For example, the solid film after dehydration is used for a liquid crystal display, an organic EL, or the like by forming a transparent conductive film on the surface by sputtering or the like to form a transparent conductive film. In this case, if the moisture in the solid film is large, the transparent conductive film on the surface may be adversely affected. Therefore, it has been desired to further reduce the water content inside the solid film.
 本発明はこのような課題を解決するためになされたものであり、固体フィルム内部の水分含有量をより低減させることを主目的とする。 The present invention has been made to solve such problems, and has as its main purpose to further reduce the water content inside the solid film.
 本発明の脱水装置は、
 近赤外線の少なくとも一部を透過し且つ内部の水分含有量が0質量%超過1質量%以下である固体フィルムの脱水を行う脱水装置であって、
 前記固体フィルムの脱水を行うための脱水室と、
 前記脱水室内に配置され、赤外線を含む電磁波を放出する発熱体と、3.5μmを超える波長の赤外線を吸収し該発熱体を覆う管と、を有する赤外線ヒーターと、
 を備えたものである。
The dehydrator of the present invention is
A dehydrating apparatus for dehydrating a solid film that transmits at least a part of near infrared rays and has an internal water content of more than 0% by mass and not more than 1% by mass,
A dehydration chamber for dehydrating the solid film;
An infrared heater that is disposed in the dehydration chamber and has a heating element that emits electromagnetic waves including infrared rays, and a tube that absorbs infrared rays having a wavelength exceeding 3.5 μm and covers the heating element;
It is equipped with.
 この本発明の脱水装置は、脱水前における内部の水分含有量が0質量%超過1質量%以下である固体フィルムに対して、赤外線ヒーターにより赤外線を放射する。この赤外線ヒーターは、赤外線を含む電磁波を放出する発熱体と、3.5μmを超える波長の赤外線を吸収し該発熱体を覆う管と、を有するため、波長が3.5μm以下の赤外線(近赤外線)を含む電磁波を放射する。この波長の赤外線は、水分子に選択的にエネルギーを与えることができ、効率的に固体フィルムの脱水を行うことができる。しかも、固体フィルムは近赤外線の少なくとも一部を透過するため、赤外線ヒーターからの近赤外線が固体フィルム内部の水分に直に作用しやすい。これらにより、内部の水分含有量が0質量%超過1質量%以下である固体フィルムをさらに脱水して、固体フィルム内部の水分含有量をより低減させることができる。この場合において、前記固体フィルムは、前記脱水室内で水分含有量が100ppm以下まで脱水されるものとしてもよいし、10ppm以下まで脱水されるものとしてもよい。また、前記固体フィルムは、緻密質なものとしてもよい。固体フィルムが緻密質な場合、固体フイルム内部の水分が外部に逃げにくいが、本発明の脱水装置は水分子に選択的にエネルギーを与えて脱水を行うことができるため、本発明を適用する意義が高い。また、前記固体フィルムは、PETフィルムとしてもよい。PETフィルムはガラス転移点が例えば約70℃と比較的低いが、近赤外線ではほとんど加熱されないため、脱水中のPETフィルムをガラス転移点以下に保ちやすく、本発明を適用する意義が高い。 This dehydrating apparatus of the present invention radiates infrared rays to the solid film whose internal moisture content before dehydration is more than 0 mass% and 1 mass% or less by an infrared heater. Since this infrared heater has a heating element that emits electromagnetic waves including infrared rays and a tube that absorbs infrared rays having a wavelength exceeding 3.5 μm and covers the heating element, infrared rays having a wavelength of 3.5 μm or less (near infrared rays) ). Infrared light having this wavelength can selectively give energy to water molecules and can efficiently dehydrate the solid film. And since a solid film permeate | transmits at least one part of near infrared rays, the near infrared rays from an infrared heater act on the water | moisture content inside a solid film directly. By these, the solid film whose internal moisture content is more than 0 mass% and 1 mass% or less can be further dehydrated, and the moisture content inside the solid film can be further reduced. In this case, the solid film may be dehydrated to a water content of 100 ppm or less in the dehydration chamber, or may be dehydrated to 10 ppm or less. The solid film may be dense. When the solid film is dense, the moisture inside the solid film is difficult to escape to the outside, but the dehydration apparatus of the present invention can selectively dehydrate the water molecules, so the significance of applying the present invention Is expensive. The solid film may be a PET film. The PET film has a relatively low glass transition point of, for example, about 70 ° C., but is hardly heated by near infrared rays. Therefore, it is easy to keep the PET film during dehydration below the glass transition point, and the present invention is highly meaningful.
 本発明の脱水装置において、前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段、を備え、前記赤外線ヒーターは、複数の列をなすように複数配置され、該複数の列は前記固体フィルムを挟むようにジグザグの重ね方向に並べて配置されており、該複数の列のうち1以上の列は、該列を構成する赤外線ヒーターのうち1以上が隣の列を構成する赤外線ヒーターに対して該重ね方向と垂直な方向にずれて配置されていてもよい。固体フィルムをジグザグに搬送し、隣の列を構成する赤外線ヒーターに対してジグザグの重ね方向と垂直な方向にずれて配置された赤外線ヒーターが存在することで、この赤外線ヒーターからの赤外線は固体フィルムを透過してその先にある固体フィルムにも照射されやすい。これにより、1つの赤外線ヒーターからの赤外線をより効率よく固体フィルムに放射でき、より効率よく脱水を行うことができる。なお、複数の列のうち1以上の列は、その列を構成する全ての赤外線ヒーターが隣の列を構成する赤外線ヒーターに対して重ね方向と垂直な方向にずれて配置されていることが好ましい。また、複数の列のいずれの列についても、列を構成する赤外線ヒーターの1以上が隣の列を構成する赤外線ヒーターに対して重ね方向と垂直な方向にずれて配置されていることが好ましく、列を構成する赤外線ヒーターのいずれもが隣の列を構成する赤外線ヒーターに対して重ね方向と垂直な方向にずれて配置されていることがより好ましい。ここで、「固体フィルムをジグザグに搬送する」とは、固体フィルムを厚さ方向に折り返しながら搬送する(固体フイルムの表面が向き合うようにジグザグに搬送する)こととしてもよい。 In the dehydrating apparatus according to the present invention, the dehydrating apparatus includes a conveying unit that zigzags the solid film in the dehydrating chamber, and a plurality of the infrared heaters are arranged so as to form a plurality of rows. Are arranged side by side in the zigzag overlapping direction so that one or more of the plurality of columns are arranged with respect to an infrared heater in which at least one of the infrared heaters constituting the row constitutes an adjacent row. They may be arranged so as to be shifted in a direction perpendicular to the overlapping direction. A solid film is transported in a zigzag, and there is an infrared heater arranged in a direction perpendicular to the zigzag stacking direction with respect to the infrared heaters constituting the adjacent rows. It is easy to irradiate even the solid film which penetrates through the point. Thereby, the infrared rays from one infrared heater can be radiated to the solid film more efficiently, and the dehydration can be performed more efficiently. In addition, it is preferable that one or more rows of the plurality of rows are arranged such that all infrared heaters constituting the row are shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row. . Further, for any of the plurality of rows, it is preferable that one or more of the infrared heaters constituting the row are arranged so as to be shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row, It is more preferable that any of the infrared heaters constituting the row is shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row. Here, “transporting the solid film in a zigzag” may be transporting the solid film while being folded back in the thickness direction (transporting in a zigzag so that the surface of the solid film faces).
 本発明の脱水装置において、前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段、を備え、前記赤外線ヒーターは、複数の列をなすように複数配置され、該複数の列は前記固体フィルムを挟むようにジグザグの重ね方向に並べて配置されており、前記複数の列は、前記固体フィルムのジグザグ部分の該重ね方向における外側の一方又は両方に配置された外側列を有し、該外側列を構成する赤外線ヒーターの1以上は、前記発熱体からみて前記固体フィルムのジグザグ部分とは反対側に、前記電磁波のうち少なくとも近赤外線の一部を反射する反射層を備えていてもよい。こうすれば、外側列の赤外線ヒーターから固体フィルムのジグザグ部分とは反対方向に放射される近赤外線を反射層により反射することができ、より効率よく固体フィルムの脱水を行うことができる。ここで、反射層は、外側列を構成する赤外線ヒーターの管の外表面に形成してもよいし、内表面に形成してもよい。また、反射層を管とは別の独立した構成としてもよい。 In the dehydrating apparatus according to the present invention, the dehydrating apparatus includes a conveying unit that zigzags the solid film in the dehydrating chamber, and a plurality of the infrared heaters are arranged so as to form a plurality of rows. The plurality of rows have outer rows arranged on one or both of the outer sides of the zigzag portion of the solid film in the overlapping direction. One or more of the configured infrared heaters may include a reflective layer that reflects at least a part of the near-infrared rays of the electromagnetic waves on the side opposite to the zigzag portion of the solid film as viewed from the heating element. If it carries out like this, the near infrared rays radiated | emitted in the direction opposite to the zigzag part of a solid film from the infrared heater of an outer side row | line | column can be reflected by a reflection layer, and dehydration of a solid film can be performed more efficiently. Here, the reflective layer may be formed on the outer surface of the tube of the infrared heater constituting the outer row, or may be formed on the inner surface. Further, the reflective layer may be configured independently of the tube.
 この場合において、前記外側列は、前記固体フィルムのジグザグ部分の前記重ね方向における外側の両方に配置されており、該外側列を構成する赤外線ヒーターは、前記発熱体からみて前記固体フィルムのジグザグ部分とは反対側に、前記電磁波のうち少なくとも近赤外線の一部を反射する反射層を備えていてもよい。こうすれば、ジグザグ部分の両側の反射層によってさらに効率よく固体フィルムの脱水を行うことができる。 In this case, the outer row is arranged both outside the zigzag portion of the solid film in the overlapping direction, and the infrared heater constituting the outer row is a zigzag portion of the solid film as viewed from the heating element. A reflective layer that reflects at least a part of the near-infrared ray of the electromagnetic wave may be provided on the opposite side of the electromagnetic wave. In this way, the solid film can be dehydrated more efficiently by the reflective layers on both sides of the zigzag portion.
 本発明の脱水装置において、前記脱水室内で前記固体フィルムを搬送する搬送手段、を備え、前記赤外線ヒーターは、前記搬送手段の搬送方向の下流側が密になる傾向に配置されていてもよい。搬送方向の下流側、すなわち脱水室での脱水工程の終期は、固体フィルムの水分が減少しており固体フィルムの変形などの問題が生じにくい。そのため、下流側の赤外線ヒーターを密に配置して近赤外線の放射強度を高めることで脱水機能を効率よく向上させることができる。なお、上述した、赤外線ヒーターが複数の列をなすように複数配置されている場合においては、搬送方向の下流側の列が、赤外線ヒーターが密に配置される傾向にあるものとしてもよい。例えば、下流側の列が、赤外線ヒーターの本数が多い傾向にあるものとしてもよい。 In the dehydrating apparatus of the present invention, the dehydrating apparatus may include a conveying unit that conveys the solid film in the dehydrating chamber, and the infrared heater may be arranged so that the downstream side in the conveying direction of the conveying unit tends to be dense. At the downstream side in the transport direction, that is, at the end of the dehydration process in the dehydration chamber, the moisture of the solid film is reduced and problems such as deformation of the solid film are unlikely to occur. Therefore, the dewatering function can be improved efficiently by densely arranging the infrared heaters on the downstream side to increase the near-infrared radiation intensity. In addition, in the case where a plurality of infrared heaters are arranged so as to form a plurality of rows as described above, the rows on the downstream side in the transport direction may have a tendency that the infrared heaters are densely arranged. For example, the downstream row may have a large number of infrared heaters.
 本発明の脱水装置において、前記脱水室内で前記固体フィルムを搬送する搬送手段、を備え、前記赤外線ヒーターは、前記搬送手段の搬送方向の上流側が密になる傾向に配置されていてもよい。搬送方向の上流側、すなわち脱水室での脱水工程の初期は、固体フィルムの表面に水分が付着している場合があるが、搬送方向の上流側が密になる傾向に赤外線ヒーターを配置することで、そのような水分を脱水初期に速やかに蒸発させることができる。なお、上述した、赤外線ヒーターが複数の列をなすように複数配置されている場合においては、搬送方向の上流側の列が、赤外線ヒーターが密に配置される傾向にあるものとしてもよい。例えば、上流側の列が、赤外線ヒーターの本数が多い傾向にあるものとしてもよい。また、赤外線ヒーターは、搬送方向の上流側と下流側とが搬送方向の中央と比べて密になる傾向に配置されていてもよい。 In the dehydrating apparatus of the present invention, the dehydrating apparatus may include a conveying unit that conveys the solid film in the dehydrating chamber, and the infrared heater may be arranged so that the upstream side in the conveying direction of the conveying unit tends to be dense. At the upstream side in the transport direction, that is, at the beginning of the dehydration process in the dehydration chamber, moisture may adhere to the surface of the solid film, but by placing an infrared heater so that the upstream side in the transport direction tends to be dense Such moisture can be quickly evaporated at the beginning of dehydration. In the case where a plurality of infrared heaters are arranged so as to form a plurality of rows as described above, the rows on the upstream side in the transport direction may be arranged so that the infrared heaters are densely arranged. For example, the upstream row may have a large number of infrared heaters. Further, the infrared heater may be arranged such that the upstream side and the downstream side in the transport direction tend to be denser than the center in the transport direction.
 本発明の脱水装置において、前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段と、前記固体フィルムのジグザグ部分の該ジグザグの重ね方向における外側の一方又は両方に配置されて、前記電磁波のうち少なくとも近赤外線の一部を反射する反射板と、を備え、前記赤外線ヒーターは、前記反射板と前記固体フィルムのジグザグ部分との間に配置されていてもよい。こうすれば、赤外線ヒーターから固体フィルムのジグザグ部分とは反対方向に放射される近赤外線を反射板により反射することができ、より効率よく固体フィルムの脱水を行うことができる。 In the dehydrating apparatus of the present invention, the solid film is disposed in one or both of the zigzag overlapping direction of the zigzag portion of the solid film in a zigzag overlapping direction in the dehydration chamber, A reflecting plate that reflects at least a part of near infrared rays, and the infrared heater may be disposed between the reflecting plate and a zigzag portion of the solid film. If it carries out like this, the near infrared rays radiated | emitted in the direction opposite to the zigzag part of a solid film from an infrared heater can be reflected by a reflecting plate, and dehydration of a solid film can be performed more efficiently.
 本発明の脱水装置は、前記脱水室内に流体を送風可能な送風手段を備えていてもよい。これにより、固体フィルムの脱水を赤外線ヒーターにより行うと共に、脱水で固体フィルム内部から出た水分の除去を送風手段からの送風により行って、より効率よく脱水を行うことができる。この場合において、前記送風手段から流体を送風することにより前記固体フィルムの冷却を行うものとしてもよい。こうすれば、赤外線ヒーターにより固体フィルムの脱水を行いつつ、送風により固体フィルムの過熱を抑制することができる。 The dehydrating apparatus of the present invention may include a blowing means capable of blowing a fluid in the dehydrating chamber. Thereby, while dehydrating a solid film with an infrared heater, the removal of the water | moisture content which came out of the solid film inside by dehydration is performed by the ventilation from a ventilation means, and it can dehydrate more efficiently. In this case, the solid film may be cooled by blowing fluid from the blowing means. If it carries out like this, overheating of a solid film can be suppressed by ventilation, dehydrating a solid film with an infrared heater.
 送風手段を備えた態様の本発明の脱水装置において、前記赤外線ヒーターと、前記固体フィルムに対して流体を送風可能な前記送風手段としての1以上のノズルと、有するノズル付きヒーターを備えたものとしてもよい。この場合において、前記ノズル付きヒーターは、前記ノズルと、外部に露出し前記電磁波のうち少なくとも近赤外線の一部を透過して前記固体フィルムに照射可能な赤外線透過露出面と、を有し、前記赤外線ヒーターの周囲の少なくとも一部を覆う外周部と、前記赤外線透過露出面を冷却する冷媒が流通可能な冷媒流路と、を有していてもよい。こうすることで、外部に露出する面である赤外線透過露出面の過熱を、冷媒の流通によってより抑制することができる。そして、赤外線透過露出面の過熱をより抑制することで、例えば固体フィルムや脱水室内の雰囲気の過熱をより抑制したり、ノズル付きヒーターと固体フィルムとの距離をより小さくして脱水効率を向上させたりすることができる。 In the dehydrating apparatus of the present invention having a blowing means, the infrared heater, one or more nozzles as the blowing means capable of blowing fluid to the solid film, and a nozzle-equipped heater are provided. Also good. In this case, the heater with a nozzle includes the nozzle and an infrared transmission exposed surface that is exposed to the outside and transmits at least a part of the near infrared ray of the electromagnetic wave to irradiate the solid film. You may have the outer peripheral part which covers at least one part of the circumference | surroundings of an infrared heater, and the refrigerant | coolant flow path which can distribute | circulate the refrigerant | coolant which cools the said infrared transmission exposure surface. By carrying out like this, overheating of the infrared rays transmission exposure surface which is a surface exposed outside can be suppressed more by circulation of a refrigerant. And by further suppressing the overheating of the infrared transmission exposed surface, for example, the overheating of the atmosphere in the solid film or the dehydration chamber can be further suppressed, or the distance between the heater with the nozzle and the solid film can be reduced to improve the dehydration efficiency. Can be.
 上述したノズル付きヒーターを備えた態様の本発明の脱水装置において、前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段、を備え、前記ノズル付きヒーターは、前記赤外線ヒーターを1つ有し、前記ジグザグ部分の固体フィルムに挟まれて配置されており、自身を挟む前記固体フィルムのそれぞれに対して前記流体を送風可能となるように複数のノズルを有していてもよい。こうすれば、1つの赤外線ヒーターを備えたノズル付きヒーターから自身を挟む両側の固体フィルムに対して近赤外線の照射と送風とを行うことができ、例えば両側の固体フィルムに対して別々にノズル付きヒーターを配置する場合と比べて少ない赤外線ヒーターで脱水を行うことができる。この場合において、上述したノズル付きヒーターが前記外周部を有する構成のときには、前記外周部は、自身を挟む前記固体フィルムのそれぞれに対して前記赤外線ヒーターからの近赤外線を照射可能となるように複数の前記赤外線透過露出面を有していてもよい。 In the dehydration apparatus of the present invention having the above-described heater with a nozzle, the apparatus includes a conveying unit that zigzags the solid film in the dehydration chamber, and the heater with the nozzle has one infrared heater, A plurality of nozzles may be provided so that the fluid can be blown to each of the solid films sandwiched between the solid films of the zigzag portion. If it carries out like this, near infrared irradiation and ventilation can be performed with respect to the solid film of the both sides which pinch | interpose itself from the heater with a nozzle provided with one infrared heater, for example, a nozzle is separately provided with respect to the solid film of both sides Dehydration can be performed with a smaller number of infrared heaters than when a heater is provided. In this case, when the above-described heater with nozzle has the outer peripheral portion, a plurality of the outer peripheral portions can irradiate near infrared rays from the infrared heater to each of the solid films sandwiching itself. The infrared transmission exposed surface may be provided.
 本発明の脱水装置において、前記脱水室内は、真空以外の雰囲気としてもよい。本発明の脱水装置は、真空以外の雰囲気であっても固体フィルム内部の水分含有量をより低減させることができ、脱水室内を真空雰囲気とする場合に比べて簡易な装置構成で脱水を行うことができる。この場合において、前記脱水室内は、露点が-60℃以下の雰囲気としてもよい。こうすることで、固体フィルム内部の水分含有量をより低い値まで脱水させやすくなる。また、前記脱水室内は、露点が-60℃以下の大気雰囲気としてもよい。 In the dehydration apparatus of the present invention, the dehydration chamber may have an atmosphere other than vacuum. The dehydration apparatus of the present invention can further reduce the moisture content inside the solid film even in an atmosphere other than vacuum, and performs dehydration with a simple apparatus configuration compared to a case where the dehydration chamber is in a vacuum atmosphere. Can do. In this case, the dehydration chamber may have an atmosphere with a dew point of −60 ° C. or less. By doing so, it becomes easy to dehydrate the moisture content inside the solid film to a lower value. The dehydration chamber may be an air atmosphere having a dew point of −60 ° C. or lower.
第1実施形態の脱水装置10の縦断面図である。It is a longitudinal section of dehydrating device 10 of a 1st embodiment. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 第2実施形態の脱水装置110の縦断面図である。It is a longitudinal cross-sectional view of the dehydration apparatus 110 of 2nd Embodiment. ノズル付きヒーター30aの拡大断面図である。It is an expanded sectional view of heater 30a with a nozzle. 図4のノズル付きヒーター30aをB-B面から見たBB視図である。FIG. 5 is a BB view of the nozzle-equipped heater 30a of FIG. 4 viewed from the BB plane. ノズル付きヒーター30dの拡大断面図である。It is an expanded sectional view of heater 30d with a nozzle. 変形例の脱水装置210の縦断面図である。It is a longitudinal cross-sectional view of the spin-drying | dehydration apparatus 210 of a modification. 変形例のノズル付きヒーター130の縦断面図である。It is a longitudinal cross-sectional view of the heater 130 with a nozzle of a modification. 実施例1の脱水装置310の縦断面図である。It is a longitudinal cross-sectional view of the dehydrating apparatus 310 of Example 1.
[第1実施形態]
 次に、本発明の第1実施形態について、図面を用いて説明する。図1は、本発明の一実施形態である脱水装置10の縦断面図である。脱水装置10は、固体フィルム80の脱水を赤外線及び冷風を用いて行うものであり、脱水室14と、排気装置25と、複数の赤外線ヒーター40と、搬送ローラー87と、コントローラー70と、を備えている。また、脱水装置10は、脱水室14の前方(図1の左側)に設けられたロール84と、脱水室14の後方(図1の右側)に設けられたロール86と、を備えている。脱水装置10は、脱水対象となる固体フィルム80を、ロール84,86、複数の搬送ローラー87により搬送方向に連続的に搬送して脱水を行うロールトゥロール方式の脱水装置として構成されている。なお、本実施形態では、搬送方向を前後方向(図1の左右方向)とし、前方から後方に向けて固体フィルム80が搬送されるものとした。
[First Embodiment]
Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a dehydrating apparatus 10 according to an embodiment of the present invention. The dehydrator 10 performs dehydration of the solid film 80 using infrared rays and cold air, and includes a dehydration chamber 14, an exhaust device 25, a plurality of infrared heaters 40, a transport roller 87, and a controller 70. ing. Further, the dehydrating apparatus 10 includes a roll 84 provided in front of the dehydrating chamber 14 (left side in FIG. 1) and a roll 86 provided in the rear of the dehydrating chamber 14 (right side in FIG. 1). The dehydrating apparatus 10 is configured as a roll-to-roll type dehydrating apparatus that continuously dehydrates the solid film 80 to be dehydrated by rolls 84 and 86 and a plurality of conveying rollers 87 in the conveying direction. In the present embodiment, the transport direction is the front-rear direction (left-right direction in FIG. 1), and the solid film 80 is transported from the front to the rear.
 脱水室14は、固体フィルム80の脱水を行うためのものである。この脱水室14は、略直方体に形成された断熱構造体であり、前端面15及び後端面16にそれぞれ開口17,18を有している。脱水室14は、前端面15から後端面16までの長さが例えば2~10mである。脱水室14内には、パンチングプレート19と、複数の送風ノズル20と、反射板22a,22bと、複数の赤外線ヒーター40と、複数の搬送ローラー87と、が配置されている。 The dehydration chamber 14 is for dehydrating the solid film 80. The dehydration chamber 14 is a heat insulating structure formed in a substantially rectangular parallelepiped shape, and has openings 17 and 18 on the front end face 15 and the rear end face 16, respectively. The dehydration chamber 14 has a length from the front end face 15 to the rear end face 16 of, for example, 2 to 10 m. In the dehydration chamber 14, a punching plate 19, a plurality of blower nozzles 20, reflection plates 22 a and 22 b, a plurality of infrared heaters 40, and a plurality of transport rollers 87 are disposed.
 脱水室14内には、複数の搬送ローラー87としての第1搬送ローラー87a~第7搬送ローラー87gが配置されている。第1,第3,第5,第7搬送ローラー87a,87c,87e,87gは、脱水室14の下側に配置され、第2,第4,第6搬送ローラー87b,87d,87fは、脱水室14の上側に配置されている。この複数の搬送ローラー87は、円筒状の本体の多数の孔から流体(例えば常温や50℃以下の空気)を周囲に流出させることで固体フィルム80を搬送ローラー87自身から浮かした状態で支持つつ搬送する非接触ローラーとして構成されている。固体フィルム80は、ロール84から開口17を通過して第1搬送ローラー87aまで略水平に搬送され、上側の搬送ローラー87と下側の搬送ローラー87とに第1搬送ローラー87a~第7搬送ローラー87gの順に掛け渡され、第7搬送ローラー87gから開口18を通過してロール86まで略水平に搬送される。第1搬送ローラー87a~第7搬送ローラー87gが上下に交互に配置されていることにより、固体フィルム80は、脱水室14内で上下に往復するジグザグ部分81を有するように搬送される。なお、搬送ローラー87は、接触式のローラーとして構成してもよい。 In the dehydration chamber 14, a first transport roller 87a to a seventh transport roller 87g as a plurality of transport rollers 87 are arranged. The first, third, fifth, and seventh transport rollers 87a, 87c, 87e, and 87g are disposed below the dehydration chamber 14, and the second, fourth, and sixth transport rollers 87b, 87d, and 87f are dewatered. Located above the chamber 14. The plurality of transport rollers 87 support the solid film 80 in a state where it floats from the transport rollers 87 by allowing a fluid (for example, room temperature or air of 50 ° C. or less) to flow out from a large number of holes in the cylindrical main body. It is configured as a non-contact roller for conveyance. The solid film 80 is conveyed substantially horizontally from the roll 84 through the opening 17 to the first conveying roller 87a, and the first conveying roller 87a to the seventh conveying roller are transferred to the upper conveying roller 87 and the lower conveying roller 87. It is passed in the order of 87 g, passes through the opening 18 from the seventh transport roller 87 g, and is transported substantially horizontally to the roll 86. Since the first transport roller 87a to the seventh transport roller 87g are alternately arranged up and down, the solid film 80 is transported so as to have a zigzag portion 81 that reciprocates up and down in the dehydration chamber. In addition, you may comprise the conveyance roller 87 as a contact-type roller.
 送風ノズル20は、脱水室14内に流体を送風可能なものである。この送風ノズル20は、ジグザグ部分81の上下に掛け渡された固体フィルム80の各々を前後方向から挟むように1個ずつ配置され、計12個が配置されている。また、送風ノズル20は、ジグザグ部分81の上側且つ第2,第4,第6搬送ローラー87b,87d,87fのやや下方に配置されている。この送風ノズル20には、図示しない給気ファンや配管が接続されており、給気ファンから配管を介して流れる流体を脱水室14内に送風する。流体は、固体フィルム80を冷却可能な冷風であり、例えば常温や50℃以下の空気である。送風ノズル20が送風する流体は、露点が低いほど好ましい。本実施形態では、送風ノズル20は露点が-60℃以下の空気(ドライエアー)を送風するものとした。送風ノズル20は、いずれも開口部が排気装置25の排気口28の方向(図1の下方向)に形成されており、固体フィルム80のジグザグ部分81の上側から下方向に流体を送風する。これにより、送風ノズル20からの送風はジグザグ部分81の固体フィルム80の表面に沿って下方向に流れていき、脱水室14の下方に取り付けられたパンチングプレート19を通過して脱水室14の底部に流れていく。なお、図示は省略するが、送風ノズル20は、長手方向が左右方向(図1の紙面に垂直な方向)に平行になるよう取り付けられており、送風ノズル20の開口部はこの左右方向と平行なスリット状に開口している。また、パンチングプレート19は、多数の孔が空けられた板状の部材である。 The blower nozzle 20 can blow fluid into the dehydration chamber 14. The blower nozzles 20 are arranged one by one so as to sandwich each of the solid films 80 stretched above and below the zigzag portion 81 from the front-rear direction, and a total of twelve nozzles are arranged. The blower nozzle 20 is disposed above the zigzag portion 81 and slightly below the second, fourth, and sixth transport rollers 87b, 87d, and 87f. An air supply fan and a pipe (not shown) are connected to the blower nozzle 20, and the fluid flowing from the air supply fan through the pipe is blown into the dehydration chamber 14. The fluid is cold air that can cool the solid film 80, and is, for example, room temperature or air of 50 ° C. or lower. The lower the dew point, the better the fluid blown by the blowing nozzle 20. In the present embodiment, the blow nozzle 20 blows air (dry air) having a dew point of −60 ° C. or less. Each of the blow nozzles 20 has an opening formed in the direction of the exhaust port 28 of the exhaust device 25 (downward in FIG. 1), and blows fluid from the upper side of the zigzag portion 81 of the solid film 80 downward. As a result, the air blown from the blower nozzle 20 flows downward along the surface of the solid film 80 of the zigzag portion 81, passes through the punching plate 19 attached below the dehydration chamber 14, and reaches the bottom of the dehydration chamber 14. To flow. Although not shown, the blowing nozzle 20 is attached so that the longitudinal direction is parallel to the left-right direction (the direction perpendicular to the paper surface of FIG. 1), and the opening of the blowing nozzle 20 is parallel to the left-right direction. Open in a slit shape. The punching plate 19 is a plate-like member having a large number of holes.
 排気装置25は、脱水室14内の雰囲気ガスを排出する装置である。この排気装置25は、排気ファン26と、パイプ構造体27と、複数の排気口28と、を備えている。排気口28は、脱水室14の底部に複数(本実施形態では5個)設けられ、固体フィルム80や搬送ローラー87の方向(図1の上方向)に向けて開口している。排気口28はパイプ構造体27に取り付けられており、脱水室14内の雰囲気ガス(主にシート50の表面に沿って流れた後の送風ノズル20からの送風)を吸気してパイプ構造体27内に導く。パイプ構造体27は、排気口28から排気ファン26への雰囲気ガスの流路となるものである。パイプ構造体27は、排気口28から脱水室14の底部を貫通して脱水室14の外部の排気ファン26までの通路を形成している。排気ファン26は、パイプ構造体27に取り付けられており、パイプ構造体27内部の雰囲気ガスを排気する。 The exhaust device 25 is a device that discharges the atmospheric gas in the dehydration chamber 14. The exhaust device 25 includes an exhaust fan 26, a pipe structure 27, and a plurality of exhaust ports 28. A plurality (five in this embodiment) of exhaust ports 28 are provided at the bottom of the dehydration chamber 14 and open toward the direction of the solid film 80 and the transport roller 87 (upward direction in FIG. 1). The exhaust port 28 is attached to the pipe structure 27, and sucks in the atmospheric gas in the dehydration chamber 14 (mainly, the air blown from the blower nozzle 20 after flowing along the surface of the sheet 50) to suck the pipe structure 27. Lead in. The pipe structure 27 serves as a flow path for the atmospheric gas from the exhaust port 28 to the exhaust fan 26. The pipe structure 27 forms a passage from the exhaust port 28 through the bottom of the dehydration chamber 14 to the exhaust fan 26 outside the dehydration chamber 14. The exhaust fan 26 is attached to the pipe structure 27 and exhausts the atmospheric gas inside the pipe structure 27.
 複数の赤外線ヒーター40は、近赤外線(波長が0.7~3.5μmの赤外線)を含む電磁波を照射して固体フィルム80を脱水するものである。この赤外線ヒーター40は、複数の列(本実施形態では第1~第7ヒーター列29a~29gの7つの列)をなすように配置されている。なお、第1~第7ヒーター列29a~29fをまとめてヒーター列29とも称する。ヒーター列29の各列は、上下方向に均等配置された3個の赤外線ヒーター40で構成されている(赤外線ヒーター40は合計21個)。第1,第3,第5,第7ヒーター列29a,29c,29e,29gは、それぞれ第1,第3,第5,第7搬送ローラー87a,87c,87e,87gの直上に配置されている。第2,第4,第6ヒーター列29b,29d,29fは、それぞれ第2,第4,第6搬送ローラー87b,87d,87fの直下に配置されている。ヒーター列29は、ジグザグ部分81の固体フィルム80と交互に並べて配置されている。すなわち、ヒーター列29の各列は、隣接する列間でジグザグ部分81の固体フィルム80を挟むように、ジグザグの重ね方向(図1の前後方向)に並べて配置されている。なお、送風ノズル20は前後方向でヒーター列29と固体フィルム80との間に配置されており、ヒーター列29の各列とジグザグ部分81の固体フィルム80との間の空間に送風ノズル20から流体が送風されるようになっている。 The plurality of infrared heaters 40 irradiate electromagnetic waves including near infrared rays (infrared rays having a wavelength of 0.7 to 3.5 μm) to dehydrate the solid film 80. The infrared heaters 40 are arranged to form a plurality of rows (seven rows of first to seventh heater rows 29a to 29g in this embodiment). The first to seventh heater rows 29a to 29f are also collectively referred to as a heater row 29. Each row of the heater rows 29 is composed of three infrared heaters 40 that are equally arranged in the vertical direction (a total of 21 infrared heaters 40). The first, third, fifth, and seventh heater rows 29a, 29c, 29e, and 29g are disposed immediately above the first, third, fifth, and seventh transport rollers 87a, 87c, 87e, and 87g, respectively. . The second, fourth, and sixth heater rows 29b, 29d, and 29f are disposed directly below the second, fourth, and sixth transport rollers 87b, 87d, and 87f, respectively. The heater row 29 is arranged alternately with the solid film 80 of the zigzag portion 81. That is, each row of the heater rows 29 is arranged side by side in the zigzag stacking direction (front-rear direction in FIG. 1) so that the solid film 80 of the zigzag portion 81 is sandwiched between the adjacent rows. The blower nozzle 20 is disposed between the heater row 29 and the solid film 80 in the front-rear direction, and fluid flows from the blower nozzle 20 into the space between each row of the heater row 29 and the solid film 80 of the zigzag portion 81. Is to be blown.
 また、ヒーター列29の各列は、各列を構成する3個の赤外線ヒーター40のいずれもが、隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向(図1の上下方向)にずれて配置されている。本実施形態では、ヒーター列29の各列の赤外線ヒーター40は、隣接する列の赤外線ヒーター40と上下に互い違いに配置され、側面視で千鳥状に配置されているものとした。例えば、第1ヒーター列29aの上から1番目,2番目の赤外線ヒーター40の上下方向の中間に、第2ヒーター列29bの上から1番目の赤外線ヒーター40が配置されている。そして、図1に示すように、第2ヒーター列29bの上から1番目の赤外線ヒーター40は、第1ヒーター列29aの上から1番目,2番目の赤外線ヒーター40と上下方向に距離d(≧0)だけ離れて配置されている。同様に、他の赤外線ヒーター40も、隣接する列の上下方向に最も近い赤外線ヒーター40に対して距離dだけ上下方向に離れて配置されている。また、第1,第3,第5,第7ヒーター列29a,29c,29e,29gの各列は、赤外線ヒーター40の上下方向の配置が互いに同じである。第2,第4,第6ヒーター列29b,29d,29fの各列は、赤外線ヒーター40の上下方向の配置が互いに同じである。 In addition, each row of the heater rows 29 has a direction perpendicular to the overlapping direction with respect to the infrared heaters 40 constituting the adjacent rows (up and down direction in FIG. 1). ). In the present embodiment, the infrared heaters 40 in each row of the heater rows 29 are alternately arranged above and below the adjacent infrared heaters 40, and are arranged in a staggered manner in a side view. For example, the first infrared heater 40 from the top of the second heater row 29b is arranged in the middle in the vertical direction of the first and second infrared heaters 40 from the top of the first heater row 29a. As shown in FIG. 1, the first infrared heater 40 from the top of the second heater array 29 b is separated from the first and second infrared heaters 40 from the top of the first heater array 29 a by a distance d (≧ 0) apart. Similarly, the other infrared heaters 40 are also arranged away from each other in the vertical direction by a distance d with respect to the infrared heaters 40 closest to the vertical direction of adjacent rows. The first, third, fifth, and seventh heater rows 29a, 29c, 29e, and 29g have the same arrangement in the vertical direction of the infrared heater 40. In each of the second, fourth, and sixth heater rows 29b, 29d, and 29f, the arrangement of the infrared heaters 40 in the vertical direction is the same.
 ヒーター列29を構成する複数の赤外線ヒーター40は、いずれも同様の構成をしている。また、複数の赤外線ヒーター40は、いずれも長手方向が固体フィルム80の搬送方向(前後方向)と直交するように取り付けられている。以下、1つの赤外線ヒーター40の構成について説明する。図2は、図1のA-A断面図である。赤外線ヒーター40は、図1の拡大部分及び図2に示すように、発熱体であるタングステン製のフィラメント41を内管42が囲むように形成されたヒーター本体43と、このヒーター本体43の外側に設けられ内管42を囲むように形成された外管44と、を備えており、これらの両端にはキャップ50が取り付けられている。内管42と外管44との間の空間は、冷媒(例えば空気)を流通可能な冷媒流路49となっている。また、赤外線ヒーター40は、外管44の表面温度を検出する温度センサ59を備えている(図2参照)。温度センサ59は、本実施形態では図2に示すように外管44の下側に配置されているものとしたが、外管44のうち固体フィルム80に最も近い側に配置してもよい。内管42,外管44は同心円状に配置されており、その円の中心にフィラメント41が位置するようになっている。 The plurality of infrared heaters 40 constituting the heater row 29 have the same configuration. The plurality of infrared heaters 40 are attached so that the longitudinal direction is orthogonal to the transport direction (front-rear direction) of the solid film 80. Hereinafter, the configuration of one infrared heater 40 will be described. FIG. 2 is a cross-sectional view taken along the line AA in FIG. As shown in the enlarged portion of FIG. 1 and FIG. 2, the infrared heater 40 includes a heater body 43 formed so that an inner tube 42 surrounds a tungsten filament 41 that is a heating element, and an outside of the heater body 43. And an outer tube 44 formed so as to surround the inner tube 42, and caps 50 are attached to both ends thereof. A space between the inner pipe 42 and the outer pipe 44 is a refrigerant flow path 49 through which a refrigerant (for example, air) can flow. The infrared heater 40 includes a temperature sensor 59 that detects the surface temperature of the outer tube 44 (see FIG. 2). In the present embodiment, the temperature sensor 59 is disposed below the outer tube 44 as shown in FIG. 2, but may be disposed on the outer tube 44 closest to the solid film 80. The inner tube 42 and the outer tube 44 are arranged concentrically, and the filament 41 is positioned at the center of the circle.
 ヒーター本体43は、両端がキャップ50の内部に配置されたホルダー55に支持されている。このヒーター本体43は、脱水室14の外部に配置された電力供給源60(図2参照)からフィラメント41へ電力が供給されて、フィラメント41が所定温度(例えば1200~1700℃)に加熱されると、赤外線を含む電磁波を放射する。フィラメント41が放射する電磁波は、特に限定するものではないが、例えば、ピーク波長が赤外線領域(波長が0.7μm~8μmの領域)や近赤外線領域(波長が0.7μm~3.5μmの領域)にあるものである。本実施形態では、ピーク波長が3μm付近の電磁波を放射するものとした。内管42は、フィラメント41を囲む断面円形の管であり、フィラメント41から放射された電磁波のうち3.5μmを超える波長の赤外線を吸収し且つ少なくとも近赤外線を透過する赤外線透過材料で形成されている。内管42に用いるこのような赤外線透過材料としては、例えば、ゲルマニウム、シリコン、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、硫化亜鉛、カルコゲナイドガラス、透過性アルミナセラミックスなどのほか、近赤外線を透過可能な石英ガラスなどが挙げられる。本実施形態では、内管42は、上述した赤外線透過材料のうち、電磁波の一部として波長が3.5μmを超える赤外線を吸収し且つ3.5μm以下の赤外線については透過する石英ガラスで形成されているものとした。また、内管42の内部は、真空雰囲気又はハロゲン雰囲気となっている。このフィラメント41に接続された電気配線41aは、キャップ50に設けられた配線引出部57を介して気密に外部へ引き出され、電力供給源60に接続されている。キャップ50は、図2に示すように、円盤状の蓋54と、その蓋54に立設された円筒部52とを一体成形したものである。外管44の左右両端は、円筒部52に固定されている。 The heater body 43 is supported at both ends by holders 55 arranged inside the cap 50. The heater body 43 is supplied with electric power from the power supply source 60 (see FIG. 2) disposed outside the dehydration chamber 14 to the filament 41, and the filament 41 is heated to a predetermined temperature (eg, 1200 to 1700 ° C.). And radiates electromagnetic waves including infrared rays. The electromagnetic wave radiated by the filament 41 is not particularly limited. For example, the peak wavelength is in the infrared region (the wavelength is 0.7 μm to 8 μm) or the near infrared region (the wavelength is 0.7 μm to 3.5 μm). ). In the present embodiment, an electromagnetic wave having a peak wavelength of about 3 μm is emitted. The inner tube 42 is a tube having a circular cross section surrounding the filament 41, and is formed of an infrared transmitting material that absorbs infrared rays having a wavelength exceeding 3.5 μm and transmits at least near infrared rays among electromagnetic waves radiated from the filament 41. Yes. Examples of such an infrared transmitting material used for the inner tube 42 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, transparent alumina ceramics, and near infrared rays. For example, quartz glass that can transmit light can be used. In the present embodiment, the inner tube 42 is formed of quartz glass that absorbs infrared light having a wavelength exceeding 3.5 μm as a part of the electromagnetic wave and transmits infrared light having a wavelength of 3.5 μm or less as a part of the electromagnetic wave. It was supposed to be. Further, the inside of the inner tube 42 is a vacuum atmosphere or a halogen atmosphere. The electric wiring 41 a connected to the filament 41 is drawn out to the outside airtightly via a wiring drawing portion 57 provided in the cap 50, and is connected to the power supply source 60. As shown in FIG. 2, the cap 50 is formed by integrally molding a disc-shaped lid 54 and a cylindrical portion 52 erected on the lid 54. The left and right ends of the outer tube 44 are fixed to the cylindrical portion 52.
 外管44は、上述した赤外線透過材料で形成された管である。本実施形態では、内管42と同様に、波長が3.5μmを超える赤外線を吸収し且つ3.5μm以下の赤外線については透過する石英ガラスで形成されているものとした。なお、外管44は、冷媒流路49を流れる冷媒によって、例えば200℃以下に冷却可能になっている。 The outer tube 44 is a tube formed of the above-described infrared transmitting material. In the present embodiment, like the inner tube 42, it is formed of quartz glass that absorbs infrared light having a wavelength exceeding 3.5 μm and transmits infrared light having a wavelength of 3.5 μm or less. The outer tube 44 can be cooled to, for example, 200 ° C. or less by the refrigerant flowing through the refrigerant flow path 49.
 冷媒流路49は、内管42と外管44との間の空間であり、キャップ50に設けられた流体出入口58を通じて冷媒が流通可能となっている。冷媒は、例えば空気などの流体である。流体出入口58は、脱水室14の外部に配置された冷媒供給源65と接続されている。この冷媒供給源65から供給された冷媒は、一方の流体出入口58から冷媒流路49内に流入し、冷媒流路49内を流通して他方の流体出入口58から流出する。冷媒流路49を流通する冷媒は、赤外線ヒーター40の外面である外管44の温度を直接的に下げる役割を果たす。 The refrigerant channel 49 is a space between the inner tube 42 and the outer tube 44, and the refrigerant can flow through the fluid inlet / outlet 58 provided in the cap 50. The refrigerant is a fluid such as air. The fluid inlet / outlet port 58 is connected to a refrigerant supply source 65 disposed outside the dehydration chamber 14. The refrigerant supplied from the refrigerant supply source 65 flows into the refrigerant channel 49 from one fluid inlet / outlet 58, flows through the refrigerant channel 49, and flows out from the other fluid inlet / outlet 58. The refrigerant flowing through the refrigerant flow path 49 plays a role of directly reducing the temperature of the outer tube 44 that is the outer surface of the infrared heater 40.
 反射板22a,22b(図1参照)は、赤外線ヒーター40から放射された電磁波のうち少なくとも近赤外線の一部を反射可能な板状の部材である。この反射板22a,22bは、固体フィルム80のジグザグ部分81のジグザグの重ね方向における外側の両方(両外側)に配置され、板表面が向き合うように配置されている。具体的には、反射板22aは、ジグザグ部分81よりも前方且つヒーター列29のうち最も前方に位置する第1ヒーター列29aよりも前方に配置されている。反射板22bは、ジグザグ部分81よりも後方且つヒーター列29のうち最も後方に位置する第7ヒーター列29gよりも後方に配置されている。また、反射板22a,22bの上端は、ヒーター列29の最も上に位置する赤外線ヒーター40(例えば、第1ヒーター列29aの一番上の赤外線ヒーター40)よりも上に位置し、反射板22a,22bの下端は、ヒーター列29の最も下に位置する赤外線ヒーター40(例えば、第2ヒーター列29bの一番下の赤外線ヒーター40)よりも下に位置するようになっている。反射板22a,22bの材料としては、例えばSUS304やアルミニウムなどの金属が挙げられる。また、反射板22a,22bは、板状の部材の表面(ジグザグ部分81側の面)を、赤外線ヒーター40から放射される電磁波のうち、少なくとも近赤外線を反射する赤外線反射材料でコーティングしたものとしてもよい。赤外線反射材料としては、例えば金,白金,アルミニウムなどが挙げられる。コーティングは、例えばスパッタリングやCVD、溶射といった成膜方法を用いて行ってもよい。 The reflection plates 22a and 22b (see FIG. 1) are plate-like members capable of reflecting at least a part of near infrared rays among electromagnetic waves radiated from the infrared heater 40. The reflecting plates 22a and 22b are arranged on both outer sides (both outer sides) in the zigzag overlapping direction of the zigzag portion 81 of the solid film 80, and are arranged so that the plate surfaces face each other. Specifically, the reflection plate 22 a is disposed in front of the zigzag portion 81 and in front of the first heater row 29 a located in the foremost position in the heater row 29. The reflection plate 22 b is disposed behind the zigzag portion 81 and behind the seventh heater row 29 g located most rearward among the heater rows 29. Further, the upper ends of the reflection plates 22a and 22b are located above the infrared heater 40 located at the top of the heater row 29 (for example, the uppermost infrared heater 40 of the first heater row 29a), and the reflection plate 22a. , 22b is located below the lowermost infrared heater 40 in the heater row 29 (for example, the lowermost infrared heater 40 in the second heater row 29b). Examples of the material of the reflecting plates 22a and 22b include metals such as SUS304 and aluminum. In addition, the reflecting plates 22a and 22b are obtained by coating the surface of the plate-like member (the surface on the zigzag portion 81 side) with an infrared reflecting material that reflects at least near infrared rays among electromagnetic waves radiated from the infrared heater 40. Also good. Examples of the infrared reflecting material include gold, platinum, and aluminum. The coating may be performed using a film forming method such as sputtering, CVD, or thermal spraying.
 固体フィルム80は、近赤外線の少なくとも一部を透過する緻密質のものである。また、固体フィルム80は、脱水室14に搬入される前などの脱水前において、内部の水分含有量が0質量%超過1質量%以下のものである。この固体フィルム80は、脱水室14での脱水後に、表面にスパッタリング等で透明導電膜を形成して透明導電フィルムとし、液晶ディスプレイや有機ELなどに用いられる。固体フィルム80は、このような透明導電フィルムに用いられるものであり、例えばPETフィルムなどの樹脂フィルムである。本実施形態では、固体フィルム80はPETフィルムとした。また、固体フィルム80は、特に限定するものではないが、例えば厚さ10~100μm、幅200~1000mmである。 The solid film 80 is a dense film that transmits at least part of near infrared rays. Further, the solid film 80 has an internal water content of more than 0% by mass and 1% by mass or less before dehydration such as before being carried into the dehydration chamber. The solid film 80 is used for a liquid crystal display, an organic EL, or the like by forming a transparent conductive film on the surface by sputtering or the like after dehydration in the dehydration chamber 14. The solid film 80 is used for such a transparent conductive film, and is, for example, a resin film such as a PET film. In the present embodiment, the solid film 80 is a PET film. The solid film 80 is not particularly limited, but has a thickness of 10 to 100 μm and a width of 200 to 1000 mm, for example.
 コントローラー70は、CPUを中心とするマイクロプロセッサーとして構成されている。このコントローラー70は、送風ノズル20の図示しない給気ファンや排気ファン26に制御信号を出力して、送風ノズル20から送風される流体の温度及び風量を制御したり、脱水室14の雰囲気の排気口28からの排気量を制御したりする。また、コントローラー70は、熱電対である温度センサ59が検出した外管44の温度を入力したり、冷媒供給源65と流体出入口58とを接続する配管の途中に設けられた開閉弁67及び流量調整弁68に制御信号を出力したりして、赤外線ヒーター40の冷媒流路49を流れる冷媒の流量を個別に制御する(図2参照)。更に、コントローラー70は、電力供給源60からフィラメント41へ供給される電力の大きさを調整するための制御信号を電力供給源60へ出力して、赤外線ヒーター40のフィラメント温度を個別に制御する(図2参照)。また、コントローラー70は、ロール84,86の回転速度や搬送ローラー87から流出させる流体の流量を制御することで、脱水室14内の固体フィルム80の通過時間や固体フィルム80にかかる張力を調整することができる。 The controller 70 is configured as a microprocessor centered on a CPU. The controller 70 outputs a control signal to an air supply fan and an exhaust fan 26 (not shown) of the air blowing nozzle 20 to control the temperature and air volume of the fluid blown from the air blowing nozzle 20 and exhaust the atmosphere of the dehydration chamber 14. The amount of exhaust from the port 28 is controlled. In addition, the controller 70 inputs the temperature of the outer pipe 44 detected by the temperature sensor 59 that is a thermocouple, and the on-off valve 67 and the flow rate provided in the middle of the pipe connecting the refrigerant supply source 65 and the fluid inlet / outlet 58. A control signal is output to the adjustment valve 68 to individually control the flow rate of the refrigerant flowing through the refrigerant flow path 49 of the infrared heater 40 (see FIG. 2). Further, the controller 70 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 60 to the filament 41 to the power supply source 60 to individually control the filament temperature of the infrared heater 40 ( (See FIG. 2). Further, the controller 70 adjusts the passage time of the solid film 80 in the dehydration chamber 14 and the tension applied to the solid film 80 by controlling the rotation speed of the rolls 84 and 86 and the flow rate of the fluid flowing out from the transport roller 87. be able to.
 次に、こうして構成された脱水装置10を用いて固体フィルム80を脱水する様子について説明する。まず、内部の水分含有量が0質量%超過1質量%以下である固体フィルム80を用意し、ロール84に巻き付けておく。ここで、水分含有量が0質量%超過1質量%以下である固体フィルム80は、例えば二軸延伸法により水分含有量が1質量%超過であるフィルム(本実施形態ではPET製のフィルム)を作製し、このフィルムを例えば熱風乾燥を行う乾燥炉などの周知の乾燥装置で乾燥することによって得ることができる。本実施形態では、このような乾燥装置により内部の水分含有量が0.1質量%以上1質量%以下の固体フィルム80を用意するものとした。 Next, how the solid film 80 is dehydrated by using the dehydrating apparatus 10 configured as described above will be described. First, a solid film 80 having an internal moisture content of more than 0 mass% and 1 mass% or less is prepared and wound around a roll 84. Here, the solid film 80 having a moisture content exceeding 0% by mass and 1% by mass or less is a film having a moisture content exceeding 1% by mass, for example, by a biaxial stretching method (in this embodiment, a PET film). The film can be prepared and dried by a known drying apparatus such as a drying furnace that performs hot-air drying. In the present embodiment, the solid film 80 having an internal moisture content of 0.1% by mass or more and 1% by mass or less is prepared using such a drying apparatus.
 このような固体フィルム80をロール84に巻き付けたものを用意すると、まず、脱水室14内を脱水時の所定の雰囲気にする。本実施形態では、脱水室14内を露点が-60℃以下の大気雰囲気とするものとした。脱水室14内の雰囲気の調整は、例えば送風ノズル20から露点が-60℃以下の空気を送風することにより行ってもよいし、他の図示しない給気装置により脱水時の雰囲気を供給することにより行ってもよい。続いて、コントローラー70がロール84,86,搬送ローラー87を動作させ、固体フィルム80の搬送を開始する。これにより、図1において脱水装置10の前方に配置されたロール84から固体フィルム80が巻き外され、脱水室14の開口17を通って脱水室14内へ搬入される。そして、固体フィルム80は、複数の搬送ローラー87により、ジグザグ部分81を有するようにジグザグに搬送される。その後、固体フィルム80は脱水室14の開口18を通って脱水室14から搬出されて、脱水室14の後方に設置されたロール86に巻き取られる。 When a roll obtained by winding such a solid film 80 around a roll 84 is prepared, first, the interior of the dehydration chamber 14 is set to a predetermined atmosphere during dehydration. In the present embodiment, the inside of the dehydration chamber 14 is an air atmosphere having a dew point of −60 ° C. or less. The atmosphere in the dehydration chamber 14 may be adjusted by, for example, blowing air having a dew point of −60 ° C. or less from the blow nozzle 20, or supplying the atmosphere during dehydration by another air supply device (not shown). May be performed. Subsequently, the controller 70 operates the rolls 84 and 86 and the transport roller 87 to start transporting the solid film 80. As a result, the solid film 80 is unwound from the roll 84 disposed in front of the dehydrating apparatus 10 in FIG. 1 and carried into the dehydrating chamber 14 through the opening 17 of the dehydrating chamber 14. Then, the solid film 80 is conveyed zigzag by the plurality of conveying rollers 87 so as to have the zigzag portion 81. Thereafter, the solid film 80 is unloaded from the dehydration chamber 14 through the opening 18 of the dehydration chamber 14, and is taken up by a roll 86 installed behind the dehydration chamber 14.
 このように固体フィルム80の連続的な搬送を行う間、コントローラー70は、送風ノズル20の図示しない吸気ファン,開閉弁67,流量調整弁68,電力供給源60,排気ファン26を制御する。これにより、固体フィルム80が脱水室14を通過する間(特に、固体フィルム80がジグザグ部分81にある間)に、ヒーター列29の各列の赤外線ヒーター40からジグザグ部分81の固体フィルム80に近赤外線が照射されて固体フィルム80内部の水分が脱水される。なお、赤外線ヒーター40は、上述したように3.5μmを超える波長の赤外線を吸収し且つ3.5μm以下の赤外線を透過する内管42及び外管44がフィラメント41を覆っている。そのため、赤外線ヒーター40から固体フィルム80へは、波長が3.5μm以下の赤外線(近赤外線)を含む電磁波が放射される。すなわち、内管42及び外管44が存在することで、フィラメント41から放射される電磁波のうち波長3.5μm以下の赤外線の割合を増大させた電磁波が、固体フィルム80へ放射される。なお、赤外線ヒーター40からジグザグ部分81とは反対方向に放射された近赤外線は、反射板22a,22bによりジグザグ部分81側に反射される。例えば、第1ヒーター列29aから前方(図1の左方向)に放射された近赤外線は、反射板22aによって後方(図1の右方向)に反射される。第7ヒーター列29gから後方に放射された近赤外線は、反射板22bによって前方に反射される。また、脱水で固体フィルム80内部から出た水分は送風ノズル20からの送風により除去される。水分を含んだ送風ノズル20からの送風は、パンチングプレート19を通過して排気装置25により排気される。なお、送風ノズル20からの送風は冷風であり、固体フィルム80の冷却も行う。本実施形態では、コントローラー70が、送風ノズル20からの送風の流量を予め定められた値に制御して、固体フィルム80(PET)のガラス転移点(約70℃)以下の所定値(例えば60℃、50℃、45℃など)となるように送風ノズル20からの送風の流量を制御するものとした。これに限らず、例えば固体フィルム80付近など脱水室14内に設けられた温度センサが検出した温度に基づいて固体フィルム80の温度がガラス転移点以下に保たれるように流量を調整するものとしてもよい。 During the continuous conveyance of the solid film 80 as described above, the controller 70 controls the intake fan, the opening / closing valve 67, the flow rate adjustment valve 68, the power supply source 60, and the exhaust fan 26 of the blower nozzle 20 which are not shown. Thus, while the solid film 80 passes through the dehydration chamber 14 (particularly, while the solid film 80 is in the zigzag portion 81), the infrared heater 40 in each row of the heater row 29 approaches the solid film 80 in the zigzag portion 81. Irradiation with infrared rays dehydrates the water inside the solid film 80. In the infrared heater 40, the filament 41 is covered with the inner tube 42 and the outer tube 44 that absorb infrared rays having a wavelength exceeding 3.5 μm and transmit infrared rays having a wavelength of 3.5 μm or less as described above. Therefore, electromagnetic waves including infrared rays (near infrared rays) having a wavelength of 3.5 μm or less are radiated from the infrared heater 40 to the solid film 80. That is, due to the presence of the inner tube 42 and the outer tube 44, an electromagnetic wave in which the proportion of infrared rays having a wavelength of 3.5 μm or less among the electromagnetic waves emitted from the filament 41 is increased is emitted to the solid film 80. The near infrared rays emitted from the infrared heater 40 in the direction opposite to the zigzag portion 81 are reflected to the zigzag portion 81 side by the reflecting plates 22a and 22b. For example, near infrared rays emitted forward (leftward in FIG. 1) from the first heater row 29a are reflected backward (rightward in FIG. 1) by the reflector 22a. Near infrared rays emitted backward from the seventh heater row 29g are reflected forward by the reflecting plate 22b. In addition, the moisture that has come out of the solid film 80 due to dehydration is removed by blowing air from the blowing nozzle 20. The air blown from the blower nozzle 20 containing moisture passes through the punching plate 19 and is exhausted by the exhaust device 25. Note that the air blown from the blower nozzle 20 is cold air and also cools the solid film 80. In the present embodiment, the controller 70 controls the flow rate of the blast from the blast nozzle 20 to a predetermined value, and a predetermined value (for example, 60) below the glass transition point (about 70 ° C.) of the solid film 80 (PET). The flow rate of the air blown from the blower nozzle 20 is controlled so that the air flow rate becomes 50 ° C, 50 ° C, 45 ° C, or the like. Not limited to this, for example, the flow rate is adjusted so that the temperature of the solid film 80 is kept below the glass transition point based on the temperature detected by the temperature sensor provided in the dehydration chamber 14 such as near the solid film 80. Also good.
 このように固体フィルム80の脱水を行うことで、開口18から搬出された状態すなわち脱水後の固体フィルム80の水分含有量は、脱水前の0.1質量%以上1質量%以下の状態から、より水分含有量の低い状態となる。本実施形態では、脱水後の固体フィルム80の水分含有量が所定の0.1質量%未満の所定の目標値(例えば100ppm)以下となるように、コントローラー70による赤外線ヒーター40の出力や送風ノズル20からの送風量、固体フィルム80の搬送速度などが実験により予め定められているものとした。脱水装置10による脱水後の固体フィルム80は、表面にスパッタリング等で透明導電膜が形成されて透明導電フィルムとなり、例えば液晶ディスプレイや有機ELなどに用いられる。 By performing dehydration of the solid film 80 in this way, the moisture content of the solid film 80 after being dehydrated, that is, after dehydration, is from 0.1% by mass to 1% by mass before dehydration. It will be in a state where moisture content is lower. In the present embodiment, the output of the infrared heater 40 by the controller 70 and the blow nozzle so that the water content of the solid film 80 after dehydration is less than a predetermined target value (for example, 100 ppm) less than a predetermined 0.1 mass%. The amount of air blown from 20, the conveyance speed of the solid film 80, and the like were determined in advance by experiments. The solid film 80 after being dehydrated by the dehydrating apparatus 10 has a transparent conductive film formed on the surface by sputtering or the like to become a transparent conductive film, and is used for, for example, a liquid crystal display or an organic EL.
 以上説明した第1実施形態の脱水装置10では、脱水前における内部の水分含有量が0質量%超過1質量%以下である固体フィルムに対して、赤外線ヒーター40により波長が3.5μm以下の赤外線(近赤外線)を含む電磁波を放射する。この波長の赤外線は、水分子に選択的にエネルギーを与えることができ、効率的に固体フィルム80の脱水を行うことができる。しかも、固体フィルム80は近赤外線の少なくとも一部を透過するため、赤外線ヒーター40からの近赤外線が固体フィルム80内部の水分に直に作用しやすい。これらにより、内部の水分含有量が0質量%超過1質量%以下である固体フィルム80をさらに脱水して、固体フィルム40内部の水分含有量を100ppm以下とするなど、水分含有量をより低減させることができる。しかも、固体フィルム80は緻密質なため水分が外部に逃げにくいが、本実施形態の脱水装置10は水分子に選択的にエネルギーを与えて脱水を行うことができるため、本発明を適用する意義が高い。また、固体フィルム80はPETフィルムでありガラス転移点が例えば約70℃と比較的低いが、PETフィルムは近赤外線ではほとんど加熱されないため、脱水中の固体フィルム80をガラス転移点以下に保ちやすく、本発明を適用する意義が高い。 In the dehydrating apparatus 10 according to the first embodiment described above, an infrared ray having a wavelength of 3.5 μm or less by the infrared heater 40 is applied to a solid film having an internal water content before dehydration exceeding 0% by mass and 1% by mass or less. Radiates electromagnetic waves including (near infrared). The infrared rays having this wavelength can selectively give energy to water molecules, and the solid film 80 can be efficiently dehydrated. In addition, since the solid film 80 transmits at least part of the near infrared rays, the near infrared rays from the infrared heater 40 easily act on the moisture in the solid film 80 directly. As a result, the moisture content is further reduced, for example, by dehydrating the solid film 80 having an internal moisture content of more than 0% by mass and not more than 1% by mass so that the moisture content in the solid film 40 is 100 ppm or less. be able to. Moreover, since the solid film 80 is dense and moisture does not easily escape to the outside, the dehydration apparatus 10 of the present embodiment can selectively dehydrate the water molecules, and therefore the significance of applying the present invention. Is expensive. Further, the solid film 80 is a PET film and has a relatively low glass transition point, for example, about 70 ° C., but since the PET film is hardly heated in the near infrared, it is easy to keep the solid film 80 during dehydration below the glass transition point, The significance of applying the present invention is high.
 また、脱水室14内で固体フィルム80をジグザグに搬送する搬送ローラー87を備え、赤外線ヒーター40は、複数のヒーター列29をなすように複数配置され、複数のヒーター列29は固体フィルム80を挟むようにジグザグの重ね方向に並べて配置されており、複数のヒーター列29のうち1以上の列が、ヒーター列29の各列を構成する赤外線ヒーター40のうち1以上が隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向にずれて配置されている。このため、ずれて配置された赤外線ヒーター40からの赤外線は固体フィルム80を透過してその先にある固体フィルムにも照射されやすい。例えば、第1ヒーター列29aの赤外線ヒーター40からの赤外線は、ジグザグ部分81のうち第1搬送ローラー87aと第2搬送ローラー87bとの間に掛け渡された固体フィルム80だけでなく、ジグザグ部分81のうち第2搬送ローラー87bと第3搬送ローラー87cとの間に掛け渡された固体フィルム80にも照射されやすい。これにより、1つの赤外線ヒーター40からの赤外線をより効率よく固体フィルム80に放射でき、より効率よく脱水を行うことができる。また、隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向にずれて赤外線ヒーター40を配置することで、固体フィルム80のうち近赤外線を吸収する領域が分散しやすくなるため、固体フィルム80の温度分布がばらつくのをより抑制することができる。なお、本実施形態では、複数のヒーター列29のいずれの列についても、列を構成する赤外線ヒーター40のいずれもが隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向にずれて配置されているため、これらの効果がより高いものとなる。 In addition, a transport roller 87 for transporting the solid film 80 in a zigzag manner in the dehydration chamber 14 is provided, and a plurality of infrared heaters 40 are arranged so as to form a plurality of heater rows 29, and the plurality of heater rows 29 sandwich the solid film 80. Are arranged side by side in the zigzag overlapping direction, and one or more rows among the plurality of heater rows 29 are arranged such that one or more of the infrared heaters 40 constituting each row of the heater rows 29 constitute an adjacent row. The heater 40 is arranged so as to be shifted in the direction perpendicular to the stacking direction. For this reason, the infrared rays from the infrared heaters 40 that are displaced are transmitted through the solid film 80 and are easily irradiated to the solid film beyond the infrared rays. For example, the infrared rays from the infrared heater 40 of the first heater row 29a are not only the zigzag portion 81, but the zigzag portion 81 as well as the solid film 80 spanned between the first conveyance roller 87a and the second conveyance roller 87b. Of these, the solid film 80 stretched between the second transport roller 87b and the third transport roller 87c is easily irradiated. Thereby, the infrared rays from one infrared heater 40 can be radiated to the solid film 80 more efficiently, and the dehydration can be performed more efficiently. In addition, by disposing the infrared heater 40 in a direction perpendicular to the overlapping direction with respect to the infrared heater 40 constituting the adjacent row, the region that absorbs near infrared rays in the solid film 80 is easily dispersed. The variation in the temperature distribution of the solid film 80 can be further suppressed. In the present embodiment, for any row of the plurality of heater rows 29, any of the infrared heaters 40 constituting the row is shifted in a direction perpendicular to the stacking direction with respect to the infrared heater 40 constituting the adjacent row. Therefore, these effects are higher.
 さらに、固体フィルム80のジグザグ部分81のジグザグの重ね方向における外側の両方に、赤外線ヒーター40からの電磁波のうち少なくとも近赤外線の一部を反射する反射板22a,22bを備えており、赤外線ヒーター40は、反射板22a,22bと固体フィルム80のジグザグ部分81との間に配置されてる。このため、赤外線ヒーター40から固体フィルム80のジグザグ部分81とは反対方向に放射される近赤外線を反射板22a,22bにより反射することができ、より効率よく固体フィルム80の脱水を行うことができる。 Further, on both the outer sides in the zigzag overlapping direction of the zigzag portion 81 of the solid film 80, reflectors 22a and 22b that reflect at least a part of near infrared rays among the electromagnetic waves from the infrared heater 40 are provided. Is disposed between the reflecting plates 22 a and 22 b and the zigzag portion 81 of the solid film 80. For this reason, the near infrared rays radiated from the infrared heater 40 in the direction opposite to the zigzag portion 81 of the solid film 80 can be reflected by the reflectors 22a and 22b, and the solid film 80 can be dehydrated more efficiently. .
 さらにまた、脱水室14内に流体を送風可能な送風ノズル20を備えている。そのため、固体フィルム80の脱水を赤外線ヒーター40により行うと共に、脱水で固体フィルム80内部から出た水分の除去を送風ノズル20からの送風により行って、より効率よく脱水を行うことができる。しかも、送風ノズル20から流体を送風することにより固体フィルム80の冷却を行うため、赤外線ヒーター40により固体フィルム80の脱水を行いつつ、送風により固体フィルム80の過熱を抑制することができる。 Furthermore, a blower nozzle 20 capable of blowing fluid in the dehydration chamber 14 is provided. For this reason, the solid film 80 can be dehydrated by the infrared heater 40, and the moisture removed from the solid film 80 by dehydration can be removed by blowing air from the blower nozzle 20, whereby the dehydration can be performed more efficiently. In addition, since the solid film 80 is cooled by blowing a fluid from the blowing nozzle 20, overheating of the solid film 80 can be suppressed by blowing while the solid film 80 is dehydrated by the infrared heater 40.
 そしてまた、脱水室14内は、脱水時に真空以外の雰囲気としている。本実施形態の脱水装置10は、近赤外線を照射することで真空以外の雰囲気であっても固体フィルム80内部の水分含有量をより低減させることができ、脱水室14内を真空雰囲気とする場合に比べて簡易な装置構成で脱水を行うことができる。また、脱水室14内は、脱水時に露点が-60℃以下の雰囲気とするため、固体フィルム80内部の水分含有量をより低い値まで脱水させやすい。 In addition, the interior of the dehydration chamber 14 is an atmosphere other than vacuum during dehydration. The dehydration apparatus 10 of this embodiment can further reduce the moisture content inside the solid film 80 even in an atmosphere other than vacuum by irradiating near infrared rays, and the interior of the dehydration chamber 14 is a vacuum atmosphere. Compared to the above, dehydration can be performed with a simple apparatus configuration. Further, since the inside of the dehydration chamber 14 has an atmosphere having a dew point of −60 ° C. or lower during dehydration, the water content in the solid film 80 can be easily dehydrated to a lower value.
[第2実施形態]
 次に本発明の第2実施形態について説明する。図3は、第2実施形態の脱水装置110の縦断面図である。脱水装置110は、送風ノズル20,反射板22a,22bを備えない点、複数の赤外線ヒーター40の代わりに、赤外線ヒーター40を備えた複数のノズル付きヒーター30を備える点、複数のヒーター列29の代わりに、ノズル付きヒーター30からなる複数のヒーター列129を備える点以外は、第1実施形態と同様の構成である。そのため、第2実施形態の構成要素のうち第1実施形態と同じ構成要素については第1実施形態と同じ符号を付してその説明を省略し、第1実施形態と異なる点について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 3 is a longitudinal sectional view of the dehydrating apparatus 110 of the second embodiment. The dehydrating device 110 does not include the blower nozzle 20 and the reflection plates 22a and 22b, includes a plurality of nozzle-equipped heaters 30 including the infrared heaters 40 in place of the plurality of infrared heaters 40, and includes a plurality of heater rows 29. Instead, the configuration is the same as that of the first embodiment except that a plurality of heater rows 129 each including the nozzle-equipped heater 30 are provided. Therefore, among the components of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, description thereof is omitted, and differences from the first embodiment will be described.
 ノズル付きヒーター30は、赤外線の照射と流体の送風とが可能なものであり、長手方向が固体フィルム80の搬送方向(前後方向)と直交するように取り付けられている。このノズル付きヒーター30には、一方の面からのみ送風可能なノズル付きヒーター30a,30b,30cと、2つの面から送風可能なノズル付きヒーター30dとの2種類がある。このノズル付きヒーター30は、複数の列(本実施形態では第1~第7ヒーター列129a~129gの7つの列)をなすように脱水室14内に配置されている。なお、第1~第7ヒーター列129a~129gをまとめてヒーター列129と称する。ヒーター列129の各列は、上下方向に均等配置された3個のノズル付きヒーター30で構成されている。ヒーター列29のうち最も前方に位置する第1ヒーター列129aは、後方の固体フィルム80に向けて送風可能な向きに配置された3個のノズル付きヒーター30aで構成されている。最も後方に位置する第7ヒーター列129gは、前方の固体フィルム80に向けて送風可能な向きに配置された3個のノズル付きヒーター30bで構成されている。それ以外の第2~第6ヒーター列129b~129fは、前方及び後方の固体フィルム80に向けて送風可能な向きに配置された各3個のノズル付きヒーター30dで構成されている。なお、ヒーター列129の各列の配置及び各列を構成するノズル付きヒーター30の配置は、第1実施形態のヒーター列29の配置及び赤外線ヒーター40の配置と同様である。例えば、図3に示すように、第2ヒーター列129bの上から1番目のノズル付きヒーター30dは、第1ヒーター列129aの上から1番目,2番目のノズル付きヒーター30aと上下方向に距離d(≧0)だけ離れて配置されている。また、脱水室14内には、ヒーター列129を構成するノズル付きヒーター30以外にも、固体フィルム80のジグザグ部分81以外の部分に対して赤外線の照射と送風とを行うノズル付きヒーター30が配置されている。具体的には、下方の固体フィルム80に向けて送風可能なノズル付きヒーター30cが、開口17と搬送ローラー87aとの間、及び開口18と搬送ローラー87gとの間、にそれぞれ1つずつ配置されている。 The heater 30 with a nozzle is capable of irradiating infrared light and blowing air, and is attached so that the longitudinal direction is orthogonal to the transport direction (front-rear direction) of the solid film 80. The nozzle-equipped heater 30 includes two types of nozzle-equipped heaters 30a, 30b, and 30c that can blow air from only one surface, and a nozzle-equipped heater 30d that can blow air from two surfaces. The nozzle-equipped heater 30 is arranged in the dehydration chamber 14 so as to form a plurality of rows (seven rows of first to seventh heater rows 129a to 129g in this embodiment). The first to seventh heater rows 129a to 129g are collectively referred to as a heater row 129. Each row of the heater rows 129 is composed of three nozzle-equipped heaters 30 that are equally arranged in the vertical direction. The first heater row 129a located in the foremost position among the heater rows 29 is composed of three nozzle-equipped heaters 30a arranged in a direction capable of blowing air toward the rear solid film 80. The seventh heater row 129g located on the rearmost side includes three heaters 30b with nozzles arranged in a direction in which air can be blown toward the front solid film 80. The other second to sixth heater rows 129b to 129f are each composed of three nozzle-equipped heaters 30d arranged in a direction capable of blowing air toward the front and rear solid films 80. The arrangement of the heater rows 129 and the arrangement of the heaters 30 with the nozzles constituting each row are the same as the arrangement of the heater rows 29 and the infrared heaters 40 in the first embodiment. For example, as shown in FIG. 3, the first nozzle-equipped heater 30d from the top of the second heater row 129b has a vertical distance d from the first and second nozzle-equipped heater 30a from the top of the first heater row 129a. They are separated by (≧ 0). In addition to the nozzle-equipped heater 30 that constitutes the heater row 129, the nozzle-equipped heater 30 that irradiates and blows infrared rays to portions other than the zigzag portion 81 of the solid film 80 is disposed in the dehydration chamber 14. Has been. Specifically, one nozzle-equipped heater 30c capable of blowing air toward the lower solid film 80 is disposed between the opening 17 and the transport roller 87a, and between the opening 18 and the transport roller 87g. ing.
 続いて、ノズル付きヒーター30aについて説明する。図4は、ノズル付きヒーター30aの拡大断面図である。図5は、図4のノズル付きヒーター30aをB-B面から見たBB視図である。なお、第7ヒーター列129gを構成するノズル付きヒーター30bは、第1ヒーター列129aを構成するノズル付きヒーター30aの前後を逆にした構成を有している。また、開口17と搬送ローラー87aとの間、及び開口18と搬送ローラー87gとの間、に配置されたノズル付きヒーター30cは、第1ヒーター列129aを構成するノズル付きヒーター30aを図4において右回りに90°回転させた構成を有している。ノズル付きヒーター30aは、図4に示すように、赤外線ヒーター40と、赤外線ヒーター40を覆う外周部31aと、を備えている。 Subsequently, the nozzle-equipped heater 30a will be described. FIG. 4 is an enlarged cross-sectional view of the nozzle-equipped heater 30a. FIG. 5 is a BB view of the nozzle-equipped heater 30a of FIG. 4 as viewed from the BB plane. The nozzle-equipped heater 30b constituting the seventh heater row 129g has a configuration in which the front and rear of the nozzle-equipped heater 30a constituting the first heater row 129a are reversed. Further, the nozzle-equipped heater 30c disposed between the opening 17 and the conveyance roller 87a and between the opening 18 and the conveyance roller 87g is the right of the nozzle-equipped heater 30a constituting the first heater row 129a in FIG. It has a configuration rotated 90 ° around. As shown in FIG. 4, the nozzle-equipped heater 30 a includes an infrared heater 40 and an outer peripheral portion 31 a that covers the infrared heater 40.
 外周部31aは、図4に示すように、第1~第4部材32~35と、赤外線透過露出面37を有する管状部材36aと、反射層38と、ノズル39a,39bと、封止部材90a,90bと、を備えている。第1部材32は、ノズル付きヒーター30aの最外周を構成する部材であり、後方(図4の右側)に開口を有している。第1部材32の後方の開口からは、第2,第3部材33,34の後端及び赤外線透過露出面37が露出している。第2部材33,第3部材34は、屈曲した板状の部材であり、それぞれ第1部材32と管状部材36aとの間に配置されると共に、第2部材33と第3部材34とで管状部材36aを上下から挟むように配置されている。第4部材35は、後方が開口するように屈曲した板状の部材であり、管状部材36aの前側を覆うと共に赤外線ヒーター40の前側及び上下を覆っている。第4部材35は、上側の後端が第2部材33の前端と接合され、下側の後側が第3部材34の前端と接合されている。第4部材35と第2部材33,第3部材34とは、例えば溶接などにより接合されている。これにより、第1部材32の内周面と第2~第4部材33~35の外周面とで囲まれる空間91が形成されている。第1部材32は、第1実施形態の送風ノズル20と同様の図示しない給気ファンや配管が接続されており、空間91は給気ファンからノズル39a,39bへの送風の流路となっている。なお、図示は省略するが、第1部材32は左右方向(図5の左右方向)の端部に側部を有し、第1部材32の内部の空間(空間91,92)の左右方向の端部はこの側部により閉じられている。また、第2~第4部材33~35の左右方向の端部は、この側部に溶接されている。第1~第4部材32~35の材料は例えば金属である。なお、第1~第4部材32~35は、例えばSUS304やアルミニウムなど、第1実施形態の反射板22a,22bと同様に少なくとも近赤外線の一部を反射可能な材料で形成することが好ましい。 As shown in FIG. 4, the outer peripheral portion 31a includes first to fourth members 32 to 35, a tubular member 36a having an infrared transmission exposed surface 37, a reflective layer 38, nozzles 39a and 39b, and a sealing member 90a. , 90b. The 1st member 32 is a member which comprises the outermost periphery of the heater 30a with a nozzle, and has an opening in back (right side of FIG. 4). From the rear opening of the first member 32, the rear ends of the second and third members 33 and 34 and the infrared transmission exposed surface 37 are exposed. The second member 33 and the third member 34 are bent plate-like members, and are disposed between the first member 32 and the tubular member 36a, respectively, and are tubular between the second member 33 and the third member 34. It arrange | positions so that the member 36a may be pinched | interposed from the upper and lower sides. The fourth member 35 is a plate-like member that is bent so that the rear side is open. The fourth member 35 covers the front side and the top and bottom of the infrared heater 40 while covering the front side of the tubular member 36a. The fourth member 35 has an upper rear end joined to the front end of the second member 33 and a lower rear side joined to the front end of the third member 34. The fourth member 35, the second member 33, and the third member 34 are joined together by welding, for example. Thus, a space 91 surrounded by the inner peripheral surface of the first member 32 and the outer peripheral surfaces of the second to fourth members 33 to 35 is formed. The first member 32 is connected to an unillustrated air supply fan and piping similar to the air blowing nozzle 20 of the first embodiment, and the space 91 is a flow path for air flow from the air supply fan to the nozzles 39a and 39b. Yes. Although not shown, the first member 32 has a side portion at the end in the left-right direction (the left-right direction in FIG. 5), and the left-right direction of the space (spaces 91, 92) inside the first member 32. The end is closed by this side. Further, the end portions of the second to fourth members 33 to 35 in the left-right direction are welded to the side portions. The material of the first to fourth members 32 to 35 is, for example, a metal. The first to fourth members 32 to 35 are preferably formed of a material capable of reflecting at least a part of near infrared rays, such as SUS304 or aluminum, as in the case of the reflectors 22a and 22b of the first embodiment.
 ノズル39aは、第1,第2部材32,33により形成されている。ノズル39bは、第1,第3部材32,34により形成されている。すなわち、第1,第2部材32,33はノズル39aを形成するノズル形成部材となっており、第1,第3部材32,34はノズル39bを形成するノズル形成部材となっている。具体的には、第1部材32の後上端と第2部材33の後端とは離間しており、これにより図5に示すように長手方向が左右方向(図5の左右方向)と平行なスリット状のノズル39aが赤外線透過露出面37の上側に形成されている。同様に、第1部材32の後下端と第3部材34の後端とは離間しており、これにより図5に示すように長手方向が左右方向(図5の左右方向)と平行なスリット状のノズル39bが赤外線透過露出面37の下側に形成されている。また、第1部材32の後上端部のうち第2部材33の後端部に対向する面と、第2部材33の後端部のうち第1部材32の後上端部に対向する面とは、いずれも後方に進むにつれて赤外線透過露出面37側(下方)に近づくように水平方向(前後方向)から傾斜している。これにより、空間91を通過してノズル39aから流れる流体は、この傾斜に沿って主に後方下向き(図3,4の右下方向)に流出する。同様に、第1部材32の後下端部のうち第3部材34の後端部に対向する面と、第3部材34の後端部のうち第1部材32の後下端部に対向する面とは、いずれも後方に進むにつれて赤外線透過露出面37側(上方)に近づくように水平方向(前後方向)から傾斜している。これにより、空間91を通過してノズル39bから流れる流体は、この傾斜に沿って主に後方上向き(図3,4の右上方向)に流出する。ノズル39a,ノズル39bから送風される流体は、第1実施形態の送風ノズル20から送風される流体と同じである。なお、ノズル形成部材である第1~第3部材32~34は、赤外線透過露出面37を覆わないように配置されている。 The nozzle 39 a is formed by the first and second members 32 and 33. The nozzle 39 b is formed by the first and third members 32 and 34. That is, the first and second members 32 and 33 are nozzle forming members that form the nozzles 39a, and the first and third members 32 and 34 are nozzle forming members that form the nozzles 39b. Specifically, the rear upper end of the first member 32 and the rear end of the second member 33 are separated from each other, so that the longitudinal direction is parallel to the left-right direction (left-right direction in FIG. 5) as shown in FIG. A slit-shaped nozzle 39 a is formed on the infrared transmission exposed surface 37. Similarly, the rear lower end of the first member 32 and the rear end of the third member 34 are separated from each other. As a result, as shown in FIG. 5, the longitudinal direction is a slit shape parallel to the left-right direction (left-right direction in FIG. 5). Nozzle 39b is formed below the infrared transmissive exposed surface 37. Further, a surface of the rear upper end portion of the first member 32 that faces the rear end portion of the second member 33 and a surface of the rear end portion of the second member 33 that faces the rear upper end portion of the first member 32 are , Both are inclined from the horizontal direction (front-rear direction) so as to approach the infrared transmission exposed surface 37 side (downward) as proceeding backward. Thereby, the fluid flowing through the space 91 and flowing from the nozzle 39a mainly flows out backward and downward (lower right in FIGS. 3 and 4) along this inclination. Similarly, the surface of the rear lower end portion of the first member 32 that faces the rear end portion of the third member 34, and the surface of the rear end portion of the third member 34 that faces the rear lower end portion of the first member 32, Are inclined from the horizontal direction (front-rear direction) so as to approach the infrared transmission exposed surface 37 side (upward) as they progress backward. Thereby, the fluid flowing through the space 91 and flowing from the nozzle 39b mainly flows out rearward upward (upper right direction in FIGS. 3 and 4) along this inclination. The fluid blown from the nozzle 39a and the nozzle 39b is the same as the fluid blown from the blow nozzle 20 of the first embodiment. The first to third members 32 to 34 that are nozzle forming members are arranged so as not to cover the infrared transmission exposed surface 37.
 管状部材36aは、赤外線ヒーター40の周囲を覆う管状の部材である。管状部材36aは、赤外線ヒーター40からの電磁波のうち少なくとも近赤外線の一部を透過可能であり、上述した赤外線透過材料を一体成形した部材である。本実施形態では、管状部材36aは、赤外線ヒーター40の外管44及び内管42と同様に、波長が3.5μmを超える赤外線を吸収し且つ3.5μm以下の赤外線については透過する石英ガラスで形成されているものとした。この管状部材36aは、後方に赤外線透過露出面37を有している。赤外線透過露出面37は、平面状に形成されており、その平面は垂直方向(図3,4の上下方向)と平行な面になっている。赤外線透過露出面37と、第1~第3部材32~34の後端とは、同じ平面上に位置している。また、管状部材36aの前側は、断面形状が例えばパラボラ、楕円の弧、円弧等の曲線形状となっている。本実施形態では、パラボラ形状になっているものとした。管状部材36aは、図示は省略するが左右方向(図5の左右方向)の端部に側部を有し、管状部材36aの内部の空間は左右方向の端部がこの側部によりほぼ閉じられている。また、赤外線ヒーター40のキャップ50(図2)は管状部材36aの側部を貫通しており、この側部が赤外線ヒーター40を支持している。さらに、管状部材36aは、この両端の側部が第1部材32の両端の側部に挟まれており、第1部材32の側部によって管状部材36aが保持されている。管状部材36aの前側の外表面には、反射層38が形成されている。この反射層38は、フィラメント41からみて赤外線透過露出面37とは反対側に設けられており、フィラメント41から放射される電磁波のうち少なくとも近赤外線の一部を反射する上述した赤外線反射材料で形成されている。反射層38は、管状部材36aの表面に塗布乾燥、スパッタリングやCVD、溶射といった成膜方法を用いて赤外線反射材料を成膜することで形成することができる。反射層38は、管状部材36aの前側の表面に形成されているため、断面は管状部材36aの前側の曲線形状に沿った形状をしている。そして、その曲線形状の焦点もしくは中心位置に赤外線ヒーター40(フィラメント41)が配置されている。そのため、フィラメント41から発せられた近赤外線の一部は、反射層38で反射され、赤外線透過露出面37を透過して効率的に後方の固体フィルム80へ照射される。本実施形態では、管状部材36a及び反射層38がパラボラ形状であるため、反射層38で反射した近赤外線は後方に水平に進んでいき、固体フィルム80のうち赤外線透過露出面37と前後方向に対向する領域に照射される。なお、ノズル付きヒーター30aにおいて、赤外線ヒーター40の冷媒流路49を流通する冷媒は、赤外線ヒーター40の外面である外管44の温度を直接的に下げる役割だけでなく、外管44の温度を下げることで赤外線透過露出面37の温度を間接的に下げる役割を果たす。なお、管状部材36aと外管44との間の空間を冷媒流路とし、この冷媒流路に冷媒を流通させることで直接的に赤外線透過露出面37の温度を下げてもよい。 The tubular member 36 a is a tubular member that covers the periphery of the infrared heater 40. The tubular member 36a is a member that is capable of transmitting at least a part of near-infrared rays among electromagnetic waves from the infrared heater 40 and is integrally formed with the above-described infrared transmitting material. In the present embodiment, the tubular member 36a is made of quartz glass that absorbs infrared light having a wavelength exceeding 3.5 μm and transmits infrared light having a wavelength of 3.5 μm or less, like the outer tube 44 and the inner tube 42 of the infrared heater 40. It was assumed that it was formed. The tubular member 36a has an infrared transmission exposed surface 37 on the rear side. The infrared transmission exposed surface 37 is formed in a planar shape, and the plane is a surface parallel to the vertical direction (the vertical direction in FIGS. 3 and 4). The infrared transmissive exposed surface 37 and the rear ends of the first to third members 32 to 34 are located on the same plane. Further, the front side of the tubular member 36a has a cross-sectional shape of a curved shape such as a parabola, an elliptical arc, or an arc. In the present embodiment, it is assumed that it has a parabolic shape. Although not shown, the tubular member 36a has a side portion at the end portion in the left-right direction (left-right direction in FIG. 5), and the end portion in the left-right direction is substantially closed by this side portion in the space inside the tubular member 36a. ing. Further, the cap 50 (FIG. 2) of the infrared heater 40 passes through the side portion of the tubular member 36 a, and this side portion supports the infrared heater 40. Further, the tubular member 36 a is sandwiched between the side portions at both ends of the first member 32, and the tubular member 36 a is held by the side portions of the first member 32. A reflective layer 38 is formed on the front outer surface of the tubular member 36a. The reflection layer 38 is provided on the side opposite to the infrared transmission exposed surface 37 when viewed from the filament 41, and is formed of the above-described infrared reflection material that reflects at least a part of the near infrared ray among the electromagnetic waves radiated from the filament 41. Has been. The reflective layer 38 can be formed by depositing an infrared reflective material on the surface of the tubular member 36a using a film deposition method such as coating and drying, sputtering, CVD, or thermal spraying. Since the reflective layer 38 is formed on the front surface of the tubular member 36a, the cross section has a shape along the curved shape of the front side of the tubular member 36a. And the infrared heater 40 (filament 41) is arrange | positioned in the focus or center position of the curve shape. Therefore, a part of the near infrared rays emitted from the filament 41 is reflected by the reflection layer 38, passes through the infrared transmission exposed surface 37, and is efficiently irradiated to the rear solid film 80. In the present embodiment, since the tubular member 36a and the reflective layer 38 are parabolic, the near infrared light reflected by the reflective layer 38 proceeds horizontally backward, and in the solid film 80, the infrared transmissive exposed surface 37 and the front-rear direction. The opposite area is irradiated. In the heater with nozzle 30a, the refrigerant flowing through the refrigerant flow path 49 of the infrared heater 40 not only directly lowers the temperature of the outer tube 44, which is the outer surface of the infrared heater 40, but also reduces the temperature of the outer tube 44. By lowering, the temperature of the infrared transmission exposed surface 37 is indirectly lowered. Note that the space between the tubular member 36a and the outer tube 44 may be a refrigerant flow path, and the temperature of the infrared transmission exposed surface 37 may be lowered directly by circulating the refrigerant through the refrigerant flow path.
 封止部材90a,90bは、第2~第4部材33~35で囲まれる空間92を封止する部材である。封止部材90aは、長手方向が左右方向と平行な棒状の部材であり、第2部材33の後端部と赤外線透過露出面37を有する管状部材36aの後上側(図4の右上側)との間のスリット状の開口を封止している。封止部材90bは、長手方向が左右方向と平行な棒状の部材であり、第3部材34の後端部と赤外線透過露出面37を有する管状部材36aの後下側(図4の右下側)との間のスリット状の開口を封止している。これにより、封止部材90a,90bは、ノズル39a,39bからの送風が空間92内に進入するのを抑制している。封止部材90a,90bは、例えば樹脂などの弾性体である。なお、封止部材90a,90bは中身の詰まった中実の部材であってもよいし、例えばチューブ状など中空の部材であってもよい。 The sealing members 90a and 90b are members that seal the space 92 surrounded by the second to fourth members 33 to 35. The sealing member 90a is a rod-like member whose longitudinal direction is parallel to the left-right direction, and the rear upper side (upper right side in FIG. 4) of the tubular member 36a having the rear end portion of the second member 33 and the infrared transmission exposed surface 37. A slit-shaped opening between the two is sealed. The sealing member 90b is a rod-like member whose longitudinal direction is parallel to the left-right direction, and the rear lower side of the tubular member 36a having the rear end portion of the third member 34 and the infrared transmission exposed surface 37 (lower right side in FIG. 4). ) Is sealed with a slit-shaped opening. As a result, the sealing members 90 a and 90 b prevent the air from the nozzles 39 a and 39 b from entering the space 92. The sealing members 90a and 90b are elastic bodies, such as resin, for example. The sealing members 90a and 90b may be solid members with solid contents, or may be hollow members such as tubes.
 次に、ノズル付きヒーター30dについて説明する。図6は、ノズル付きヒーター30dの拡大断面図である。ノズル付きヒーター30dは、図6に示すように、赤外線ヒーター40と、赤外線ヒーター40を覆う外周部31bと、を備えている。 Next, the nozzle-equipped heater 30d will be described. FIG. 6 is an enlarged cross-sectional view of the nozzle-equipped heater 30d. As shown in FIG. 6, the nozzle-equipped heater 30 d includes an infrared heater 40 and an outer peripheral portion 31 b that covers the infrared heater 40.
 外周部31bは、図6に示すように、上側第1部材32a,下側第1部材32b,前側第2部材33a,後側第2部材33b,前側第3部材34a,後側第3部材34b,上側第4部材35a,下側第4部材35bを備えている。また外周部31bは、赤外線透過露出面37a,37bを有する管状部材36bと、ノズル39c~39fと、封止部材90c~90fと、を備えている。上側第1部材32a,下側第1部材32bは、ノズル付きヒーター30dの最外周を構成する部材であり、前後(図6の左右)に開口を形成している。上側第1部材32a,下側第1部材32bの前方の開口からは、前側第2部材33a,前側第3部材34aの前端及び赤外線透過露出面37aが露出している。上側第1部材32a,下側第1部材32bの後方の開口からは、後側第2部材33b,後側第3部材34bの後端及び赤外線透過露出面37bが露出している。前側第2部材33a,前側第3部材34aは、屈曲した板状の部材であり、それぞれ上側第1部材32aと管状部材36bとの間、下側第1部材32bと管状部材36bとの間に配置されると共に、前側第2部材33aと前側第3部材34aとで管状部材36aを上下から挟むように配置されている。後側第2部材33b,後側第3部材34bについても、前側第2部材33aと前側第3部材34aと前後対象(図6の左右対称)な点を除いて同様に配置されている。上側第4部材35a,下側第4部材35bは、板状の部材であり、管状部材36b及び赤外線ヒーター40の上下に配置されている。上側第4部材35aは、前側第2部材33a及び後側第2部材33bに接合されている。下側第4部材35bは、前側第3部材34a及び後側第3部材34bに接合されている。これにより、上側第1部材32a,前側第2部材33a,後側第2部材33b,上側第4部材35aで囲まれる空間91aが形成され、下側第1部材32b,前側第3部材34a,後側第3部材34b,下側第4部材35bで囲まれる空間91bが形成されている。上側第1部材32a,下側第1部材32bは、第1実施形態の送風ノズル20と同様の図示しない給気ファンや配管が接続されており、空間91a、91bは給気ファンからノズル39c~39fへの送風の流路となっている。上側第1部材32a,下側第1部材32b,前側第2部材33a,後側第2部材33b,前側第3部材34a,後側第3部材34b,上側第4部材35a,下側第4部材35bの材料は、ノズル付きヒーター30aの第1~第4部材32~35と同様のものを用いることができる。 As shown in FIG. 6, the outer peripheral portion 31b includes an upper first member 32a, a lower first member 32b, a front second member 33a, a rear second member 33b, a front third member 34a, and a rear third member 34b. , An upper fourth member 35a and a lower fourth member 35b. The outer peripheral portion 31b includes a tubular member 36b having infrared transmission exposed surfaces 37a and 37b, nozzles 39c to 39f, and sealing members 90c to 90f. The upper first member 32a and the lower first member 32b are members constituting the outermost periphery of the nozzle-equipped heater 30d, and have openings formed in the front and rear (left and right in FIG. 6). From the front opening of the upper first member 32a and the lower first member 32b, the front end of the front second member 33a and the front third member 34a and the infrared transmission exposed surface 37a are exposed. From the rear openings of the upper first member 32a and the lower first member 32b, the rear end of the rear second member 33b, the rear third member 34b, and the infrared transmission exposed surface 37b are exposed. The front second member 33a and the front third member 34a are bent plate-shaped members, and are respectively between the upper first member 32a and the tubular member 36b and between the lower first member 32b and the tubular member 36b. It arrange | positions so that the tubular member 36a may be pinched | interposed from the upper and lower sides with the front side 2nd member 33a and the front side 3rd member 34a. The rear second member 33b and the rear third member 34b are also arranged in the same manner except for the front second member 33a, the front third member 34a, and the front / rear object (left-right symmetry in FIG. 6). The upper fourth member 35 a and the lower fourth member 35 b are plate-like members, and are disposed above and below the tubular member 36 b and the infrared heater 40. The upper fourth member 35a is joined to the front second member 33a and the rear second member 33b. The lower fourth member 35b is joined to the front third member 34a and the rear third member 34b. Thereby, a space 91a surrounded by the upper first member 32a, the front second member 33a, the rear second member 33b, and the upper fourth member 35a is formed, and the lower first member 32b, the front third member 34a, and the rear A space 91b surrounded by the third side member 34b and the lower fourth member 35b is formed. The upper first member 32a and the lower first member 32b are connected to an unillustrated air supply fan and piping similar to the blower nozzle 20 of the first embodiment, and the spaces 91a and 91b are connected to the nozzles 39c to 39c through the air supply fan. It becomes the flow path of the ventilation to 39f. Upper first member 32a, lower first member 32b, front second member 33a, rear second member 33b, front third member 34a, rear third member 34b, upper fourth member 35a, lower fourth member As the material of 35b, the same material as that of the first to fourth members 32 to 35 of the nozzle-equipped heater 30a can be used.
 ノズル39cは、上側第1部材32aの前端と前側第2部材33aの前端とにより形成されている。ノズル39dは、下側第1部材32bの前端と前側第3部材34aの前端とにより形成されている。ノズル39eは、上側第1部材32aの後端と後側第2部材33bの後端とにより形成されている。ノズル39fは、下側第1部材32bの後端と後側第3部材34bの後端とにより形成されている。すなわち、上側第1部材32a,下側第1部材32b,前側第2部材33a,後側第2部材33b,前側第3部材34a,後側第3部材34bはノズル39c~39fを形成するノズル形成部材となっている。これらのノズル39c~39fは、ノズル付きヒーター30aのノズル39a,39bと同様に、長手方向が左右方向と平行なスリット状のノズルとして形成されている。また、上側第1部材32aの前後端,下側第1部材32bの前後端,前側第2部材33aの前端,後側第2部材33bの後端,前側第3部材34aの前端,後側第3部材34bの後端の各面が水平方向から傾斜している。これにより、空間91a,91bを通過してノズル39c,39dから流れる流体は、この傾斜に沿って赤外線透過露出面37aに近づくように流出する。同様に、空間91a,91bを通過してノズル39e,39fから流れる流体は、この傾斜に沿って赤外線透過露出面37bに近づくように流出する。具体的には、ノズル39cから流れる流体は前方下向きに流出し、ノズル39dから流れる流体は前方上向きに流出する。ノズル39eから流れる流体は後方下向きに流出し、ノズル39fから流れる流体は後方上向きに流出する。ノズル39c~39fから送風される流体は、第1実施形態の送風ノズル20から送風される流体と同じである。なお、ノズル形成部材である上側第1部材32a,下側第1部材32b,前側第2部材33a,後側第2部材33b,前側第3部材34a,後側第3部材34bは、赤外線透過露出面37a,37bを覆わないように配置されている。 The nozzle 39c is formed by the front end of the upper first member 32a and the front end of the front second member 33a. The nozzle 39d is formed by the front end of the lower first member 32b and the front end of the front third member 34a. The nozzle 39e is formed by the rear end of the upper first member 32a and the rear end of the rear second member 33b. The nozzle 39f is formed by the rear end of the lower first member 32b and the rear end of the rear third member 34b. That is, the upper first member 32a, the lower first member 32b, the front second member 33a, the rear second member 33b, the front third member 34a, and the rear third member 34b form nozzles 39c to 39f. It is a member. These nozzles 39c to 39f are formed as slit-like nozzles whose longitudinal direction is parallel to the left-right direction, similarly to the nozzles 39a and 39b of the nozzle-equipped heater 30a. Also, the front and rear ends of the upper first member 32a, the front and rear ends of the lower first member 32b, the front end of the front second member 33a, the rear end of the rear second member 33b, the front end of the front third member 34a, and the rear first Each surface of the rear end of the three members 34b is inclined from the horizontal direction. As a result, the fluid that passes through the spaces 91a and 91b and flows from the nozzles 39c and 39d flows out so as to approach the infrared transmission exposed surface 37a along this inclination. Similarly, the fluid that passes through the spaces 91a and 91b and flows from the nozzles 39e and 39f flows out so as to approach the infrared transmission exposed surface 37b along this inclination. Specifically, the fluid flowing from the nozzle 39c flows out forward and downward, and the fluid flowing from the nozzle 39d flows out forward and upward. The fluid flowing from the nozzle 39e flows backward and downward, and the fluid flowing from the nozzle 39f flows backward and upward. The fluid blown from the nozzles 39c to 39f is the same as the fluid blown from the blow nozzle 20 of the first embodiment. The upper first member 32a, the lower first member 32b, the front second member 33a, the rear second member 33b, the front third member 34a, and the rear third member 34b, which are nozzle forming members, are exposed to infrared rays. It arrange | positions so that the surface 37a, 37b may not be covered.
 管状部材36bは、赤外線ヒーター40の周囲を覆う管状の部材である。管状部材36bは、ノズル付きヒーター30aの管状部材36aと同様に赤外線透過材料を一体成形した部材であり、本実施形態では、管状部材36aと同じ石英ガラスで形成されているものとした。この管状部材36bは、前方に赤外線透過露出面37aを有し、後方に赤外線透過露出面37bを有している。赤外線透過露出面37a,37bは、平面状に形成されており、その平面は垂直方向(図3,6の上下方向)と平行な面になっている。赤外線透過露出面37aと、上側第1部材32a,下側第1部材32b,前側第2部材33a,前側第3部材34aの前端とは、同じ平面上に位置している。同様に、赤外線透過露出面37bと、上側第1部材32a,下側第1部材32b,後側第2部材33b,後側第3部材34bの後端とは、同じ平面上に位置している。赤外線ヒーター40から発せられた近赤外線を含む電磁波は、この赤外線透過露出面37a,37bを透過して固体フィルム80のうち赤外線透過露出面37a,37bと前後方向に対向する領域に照射される。なお、ノズル付きヒーター30dにおいて、赤外線ヒーター40の冷媒流路49を流通する冷媒は、赤外線ヒーター40の外面である外管44の温度を直接的に下げる役割だけでなく、外管44の温度を下げることで赤外線透過露出面37a,37bの温度を間接的に下げる役割を果たす。なお、管状部材36bと外管44との間の空間を冷媒流路とし、この冷媒流路に冷媒を流通させることで直接的に赤外線透過露出面37a,37bの温度を下げてもよい。 The tubular member 36 b is a tubular member that covers the periphery of the infrared heater 40. The tubular member 36b is a member formed by integrally forming an infrared transmitting material in the same manner as the tubular member 36a of the nozzle-equipped heater 30a. In the present embodiment, the tubular member 36b is formed of the same quartz glass as the tubular member 36a. The tubular member 36b has an infrared transmission exposed surface 37a on the front side and an infrared transmission exposed surface 37b on the rear side. The infrared transmissive exposed surfaces 37a and 37b are formed in a planar shape, and the plane is a surface parallel to the vertical direction (the vertical direction in FIGS. 3 and 6). The infrared transmission exposed surface 37a and the front ends of the upper first member 32a, the lower first member 32b, the front second member 33a, and the front third member 34a are located on the same plane. Similarly, the infrared transmission exposed surface 37b and the rear ends of the upper first member 32a, the lower first member 32b, the rear second member 33b, and the rear third member 34b are located on the same plane. . Electromagnetic waves including near infrared rays emitted from the infrared heater 40 pass through these infrared transmission exposed surfaces 37a and 37b and are irradiated to regions of the solid film 80 facing the infrared transmission exposed surfaces 37a and 37b in the front-rear direction. In the heater with nozzle 30d, the refrigerant flowing through the refrigerant flow path 49 of the infrared heater 40 not only plays a role of directly lowering the temperature of the outer tube 44 that is the outer surface of the infrared heater 40, but also reduces the temperature of the outer tube 44. By lowering, the temperature of the infrared transmissive exposed surfaces 37a and 37b is indirectly lowered. Note that the space between the tubular member 36b and the outer tube 44 may be a refrigerant flow path, and the temperature of the infrared transmission exposed surfaces 37a and 37b may be lowered directly by circulating the refrigerant through the refrigerant flow path.
 封止部材90c~90fは、前側第2部材33a,後側第2部材33b,上側第4部材35a,管状部材36bで囲まれる空間92aや、前側第3部材34a,後側第3部材34b,下側第4部材35b,管状部材36bで囲まれる空間92bを封止する部材である。封止部材90c~90fは、長手方向が左右方向と平行な棒状の部材であり、空間91a,91bのスリット状の開口を封止している。これにより、封止部材90c~90fは、ノズル39c~39fからの送風が空間92a,92b内に進入するのを抑制している。封止部材90c~90fは、ノズル付きヒーター30aの封止部材90a,90bと同様のものを用いることができる。 The sealing members 90c to 90f include the space 92a surrounded by the front second member 33a, the rear second member 33b, the upper fourth member 35a, and the tubular member 36b, the front third member 34a, the rear third member 34b, It is a member that seals the space 92b surrounded by the lower fourth member 35b and the tubular member 36b. The sealing members 90c to 90f are rod-shaped members whose longitudinal direction is parallel to the left-right direction, and seal the slit-shaped openings in the spaces 91a and 91b. As a result, the sealing members 90c to 90f suppress the blowing of air from the nozzles 39c to 39f from entering the spaces 92a and 92b. The sealing members 90c to 90f can be the same as the sealing members 90a and 90b of the nozzle-equipped heater 30a.
 この脱水装置110は、上述した脱水装置10と同様に脱水室14の雰囲気を調整し、固体フィルム80を搬送し、ノズル付きヒーター30が赤外線ヒーター40からの近赤外線の照射とノズル39a~39fからの送風とを行うことで、脱水装置10と同様に例えば水分含有量が100ppm以下まで固体フィルム80の脱水を行うことができる。 The dehydrator 110 adjusts the atmosphere of the dehydration chamber 14 in the same manner as the dehydrator 10 described above, conveys the solid film 80, and the heater 30 with the nozzle emits near-infrared rays from the infrared heater 40 and the nozzles 39a to 39f. By performing the ventilation, the solid film 80 can be dehydrated to a water content of 100 ppm or less, for example, in the same manner as the dehydrator 10.
 以上説明した第2実施形態の脱水装置110では、ヒーター列129のうち固体フィルム80のジグザグ部分81のジグザグの重ね方向における外側の両方に配置された外側列、すなわち第1ヒーター列129a及び第7ヒーター列129g、を構成するノズル付きヒーター30a,30bの赤外線ヒーター40は、図4に示したように管状部材36aに形成された反射層38を有している。この反射層38は、フィラメント41からみて固体フィルム80のジグザグ部分81とは反対側に形成されている。そのため、第1ヒーター列129aの赤外線ヒーター40及び第7ヒーター列129gの赤外線ヒーター40からジグザグ部分81とは反対方向に放射される近赤外線は、反射層38によりジグザグ部分81側に反射される。これにより、赤外線ヒーター40からの近赤外線をより効率よく固体フィルム80に照射することができ、より効率よく固体フィルムの脱水を行うことができる。 In the dehydrating apparatus 110 according to the second embodiment described above, the outer rows arranged in the zigzag overlapping direction of the zigzag portion 81 of the solid film 80 in the heater row 129, that is, the first heater row 129a and the seventh heater row 129 are arranged. The infrared heater 40 of the nozzle-equipped heaters 30a and 30b constituting the heater row 129g has a reflective layer 38 formed on the tubular member 36a as shown in FIG. The reflection layer 38 is formed on the side opposite to the zigzag portion 81 of the solid film 80 when viewed from the filament 41. Therefore, near infrared rays radiated from the infrared heater 40 of the first heater row 129a and the infrared heater 40 of the seventh heater row 129g in the direction opposite to the zigzag portion 81 are reflected by the reflective layer 38 toward the zigzag portion 81 side. Thereby, the near infrared rays from the infrared heater 40 can be irradiated to the solid film 80 more efficiently, and the solid film can be dehydrated more efficiently.
 また、ノズル付きヒーター30a~30cが赤外線ヒーター40と固体フィルム80に対して流体を送風可能なノズル39a,39bとを備え、ノズル付きヒーター30dが赤外線ヒーター40と固体フィルム80に対して流体を送風可能なノズル39c~39fとを備えている。そのため、固体フィルム80の脱水を赤外線ヒーター40により行うと共に、脱水で固体フィルム80内部から出た水分の除去をノズル39a~39fからの送風により行って、より効率よく脱水を行うことができる。しかも、ノズル39a~39fから流体を送風することにより固体フィルム80の冷却を行うことで、赤外線ヒーター40により固体フィルム80の脱水を行いつつ、送風により固体フィルム80の過熱を抑制することができる。 The heaters 30a to 30c with nozzles are provided with nozzles 39a and 39b capable of blowing fluid to the infrared heater 40 and the solid film 80, and the heater 30d with nozzle blows fluid to the infrared heater 40 and the solid film 80. Possible nozzles 39c to 39f. Therefore, the solid film 80 can be dehydrated by the infrared heater 40, and moisture removed from the solid film 80 by dehydration can be removed by blowing air from the nozzles 39a to 39f, so that the dehydration can be performed more efficiently. In addition, by cooling the solid film 80 by blowing fluid from the nozzles 39a to 39f, the solid film 80 can be dehydrated by the infrared heater 40, and overheating of the solid film 80 can be suppressed by blowing.
 しかも、ノズル付きヒーター30aでは、ノズル39aは後下方向(図4の右下方向)に向かって流体を送風し、ノズル39bは後上方向(図4の右上方向)に向かって流体を送風するから、赤外線ヒーター40から赤外線透過露出面37を透過して近赤外線が照射される領域(図4における赤外線透過露出面37に対向する領域及びその周辺の領域)にノズル39a,39bから直接流体が当たることになる。換言すると、本実施形態では、固体フィルム80のうち近赤外線が照射される領域と流体が直接当たる領域(ノズル39a,39bからの送風の流出方向の延長上の領域)とが重なるように、第1~第3部材32~34の後端部の傾斜角やノズル付きヒーター30aと固体フィルム80との距離が予め調整されている。これにより、近赤外線により脱水された水分を送風によって効率よく除去できる。ノズル付きヒーター30b,30cや、ノズル付きヒーター30dについても同様である。 Moreover, in the heater 30a with nozzle, the nozzle 39a blows fluid toward the rear lower direction (lower right direction in FIG. 4), and the nozzle 39b blows fluid toward the rear upper direction (upper right direction in FIG. 4). From the nozzles 39a and 39b, a fluid is directly applied to a region (a region facing the infrared transmissive exposed surface 37 in FIG. 4 and a peripheral region thereof) that is irradiated with near infrared rays through the infrared transmissive exposed surface 37 from the infrared heater 40. You will win. In other words, in the present embodiment, the region of the solid film 80 where the near infrared ray is irradiated and the region where the fluid directly hits (the region on the extension of the outflow direction of the air flow from the nozzles 39a, 39b) overlap. The inclination angle of the rear ends of the first to third members 32 to 34 and the distance between the nozzle-equipped heater 30a and the solid film 80 are adjusted in advance. Thereby, the water | moisture content dehydrated by near infrared rays can be efficiently removed by ventilation. The same applies to the heaters 30b and 30c with nozzles and the heater 30d with nozzles.
 さらに、ノズル付きヒーター30a~30cは、ノズル39a,39bと外部に露出しフィラメント41からの電磁波のうち少なくとも近赤外線の一部を透過して固体フィルム80に照射可能な赤外線透過露出面37とを有し赤外線ヒーター40の周囲の少なくとも一部を覆う外周部31aと、赤外線透過露出面37を冷却する冷媒が流通可能な冷媒流路49と、を有している。同様に、ノズル付きヒーター30dは、ノズル39c~39fと赤外線透過露出面37a,37bとを有する外周部31bと、冷媒流路49とを有している。そのため、外部に露出する面である赤外線透過露出面37,37a,37bの過熱を、冷媒の流通によってより抑制することができる。そして、赤外線透過露出面37,37a,37bの過熱をより抑制することで、例えば固体フィルム80や脱水室14内の雰囲気の過熱をより抑制することができる。また、ノズル付きヒーター30と固体フィルム80との距離(赤外線透過露出面37,37a,37bと固体フィルム80との距離)をより小さくして近赤外線を効率よく照射し、脱水効率を向上させることができる。 Furthermore, the heaters 30a to 30c with nozzles include nozzles 39a and 39b and an infrared transmission exposed surface 37 that is exposed to the outside and can transmit at least a part of near infrared rays of the electromagnetic waves from the filament 41 and irradiate the solid film 80. And an outer peripheral portion 31a covering at least a part of the periphery of the infrared heater 40 and a refrigerant flow path 49 through which a refrigerant for cooling the infrared transmission exposed surface 37 can flow. Similarly, the nozzle-equipped heater 30d includes an outer peripheral portion 31b having nozzles 39c to 39f and infrared ray transmission exposed surfaces 37a and 37b, and a refrigerant flow path 49. Therefore, overheating of the infrared transmission exposed surfaces 37, 37a, and 37b that are surfaces exposed to the outside can be further suppressed by circulation of the refrigerant. And the overheating of the atmosphere in the solid film 80 or the dehydration chamber 14 can be suppressed more by suppressing the overheating of the infrared transmission exposed surfaces 37, 37a, and 37b more. In addition, the distance between the nozzle-equipped heater 30 and the solid film 80 (the distance between the infrared transmissive exposed surfaces 37, 37a, 37b and the solid film 80) is further reduced to efficiently irradiate near infrared rays, thereby improving the dehydration efficiency. Can do.
 さらにまた、ノズル付きヒーター30dは、赤外線ヒーター40を1つ有し、ジグザグ部分81の固体フィルム80に挟まれて配置されており、自身を挟む固体フィルム80のそれぞれに対して流体を送風可能な複数のノズル39c~39fを有している。すなわち、ノズル付きヒーター30dは、前方の固体フィルム80に流体を送風可能なノズル39c~39dと、後方の固体フィルム80に流体を送風可能なノズル39e~39fとを有している。こうすれば、1つの赤外線ヒーター40を備えたノズル付きヒーター30dから自身を挟む両側の固体フィルム80に対して近赤外線の照射と送風とを行うことができる。このため、例えばノズル付きヒーター30dの代わりにノズル付きヒーター30a,30bを背中合わせに配置するなど、前後の固体フィルム80に対して別々にノズル付きヒーター30a,30bを配置する場合と比べて少数の赤外線ヒーター40で脱水を行うことができる。 Furthermore, the nozzle-equipped heater 30d has one infrared heater 40 and is sandwiched between the solid films 80 of the zigzag portion 81, and can blow fluid to each of the solid films 80 sandwiching itself. A plurality of nozzles 39c to 39f are provided. In other words, the nozzle-equipped heater 30d includes nozzles 39c to 39d capable of blowing fluid to the front solid film 80 and nozzles 39e to 39f capable of blowing fluid to the rear solid film 80. If it carries out like this, near infrared irradiation and ventilation can be performed with respect to the solid film 80 of the both sides which pinch | interpose itself from the heater 30d with a nozzle provided with the one infrared heater 40. FIG. For this reason, for example, the heaters 30a and 30b with nozzles are arranged back-to-back instead of the heater 30d with nozzles. Dehydration can be performed with the heater 40.
 ここで、第1~第2実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。第1~第2実施形態の脱水室14が本発明の脱水室に相当し、第1~第2実施形態のフィラメント41が発熱体に相当し、第1~第2実施形態の内管42,外管44及び第2実施形態の管状部材36a,36bが管に相当し、第1~第2実施形態の赤外線ヒーター40が赤外線ヒーターに相当する。また、第1~第2実施形態の搬送ローラー87が搬送手段に相当し、第2実施形態の反射層38が反射層に相当し、第1実施形態の反射板22a,22bが反射板に相当し、第1実施形態の送風ノズル20及び第2実施形態のノズル39a~39fが送風手段に相当する。さらに、第2実施形態のノズル39a~39fがノズルに相当し、第2実施形態のノズル付きヒーター30がノズル付きヒーターに相当し、第2実施形態の赤外線透過露出面37,37a,37bが赤外線透過露出面に相当し、第2実施形態の外周部31a,31bが外周部に相当し、第2実施形態の冷媒流路49が冷媒流路に相当する。 Here, the correspondence between the constituent elements of the first and second embodiments and the constituent elements of the present invention will be clarified. The dehydration chamber 14 of the first to second embodiments corresponds to the dehydration chamber of the present invention, the filament 41 of the first to second embodiments corresponds to a heating element, the inner tube 42 of the first to second embodiments, The outer tube 44 and the tubular members 36a, 36b of the second embodiment correspond to tubes, and the infrared heater 40 of the first and second embodiments corresponds to an infrared heater. Further, the transport roller 87 of the first and second embodiments corresponds to a transport unit, the reflective layer 38 of the second embodiment corresponds to a reflective layer, and the reflective plates 22a and 22b of the first embodiment correspond to reflective plates. The blowing nozzle 20 of the first embodiment and the nozzles 39a to 39f of the second embodiment correspond to blowing means. Furthermore, the nozzles 39a to 39f of the second embodiment correspond to nozzles, the heater 30 with nozzles of the second embodiment corresponds to a heater with nozzles, and the infrared transmission exposed surfaces 37, 37a, 37b of the second embodiment are infrared rays. It corresponds to a transmission exposed surface, the outer peripheral portions 31a and 31b of the second embodiment correspond to the outer peripheral portion, and the refrigerant channel 49 of the second embodiment corresponds to the refrigerant channel.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した第1実施形態において、ヒーター列29の各列が備える赤外線ヒーター40の数が同じとしたが、これに限られない。例えば、搬送方向(前後方向)の下流側が密になる傾向に赤外線ヒーター40を配置してもよいし、搬送方向の上流側が密になる傾向に赤外線ヒーター40を配置してもよい。図7は、変形例の脱水装置210の縦断面図である。図7に示すように、脱水装置210では、搬送方向の一番奥の第7ヒーター列29gが6個の赤外線ヒーター40で構成されており、第2~第6ヒーター列29b~29fと比べて赤外線ヒーター40が密になっている。ここで、搬送方向の下流側、すなわち脱水室14での脱水工程の終期は、固体フィルム80の水分が減少しており固体フィルム80の変形などの問題が生じにくい。そのため、下流側の赤外線ヒーター40を密に配置して近赤外線の放射強度を高めることで脱水機能を効率よく向上させ脱水時間を短縮することができる。また、脱水装置210では、搬送方向の一番手前の第1ヒーター列29aが6個の赤外線ヒーター40で構成されており、第2~第6ヒーター列29b~29fと比べて赤外線ヒーター40が密になっている。ここで、搬送方向の上流側、すなわち脱水室14での脱水工程の初期は、固体フィルム80の表面に水分が付着している場合がある。そのため、搬送方向の上流側が密になる傾向に赤外線ヒーター40を配置することで、そのような水分を脱水初期に速やかに蒸発させて脱水時間を短縮することができる。なお、搬送方向の上流側と下流側とのいずれか一方のみ赤外線ヒーター40が密になる傾向に配置するものとしてもよい。また、図7では一番手前の第1ヒーター列29aと一番奥の第7ヒーター列29gのみ赤外線ヒーター40を密に配置しているが、これに限られない。例えば、下流側が密になる傾向に赤外線ヒーター40を配置する場合には、下流側に向かって徐々に赤外線ヒーター40が密になる(徐々に各列の赤外線ヒーター40の本数が多くなる)ようにしてもよい。同様に、上流側が密になる傾向に赤外線ヒーター40を配置する場合には、上流側に向かって徐々に赤外線ヒーター40が密になる(徐々に各列の赤外線ヒーター40の本数が多くなる)ようにしてもよい。また、図7では、赤外線ヒーター40が上下方向に密になるように配置しているが、これに限らず前後方向に密になるように赤外線ヒーター40を配置してもよい。なお、図7では、第1実施形態の変形例を示したが、第2実施形態のノズル付きヒーター30の配置についても同様である。 For example, in the first embodiment described above, the number of the infrared heaters 40 provided in each row of the heater rows 29 is the same, but the present invention is not limited to this. For example, the infrared heater 40 may be disposed so that the downstream side in the transport direction (front-rear direction) is dense, or the infrared heater 40 may be disposed so that the upstream side in the transport direction is dense. FIG. 7 is a longitudinal sectional view of a dehydrating apparatus 210 according to a modification. As shown in FIG. 7, in the dehydrating apparatus 210, the innermost seventh heater row 29g in the transport direction is composed of six infrared heaters 40, compared to the second to sixth heater rows 29b to 29f. The infrared heater 40 is dense. Here, at the downstream side in the transport direction, that is, at the end of the dehydration process in the dehydration chamber 14, the moisture of the solid film 80 is reduced, and problems such as deformation of the solid film 80 are unlikely to occur. Therefore, it is possible to efficiently improve the dehydration function and shorten the dehydration time by closely arranging the infrared heaters 40 on the downstream side to increase the near-infrared radiation intensity. Further, in the dehydrator 210, the first heater row 29a in the foremost direction in the transport direction is composed of six infrared heaters 40, and the infrared heaters 40 are denser than the second to sixth heater rows 29b to 29f. It has become. Here, moisture may adhere to the surface of the solid film 80 on the upstream side in the transport direction, that is, in the initial stage of the dehydration process in the dehydration chamber 14. Therefore, by disposing the infrared heater 40 so that the upstream side in the transport direction tends to be dense, it is possible to quickly evaporate such moisture at the initial stage of dehydration and shorten the dehydration time. In addition, it is good also as what arrange | positions in the tendency for the infrared heater 40 to become dense only in any one of the upstream and downstream of a conveyance direction. In FIG. 7, the infrared heaters 40 are densely arranged only in the foremost first heater row 29a and the innermost seventh heater row 29g, but this is not restrictive. For example, when the infrared heaters 40 are arranged so that the downstream side tends to be dense, the infrared heaters 40 gradually become dense toward the downstream side (the number of infrared heaters 40 in each row gradually increases). May be. Similarly, when the infrared heaters 40 are arranged so that the upstream side tends to be dense, the infrared heaters 40 gradually become dense toward the upstream side (the number of infrared heaters 40 in each row gradually increases). It may be. In FIG. 7, the infrared heaters 40 are arranged so as to be dense in the vertical direction. However, the infrared heaters 40 may be arranged so as to be dense in the front-rear direction. In addition, although the modification of 1st Embodiment was shown in FIG. 7, it is the same also about arrangement | positioning of the heater 30 with a nozzle of 2nd Embodiment.
 第2実施形態では、反射層38は管状部材36aの外表面に形成されているものとしたが、内表面に形成してもよい。また、反射層38を外管44の外表面又は内表面に形成してもよいし、内管42の外表面に形成してもよい。また、表面に形成するものに限らず赤外線ヒーター40が反射層を独立した部材として備えるものとしてもよい。第1実施形態の赤外線ヒーター40についても、同様に外管44や内管42に反射層を形成したり、反射層を独立した部材として備えるものとしてもよい。この場合、固体フィルム80のジグザグ部分81のジグザグの重ね方向における外側に配置された外側列を構成する赤外線ヒーター40が反射層を備えることが好ましい。具体的には、図1の第1ヒーター列29aを構成する赤外線ヒーター40や、第7ヒーター列29gを構成する赤外線ヒーター40が反射層を備えることが好ましく、この2つの列の赤外線ヒーター40が全て反射層を備えることがより好ましい。 In the second embodiment, the reflective layer 38 is formed on the outer surface of the tubular member 36a, but may be formed on the inner surface. Further, the reflective layer 38 may be formed on the outer surface or the inner surface of the outer tube 44, or may be formed on the outer surface of the inner tube 42. Moreover, it is good not only as what is formed in the surface but the infrared heater 40 may be provided with a reflective layer as an independent member. Similarly, the infrared heater 40 of the first embodiment may be formed by forming a reflective layer on the outer tube 44 or the inner tube 42 or may include the reflective layer as an independent member. In this case, it is preferable that the infrared heater 40 constituting the outer row disposed outside the zigzag overlapping direction of the zigzag portion 81 of the solid film 80 includes a reflective layer. Specifically, the infrared heater 40 constituting the first heater row 29a of FIG. 1 and the infrared heater 40 constituting the seventh heater row 29g are preferably provided with a reflective layer, and the infrared heaters 40 of these two rows are provided. More preferably, all have a reflective layer.
 第1実施形態では、ヒーター列29を各列を構成する赤外線ヒーター40は、隣接する列の上下方向に最も近い赤外線ヒーター40に対して距離dだけ上下方向に離れて配置されているものとしたが、これに限られない。例えば、隣接する列の上下方向に最も近い赤外線ヒーター40に対して上下方向の位置が一部重複するものとしてもよい。第2実施形態のノズル付きヒーター30についても同様である。 In the first embodiment, the infrared heaters 40 constituting each heater row 29 are arranged away from each other in the vertical direction by a distance d with respect to the infrared heater 40 closest to the vertical direction of the adjacent row. However, it is not limited to this. For example, the vertical position may partially overlap with the infrared heater 40 closest to the vertical direction of the adjacent row. The same applies to the heater 30 with a nozzle according to the second embodiment.
 第1実施形態では、複数のヒーター列29のいずれの列についても、列を構成する赤外線ヒーター40のいずれもが隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向にずれて配置されているものとしたが、これに限られない。例えば、複数のヒーター列29のいずれか1以上の列において、隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向にずれて配置されていない赤外線ヒーター40が存在してもよい。また、隣の列を構成する赤外線ヒーター40に対して重ね方向と垂直な方向にずれて配置されているものが存在しないヒーター列29が1列以上存在してもよい。第2実施形態のノズル付きヒーター30についても同様である。 In the first embodiment, for any row of the plurality of heater rows 29, all of the infrared heaters 40 constituting the row are shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater 40 constituting the adjacent row. Although it is assumed that it is arranged, it is not limited to this. For example, in any one or more of the plurality of heater rows 29, there may be an infrared heater 40 that is not arranged so as to be shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater 40 that constitutes the adjacent row. . In addition, there may be one or more heater rows 29 that do not exist that are shifted in the direction perpendicular to the overlapping direction with respect to the infrared heaters 40 constituting the adjacent rows. The same applies to the heater 30 with a nozzle according to the second embodiment.
 第1及び第2実施形態では、脱水時に脱水室14内を露点が-60℃以下の大気雰囲気とするものとしたが、これに限られない。例えば露点が-60℃以下でなくともよい。また、大気雰囲気に限らず他の真空以外の雰囲気(例えば不活性ガス雰囲気など)としてもよい。また、脱水室14内の気圧は大気圧に限らず大気圧から減圧した状態としてもよい。あるいは、脱水室14内を真空雰囲気としてもよい。 In the first and second embodiments, the interior of the dehydration chamber 14 is set to an atmospheric atmosphere having a dew point of −60 ° C. or lower during dehydration, but is not limited thereto. For example, the dew point may not be −60 ° C. or lower. Moreover, it is good also as atmospheres other than vacuum (for example, inert gas atmosphere etc.) other than air atmosphere. Further, the atmospheric pressure in the dehydration chamber 14 is not limited to the atmospheric pressure, and may be a state where the pressure is reduced from the atmospheric pressure. Alternatively, the interior of the dehydration chamber 14 may be a vacuum atmosphere.
 第1実施形態では、送風ノズル20は図1の下方向に流体を送風するものとしたが、これに限られない。例えば、固体フィルム80に向けて斜め下方向に送風してもよい。また、第2実施形態においても送風ノズル20を備えるものとしてもよい。 In the first embodiment, the blow nozzle 20 blows the fluid downward in FIG. 1, but is not limited thereto. For example, the air may be blown obliquely downward toward the solid film 80. Moreover, it is good also as a thing provided with the ventilation nozzle 20 also in 2nd Embodiment.
 第1及び2実施形態では、搬送ローラー87が脱水室14内で固体フィルム80を上下に掛け渡してジグザグに搬送するものとしたが、これに限られない。例えば、脱水室14内で固体フィルム80を左右に掛け渡してジグザグに搬送するものとしてもよい。あるは、脱水室14内で固体フィルム80をジグザグに搬送せず、開口17から開口18まで直線上に搬送するものとしてもよい。 In the first and second embodiments, the transport roller 87 is configured to transport the solid film 80 up and down in the dehydration chamber 14 in a zigzag manner, but is not limited thereto. For example, the solid film 80 may be stretched from side to side in the dehydration chamber 14 and conveyed zigzag. Alternatively, the solid film 80 may be transported in a straight line from the opening 17 to the opening 18 without being transported in a zigzag manner in the dehydration chamber 14.
 第2実施形態では、ノズル付きヒーター30aは赤外線透過露出面37を備えるものとしたが、これを備えず赤外線ヒーター40がノズル付きヒーター30aの外部に露出しているものとしてもよい。ノズル付きヒーター30b~30dについても同様である。 In the second embodiment, the nozzle-equipped heater 30a is provided with the infrared transmission exposure surface 37, but the infrared heater 40 may be exposed to the outside of the nozzle-equipped heater 30a without this. The same applies to the heaters 30b to 30d with nozzles.
 第2実施形態では、ノズル付きヒーター30aの外周部31aは、赤外線透過露出面37を有する管状部材36aとは別にノズル形成部材としての第1~第3部材32~34を有するものとしたが、赤外線透過露出面37を有する部材にノズルを形成してもよい。例えば、図8の変形例のノズル付きヒーター130のような構成を採用してもよい。このノズル付きヒーター130は、フィラメント41と内管42とからなるヒーター本体43と、このヒーター本体43の外側に設けられ内管42を囲むように形成された外管144と、を備えた赤外線ヒーター140を備えている。外管144は、上述した管状部材36aと同様にフィラメント41からの電磁波のうち少なくとも近赤外線の一部を透過可能であり、外周面が赤外線透過露出面137となっている。また、外管144は、複数のノズル144aが形成されている。このノズル付きヒーター130では、内管42と外管144との間の空間が冷媒流路49となっている。この冷媒流路49を流通する冷媒はノズル144aからノズル付きヒーター130の外部へ流出し、これが固体フィルム80への送風となる。すなわち、ノズル付きヒーター130では、冷媒流路49からの冷媒が自身の冷却と固体フィルム80への送風とを兼ねることができるようになっている。このノズル付きヒーター130でも、近赤外線の照射と送風とを共に行うことができる。 In the second embodiment, the outer peripheral portion 31a of the nozzle-equipped heater 30a has the first to third members 32 to 34 as nozzle forming members separately from the tubular member 36a having the infrared transmission exposed surface 37. You may form a nozzle in the member which has the infrared rays transmission exposure surface 37. FIG. For example, you may employ | adopt a structure like the heater 130 with a nozzle of the modification of FIG. The nozzle-equipped heater 130 includes an infrared heater including a heater main body 43 including a filament 41 and an inner pipe 42, and an outer pipe 144 provided outside the heater main body 43 so as to surround the inner pipe 42. 140. The outer tube 144 can transmit at least a part of near infrared rays in the electromagnetic waves from the filament 41 as in the tubular member 36a described above, and the outer peripheral surface is an infrared transmission exposed surface 137. The outer tube 144 has a plurality of nozzles 144a. In the heater 130 with a nozzle, a space between the inner tube 42 and the outer tube 144 serves as a refrigerant flow path 49. The refrigerant flowing through the refrigerant flow path 49 flows out from the nozzle 144 a to the outside of the nozzle-equipped heater 130, and this is blown to the solid film 80. That is, in the heater 130 with the nozzle, the refrigerant from the refrigerant flow path 49 can serve both as cooling itself and blowing air to the solid film 80. Even with the nozzle-equipped heater 130, both near-infrared irradiation and air blowing can be performed.
 第2実施形態では、ノズル付きヒーター30dが、自身を挟む両側の固体フィルム80に対して近赤外線の照射と送風とを行うものとしたが、ノズル付きヒーター30dの代わりにノズル付きヒーター30a,30bを背中合わせに配置してもよい。また、ノズル付きヒーター30dは赤外線ヒーター40を1つ備えるものとしたが、複数の赤外線ヒーター40を備えるものとしてもよい。例えば、ノズル付きヒーター30dが、自身を挟む両側の固体フィルム80の一方に対して近赤外線を照射する赤外線ヒーター40と、他方に対して近赤外線を照射する赤外線ヒーター40と、の2つの赤外線ヒーター40を備えていてもよい。 In the second embodiment, the nozzle-equipped heater 30d performs near-infrared irradiation and ventilation on the solid films 80 on both sides sandwiching itself, but the nozzle-equipped heaters 30a and 30b are used instead of the nozzle-equipped heater 30d. May be placed back to back. Moreover, although the heater 30d with a nozzle is provided with one infrared heater 40, it may be provided with a plurality of infrared heaters 40. For example, the heater 30d with a nozzle has two infrared heaters: an infrared heater 40 that irradiates one of the solid films 80 on both sides sandwiching itself with the infrared heater 40 and an infrared heater 40 that irradiates the other with near infrared. 40 may be provided.
 第1及び第2実施形態において、搬送ローラー87は、流体を周囲に流出させることで、固体フィルム80を搬送ローラー87自身から浮かした状態で支持しつつ搬送するものとしたが、この搬送ローラー87からの流体を、固体フィルム80への送風として利用してもよい。 In the first and second embodiments, the transport roller 87 transports the solid film 80 while supporting the solid film 80 in a state of floating from the transport roller 87 itself by causing the fluid to flow out to the surroundings. May be used as air blow to the solid film 80.
 上述した実施形態では、発熱体であるフィラメント41の材料としてW(タングステン)を例示したが、加熱すると赤外線を含む電磁波を放出するものであれば特に限定されない。例えば、Mo,Ta,Fe-Cr-Al合金及びNi-Cr合金でもよい。 In the embodiment described above, W (tungsten) is exemplified as the material of the filament 41 that is a heating element, but there is no particular limitation as long as it emits electromagnetic waves including infrared rays when heated. For example, Mo, Ta, Fe—Cr—Al alloy and Ni—Cr alloy may be used.
 上述した実施形態では、冷媒流路49を流れる冷媒や冷風として空気を用いたが、窒素などの不活性ガスを用いてもよい。 In the embodiment described above, air is used as the refrigerant flowing through the refrigerant flow path 49 and the cold air, but an inert gas such as nitrogen may be used.
[実施例1]
 図9に示す脱水装置310を作製し、実施例1とした。脱水装置310は、脱水室14と、3本の赤外線ヒーター40と、排気装置25と、給気装置29と、を備えている。脱水室14は前端面及び後端面にそれぞれ開口17,18を有している。赤外線ヒーター40は、第1実施形態の赤外線ヒーター40と同じ構成である。赤外線ヒーター40のフィラメント41は100%出力が750Wのものを用いた。この3本の赤外線ヒーター40は、前後方向に等間隔に配置されている。排気装置25は、開口17を介して脱水室14の雰囲気を排気する。給気装置29は、開口18を介して脱水室14内に熱風(空気)を供給する。固体フィルム80は、175mm×145mm,厚さ38μmのPETフィルムであり、脱水室14内の台の上に載置した。固体フィルム80の水分含有量は、1質量%以下であった。
[Example 1]
A dehydrating apparatus 310 shown in FIG. The dehydrating device 310 includes the dehydrating chamber 14, the three infrared heaters 40, the exhaust device 25, and the air supply device 29. The dehydration chamber 14 has openings 17 and 18 on the front end surface and the rear end surface, respectively. The infrared heater 40 has the same configuration as the infrared heater 40 of the first embodiment. The filament 41 of the infrared heater 40 was used with a 100% output of 750 W. The three infrared heaters 40 are arranged at equal intervals in the front-rear direction. The exhaust device 25 exhausts the atmosphere of the dehydration chamber 14 through the opening 17. The air supply device 29 supplies hot air (air) into the dehydration chamber 14 through the opening 18. The solid film 80 is a PET film having a thickness of 175 mm × 145 mm and a thickness of 38 μm, and was placed on a table in the dehydration chamber 14. The water content of the solid film 80 was 1% by mass or less.
[比較例1]
 赤外線ヒーター40を備えず、給気装置29からの熱風のみで脱水を行う点以外は、脱水装置310と同じ構成の脱水装置を作製し、比較例1とした。
[Comparative Example 1]
A dehydrating apparatus having the same configuration as the dehydrating apparatus 310 was prepared except that the infrared heater 40 was not provided and dehydration was performed only with hot air from the air supply apparatus 29, and Comparative Example 1 was obtained.
[評価試験]
 実施例1及び比較例1について、脱水室14内に載置した固体フィルム80の脱水を行い、脱水後の固体フィルム80の水分含有量を比較した。実施例1では、給気装置29が給気する熱風の温度を30℃、風量を37.6m3/h、風速を1.9m/sとした。また、排気装置25が排気する風量(排気量)を29.2m3/hとした。赤外線ヒーター40は出力を78%とし、冷媒流路49を流通させる空気の流量は300L/min(1本の赤外線ヒーター40あたり)とした。なお、この条件で脱水を行ったところ、排気装置25の排気の温度は70℃であり、赤外線ヒーター40の外管44の表面温度は184℃であった。比較例1では、給気装置29が給気する熱風の温度を82℃、風量を37.6m3/h、風速を1.9m/sとした。また、排気装置25が排気する風量(排気量)を28.6m3/hとした。なお、この条件で脱水を行ったところ、排気装置25の排気の温度は64℃であった。実施例1及び比較例1の脱水条件を表1にまとめて示す。この脱水条件で、脱水時間を30分,60分,90分と変化させて試験を行い、それぞれの脱水時間での固体フィルム80の水分含有量を測定した。
[Evaluation test]
For Example 1 and Comparative Example 1, the solid film 80 placed in the dehydration chamber 14 was dehydrated, and the water content of the solid film 80 after dehydration was compared. In Example 1, the temperature of the hot air supplied by the air supply device 29 was 30 ° C., the air volume was 37.6 m 3 / h, and the wind speed was 1.9 m / s. In addition, the air volume exhausted by the exhaust device 25 (exhaust volume) was set to 29.2 m 3 / h. The infrared heater 40 had an output of 78%, and the flow rate of air flowing through the refrigerant flow path 49 was 300 L / min (per one infrared heater 40). When dehydration was performed under these conditions, the exhaust temperature of the exhaust device 25 was 70 ° C., and the surface temperature of the outer tube 44 of the infrared heater 40 was 184 ° C. In Comparative Example 1, the temperature of the hot air supplied by the air supply device 29 was 82 ° C., the air volume was 37.6 m 3 / h, and the wind speed was 1.9 m / s. In addition, the air volume exhausted by the exhaust device 25 (exhaust volume) was set to 28.6 m 3 / h. When dehydration was performed under these conditions, the exhaust temperature of the exhaust device 25 was 64 ° C. The dehydration conditions of Example 1 and Comparative Example 1 are summarized in Table 1. Under these dehydration conditions, the test was performed by changing the dehydration time to 30 minutes, 60 minutes, and 90 minutes, and the water content of the solid film 80 at each dehydration time was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の評価試験の結果、実施例1では、脱水前の固体フィルム80の水分含有量を値100とすると、脱水時間30分,60分,90分における固体フィルム80の水分含有量はそれぞれ約35,約20,約20であった。比較例1では、脱水前の固体フィルム80の水分含有量を値100とすると、脱水時間30分,60分,90分における固体フィルム80の水分含有量はそれぞれ約70,約45,約45であった。この結果からわかるように、赤外線ヒーター40を用いて脱水を行う実施例1の脱水装置の方が、脱水時間30分,60分,90分のいずれにおいても固体フィルム80の水分含有量が低かった。また、実施例1では、脱水時間が30分であっても、比較例1で脱水時間が30分,60分,90分のいずれの場合よりも固体フィルム80の水分含有量が低くなっていた。また、実施例1,比較例1のいずれも、脱水時間が60分以上の領域では固体フィルム80の水分含有量がほぼ一定の値となった。これらのことから、比較例1において脱水時間を長時間にしたとしても、実施例1と同程度まで固体フィルム80の水分含有量を低くすることはできないと考えられる。実施例1の脱水装置では、赤外線ヒーター40を用いて3.5μmを超える赤外線を吸収して近赤外線を固体フィルム80に照射することにより、固体フィルム内部の水分含有量をより低減させることができていると考えられる。 As a result of the evaluation test, in Example 1, assuming that the moisture content of the solid film 80 before dehydration is 100, the moisture content of the solid film 80 at the dehydration time of 30 minutes, 60 minutes, and 90 minutes is about 35 respectively. , About 20, about 20. In Comparative Example 1, assuming that the moisture content of the solid film 80 before dehydration is 100, the moisture content of the solid film 80 at the dehydration time of 30 minutes, 60 minutes, and 90 minutes is about 70, about 45, and about 45, respectively. there were. As can be seen from this result, the moisture content of the solid film 80 was lower in the dehydrating apparatus of Example 1 that performed dehydration using the infrared heater 40 at any of the dehydration times of 30 minutes, 60 minutes, and 90 minutes. . In Example 1, even when the dehydration time was 30 minutes, the moisture content of the solid film 80 was lower than in the case of Comparative Example 1 where the dehydration time was 30 minutes, 60 minutes, or 90 minutes. . Further, in both Example 1 and Comparative Example 1, the water content of the solid film 80 became a substantially constant value in the region where the dehydration time was 60 minutes or more. From these, even if the dehydration time is increased in Comparative Example 1, it is considered that the water content of the solid film 80 cannot be reduced to the same level as in Example 1. In the dehydration apparatus of Example 1, the moisture content inside the solid film can be further reduced by absorbing infrared rays exceeding 3.5 μm using the infrared heater 40 and irradiating the solid film 80 with near infrared rays. It is thought that.
 本出願は、2013年4月4日に出願された日本国特許出願第2013-078339号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2013-0783339 filed on April 4, 2013, and the contents of all of the contents are included in this specification by reference.
 本発明は、液晶ディスプレイや有機ELなどに用いられるPETフィルムなどのフィルムに対して、脱水などの熱処理を行う脱水装置に利用可能である。 The present invention can be used in a dehydrating apparatus that performs heat treatment such as dehydration on a film such as a PET film used for a liquid crystal display or an organic EL.
 10,110,210,310 脱水装置、14 脱水室、15 前端面、16 後端面、17,18 開口、19 パンチングプレート、20 送風ノズル、22a,22b 反射板、25 排気装置、26 排気ファン、27 パイプ構造体、28 排気口、29 給気装置、29 ヒーター列、29a~29g 第1~第7ヒーター列、30,30a~30d,130 ノズル付きヒーター、31a,31b 外周部、32 第1部材、32a 上側第1部材、32b 下側第1部材、33 第2部材、33a 前側第2部材、33b 後側第2部材、34 第3部材、34a 前側第3部材、34b 後側第3部材、35 第4部材、35a 上側第4部材、35b 下側第4部材、36a,36b 管状部材、37,37a,37b,137 赤外線透過露出面、38 反射層、39a~39f ノズル、40,140 赤外線ヒーター、41 フィラメント、41a 電気配線、42 内管、43 ヒーター本体、44,144 外管、49 冷媒流路、50 キャップ、52 円筒部、54 蓋、55 ホルダー、57 配線引出部、58 流体出入口、59 温度センサ、60 電力供給源、65 冷媒供給源、67 開閉弁、68 流量調整弁、70 コントローラー、80 固体フィルム、81 ジグザグ部分、84,86 ロール、87 搬送ローラー、87a~87g 第1~第7搬送ローラー、90a~90f 封止部材、91,91a,91b 空間、92,92a,92b 空間,144a ノズル。 10, 110, 210, 310 Dehydration device, 14 Dehydration chamber, 15 Front end surface, 16 Rear end surface, 17, 18 Opening, 19 Punching plate, 20 Blower nozzle, 22a, 22b Reflector, 25 Exhaust device, 26 Exhaust fan, 27 Pipe structure, 28 exhaust port, 29 air supply device, 29 heater row, 29a-29g 1st-7th heater row, 30, 30a-30d, 130 nozzle heater, 31a, 31b outer periphery, 32 first member, 32a upper first member, 32b lower first member, 33 second member, 33a front second member, 33b rear second member, 34 third member, 34a front third member, 34b rear third member, 35 Fourth member, 35a Upper fourth member, 35b Lower fourth member, 36a, 36b Tubular member, 37, 37a, 3 b, 137, infrared transmissive exposed surface, 38 reflective layer, 39a-39f nozzle, 40, 140 infrared heater, 41 filament, 41a electrical wiring, 42 inner tube, 43 heater body, 44, 144 outer tube, 49 refrigerant flow path, 50 Cap, 52 cylindrical part, 54 lid, 55 holder, 57 wiring lead-out part, 58 fluid inlet / outlet, 59 temperature sensor, 60 power supply source, 65 refrigerant supply source, 67 open / close valve, 68 flow rate adjustment valve, 70 controller, 80 solid film 81 zigzag portion, 84, 86 roll, 87 transport roller, 87a-87g first to seventh transport roller, 90a-90f sealing member, 91, 91a, 91b space, 92, 92a, 92b space, 144a nozzle.

Claims (13)

  1.  近赤外線の少なくとも一部を透過し且つ内部の水分含有量が0質量%超過1質量%以下である固体フィルムの脱水を行う脱水装置であって、
     前記固体フィルムの脱水を行うための脱水室と、
     前記脱水室内に配置され、赤外線を含む電磁波を放出する発熱体と、3.5μmを超える波長の赤外線を吸収し該発熱体を覆う管と、を有する赤外線ヒーターと、
     を備えた脱水装置。
    A dehydrating apparatus for dehydrating a solid film that transmits at least a part of near infrared rays and has an internal water content of more than 0% by mass and not more than 1% by mass,
    A dehydration chamber for dehydrating the solid film;
    An infrared heater that is disposed in the dehydration chamber and has a heating element that emits electromagnetic waves including infrared rays, and a tube that absorbs infrared rays having a wavelength exceeding 3.5 μm and covers the heating element;
    A dehydrator equipped with.
  2.  前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段、
     を備え、
     前記赤外線ヒーターは、複数の列をなすように複数配置され、該複数の列は前記固体フィルムを挟むようにジグザグの重ね方向に並べて配置されており、該複数の列のうち1以上の列は、該列を構成する赤外線ヒーターのうち1以上が隣の列を構成する赤外線ヒーターに対して該重ね方向と垂直な方向にずれて配置されている、
     請求項1に記載の脱水装置。
    Conveying means for conveying the solid film in a zigzag in the dehydration chamber;
    With
    A plurality of the infrared heaters are arranged to form a plurality of rows, and the plurality of rows are arranged in a zigzag overlapping direction so as to sandwich the solid film, and one or more rows of the plurality of rows are In addition, one or more of the infrared heaters constituting the row are arranged shifted in a direction perpendicular to the overlapping direction with respect to the infrared heater constituting the adjacent row.
    The dehydrator according to claim 1.
  3.  請求項1又は2に記載の脱水装置であって、
     前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段、
     を備え、
     前記赤外線ヒーターは、複数の列をなすように複数配置され、該複数の列は前記固体フィルムを挟むようにジグザグの重ね方向に並べて配置されており、前記複数の列は、前記固体フィルムのジグザグ部分の該重ね方向における外側の一方又は両方に配置された外側列を有し、該外側列を構成する赤外線ヒーターの1以上は、前記発熱体からみて前記固体フィルムのジグザグ部分とは反対側に、前記電磁波のうち少なくとも近赤外線の一部を反射する反射層を備えている、
     脱水装置。
    The dehydrator according to claim 1 or 2,
    Conveying means for conveying the solid film in a zigzag in the dehydration chamber;
    With
    A plurality of the infrared heaters are arranged to form a plurality of rows, the plurality of rows are arranged in a zigzag overlapping direction so as to sandwich the solid film, and the plurality of rows are a zigzag of the solid film. One or more of the infrared heaters constituting the outer row are arranged on one or both of the outer sides in the overlapping direction of the portions, and one or more of the infrared heaters constituting the outer row are on the side opposite to the zigzag portion of the solid film as viewed from the heating element , Including a reflective layer that reflects at least a part of the near-infrared ray of the electromagnetic wave,
    Dehydration device.
  4.  前記外側列は、前記固体フィルムのジグザグ部分の前記重ね方向における外側の両方に配置されており、該外側列を構成する赤外線ヒーターは、前記発熱体からみて前記固体フィルムのジグザグ部分とは反対側に、前記電磁波のうち少なくとも近赤外線の一部を反射する反射層を備えている、
     請求項3に記載の脱水装置。
    The outer row is arranged both outside the zigzag portion of the solid film in the overlapping direction, and the infrared heater constituting the outer row is opposite to the zigzag portion of the solid film as viewed from the heating element. In addition, a reflection layer that reflects at least a part of the near-infrared ray of the electromagnetic wave is provided.
    The dehydrating apparatus according to claim 3.
  5.  請求項1~4のいずれか1項に記載の脱水装置であって、
     前記脱水室内で前記固体フィルムを搬送する搬送手段、
     を備え、
     前記赤外線ヒーターは、前記搬送手段の搬送方向の下流側が密になる傾向に配置されている、
     脱水装置。
    The dehydration device according to any one of claims 1 to 4,
    Conveying means for conveying the solid film in the dehydration chamber;
    With
    The infrared heater is arranged so that the downstream side in the transport direction of the transport means tends to be dense,
    Dehydration device.
  6.  請求項1~5のいずれか1項に記載の脱水装置であって、
     前記脱水室内で前記固体フィルムを搬送する搬送手段、
     を備え、
     前記赤外線ヒーターは、前記搬送手段の搬送方向の上流側が密になる傾向に配置されている、
     脱水装置。
    A dehydrator according to any one of claims 1 to 5,
    Conveying means for conveying the solid film in the dehydration chamber;
    With
    The infrared heater is arranged so that the upstream side in the transport direction of the transport means tends to be dense,
    Dehydration device.
  7.  請求項1~6のいずれか1項に記載の脱水装置であって、
     前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段と、
     前記固体フィルムのジグザグ部分の該ジグザグの重ね方向における外側の一方又は両方に配置され、前記電磁波のうち少なくとも近赤外線の一部を反射する反射板と、
     を備え、
     前記赤外線ヒーターは、前記反射板と前記固体フィルムのジグザグ部分との間に配置されている、
     脱水装置。
    The dehydrator according to any one of claims 1 to 6,
    Conveying means for conveying the solid film in a zigzag in the dehydration chamber;
    A reflective plate that is disposed on one or both of the zigzag portions of the solid film in the zigzag overlapping direction and reflects at least a part of near infrared rays of the electromagnetic wave;
    With
    The infrared heater is disposed between the reflector and a zigzag portion of the solid film,
    Dehydration device.
  8.  請求項1~7のいずれか1項に記載の脱水装置であって、
     前記脱水室内に流体を送風可能な送風手段、
     を備えた脱水装置。
    The dehydrator according to any one of claims 1 to 7,
    A blowing means capable of blowing a fluid into the dehydration chamber;
    A dehydrator equipped with.
  9.  請求項8に記載の脱水装置であって、
     前記赤外線ヒーターと、前記固体フィルムに対して流体を送風可能な前記送風手段としての1以上のノズルと、有するノズル付きヒーター
     を備えた脱水装置。
    The dehydrator according to claim 8,
    A dehydrating apparatus comprising: the infrared heater; and one or more nozzles as the blowing means capable of blowing fluid to the solid film; and a nozzle-equipped heater.
  10.  前記ノズル付きヒーターは、
     前記ノズルと、外部に露出し前記電磁波のうち少なくとも近赤外線の一部を透過して前記固体フィルムに照射可能な赤外線透過露出面と、を有し、前記赤外線ヒーターの周囲の少なくとも一部を覆う外周部と、
     前記赤外線透過露出面を冷却する冷媒が流通可能な冷媒流路と、
     を有する、
     請求項9に記載の脱水装置。
    The heater with nozzle is
    The nozzle, and an infrared transmissive exposed surface that is exposed to the outside and transmits at least a portion of the near-infrared rays of the electromagnetic wave to irradiate the solid film, and covers at least a portion around the infrared heater. An outer periphery,
    A refrigerant channel through which a refrigerant for cooling the infrared transmission exposed surface can flow;
    Having
    The dehydrator according to claim 9.
  11.  前記脱水室内で前記固体フィルムをジグザグに搬送する搬送手段、
     を備え、
     前記ノズル付きヒーターは、前記赤外線ヒーターを1つ有し、前記ジグザグ部分の固体フィルムに挟まれて配置されており、自身を挟む前記固体フィルムのそれぞれに対して前記流体を送風可能となるように複数のノズルを有している、
     請求項9又は10に記載の脱水装置。
    Conveying means for conveying the solid film in a zigzag in the dehydration chamber;
    With
    The nozzle-equipped heater has one of the infrared heaters and is disposed between the solid films of the zigzag portion so that the fluid can be blown to each of the solid films sandwiching itself. Having a plurality of nozzles,
    The dehydrator according to claim 9 or 10.
  12.  前記脱水室内は、真空以外の雰囲気である、
     請求項1~11のいずれか1項に記載の脱水装置。
    The dehydration chamber is an atmosphere other than vacuum.
    The dehydrator according to any one of claims 1 to 11.
  13.  前記脱水室内は、露点が-60℃以下の雰囲気である、
     請求項12に記載の脱水装置。
    The dehydration chamber has an atmosphere with a dew point of −60 ° C. or lower.
    The dehydrator according to claim 12.
PCT/JP2014/059927 2013-04-04 2014-04-04 Dehydrator WO2014163175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015510150A JP6072900B2 (en) 2013-04-04 2014-04-04 Dehydrator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-078339 2013-04-04
JP2013078339 2013-04-04

Publications (1)

Publication Number Publication Date
WO2014163175A1 true WO2014163175A1 (en) 2014-10-09

Family

ID=51658463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059927 WO2014163175A1 (en) 2013-04-04 2014-04-04 Dehydrator

Country Status (3)

Country Link
JP (1) JP6072900B2 (en)
TW (1) TWI583540B (en)
WO (1) WO2014163175A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208588A1 (en) * 2015-06-22 2018-04-05 住友化学株式会社 Organic electronic device manufacturing method and substrate drying method
WO2018184405A1 (en) * 2017-04-06 2018-10-11 盐城帝佳妮服饰有限公司 Textile dryer
JP6793875B1 (en) * 2020-02-17 2020-12-02 日本碍子株式会社 Heat treatment furnace
JP2022032534A (en) * 2020-08-12 2022-02-25 日本碍子株式会社 Heat treatment furnace
JP2022045252A (en) * 2020-09-08 2022-03-18 日本碍子株式会社 Heat treatment furnace
JP2022057747A (en) * 2020-09-30 2022-04-11 日本碍子株式会社 Treatment furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320671A (en) * 1998-05-12 1999-11-24 Teijin Ltd Manufacture of and device for stretched film
JP2003231139A (en) * 2002-02-05 2003-08-19 Konica Corp Cellulose ester film and method for manufacturing the same
JP2011020345A (en) * 2009-07-15 2011-02-03 Sumitomo Metal Mining Co Ltd Device for treating continuous length resin film, roll cooler, roll cooling method and method for cooling continuous length resin film and roll
JP4956696B1 (en) * 2012-01-23 2012-06-20 日本碍子株式会社 Method for drying coating film formed on the surface of PET film
JP2012241922A (en) * 2011-05-16 2012-12-10 Ngk Insulators Ltd Batch type coating film drying furnace
JP2012243407A (en) * 2011-05-16 2012-12-10 Ngk Insulators Ltd Explosion-proof structure of duplex tube heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320671A (en) * 1998-05-12 1999-11-24 Teijin Ltd Manufacture of and device for stretched film
JP2003231139A (en) * 2002-02-05 2003-08-19 Konica Corp Cellulose ester film and method for manufacturing the same
JP2011020345A (en) * 2009-07-15 2011-02-03 Sumitomo Metal Mining Co Ltd Device for treating continuous length resin film, roll cooler, roll cooling method and method for cooling continuous length resin film and roll
JP2012241922A (en) * 2011-05-16 2012-12-10 Ngk Insulators Ltd Batch type coating film drying furnace
JP2012243407A (en) * 2011-05-16 2012-12-10 Ngk Insulators Ltd Explosion-proof structure of duplex tube heater
JP4956696B1 (en) * 2012-01-23 2012-06-20 日本碍子株式会社 Method for drying coating film formed on the surface of PET film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208588A1 (en) * 2015-06-22 2018-04-05 住友化学株式会社 Organic electronic device manufacturing method and substrate drying method
WO2018184405A1 (en) * 2017-04-06 2018-10-11 盐城帝佳妮服饰有限公司 Textile dryer
JP6793875B1 (en) * 2020-02-17 2020-12-02 日本碍子株式会社 Heat treatment furnace
WO2021166048A1 (en) 2020-02-17 2021-08-26 日本碍子株式会社 Heat treatment furnace
EP3896375A4 (en) * 2020-02-17 2021-12-01 Ngk Insulators, Ltd. Heat treatment furnace
JP2022032534A (en) * 2020-08-12 2022-02-25 日本碍子株式会社 Heat treatment furnace
JP7377780B2 (en) 2020-08-12 2023-11-10 日本碍子株式会社 heat treatment furnace
JP2022045252A (en) * 2020-09-08 2022-03-18 日本碍子株式会社 Heat treatment furnace
JP7449203B2 (en) 2020-09-08 2024-03-13 日本碍子株式会社 heat treatment furnace
JP2022057747A (en) * 2020-09-30 2022-04-11 日本碍子株式会社 Treatment furnace
JP7402141B2 (en) 2020-09-30 2023-12-20 日本碍子株式会社 Processing furnace

Also Published As

Publication number Publication date
JP6072900B2 (en) 2017-02-01
JPWO2014163175A1 (en) 2017-02-16
TWI583540B (en) 2017-05-21
TW201509636A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6072900B2 (en) Dehydrator
KR101704946B1 (en) Infrared heating device and drying furnace
WO2014129072A1 (en) Heater provided with nozzle and drying furnace
JP2015036590A (en) Infrared ray processing device and infrared ray processing method
JP2012132662A (en) Coating film drying furnace
WO2015022857A1 (en) Infrared radiation device and infrared treatment device
TWI717484B (en) Low temperature drying device
JP6076631B2 (en) Heater unit and heat treatment apparatus
JP5775224B2 (en) Infrared heating unit, infrared heating device and drying device
TW201510451A (en) Drying furnace
JP5810074B2 (en) Drying equipment
JP6408279B2 (en) Infrared treatment method
JP6704764B2 (en) Infrared processor
TWI577957B (en) Heater unit and heat treatment apparatus
JP7402372B1 (en) heat treatment furnace
JPH1157580A (en) Dryer unit
JP2013062066A (en) Heating method of resin film
KR20230163290A (en) Optical treatment device and optical treatment method
JP6824772B2 (en) Drying device and manufacturing method of dried body
JP2014035086A (en) Drying furnace
TW202412932A (en) Light processing device and light processing method
JP2024039889A (en) Method of manufacturing electrode sheet
JP2017003169A (en) Infrared heater and infrared ray processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14780040

Country of ref document: EP

Kind code of ref document: A1