WO2015022857A1 - Infrared radiation device and infrared treatment device - Google Patents

Infrared radiation device and infrared treatment device Download PDF

Info

Publication number
WO2015022857A1
WO2015022857A1 PCT/JP2014/069925 JP2014069925W WO2015022857A1 WO 2015022857 A1 WO2015022857 A1 WO 2015022857A1 JP 2014069925 W JP2014069925 W JP 2014069925W WO 2015022857 A1 WO2015022857 A1 WO 2015022857A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
radiation device
infrared radiation
infrared rays
shielding container
Prior art date
Application number
PCT/JP2014/069925
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 藤田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2015022857A1 publication Critical patent/WO2015022857A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to an infrared radiation device and an infrared processing device.
  • Patent Document 1 discloses a rod-shaped heating element made of carbon or silicon carbide that emits infrared rays when heated, and a cylindrical protective tube made of translucent alumina ceramic in which the heating element is hermetically accommodated. An infrared heater provided is described.
  • This protective tube has a total transmittance of electromagnetic waves having a wavelength of 0.4 to 6 ⁇ m of 80% or more.
  • the radiant energy distribution (in-plane distribution) on the surface to be processed may be non-uniform, for example, the portion of the surface to be processed that is closer to the heating element has higher radiant energy. there were.
  • more uniform processing for example, drying
  • the present invention has been made to solve such a problem, and has as its main object to improve the in-plane uniformity of infrared radiation energy to the object to be treated.
  • the infrared radiation device of the present invention is A heating element that emits electromagnetic waves including infrared when heated, A lower shield that reflects upward the infrared rays emitted directly from the heating element when the predetermined direction is a downward direction; A reflector having a reflecting surface for reflecting infrared rays radiated upward from the heating element so that the infrared rays can reach below the lower shield; It is equipped with.
  • the infrared radiation device of the present invention when an electromagnetic wave including infrared rays is radiated from the heating element, the infrared radiation radiated directly from the heating element is reflected and shielded upward by the lower shielding body.
  • the infrared rays radiated upward from the heating element are reflected by the reflecting surface of the reflector and reach below the lower shield. That is, the infrared rays that go directly below the heating element are reflected by the lower shielding body, and the infrared rays that are reflected by the reflecting surface reach below.
  • emitted below the heat generating body improves. Therefore, it is possible to improve the in-plane uniformity of infrared radiation energy to the processing object disposed below.
  • the infrared rays radiated directly below the heating element are reflected by the lower shielding body and further reflected by the reflecting surface of the reflecting body, so that the infrared rays can reach the lower part of the lower shielding body.
  • “downward direction” is a convenient name for “predetermined direction” (reference direction). Therefore, the “downward direction” may be, for example, a vertically downward direction, a vertically upward direction, or any other direction.
  • “downward” means not only directly below but also diagonally below. “Upward” means not only directly above but also diagonally above. “Reflecting infrared rays” may be anything as long as it reflects at least a portion of infrared rays. For example, a portion of infrared rays may be absorbed or transmitted. It is preferable that the lower shield has a higher infrared reflectance. For example, the lower shield may have an infrared reflectance of 50% or more from the heating element, may exceed 50%, may be 80% or more, or 90% or more. Similarly, the “reflecting surface” only needs to reflect at least part of infrared rays, and may absorb or transmit part of infrared rays, for example.
  • the reflection surface has a higher infrared reflectance.
  • the reflective surface may have an infrared reflectance of 50% or more, may exceed 50%, may be 80% or more, or 90% or more.
  • the lower shield is not limited to the infrared radiation radiated directly from the heating element, and may be capable of reflecting upward the infrared radiation radiated downward from the heating element.
  • the reflecting surface may be wider in the left-right direction, which is a direction perpendicular to the lower direction, than the heating element. Further, the reflecting surface may be wider in the left-right direction, which is a direction perpendicular to the lower direction, than the lower shield. The left-right direction may be a direction perpendicular to the longitudinal direction of the heating element and perpendicular to the lower direction. Furthermore, the infrared radiation device of the present invention may include a reflector coolant channel through which a coolant for cooling the reflector can be circulated. If it carries out like this, overheating by a reflector absorbing a part of infrared rays can be suppressed.
  • the reflection surface may be a surface that irregularly reflects the infrared light. In this way, the in-plane uniformity of the infrared radiation energy to the processing target can be further improved.
  • the reflection surface may have an arithmetic average roughness Ra equal to or greater than the wavelength of infrared rays.
  • the reflective surface may have an arithmetic average roughness Ra of 3.5 ⁇ m or more, which is the maximum value of the near-infrared (wavelength 0.7 ⁇ m to 3.5 ⁇ m) wavelength.
  • the infrared radiation device of the present invention may include a side shield that shields infrared radiation emitted from the heating element in a direction perpendicular to the downward direction. If it carries out like this, it can suppress more that the infrared rays radiated
  • shielding infrared rays may be anything that shields (does not transmit) at least part of infrared rays, and includes, for example, the case of absorbing or reflecting infrared rays.
  • the said side part shield is so preferable that the transmittance
  • the side shield may have an infrared transmittance of 50% or less, less than 50%, or 20% or less, or 10% or less.
  • the side shield may be configured to shield infrared rays in two or more directions in a direction perpendicular to the lower direction when viewed from the heating element.
  • the infrared radiation device of the present invention may include a plurality of the side shields.
  • the infrared radiation device including a side shield, the reflector, the lower shield, and the side shield, and including a shielding container that covers the heating element
  • the shielding container has a radiation port that is formed at a position other than directly below the heating element and serves as an outlet for the infrared light from the shielding container when the infrared light reflected by the reflecting surface reaches below the lower shielding body. You may have. If it carries out like this, the in-plane uniformity of the infrared radiation energy to the process target arrange
  • the heating element is covered with the shielding container, it is possible to further suppress the infrared rays radiated from the heating element from directly reaching the processing target without reflection.
  • the radiation port may have a shape or an arrangement such that infrared rays radiated from the heating element cannot pass through the radiation port without being reflected. In this way, the infrared radiation from the heating element can be prevented from passing directly through the radiating port without reflection and reaching the processing target directly, and the in-plane uniformity of the infrared radiation energy radiated to the processing target. Can be further improved.
  • the lower shielding body and the side shielding body may be configured such that a surface on the heating element side can reflect infrared rays from the heating element. If it carries out like this, at least one part of the infrared rays radiated
  • the infrared radiation device of the present invention including a shielding container may include a shielding container coolant channel through which a coolant for cooling the shielding container can flow. If it carries out like this, overheating of the shielding container by infrared rays can be suppressed more by a refrigerant
  • the infrared radiation device of the present invention includes a tubular member that is disposed inside the shielding container, transmits infrared rays from the heating element, and covers the heating element. It may be a space between the shielding container and the tubular member. Further, the radiation port may be an opening communicating with the outside of the shielding container and the refrigerant flow path for the shielding container.
  • coolant can be flowed out downward from a radiation
  • the shielding container may include a partition member that transmits infrared rays and closes the radiation port to partition the inside and outside of the shielding container.
  • the partition member may be formed of a material that transmits infrared rays having a wavelength of 3.5 ⁇ m or less and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m. Infrared rays having a wavelength of 3.5 ⁇ m or less are excellent in the ability to break hydrogen bonds in molecules such as water and solvents. Therefore, the partition member selectively transmits infrared rays having a wavelength of 3.5 ⁇ m or less, so that the processing target can be efficiently processed (for example, dried or dehydrated).
  • the infrared radiation device of the present invention having a shielding container has an inner circumferential surface along the vertical direction, and the infrared radiation reflected by the reflecting surface is reflected by the inner circumferential surface so that the infrared radiation is emitted from the radiation port.
  • a waveguide leading to By doing so at least a part of the infrared rays emitted from the heating element is reflected from the inner peripheral surface of the waveguide and then emitted from the radiation port. Therefore, the in-plane uniformity of the infrared radiation energy radiated from the radiation port to the object to be processed can be further improved.
  • the lower end of the waveguide may be the radiation port.
  • the inner peripheral surface of the waveguide may be capable of totally reflecting infrared rays. In this way, infrared rays can be radiated to the processing target more efficiently.
  • the inner peripheral surface of the waveguide may be capable of totally reflecting infrared rays having a wavelength of 3.5 ⁇ m or less.
  • the waveguide may have a shape and an arrangement such that infrared rays radiated from the heating element cannot reach the radiation opening without being reflected. In this way, the infrared rays from the heating element do not pass directly through the radiating port without reflection and reach the object to be processed, so that the in-plane uniformity of the infrared radiation energy radiated to the object to be processed is further improved. Can be improved.
  • a plurality of the heating elements may be disposed in the shielding container, and may be disposed on both sides of the radiation opening in a direction perpendicular to the vertical direction.
  • the infrared radiation intensity from the emission port can be increased.
  • the heating elements are arranged on both sides of the radiating port in a direction perpendicular to the vertical direction, for example, the in-plane uniformity of the infrared radiation energy from the radiating port is improved as compared with the case where there is only one heating element. It can be improved further.
  • the shielding container is a rectangular parallelepiped container having an upper wall portion including the reflector, a lower wall portion including the lower shielding body, and four side wall portions including the side shielding body.
  • a plurality of the heating elements are arranged in the shielding container, and are arranged between the four side wall portions in the shielding container and the radiation opening, respectively, and the radiation opening is formed in a direction perpendicular to the vertical direction. It may be located so as to surround the periphery of. In this case, since the heating element is arranged so as to surround the periphery of the radiation port, the in-plane uniformity of the infrared radiation energy from the radiation port can be further improved.
  • the “cuboid” includes a substantially rectangular parallelepiped. The heating elements may be arranged in the vicinity of the four side wall portions.
  • the infrared radiation device of the present invention may include a tubular member that transmits infrared rays from the heating element and covers the heating element, and the lower shielding body may be formed on an inner peripheral surface or an outer peripheral surface of the tubular member. Good.
  • the infrared processing apparatus of the present invention includes the infrared radiation apparatus of the present invention according to any one of the above-described aspects, and performs processing by radiating infrared rays from the infrared radiation apparatus to a processing target positioned below the infrared radiation apparatus. It is.
  • the infrared processing apparatus of the present invention includes the infrared radiation apparatus of the present invention according to any one of the above-described aspects, the effects of the infrared radiation apparatus of the present invention, for example, in the plane of the infrared radiation energy to the processing target An effect of improving the uniformity can be obtained.
  • the infrared processing apparatus of this invention is good also as what is processed in the state which stopped conveyance of the process target, and is good also as what is processed while conveying.
  • FIG. 1 is a longitudinal sectional view of a drying furnace 10.
  • FIG. 2 is a perspective view of an infrared radiation device 20.
  • FIG. FIG. 3 is a sectional view taken along line BB in FIG. It is explanatory drawing which shows a mode that infrared rays are radiated
  • FIG. It is a longitudinal cross-sectional view of the drying furnace 110 of the modification. It is a longitudinal cross-sectional view of the drying furnace 10 of a modification. It is a perspective view of the infrared rays radiating device 220 of a modification.
  • FIG. 1 is a longitudinal sectional view of a drying furnace 10 which is an embodiment of the infrared processing apparatus of the present invention.
  • the drying furnace 10 performs drying of the coating film 82 applied on the sheet 80 using infrared rays, and includes a furnace body 12, an infrared radiation device 20, and a controller 90.
  • the drying furnace 10 is configured as a roll-to-roll drying furnace, and includes a roll 17 provided on the left side of the furnace body 12 (left side in FIG. 1) and a right side of the furnace body 12 (in FIG. 1). And a roll 18 provided on the right side).
  • the drying furnace 10 transports the sheet 80 and carries the coating film 82 to be processed (drying target) formed on the upper surface of the sheet 80 into the furnace body 12, and transports the sheet 80 inside the furnace body 12. And an intermittent feed type drying furnace that alternately repeats the step of drying the coating film 82.
  • the vertical downward direction is described as “downward”.
  • the furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped, and includes a drying space 12a which is an internal space, and an entrance to the drying space 12a from the outside formed in the left end surface 13 and the right end surface 14 of the furnace body, respectively. Openings 15 and 16 are formed.
  • the furnace body 12 has a length from the left end surface 13 to the right end surface 14 of, for example, 1 m to 6 m.
  • An infrared radiation device 20 and the like are disposed in a drying space 12a that is a space inside the furnace body 12.
  • the infrared radiation device 20 radiates infrared rays to dry the coating film 82 formed on the upper surface of the sheet 80.
  • FIG. 2 is a perspective view of the infrared radiation device 20.
  • 3 is a cross-sectional view taken along the line BB of FIG.
  • the cross-sectional view of the infrared radiation device 20 in FIG. 1 corresponds to the cross-sectional view along AA in FIG.
  • the infrared radiation device 20 includes a plurality (two in this embodiment) of infrared heater units 30 and a shielding container 60. Note that one infrared heater unit 30 is disposed at each of both ends (left and right ends in FIG. 1) in the shielding container 60, the right side is also referred to as an infrared heater unit 30a, and the left side is also referred to as an infrared heater unit 30b.
  • the infrared heater unit 30 (infrared heater units 30a and 30b) is a device that emits infrared rays.
  • the infrared heater units 30a and 30b are both attached so that the longitudinal direction is along the front-rear direction. Note that the front-rear direction is a direction orthogonal to the up-down direction and the left-right direction, and is the front-rear direction in FIG. Since both the infrared heater units 30a and 30b have the same configuration, the configuration of one infrared heater unit 30a will be described below.
  • the infrared heater unit 30 a includes a heater body 38 formed so that the inner tube 36 surrounds the filament 32, which is a heating element, and an outer body formed so as to surround the heater body 38.
  • the filament 32 is a heating element that emits infrared rays when heated, and is made of W (tungsten) in this embodiment.
  • Other examples of the material of the filament 32 include Ni—Cr alloy, Mo, Ta, and Fe—Cr—Al alloy.
  • the filament 32 When the filament 32 is supplied with electric power from the electric power supply source 50 and heated to 700 to 1700 ° C., for example, the filament 32 emits infrared rays having a peak in the infrared region having a wavelength of 3.5 ⁇ m or less (eg, near 3 ⁇ m). .
  • the electric wiring 34 connected to the filament 32 is drawn out to the outside airtightly through a wiring drawing portion 44 provided in the cap 42 and penetrating the upper wall portion 62 of the shielding container 60, and is connected to the power supply source 50.
  • the inner tube 36 and the outer tube 40 are formed of an infrared absorbing material that functions as a filter that passes infrared rays having a wavelength of 3.5 ⁇ m or less among the electromagnetic waves radiated from the filament 32 and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m. ing.
  • Examples of such infrared transmitting materials used for the inner tube 36 and the outer tube 40 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, and transmissive alumina ceramics.
  • Other examples include quartz glass that can transmit infrared rays. In this embodiment, both the inner tube 36 and the outer tube 40 are made of quartz glass.
  • the heater body 38 is supported at both ends by holders 49 arranged inside the cap 42.
  • Each cap 42 has a first refrigerant inlet / outlet 46.
  • the first refrigerant is supplied from the first refrigerant supply source 52 to one of the first refrigerant outlets 46.
  • the first refrigerant that has flowed into the outer tube 40 from one first refrigerant inlet / outlet 46 flows through the first flow path 47 and flows out from the other first refrigerant inlet / outlet 46.
  • coolant which flows through the 1st flow path 47 is gas, such as air and an inert gas, for example, and these are cooled by contacting the inner tube
  • infrared heater unit 30a when infrared rays having a peak at a wavelength of 3.5 ⁇ m or less are emitted from the filament 32, infrared rays having a wavelength of 3.5 ⁇ m or less pass through the inner tube 36 and the outer tube 40. And radiated into the inner space of the shielding container 60.
  • the inner tube 36 and the outer tube 40 absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, but are cooled by the first refrigerant flowing through the first flow path 47 and the second refrigerant flowing through the second flow path 67 described later. (For example, 200 degrees C or less), it can suppress that self becomes an infrared secondary radiator.
  • the shielding container 60 is a substantially rectangular parallelepiped member that covers the filament 32 of the infrared heater unit 30.
  • the shielding container 60 includes a lower wall portion 61, an upper wall portion 62, and side wall portions 64a to 64d.
  • the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d are joined together by welding, for example.
  • the internal space of the shielding container 60 that is, the space surrounded by the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d serves as the second flow path 67 through which the second refrigerant for cooling the shielding container 60 can flow. Yes.
  • a temperature sensor 56 for detecting the surface temperature of the shielding container 60 (lower wall portion 61) is attached to the lower surface of the lower wall portion 61 (see FIG. 3).
  • the lower wall portion 61 is a member configured as a lower shielding body that shields infrared rays emitted directly under the infrared heater units 30a and 30b.
  • the lower wall portion 61 is positioned below including the infrared heater units 30a and 30b.
  • the lower wall portion 61 is formed to be wider in the left-right direction than the infrared heater units 30a and 30b, and extends from the right side of the infrared heater unit 30a to the left side of the infrared heater unit 30b. ing.
  • a plurality of holes 65 that are openings having a circular cross section communicating with the inside and outside of the shielding container 60 are formed at positions other than directly below the infrared heater units 30 a and 30 b in the lower wall portion 61.
  • a plurality of holes 65 are formed near the middle in the left-right direction between the infrared heater unit 30a and the infrared heater unit 30b.
  • a plurality of holes 65 are formed in the left-right direction and the front-rear direction, respectively.
  • the holes 65 are formed by arranging a total of 50 holes in 5 rows in the left-right direction and 10 rows in the front-rear direction in a substantially rectangular shape (see FIG. 2).
  • the hole 65 serves as a radiation port serving as an outlet from the infrared shielding container 60 radiated from the infrared heater unit 30.
  • the holes 65 have a shape and an arrangement such that infrared rays radiated from the filaments 32 of the infrared heater units 30a and 30b cannot pass through the holes 65 without reflection.
  • the hole 65 is formed so that a path (virtual straight line) from the filament 32 through the hole 65 to reach the outside of the shielding container 60 cannot be drawn.
  • the upper wall portion 62 is a member configured as a reflector having a reflection surface 63 that reflects infrared rays.
  • the upper wall 62 is located above the infrared heater units 30a and 30b.
  • the upper wall portion 62 is formed to be wider in the left-right direction than the infrared heater units 30a and 30b, and extends from the right side of the infrared heater unit 30a to the left side of the infrared heater unit 30b. ing.
  • the upper wall portion 62 is formed of an infrared reflecting material capable of reflecting infrared rays emitted from the infrared heater unit 30.
  • the upper wall portion 62 reflects the infrared rays from the infrared heater unit 30 downward on the reflection surface 63 that is a portion facing the internal space of the shielding container 60 (the lower surface of the upper wall portion 62).
  • the reflection surface 63 is a surface along a substantially horizontal direction. Examples of the infrared reflecting material include SUS304 and aluminum.
  • the reflection surface 63 only needs to reflect at least part of the infrared rays from the infrared heater unit 30, and may absorb or transmit part of the infrared rays, for example.
  • the reflecting surface 63 is more preferable as the reflectance of infrared rays is higher.
  • the reflective surface 63 may have an infrared reflectance of 50% or more, may exceed 50%, may be 80% or more, or 90% or more.
  • the reflectance of infrared rays having a wavelength of 3.5 ⁇ m or less emitted from the infrared heater unit 30 is preferably high, and the reflectance of infrared rays having a wavelength of 3.5 ⁇ m or less may be the above value.
  • the side wall portions 64a to 64d are members configured as side shields that shield infrared rays radiated from the infrared heater unit 30 in a direction perpendicular to the downward direction (front-rear and left-right directions).
  • the side wall part 64a is located on the right side of the infrared heater unit 30a.
  • the side wall part 64b is located on the left side of the infrared heater unit 30b.
  • the side wall 64c is located in front of the infrared heater units 30a and 30b.
  • the side wall 64d is located behind the infrared heater units 30a and 30b.
  • the side wall portions 64a to 64d are formed wider in the vertical direction than the infrared heater units 30a and 30b.
  • the lower wall portion 61 and the side wall portions 64a to 64d are more preferable as the infrared transmittance is smaller.
  • the infrared transmittance from the filament 32 may be 50% or less, or 20% or less, or 10% or less.
  • the lower wall portion 61 and the side wall portions 64a to 64d are also formed of an infrared reflecting material like the upper wall portion 62. Therefore, the part (upper surface of the lower wall part 61) which faces the internal space of the shielding container 60 among the lower wall part 61 can reflect the infrared rays radiated
  • portions of the side wall portions 64a to 64d facing the inner space of the shielding container 60 can reflect infrared rays radiated from the infrared heater units 30a and 30b in the lateral direction (front and rear, left and right).
  • the lower wall portion 61 and the side wall portions 64a to 64d shield infrared rays from the infrared heater unit 30 by reflecting infrared rays.
  • the upper wall portion 62 has a second refrigerant inlet / outlet 66.
  • the second refrigerant is supplied from the second refrigerant supply source 54 to one of the second refrigerant inlets 66 (the right side in FIG. 1).
  • the second refrigerant flowing into the shielding container 60 from one second refrigerant inlet / outlet 66 flows through the second flow path 67 and flows out from the other (left side in FIG. 1) second refrigerant inlet / outlet 66. .
  • the second refrigerant flowing out from the other second refrigerant inlet / outlet 66 is discharged to the outside via the discharge valve 55.
  • the second refrigerant is, for example, a gas such as air or an inert gas, and cools the second refrigerant by contacting the inner peripheral surface of the shielding container 60 and taking heat away when flowing through the second flow path 67.
  • the shielding container 60 can be maintained at a temperature lower than the ignition point of the solvent evaporating from the coating film 82 (for example, 200 ° C. or lower).
  • the second flow path 67 communicates with the hole 65, and the second refrigerant flowing through the second flow path 67 can pass through the hole 65 downward and flow out to the outside of the shielding container 60 (dry space 12a). It has become.
  • the second refrigerant can be blown to the coating film 82 by allowing the second refrigerant to flow out of the hole 65.
  • the flow rate of the second refrigerant from the hole 65 can be adjusted by adjusting the supply amount of the second refrigerant from the second refrigerant supply source 54 and the opening degree of the discharge valve 55.
  • penetrating portions such as the wiring lead-out portion 44 and the first refrigerant inlet / outlet 46 in the upper wall portion 62 are sealed with a sealing material (not shown) and the like. The two refrigerants are prevented from flowing out from other than the hole 65 and the second refrigerant inlet / outlet 66.
  • the sheet 80 is not particularly limited, but is a metal sheet such as aluminum or copper, for example.
  • the coating film 82 on the sheet is used as an electrode for a battery after drying, and is not particularly limited.
  • the coating film 82 becomes an electrode for a lithium ion secondary battery.
  • an electrode material paste obtained by kneading together an electrode material (positive electrode active material or negative electrode active material), a binder, a conductive material, and a solvent on the sheet 80 can be used.
  • the thickness of the coating film 82 is not particularly limited, but is, for example, 10 to 1000 ⁇ m.
  • the controller 90 is configured as a microprocessor centered on a CPU.
  • the controller 90 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 50 to the filament 32 to the power supply source 50 to individually control the filament temperature of the infrared heater unit 30. Further, the controller 90 outputs a control signal to an opening / closing valve and a flow rate adjustment valve (not shown) of the first refrigerant supply source 52 to individually control the flow rate of the first refrigerant flowing through the first flow path 47 of the infrared heater units 30a and 30b. To control.
  • the controller 90 inputs the temperature of the shielding container 60 detected by the temperature sensor 56 that is a thermocouple, outputs a control signal to an on-off valve and a flow rate adjustment valve (not shown) of the second refrigerant supply source 54, and discharges The flow rate of the second refrigerant flowing through the second flow path 67 is controlled by outputting a control signal for adjusting the opening degree of the valve 55.
  • the controller 90 switches the conveyance and stop of the sheet 80 by switching between rotation and stop of the rolls 17 and 18, and controls the rotation speed of the rolls 17 and 18, thereby controlling the sheet 80 in the furnace body 12. In addition, the passage time of the coating film 82 and the tension applied to the sheet 80 and the coating film 82 are adjusted.
  • the coating film 82 is formed on the sheet 80 by screen printing using a coater (not shown). Then, after the coating film 82 is formed, the controller 90 rotates the rolls 17 and 18 to convey the sheet 80. As a result, the sheet 80 is unwound from the roll 17 disposed at the left end of the drying furnace 10, and the coating film 82 on the sheet 80 is carried into the furnace body 12 through the opening 15.
  • the coating film 82 is formed and transported (positioned) so that the surface of the coating film 82 has the same size as the substantially rectangular region in which the plurality of holes 65 are formed. That is, the surface of the coated film 82 after loading is assumed to be directly below the plurality of holes 65 as shown in FIG.
  • the controller 90 dries the coating film 82. Specifically, the controller 90 controls the power supply source 50 to energize the filament 32 of the infrared heater units 30a and 30b to heat it. Thereby, infrared rays are emitted from the filament 32. Infrared rays from the filament 32 are reflected by the inner peripheral surface of the shielding container 60 including the reflecting surface 63 and then radiated downward from the holes 65 and are radiated to the surface of the coating film 82 to dry the coating film 82.
  • the infrared heater units 30a and 30b have the inner tube 36 and the outer tube 40 that absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, the infrared heater units 30a and 30b have a wavelength of 3 from the infrared heater unit 30a. Infrared rays of 5 ⁇ m or less are mainly emitted. Infrared rays having a wavelength of 3.5 ⁇ m or less are excellent in the ability to break hydrogen bonds in molecules such as water and solvents. Therefore, the coating film 82 can be efficiently dried.
  • the controller 90 controls the power supply source 50 and also controls the first refrigerant supply source 52, the second refrigerant supply source 54, and the discharge valve 55, so that the first flow path 47 and the second flow path 67 respectively. 1 refrigerant and 2nd refrigerant are circulated. Thereby, the inner pipe 36 and the outer pipe 40 are cooled by the first refrigerant flowing through the first flow path 47 and the second refrigerant flowing through the second flow path 67. Further, the shielding container 60 is cooled by the second refrigerant flowing through the second flow path 67. Further, the second refrigerant flowing through the second flow path 67 flows out from the hole 65 to the lower side of the shielding container 60 and becomes air blowing toward the coating film 82.
  • the controller 90 controls the first refrigerant so that the flow rate of the first refrigerant becomes a flow rate determined in advance by experiments so that the inner tube 36 and the outer tube 40 do not become infrared secondary radiators.
  • the supply source 52 was controlled. Further, the controller 90 is maintained based on the temperature of the shielding container 60 input from the temperature sensor 56 so that the shielding container 60 is maintained at a temperature lower than the ignition point of the solvent evaporating from the coating film 82 (for example, 200 ° C. or less).
  • the second refrigerant supply source 54 and the discharge valve 55 are controlled to adjust the flow rate of the second refrigerant.
  • the controller 90 adjusts the flow rate of the second refrigerant so that the flow rate of the second refrigerant flowing out of the holes 65 and blowing air is secured.
  • the air blown from the holes 65 removes moisture and solvent from the inside of the coating film 82 by the action of infrared rays from the infrared heater unit 30. Thereby, the coating film 82 can be dried more efficiently.
  • An exhaust port (not shown) is provided at the front end portion of the furnace body 12, and the atmosphere of the drying space 12a including the second refrigerant after passing over the surface of the coating film 82 is discharged from the exhaust port to the outside. Is done.
  • the controller 90 rotates the rolls 17 and 18 to dry the coating film 82 after drying. Is carried out of the opening 16 together with the sheet 80 to the outside of the furnace.
  • the drying furnace 10 includes a coating film forming process for forming the coating film 82 on the sheet 80, a loading process for transporting the sheet 80 and bringing the coating film 82 into the furnace body 12, and the furnace body 12.
  • a drying process in which the conveyance of the sheet 80 is stopped to dry the coating film 82 and a carry-out process in which the sheet 80 is conveyed and the dried coating film 82 is unloaded are performed.
  • the drying furnace 10 performs simultaneously the drying process of the coating film 82, and the coating-film formation process of the following coating film 82 so that the several coating film 82 can be dried efficiently efficiently.
  • the carrying-out process of the coating film 82 after drying and the carrying-in process of the coating film 82 to be dried next are simultaneously performed.
  • the coating film 82 can be accurately printed in the coating film forming process in which screen printing is performed.
  • energization of the filament 32 and cooling of the inner tube 36, the outer tube 40, and the shielding container 60 are continuously performed during the carrying-in process (carrying-out process). May be.
  • FIG. 4 is an explanatory diagram showing a state in which infrared rays are radiated from the infrared heater unit 30 alone and the infrared radiation device 20.
  • FIG. 4A is an explanatory view showing a state in which infrared rays are radiated from a single infrared heater unit 30 shown for comparison.
  • FIG. 4B is an explanatory diagram showing a state in which infrared rays are radiated from the infrared radiation device 20. As shown in FIG.
  • Infrared light reflected by the inner peripheral surface of the shielding container 60 including 63 passes through the hole 65 and reaches the lower coating film 82. Therefore, the unevenness of the infrared radiation energy is alleviated by the infrared rays being reflected inside the shielding container 60. As a result, in the infrared radiation device 20, the in-plane uniformity of the infrared radiation energy radiated below the heating element (below the lower wall portion 61) on the surface of the coating film 82 is improved.
  • the filament 32 of the present embodiment corresponds to a heating element of the present invention
  • the lower wall portion 61 corresponds to a lower shield
  • the reflection surface 63 corresponds to a reflection surface
  • the upper wall portion 62 corresponds to a reflector.
  • the side walls 64a to 64d correspond to side shields
  • the holes 65 correspond to radiation holes
  • the second flow channel 67 corresponds to a shielding container coolant channel and a reflector coolant channel
  • the outer tube. 40 corresponds to a tubular member.
  • the infrared radiation device 20 of the drying furnace 10 of the present embodiment described above when an electromagnetic wave including infrared rays is radiated from the filament 32, the infrared rays radiated directly from the filament 32 are moved upward by the lower wall portion 61. Is reflected and shielded.
  • the infrared rays radiated upward from the filament 32 are reflected by the reflection surface 63 of the upper wall portion 62 and reach below the lower wall portion 61.
  • the infrared light directly going directly below the filament 32 is reflected by the lower wall portion 61, and the infrared light reflected by the reflecting surface 63 reaches below.
  • the in-plane uniformity of infrared radiation energy radiated below the filament 32 (below the lower wall part 61) is improved. Therefore, the in-plane uniformity of infrared radiation energy to the coating film 82 arranged below the lower wall portion 61 can be improved.
  • the lower wall portion 61 can reflect the infrared rays radiated downward from the filament 32 upward.
  • the infrared rays radiated downward from the filament 32 are reflected by the lower wall portion 61 and further reflected by the reflecting surface 63 of the upper wall portion 62 so as to reach the lower portion of the lower wall portion 61. Therefore, for example, compared with the case where the lower wall portion 61 absorbs infrared rays without reflecting the infrared rays, the infrared rays from the filament 32 can be efficiently emitted to the coating film 82.
  • the shielding container 60 includes the second flow path 67 through which the second refrigerant can be circulated, it is possible to suppress overheating due to the upper wall portion 62 absorbing a part of infrared rays.
  • the infrared radiation device 20 includes side wall portions 64a to 64d that shield infrared rays emitted from the filament 32 in the front-rear and left-right directions perpendicular to the lower direction. Therefore, it is possible to further suppress the infrared rays radiated from the filament 32 from directly reaching the coating film 82 without reflection. Thereby, the in-plane uniformity of the infrared radiation energy to the coating film 82 can be further improved.
  • the infrared radiation device 20 includes an upper wall portion 62, a lower wall portion 61, and side wall portions 64a to 64d, and includes a shielding container 60 that covers the filament 32.
  • the shielding container 60 includes the filament 32. It has a hole 65 that is an infrared ray exit from the shielding container 60 when infrared rays formed at positions other than directly below and reflected by the reflecting surface 63 reach below the lower wall portion 61. Thereby, the in-plane uniformity of the infrared radiation energy to the coating film 82 arrange
  • the hole 65 has a shape and an arrangement such that infrared rays emitted from the filaments 32 of the infrared heater units 30a and 30b cannot pass through the hole 65 without being reflected. As a result, the infrared rays from the filament 32 pass through the holes 65 without reflection and directly reach the object to be processed, and the in-plane uniformity of the infrared radiation energy emitted to the object to be processed is reduced. It can be improved further.
  • the lower wall portion 61 and the side wall portions 64a to 64d can reflect infrared rays from the filament 32 on the surface on the filament 32 side. Thereby, at least a part of the infrared rays radiated from the filament 32 is radiated from the hole 65 after being reflected a plurality of times in the shielding container 60. Therefore, the in-plane uniformity of the infrared radiation energy radiated from the hole 65 to the coating film 82 can be further improved. Moreover, since all the inner peripheral surfaces except the hole 65 of the shielding container 60 can reflect infrared rays, the infrared rays from the filament 32 can be radiated to the coating film 82 more efficiently.
  • the infrared radiation device 20 includes a second flow path 67 through which a second refrigerant for cooling the shielding container 60 can flow.
  • a second refrigerant for cooling the shielding container 60 can flow.
  • the hole 65 is an opening communicating with the outside of the shielding container 60 and the second flow path 67.
  • the shielding container 60 can be cooled by the second refrigerant, and the second refrigerant can flow out from the hole 65 downward. Therefore, by circulating gas as the second refrigerant, the second refrigerant can serve both for cooling the shielding container 60 and blowing air to the coating film 82.
  • a plurality of infrared heater units 30 are arranged in the shielding container 60 and arranged on both sides of the hole 65 in the left-right direction perpendicular to the up-down direction.
  • the infrared radiation intensity from the holes 65 can be increased.
  • the filaments 32 are arranged on both sides of the hole 65 in the left-right direction, for example, the in-plane uniformity of the infrared radiation energy from the hole 65 is further improved as compared with the case where the heating element is provided only on one of the left and right sides. be able to.
  • the reflection surface 63 is a surface that reflects infrared rays, but the reflection surface 63 is not limited to a regular reflection (specular reflection) of infrared rays, and may be a surface that irregularly reflects infrared rays. If the reflecting surface 63 is a surface capable of irregularly reflecting infrared rays, the in-plane uniformity of infrared radiation energy to the coating film 82 can be further improved. In addition, since infrared rays can be irregularly reflected more reliably, the reflective surface 63 may have an arithmetic average roughness Ra equal to or greater than the wavelength of infrared rays. For example, the reflective surface 63 may have an arithmetic average roughness Ra of 3.5 ⁇ m or more, which is the maximum value of the wavelength of near infrared rays (wavelength 0.7 ⁇ m to 3.5 ⁇ m).
  • the hole 65 formed in the lower wall portion 61 is an infrared radiation outlet, but is not limited thereto.
  • the infrared radiation device 20 may include a waveguide that guides infrared rays from the filament 32 to the radiation port.
  • FIG. 5 is a vertical cross-sectional view of a drying furnace 110 provided with a modified infrared radiation device 120.
  • the drying furnace 110 is the same as the drying furnace except that the infrared radiation device 120 includes a waveguide 168 unlike the infrared radiation device 20, and the hole 165 is formed in the lower wall portion 61 instead of the hole 65. 10 is the same configuration.
  • a plurality of holes 165 are formed in the lower wall portion 61 near the middle in the left-right direction between the infrared heater unit 30a and the infrared heater unit 30b.
  • the holes 165 are formed by arranging a total of 15 holes in three rows in the left-right direction and five rows in the front-rear direction in a substantially rectangular shape.
  • a waveguide 168 is connected to each of the plurality of holes 165.
  • the waveguide 168 has an inner peripheral surface along the vertical direction, the upper end opening is connected to the hole 165, and the lower end opening 169 is an infrared radiation outlet.
  • the waveguide 168 plays a role of guiding the infrared light to the opening 169 by reflecting the infrared light reflected by the reflecting surface 63 on the inner peripheral surface.
  • at least a part of the infrared rays emitted from the filament 32 is reflected by the inner peripheral surface of the waveguide 168 and then emitted from the opening 169 to reach the coating film 82.
  • infrared rays are reflected not only inside the shielding container 60 but also inside the waveguide 168, so that infrared rays radiated from the opening 169 to the coating film 82 below (particularly, infrared rays radiated directly below the opening 169).
  • the in-plane uniformity of the radiant energy is further improved.
  • the inner peripheral surface of the waveguide 168 is preferably capable of totally reflecting infrared rays. If it carries out like this, infrared rays can be radiated
  • the inner peripheral surface of the waveguide 168 may be capable of totally reflecting infrared rays having a wavelength of 3.5 ⁇ m or less.
  • the waveguide 168 preferably has a shape and an arrangement such that infrared rays radiated from the filament 32 cannot reach the opening 169 without being reflected.
  • the waveguide 168 can easily lengthen the infrared path in the vertical direction as compared with the hole 65, the waveguide 168 can be easily configured so that the infrared rays cannot reach the opening 169 without being reflected.
  • a plurality of holes 65 are formed, but the number of holes 65 may be one or more.
  • the formation of a plurality of holes 65 facilitates a configuration in which the infrared radiation from the filament 32 cannot pass through the holes 65 without reflection, while increasing the total area of the infrared radiation outlet.
  • the hole 65 is an opening, but may be an infrared ray outlet from the shielding container 60. That is, the hole 65 only needs to be able to transmit infrared rays.
  • a partition member 65 a that transmits infrared rays and partitions the inside and outside of the shielding container 60 may be provided inside the hole 65. In this case, the air cannot be blown from the hole 65 to the coating film 82, but the infrared light can be radiated from the hole 65 to the coating film 82 by passing through the partition member 65 a.
  • the partition member 65a may be formed of an infrared absorbing material that transmits infrared rays having a wavelength of 3.5 ⁇ m or less and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m. In this way, even if the inner tube 36 and the outer tube 40 are not formed of an infrared absorbing material, infrared rays having a wavelength of 3.5 ⁇ m or less can be selectively emitted to the coating film 82 and can be efficiently dried. . In this case, the inner tube 36 and the outer tube 40 may not be provided.
  • FIG. 7 is a perspective view of a modified infrared radiation device 220.
  • the infrared radiation device 220 according to the modified example includes infrared heater units 30c and 30d whose longitudinal direction is the left-right direction in addition to the infrared heater units 30a and 30b. That is, the infrared radiation device 220 has a total of four infrared heater units 30.
  • the configuration of the infrared heater units 30c and 30d is the same as that of the infrared heater units 30a and 30b.
  • the infrared heater units 30a to 30d are disposed in the vicinity of the side wall portions 64a to 64d in the shielding container 60, respectively.
  • the infrared heater units 30a to 30d are respectively disposed between the side walls 64a to 64d in the shielding container 60 and the hole 65, and are positioned so as to surround the hole 65 from the front, rear, right and left.
  • the filament 32 of the infrared heater units 30a to 30d is disposed so as to surround the hole 65, the in-plane uniformity of the infrared radiation energy from the hole 65 can be further improved.
  • the infrared radiation intensity from the holes 65 can be increased.
  • FIG. 8 is a perspective view of a modified infrared radiation device 320.
  • the infrared radiation device 320 of the modified example is an infrared heater located in the middle between the infrared heater unit 30a and the infrared heater unit 30b in the longitudinal direction in addition to the infrared heater units 30a to 30d. It has a unit 30e. That is, the infrared radiation device 320 has a total of five infrared heater units 30.
  • the configuration of the infrared heater unit 30e is the same as that of the infrared heater units 30a to 30d.
  • a plurality of holes 365a and 365b are formed in place of the holes 65 at positions other than directly below the infrared heater units 30a to 30e in the lower wall portion 61.
  • a plurality of holes 365a are formed near the middle in the left-right direction between the infrared heater unit 30a and the infrared heater unit 30e, and are surrounded by the infrared heater units 30a, 30c, 30d, and 30e.
  • a plurality of holes 365b are formed near the middle in the left-right direction between the infrared heater unit 30b and the infrared heater unit 30e, and are surrounded by the infrared heater units 30b, 30c, 30d, and 30e.
  • the infrared radiation intensity from the holes 365a and 365b can be further increased.
  • the inner peripheral surface of the shielding container 60 is capable of reflecting infrared rays, but it is sufficient that at least the reflection surface 63 and the lower wall portion 61 can reflect infrared rays.
  • the side wall portions 64a to 64d only need to be able to shield infrared rays from the filament 32, and may be, for example, those that absorb infrared rays without reflecting them.
  • the upper wall portion 62 is formed of an infrared reflecting material that reflects infrared rays, but it is sufficient that the reflecting surface 63 can reflect infrared rays.
  • an infrared reflection layer capable of reflecting infrared rays is formed on the surface of the upper wall portion 62, and the surface of the infrared reflection layer may be used as the reflection surface 63.
  • the material used for such an infrared reflective layer include gold, platinum, and aluminum.
  • the infrared reflective layer can be formed, for example, by forming an infrared reflective material on the surface of the upper wall portion 62 using a film forming method such as coating and drying, sputtering, CVD, or thermal spraying.
  • the lower wall portion 61 and the side wall portions 64a to 64d may also be configured to be able to reflect infrared rays by forming an infrared reflecting layer in a portion facing the internal space of the shielding container 60.
  • the internal space in which the infrared heater unit 30 is disposed in the shielding container 60 is the second flow path 67.
  • the second flow path 67 For example, each of the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d.
  • a second flow path capable of circulating the second refrigerant may be formed. Even in this case, the shielding container 60 can be cooled by the second refrigerant.
  • the space between the inner tube 36 and the outer tube 40 is the first flow path 47, but the first refrigerant may not be circulated between the inner tube 36 and the outer tube 40.
  • the outer pipe 40 can be cooled by circulating the second refrigerant between the shielding container 60 and the outer pipe 40.
  • one of the inner tube 36 and the outer tube 40 may be omitted.
  • the infrared heater unit 30 is covered with the shielding container 60.
  • the lower wall portion 61 that shields infrared rays emitted from the filament 32 and the filament 32 is emitted upward.
  • the upper wall part 62 which reflects infrared rays it will not be restricted to this.
  • the side walls 64a to 64d may not be provided.
  • the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d are separated from each other.
  • the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d are not joined to each other. It may be arranged around the unit 30.
  • FIG. 9 is a longitudinal sectional view of a drying furnace 410 provided with a modified infrared radiation device 420.
  • the infrared radiation device 420 does not include the shielding container 60 but includes an infrared heater unit 430 and a reflection plate 462 that is a plate-like member that covers the infrared heater unit 30.
  • the infrared heater unit 430 has the same configuration as the infrared heater unit 30 except that the infrared heater unit 430 has a layered shield 461 formed on the outer surface of the outer tube 40 (see the enlarged portion in FIG. 9).
  • the shield 461 has the same longitudinal direction as that of the outer tube 40 and shields infrared rays radiated directly from the filament 32 by reflection like the lower wall portion 61.
  • the shield 461 is made of an infrared reflecting material, and is configured as the above-described infrared reflecting layer capable of reflecting the infrared rays from the filament 32 upward.
  • the shield 461 covers the lower side of the surface of the outer tube 40. In FIG.
  • the downward direction is 0 ° as viewed from the filament 32, and the surface of the outer tube 40 is ⁇ 45 ° to the left and right in the cross-sectional view. It covers a range of 45 ° (the counterclockwise direction in FIG. 9 is positive).
  • the shield 461 only needs to reflect the infrared rays radiated from the filament 32 directly below.
  • the shield 461 may cover at least the region directly below the filament 32 (the width in the left-right direction is wider than that of the filament 32).
  • the shield 461 may cover a range of ⁇ 90 ° to 90 °, for example, or may cover another range.
  • the shield 461 is disposed on the outer tube 40 so that infrared rays radiated from the filament 32 cannot reach the coating film 82 without reflection. You may define the range which covers the surface of.
  • the reflection plate 462 is disposed outside the outer tube 40 when viewed from the filament 32.
  • the reflection plate 462 has the same longitudinal direction as that of the infrared heater unit 30, and the cross-sectional shape of the reflection surface 463 that is the surface on the filament 32 side is a curved shape such as a parabola, an elliptical arc, or an arc.
  • the filament 32 may be disposed at the focal point or the center position of the reflecting surface 463 in the curved shape.
  • the reflecting plate 462 can reflect infrared rays downward on the reflecting surface 463.
  • the reflecting plate 462 may be formed of an infrared reflecting material, similar to the upper wall portion 62 described above. Further, an infrared reflection layer capable of reflecting infrared rays is formed on the surface of the reflection plate 462 on the filament 32 side, and the surface of the infrared reflection layer may be a reflection surface 463.
  • the reflection plate 462 preferably covers a region directly above the shield 461 (wider in the left-right direction than the shield 461).
  • the infrared radiation device 420 is also shielded by being reflected by the shield 461 with respect to the infrared radiation radiated directly from the filament 32.
  • infrared rays radiated upward from the filament 32 are reflected by the reflecting surface 463 and reach below the shield 461.
  • the shield 461 may be formed on the inner peripheral surface of the outer tube 40, or may be formed on the outer peripheral surface or inner peripheral surface of the inner tube 36.
  • the reflection plate 462 may be flat. That is, the cross section of the reflecting surface 463 may be a straight shape instead of a curved shape. Further, the reflection surface 463 may be capable of irregularly reflecting infrared rays.
  • the infrared radiation device 420 may include a reflector coolant channel through which a coolant for cooling the reflector 462 can flow. For example, a pipe that contacts the surface of the reflector 462 opposite to the filament 32 (upper surface in FIG.
  • a coolant channel may be formed inside the reflecting plate 462, and the coolant may be circulated inside the reflecting plate 462.
  • FIG. 10 is a longitudinal sectional view of a drying furnace 510 provided with a modified infrared radiation device 520.
  • a layered shield 537 is formed on the outer surface of the outer tube 40 of the infrared heater unit 30.
  • the shield 537 is configured as the above-described infrared reflecting layer capable of reflecting the infrared rays from the filament 32 upward, similarly to the shield 461 shown in FIG.
  • a plurality of holes 565 formed in the lower wall portion 561 are formed in the entire lower wall portion 561 including the region directly below the infrared heater unit 30 unlike the hole 65 of FIG.
  • the infrared rays emitted directly below the filament 32 are reflected and shielded upward by the shield 537.
  • infrared rays radiated upward from the filament 32 are reflected by the reflecting surface 63 of the upper wall portion 62, pass through the hole 565, and reach below the lower wall portion 561. Therefore, the in-plane uniformity of infrared radiation energy radiated below the filament 32 (below the lower wall portion 561) is improved.
  • the hole 565 can be formed also in the region directly under the infrared heater unit 30 by having the shield 537, it is also in-plane with respect to the processing target disposed in the region directly under the infrared heater unit 30. Infrared rays can be emitted while maintaining uniformity. That is, a region where infrared rays can be emitted while maintaining in-plane uniformity extends in the left-right direction of the figure. Thereby, the surface area of the coating film 82 which can be dried at once in the furnace body 12 can be increased, and the processing efficiency is improved.
  • the lower wall portion 561 is not necessarily made of a material that reflects the infrared rays.
  • the lower wall portion 551 may be made of a material that absorbs infrared rays or a material that transmits infrared rays.
  • the hole 565 may not be formed.
  • the drying furnace 10 may further include a blower that blows air toward the surface of the coating film 82 or in parallel with the surface of the coating film 82.
  • the vertical downward direction has been described as “downward”, but it is only necessary to define the upward direction and the left-right direction with reference to “downward direction”, and even if “downward direction” is another direction.
  • the vertically upward direction may be “downward”.
  • the infrared radiation device 20 radiates infrared rays to a processing object arranged vertically upward.
  • the drying furnace 10 is an intermittent feed type, but is not limited thereto.
  • the coating film 82 to be processed is exemplified by a coating film that becomes an electrode for a lithium ion secondary battery after drying, but the drying symmetry is not limited thereto.
  • a coating film used as a thin film for MLCC multilayer ceramic capacitor
  • the coating film may contain, for example, ceramic powder or metal powder, an organic binder, and an organic solvent.
  • the sheet may be a resin such as PET.
  • the coating film 82 may be used as a thin film for LTCC (low temperature fired ceramics) or other green sheets.
  • the coating film 82 is formed on the sheet 80 by screen printing.
  • the present invention is not limited thereto, and the coating film 82 may be formed using other methods such as gravure printing.
  • the drying furnace 10 dries the coating film 82 using infrared rays.
  • the drying oven 10 is not limited to a drying oven as long as it is an infrared treatment apparatus that treats a treatment target using infrared rays.
  • the treatment using infrared rays include chemical reactions such as cross-linking and imidization of the treatment target, dehydration, annealing, and the like.
  • the present invention can be used in industries that require treatment such as drying using infrared rays on the object to be treated, such as the battery industry that produces electrode coatings for lithium ion secondary batteries, and the ceramic industry that produces MLCC or LTCC. It is.

Abstract

An infrared radiation device (20) is provided with an infrared heater unit (30) having a filament (32) radiating an electromagnetic wave containing infrared when heated, a lower wall part (61) reflecting upward an infrared beam radiated directly below from the filament (32) when a predetermined direction is downward, and a reflective body (62) having a reflective surface (63) reflecting an infrared beam radiated upward from the filament (32) so as to reach lower than the lower wall part (61). An insulation container (60) is provided with a second flow path (67) allowing a second refrigerant to flow through. The infrared radiation device (20) is provided with side wall parts (64a to 64d) for blocking an infrared beam radiated from the filament (32) in a front, back, left or right direction, orthogonal to the downward direction. The infrared radiation device (20) is provided with the insulation container (60) covering the filament (32), and the insulation container (60) has a hole (65) serving as an exit from the insulation container (60) for an infrared beam.

Description

赤外線放射装置及び赤外線処理装置Infrared radiation device and infrared processing device
 本発明は、赤外線放射装置及び赤外線処理装置に関する。 The present invention relates to an infrared radiation device and an infrared processing device.
 従来、塗膜などの処理対象に対して赤外線を放射する赤外線放射装置が知られている。例えば、特許文献1には、加熱すると赤外線を放出するカーボン又は炭化珪素からなるロッド状の発熱体と、この発熱体が気密的に収容された透光性アルミナセラミックス製筒形状の保護管とを備えた赤外線ヒーターが記載されている。この保護管は、0.4~6μmの波長の電磁波の全透過率が80%以上である。 Conventionally, an infrared radiation device that emits infrared light to a processing target such as a coating film is known. For example, Patent Document 1 discloses a rod-shaped heating element made of carbon or silicon carbide that emits infrared rays when heated, and a cylindrical protective tube made of translucent alumina ceramic in which the heating element is hermetically accommodated. An infrared heater provided is described. This protective tube has a total transmittance of electromagnetic waves having a wavelength of 0.4 to 6 μm of 80% or more.
特開2006-294337号公報JP 2006-294337 A
 ところで、このような赤外線放射装置において、処理対象の表面のうち発熱体に近い部分ほど放射エネルギーが高くなるなど、処理対象の表面における放射エネルギーの分布(面内分布)が不均一になる場合があった。より均一な処理(例えば乾燥など)を可能にすべく、赤外線の放射エネルギーの面内均一性を高めたいという要望があった。 By the way, in such an infrared radiation device, the radiant energy distribution (in-plane distribution) on the surface to be processed may be non-uniform, for example, the portion of the surface to be processed that is closer to the heating element has higher radiant energy. there were. In order to enable more uniform processing (for example, drying), there has been a demand for improving the in-plane uniformity of infrared radiation energy.
 本発明はこのような課題を解決するためになされたものであり、処理対象への赤外線の放射エネルギーの面内均一性を向上させることを主目的とする。 The present invention has been made to solve such a problem, and has as its main object to improve the in-plane uniformity of infrared radiation energy to the object to be treated.
 本発明の赤外線放射装置は、
 加熱されると赤外線を含む電磁波を放射する発熱体と、
 所定の方向を下方向としたときに、前記発熱体から真下に放射される赤外線を上方に反射する下部遮蔽体と、
 前記発熱体から上方に放射される赤外線を前記下部遮蔽体よりも下方に到達可能に反射する反射面を有する反射体と、
 を備えたものである。
The infrared radiation device of the present invention is
A heating element that emits electromagnetic waves including infrared when heated,
A lower shield that reflects upward the infrared rays emitted directly from the heating element when the predetermined direction is a downward direction;
A reflector having a reflecting surface for reflecting infrared rays radiated upward from the heating element so that the infrared rays can reach below the lower shield;
It is equipped with.
 この本発明の赤外線放射装置では、発熱体から赤外線を含む電磁波が放射されると、発熱体から真下に放射される赤外線については、下部遮蔽体により上方に反射されて遮蔽される。一方、発熱体から上方に放射される赤外線については、反射体の反射面により反射されて、下部遮蔽体よりも下方に到達する。すなわち、発熱体の真下に直接向かう赤外線は下部遮蔽体で反射され、反射面で反射された赤外線が下方に到達する。このため、下部遮蔽体を有しない場合と比べて、発熱体の下方(下部遮蔽体の下方)に放射される赤外線の放射エネルギーの面内均一性が向上する。したがって、下方に配置された処理対象への赤外線の放射エネルギーの面内均一性を向上させることができる。なお、発熱体の真下に放射された赤外線は、下部遮蔽体に反射され、さらに反射体の反射面で反射されて、下部遮蔽体の下方に到達可能になる。そのため、例えば下部遮蔽体が赤外線を反射せず吸収してしまう場合に比べて、発熱体からの赤外線を効率よく処理対象に放射することができる。ここで、「下方向」とは、「所定の方向」(基準となる方向)の便宜上の呼称である。そのため、「下方向」は例えば鉛直下方向であってもよいし、鉛直上方向であってもよいし、その他どのような方向であってもよい。例えば発熱体が長尺な物体のときに、発熱体の長手方向に垂直な方向を「所定の方向」(=下方向)としてもよい。この「下方向」を基準として、上方向や左右方向が定まるものとする。また、「下方」は真下だけではなく斜め下を含む意である。「上方」は、真上だけではなく斜め上を含む意である。「赤外線を反射する」とは、赤外線の少なくとも一部を反射するものであればよく、例えば赤外線の一部を吸収したり透過したりしてもよい。前記下部遮蔽体は、赤外線の反射率が高いほど好ましい。例えば下部遮蔽体は発熱体からの赤外線の反射率が50%以上としてもよいし、50%超過としてもよいし、80%以上、90%以上としてもよい。同様に、「反射面」は赤外線の少なくとも一部を反射するものであればよく、例えば赤外線の一部を吸収したり透過したりしてもよい。反射面は赤外線の反射率が高いほど好ましい。例えば、反射面は赤外線の反射率が50%以上としてもよいし、50%超過としてもよいし、80%以上、90%以上としてもよい。また、前記下部遮蔽体は、前記発熱体から真下に放射される赤外線に限らず、前記発熱体から下方に放射された赤外線を上方に反射可能であってもよい。 In the infrared radiation device of the present invention, when an electromagnetic wave including infrared rays is radiated from the heating element, the infrared radiation radiated directly from the heating element is reflected and shielded upward by the lower shielding body. On the other hand, the infrared rays radiated upward from the heating element are reflected by the reflecting surface of the reflector and reach below the lower shield. That is, the infrared rays that go directly below the heating element are reflected by the lower shielding body, and the infrared rays that are reflected by the reflecting surface reach below. For this reason, compared with the case where it does not have a lower shielding body, the in-plane uniformity of the infrared radiation energy radiated | emitted below the heat generating body (below a lower shielding body) improves. Therefore, it is possible to improve the in-plane uniformity of infrared radiation energy to the processing object disposed below. In addition, the infrared rays radiated directly below the heating element are reflected by the lower shielding body and further reflected by the reflecting surface of the reflecting body, so that the infrared rays can reach the lower part of the lower shielding body. Therefore, for example, compared with the case where the lower shield absorbs infrared rays without reflecting the infrared rays, the infrared rays from the heating element can be efficiently emitted to the processing target. Here, “downward direction” is a convenient name for “predetermined direction” (reference direction). Therefore, the “downward direction” may be, for example, a vertically downward direction, a vertically upward direction, or any other direction. For example, when the heating element is a long object, the direction perpendicular to the longitudinal direction of the heating element may be set as the “predetermined direction” (= downward direction). It is assumed that the upper direction and the left-right direction are determined based on the “downward direction”. Further, “downward” means not only directly below but also diagonally below. “Upward” means not only directly above but also diagonally above. “Reflecting infrared rays” may be anything as long as it reflects at least a portion of infrared rays. For example, a portion of infrared rays may be absorbed or transmitted. It is preferable that the lower shield has a higher infrared reflectance. For example, the lower shield may have an infrared reflectance of 50% or more from the heating element, may exceed 50%, may be 80% or more, or 90% or more. Similarly, the “reflecting surface” only needs to reflect at least part of infrared rays, and may absorb or transmit part of infrared rays, for example. It is preferable that the reflection surface has a higher infrared reflectance. For example, the reflective surface may have an infrared reflectance of 50% or more, may exceed 50%, may be 80% or more, or 90% or more. In addition, the lower shield is not limited to the infrared radiation radiated directly from the heating element, and may be capable of reflecting upward the infrared radiation radiated downward from the heating element.
 本発明の赤外線放射装置において、前記反射面は、下方向に垂直な方向である左右方向の幅が前記発熱体よりも広いものとしてもよい。また、前記反射面は、下方向に垂直な方向である左右方向の幅が前記下部遮蔽体よりも広いものとしてもよい。また、前記左右方向は、発熱体の長手方向に垂直且つ前記下方向に垂直な方向としてもよい。さらに、本発明の赤外線放射装置は、前記反射体を冷却する冷媒を流通可能な反射体用冷媒流路を備えていてもよい。こうすれば、反射体が赤外線の一部を吸収することによる過熱を抑制することができる。 In the infrared radiation device of the present invention, the reflecting surface may be wider in the left-right direction, which is a direction perpendicular to the lower direction, than the heating element. Further, the reflecting surface may be wider in the left-right direction, which is a direction perpendicular to the lower direction, than the lower shield. The left-right direction may be a direction perpendicular to the longitudinal direction of the heating element and perpendicular to the lower direction. Furthermore, the infrared radiation device of the present invention may include a reflector coolant channel through which a coolant for cooling the reflector can be circulated. If it carries out like this, overheating by a reflector absorbing a part of infrared rays can be suppressed.
 本発明の赤外線放射装置において、前記反射面は、前記赤外線を乱反射する面としてもよい。こうすれば、処理対象への赤外線の放射エネルギーの面内均一性をより向上させることができる。なお、より確実に赤外線を乱反射させることができるため、前記反射面は、算術平均粗さRaが赤外線の波長以上としてもよい。例えば、反射面は、算術平均粗さRaが近赤外線(波長0.7μ~3.5μm)の波長の最大値である3.5μm以上としてもよい。 In the infrared radiation device of the present invention, the reflection surface may be a surface that irregularly reflects the infrared light. In this way, the in-plane uniformity of the infrared radiation energy to the processing target can be further improved. In addition, since infrared rays can be irregularly reflected more reliably, the reflection surface may have an arithmetic average roughness Ra equal to or greater than the wavelength of infrared rays. For example, the reflective surface may have an arithmetic average roughness Ra of 3.5 μm or more, which is the maximum value of the near-infrared (wavelength 0.7 μm to 3.5 μm) wavelength.
 本発明の赤外線放射装置は、前記発熱体から前記下方向と垂直な方向に放射される赤外線を遮蔽する側部遮蔽体を備えていてもよい。こうすれば、発熱体から放射される赤外線が処理対象に反射を介さず直接到達するのをより抑制できる。これにより、処理対象への赤外線の放射エネルギーの面内均一性をより向上させることができる。ここで、「赤外線を遮蔽する」とは、赤外線の少なくとも一部を遮蔽する(透過させない)ものであればよく、例えば赤外線を吸収する場合や反射する場合を含む。前記側部遮蔽体は、赤外線の透過率が低いほど好ましい。例えば側部遮蔽体は発熱体からの赤外線の透過率が50%以下としてもよいし、50%未満としてもよいし、20%以下、10%以下としてもよい。側部遮蔽体は、前記発熱体からみて前記下方向と垂直な方向のうち2方向以上の赤外線を遮蔽可能としてもよい。また、本発明の赤外線放射装置は、前記側部遮蔽体を複数備えていてもよい。 The infrared radiation device of the present invention may include a side shield that shields infrared radiation emitted from the heating element in a direction perpendicular to the downward direction. If it carries out like this, it can suppress more that the infrared rays radiated | emitted from a heat generating body reach | attain directly to a process target without reflection. Thereby, the in-plane uniformity of the infrared radiation energy to a process target can be improved more. Here, “shielding infrared rays” may be anything that shields (does not transmit) at least part of infrared rays, and includes, for example, the case of absorbing or reflecting infrared rays. The said side part shield is so preferable that the transmittance | permeability of infrared rays is low. For example, the side shield may have an infrared transmittance of 50% or less, less than 50%, or 20% or less, or 10% or less. The side shield may be configured to shield infrared rays in two or more directions in a direction perpendicular to the lower direction when viewed from the heating element. The infrared radiation device of the present invention may include a plurality of the side shields.
 側部遮蔽体を備える態様の本発明の赤外線放射装置において、前記反射体と、前記下部遮蔽体と、前記側部遮蔽体と、を有し、前記発熱体を覆う遮蔽容器、を備え、前記遮蔽容器は、前記発熱体の真下以外の位置に形成され前記反射面で反射された赤外線が前記下部遮蔽体よりも下方に到達する際の該遮蔽容器からの該赤外線の出口となる放射口を有していてもよい。こうすれば、放射口の下方に配置された処理対象への赤外線の放射エネルギーの面内均一性を向上させることができる。しかも、発熱体が遮蔽容器に覆われていることにより、発熱体から放射される赤外線が処理対象に反射を介さず直接到達するのをより抑制できる。この場合において、前記放射口は、前記発熱体から放射される赤外線が反射を介さずには前記放射口を通過できないような形状や配置をしていてもよい。こうすれば、発熱体からの赤外線が反射を介さずに放射口を通過して直接に処理対象に到達することをより抑制して、処理対象に放射される赤外線の放射エネルギーの面内均一性をより向上させることができる。 In the infrared radiation device according to the aspect of the present invention including a side shield, the reflector, the lower shield, and the side shield, and including a shielding container that covers the heating element, The shielding container has a radiation port that is formed at a position other than directly below the heating element and serves as an outlet for the infrared light from the shielding container when the infrared light reflected by the reflecting surface reaches below the lower shielding body. You may have. If it carries out like this, the in-plane uniformity of the infrared radiation energy to the process target arrange | positioned under the radiation port can be improved. Moreover, since the heating element is covered with the shielding container, it is possible to further suppress the infrared rays radiated from the heating element from directly reaching the processing target without reflection. In this case, the radiation port may have a shape or an arrangement such that infrared rays radiated from the heating element cannot pass through the radiation port without being reflected. In this way, the infrared radiation from the heating element can be prevented from passing directly through the radiating port without reflection and reaching the processing target directly, and the in-plane uniformity of the infrared radiation energy radiated to the processing target. Can be further improved.
 遮蔽容器を備える態様の本発明の赤外線放射装置において、前記下部遮蔽体及び前記側部遮蔽体は、前記発熱体側の面が前記発熱体からの赤外線を反射可能としてもよい。こうすれば、発熱体から放射された赤外線のうち少なくとも一部は、遮蔽容器の中で複数回反射された後に放射口から放射されることになる。そのため、放射口から処理対象に放射される赤外線の放射エネルギーの面内均一性をより向上させることができる。この場合において、前記遮蔽容器のうち前記放射口を除く内周面がいずれも赤外線を反射可能としてもよい。 In the infrared radiation device of the present invention having a shielding container, the lower shielding body and the side shielding body may be configured such that a surface on the heating element side can reflect infrared rays from the heating element. If it carries out like this, at least one part of the infrared rays radiated | emitted from the heat generating body will be radiated | emitted from a radiation | emission port, after being reflected in the shielding container in multiple times. Therefore, the in-plane uniformity of the infrared radiation energy radiated from the radiation port to the object to be processed can be further improved. In this case, any inner peripheral surface of the shielding container excluding the radiation port may reflect infrared rays.
 遮蔽容器を備える態様の本発明の赤外線放射装置は、前記遮蔽容器を冷却する冷媒が流通可能な遮蔽容器用冷媒流路を備えていてもよい。こうすれば、赤外線が当たることによる遮蔽容器の過熱を冷媒によってより抑制することができる。この場合において、本発明の赤外線放射装置は、前記遮蔽容器の内側に配置され、前記発熱体からの赤外線を透過し前記発熱体を覆う管状部材、を備え、前記遮蔽容器用冷媒流路は、前記遮蔽容器と前記管状部材との間の空間であるものとしてもよい。また、前記放射口は、前記遮蔽容器の外部及び前記遮蔽容器用冷媒流路と連通している開口としてもよい。こうすれば、冷媒によって遮蔽容器を冷却できると共に、冷媒を放射口から下方に流出させることができる。そのため、冷媒として気体を流通させることで、冷媒が遮蔽容器の冷却と処理対象への送風とを兼ねることができる。 The infrared radiation device of the present invention including a shielding container may include a shielding container coolant channel through which a coolant for cooling the shielding container can flow. If it carries out like this, overheating of the shielding container by infrared rays can be suppressed more by a refrigerant | coolant. In this case, the infrared radiation device of the present invention includes a tubular member that is disposed inside the shielding container, transmits infrared rays from the heating element, and covers the heating element. It may be a space between the shielding container and the tubular member. Further, the radiation port may be an opening communicating with the outside of the shielding container and the refrigerant flow path for the shielding container. If it carries out like this, while being able to cool a shielding container with a refrigerant | coolant, a refrigerant | coolant can be flowed out downward from a radiation | emission opening. Therefore, by circulating gas as the refrigerant, the refrigerant can serve as both cooling of the shielding container and blowing air to the processing target.
 遮蔽容器を備える態様の本発明の赤外線放射装置において、前記遮蔽容器は、赤外線を透過し前記放射口を塞いで前記遮蔽容器の内外を区画する区画部材を備えていてもよい。さらに、前記区画部材は、波長3.5μm以下の赤外線を透過し波長3.5μmを超える赤外線を吸収する材料で形成されていてもよい。波長3.5μm以下の赤外線は、水や溶剤などの分子中の水素結合を切断する能力に優れている。そのため、区画部材が波長3.5μm以下の赤外線を選択的に透過することで、処理対象を効率よく処理(例えば、乾燥や脱水など)することができる。 In the infrared radiation device of the present invention including a shielding container, the shielding container may include a partition member that transmits infrared rays and closes the radiation port to partition the inside and outside of the shielding container. Furthermore, the partition member may be formed of a material that transmits infrared rays having a wavelength of 3.5 μm or less and absorbs infrared rays having a wavelength exceeding 3.5 μm. Infrared rays having a wavelength of 3.5 μm or less are excellent in the ability to break hydrogen bonds in molecules such as water and solvents. Therefore, the partition member selectively transmits infrared rays having a wavelength of 3.5 μm or less, so that the processing target can be efficiently processed (for example, dried or dehydrated).
 遮蔽容器を備える態様の本発明の赤外線放射装置は、上下方向に沿った内周面を有し、前記反射面で反射された赤外線を該内周面が反射することで該赤外線を前記放射口に導く導波管、を備えていてもよい。こうすることで、発熱体から放射された赤外線のうち少なくとも一部は導波管の内周面で反射された上で放射口から放射されることになる。そのため、放射口から処理対象に放射される赤外線の放射エネルギーの面内均一性をより向上させることができる。この場合において、前記導波管の下端を前記放射口としてもよい。また、前記導波管の内周面は、赤外線を全反射可能であるものとしてもよい。こうすれば、赤外線をより効率よく処理対象に放射できる。なお、前記導波管の内周面は、波長3.5μm以下の赤外線を全反射可能であるものとしてもよい。また、導波管は、前記発熱体から放射される赤外線が反射を介さずには前記放射口に到達できないような形状や配置をしていてもよい。こうすれば、発熱体からの赤外線が反射を介さずに放射口を通過して直接に処理対象に到達することがないため、処理対象に放射される赤外線の放射エネルギーの面内均一性をより向上させることができる。 The infrared radiation device of the present invention having a shielding container has an inner circumferential surface along the vertical direction, and the infrared radiation reflected by the reflecting surface is reflected by the inner circumferential surface so that the infrared radiation is emitted from the radiation port. A waveguide leading to By doing so, at least a part of the infrared rays emitted from the heating element is reflected from the inner peripheral surface of the waveguide and then emitted from the radiation port. Therefore, the in-plane uniformity of the infrared radiation energy radiated from the radiation port to the object to be processed can be further improved. In this case, the lower end of the waveguide may be the radiation port. The inner peripheral surface of the waveguide may be capable of totally reflecting infrared rays. In this way, infrared rays can be radiated to the processing target more efficiently. The inner peripheral surface of the waveguide may be capable of totally reflecting infrared rays having a wavelength of 3.5 μm or less. The waveguide may have a shape and an arrangement such that infrared rays radiated from the heating element cannot reach the radiation opening without being reflected. In this way, the infrared rays from the heating element do not pass directly through the radiating port without reflection and reach the object to be processed, so that the in-plane uniformity of the infrared radiation energy radiated to the object to be processed is further improved. Can be improved.
 遮蔽容器を備える態様の本発明の赤外線放射装置において、前記発熱体は、前記遮蔽容器内に複数配置され、且つ、上下方向に垂直な方向で前記放射口の両側に配置されていてもよい。こうすれば、複数の発熱体から赤外線を放射可能であるため、放射口からの赤外線の放射強度を高くすることができる。しかも、上下方向に垂直な方向で前記放射口の両側に発熱体が配置されているため、例えば1つしか発熱体がない場合と比べて放射口からの赤外線の放射エネルギーの面内均一性をより向上させることができる。 In the infrared radiation device of the present invention having a shielding container, a plurality of the heating elements may be disposed in the shielding container, and may be disposed on both sides of the radiation opening in a direction perpendicular to the vertical direction. In this way, since infrared rays can be emitted from a plurality of heating elements, the infrared radiation intensity from the emission port can be increased. In addition, since the heating elements are arranged on both sides of the radiating port in a direction perpendicular to the vertical direction, for example, the in-plane uniformity of the infrared radiation energy from the radiating port is improved as compared with the case where there is only one heating element. It can be improved further.
 この場合において、前記遮蔽容器は、前記反射体を含む上壁部と、前記下部遮蔽体を含む下壁部と、前記側部遮蔽体を含む4つの側壁部と、を有する直方体の容器であり、前記発熱体は、前記遮蔽容器内に複数配置され、且つ、前記遮蔽容器内の前記4つの側壁部と前記放射口との間にそれぞれ配置されて、上下方向に垂直な方向から前記放射口の周囲を囲むように位置していてもよい。こうすれば、放射口の周囲を囲むように発熱体が配置されているため、放射口からの赤外線の放射エネルギーの面内均一性をさらに向上させることができる。なお、「直方体」とは、略直方体を含む。また、前記発熱体は、前記4つの側壁部の近傍にそれぞれ配置されていてもよい。 In this case, the shielding container is a rectangular parallelepiped container having an upper wall portion including the reflector, a lower wall portion including the lower shielding body, and four side wall portions including the side shielding body. A plurality of the heating elements are arranged in the shielding container, and are arranged between the four side wall portions in the shielding container and the radiation opening, respectively, and the radiation opening is formed in a direction perpendicular to the vertical direction. It may be located so as to surround the periphery of. In this case, since the heating element is arranged so as to surround the periphery of the radiation port, the in-plane uniformity of the infrared radiation energy from the radiation port can be further improved. The “cuboid” includes a substantially rectangular parallelepiped. The heating elements may be arranged in the vicinity of the four side wall portions.
 本発明の赤外線放射装置において、前記発熱体からの赤外線を透過し前記発熱体を覆う管状部材、を備え、前記下部遮蔽体は、前記管状部材の内周面又は外周面に形成されていてもよい。 The infrared radiation device of the present invention may include a tubular member that transmits infrared rays from the heating element and covers the heating element, and the lower shielding body may be formed on an inner peripheral surface or an outer peripheral surface of the tubular member. Good.
 本発明の赤外線処理装置は、上述したいずれかの態様の本発明の赤外線放射装置を備え、該赤外線放射装置の下方に位置する処理対象に該赤外線放射装置から赤外線を放射して処理を行うものである。 The infrared processing apparatus of the present invention includes the infrared radiation apparatus of the present invention according to any one of the above-described aspects, and performs processing by radiating infrared rays from the infrared radiation apparatus to a processing target positioned below the infrared radiation apparatus. It is.
 この本発明の赤外線処理装置は、上述したいずれかの態様の本発明の赤外線放射装置を備えているため、本発明の赤外線放射装置の効果、例えば、処理対象への赤外線の放射エネルギーの面内均一性を向上させることができる効果が得られる。なお、本発明の赤外線処理装置は、処理対象の搬送を停止した状態で処理するものとしてもよいし、搬送しながら処理するものとしてもよい。 Since the infrared processing apparatus of the present invention includes the infrared radiation apparatus of the present invention according to any one of the above-described aspects, the effects of the infrared radiation apparatus of the present invention, for example, in the plane of the infrared radiation energy to the processing target An effect of improving the uniformity can be obtained. In addition, the infrared processing apparatus of this invention is good also as what is processed in the state which stopped conveyance of the process target, and is good also as what is processed while conveying.
乾燥炉10の縦断面図である。1 is a longitudinal sectional view of a drying furnace 10. FIG. 赤外線放射装置20の斜視図である。2 is a perspective view of an infrared radiation device 20. FIG. 図2のB-B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 赤外線ヒーターユニット30単体及び赤外線放射装置20から赤外線を放射する様子を示す説明図である。It is explanatory drawing which shows a mode that infrared rays are radiated | emitted from the infrared heater unit 30 single-piece | unit and the infrared radiation apparatus 20. FIG. 変形例の乾燥炉110の縦断面図である。It is a longitudinal cross-sectional view of the drying furnace 110 of the modification. 変形例の乾燥炉10の縦断面図である。It is a longitudinal cross-sectional view of the drying furnace 10 of a modification. 変形例の赤外線放射装置220の斜視図である。It is a perspective view of the infrared rays radiating device 220 of a modification. 変形例の赤外線放射装置320の斜視図である。It is a perspective view of the infrared rays radiating device 320 of a modification. 変形例の乾燥炉410の縦断面図である。It is a longitudinal cross-sectional view of the drying furnace 410 of a modification. 変形例の乾燥炉510の縦断面図である。It is a longitudinal cross-sectional view of the drying furnace 510 of a modification.
 次に、本発明の実施形態について、図面を用いて説明する。図1は本発明の赤外線処理装置の一実施形態である乾燥炉10の縦断面図である。乾燥炉10は、シート80上に塗布された塗膜82の乾燥を赤外線を用いて行うものであり、炉体12と、赤外線放射装置20と、コントローラー90と、を備えている。また、乾燥炉10は、ロールトゥロール方式の乾燥炉として構成されており、炉体12の左方(図1の左側)に設けられたロール17と、炉体12の右方(図1の右側)に設けられたロール18と、を備えている。乾燥炉10は、シート80を搬送してシート80上面に形成された処理対象(乾燥対象)となる塗膜82を炉体12の内部に搬入する工程と、炉体12内部でシート80の搬送を停止して塗膜82を乾燥する工程とを交互に繰り返す間欠送り式の乾燥炉として構成されている。なお、本実施形態では、鉛直下方向を「下方向」として説明する。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a drying furnace 10 which is an embodiment of the infrared processing apparatus of the present invention. The drying furnace 10 performs drying of the coating film 82 applied on the sheet 80 using infrared rays, and includes a furnace body 12, an infrared radiation device 20, and a controller 90. The drying furnace 10 is configured as a roll-to-roll drying furnace, and includes a roll 17 provided on the left side of the furnace body 12 (left side in FIG. 1) and a right side of the furnace body 12 (in FIG. 1). And a roll 18 provided on the right side). The drying furnace 10 transports the sheet 80 and carries the coating film 82 to be processed (drying target) formed on the upper surface of the sheet 80 into the furnace body 12, and transports the sheet 80 inside the furnace body 12. And an intermittent feed type drying furnace that alternately repeats the step of drying the coating film 82. In the present embodiment, the vertical downward direction is described as “downward”.
 炉体12は、略直方体に形成された断熱構造体であり、内部の空間である乾燥空間12aと、炉体の左端面13及び右端面14にそれぞれ形成され外部から乾燥空間12aへの出入口となる開口15,16を有している。この炉体12は、左端面13から右端面14までの長さが例えば1m~6mである。炉体12の内部の空間である乾燥空間12aには、赤外線放射装置20などが配置されている。 The furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped, and includes a drying space 12a which is an internal space, and an entrance to the drying space 12a from the outside formed in the left end surface 13 and the right end surface 14 of the furnace body, respectively. Openings 15 and 16 are formed. The furnace body 12 has a length from the left end surface 13 to the right end surface 14 of, for example, 1 m to 6 m. An infrared radiation device 20 and the like are disposed in a drying space 12a that is a space inside the furnace body 12.
 赤外線放射装置20は、赤外線を放射してシート80の上面に形成された塗膜82の乾燥を行うものである。図2は、赤外線放射装置20の斜視図である。図3は、図2のB-B断面図である。なお、図1の赤外線放射装置20の断面図は、図2のA-A断面図に相当する。この赤外線放射装置20は、複数(本実施形態では2つ)の赤外線ヒーターユニット30と、遮蔽容器60と、を備えている。なお、赤外線ヒーターユニット30は、遮蔽容器60内の両端(図1における左右端)に1つずつ配置されており、右側を赤外線ヒーターユニット30aとも称し、左側を赤外線ヒーターユニット30bとも称する。 The infrared radiation device 20 radiates infrared rays to dry the coating film 82 formed on the upper surface of the sheet 80. FIG. 2 is a perspective view of the infrared radiation device 20. 3 is a cross-sectional view taken along the line BB of FIG. The cross-sectional view of the infrared radiation device 20 in FIG. 1 corresponds to the cross-sectional view along AA in FIG. The infrared radiation device 20 includes a plurality (two in this embodiment) of infrared heater units 30 and a shielding container 60. Note that one infrared heater unit 30 is disposed at each of both ends (left and right ends in FIG. 1) in the shielding container 60, the right side is also referred to as an infrared heater unit 30a, and the left side is also referred to as an infrared heater unit 30b.
 赤外線ヒーターユニット30(赤外線ヒーターユニット30a,30b)は、赤外線を放射する装置である。赤外線ヒーターユニット30a,30bは、いずれも長手方向が前後方向に沿うように取り付けられている。なお、前後方向は、上下方向及び左右方向に直交する方向であり、図1の紙面手前-奥方向である。赤外線ヒーターユニット30a,30bはいずれも同様の構成をしているため、以下、1つの赤外線ヒーターユニット30aの構成について説明する。 The infrared heater unit 30 ( infrared heater units 30a and 30b) is a device that emits infrared rays. The infrared heater units 30a and 30b are both attached so that the longitudinal direction is along the front-rear direction. Note that the front-rear direction is a direction orthogonal to the up-down direction and the left-right direction, and is the front-rear direction in FIG. Since both the infrared heater units 30a and 30b have the same configuration, the configuration of one infrared heater unit 30a will be described below.
 赤外線ヒーターユニット30aは、図1及び図3に示すように、発熱体であるフィラメント32を内管36が囲むように形成されたヒーター本体38と、このヒーター本体38を囲むように形成された外管40と、外管40の両端に気密に嵌め込まれた有底筒状のキャップ42と、ヒーター本体38と外管40との間に形成され第1冷媒が流通可能な第1流路47と、を備えている。 As shown in FIGS. 1 and 3, the infrared heater unit 30 a includes a heater body 38 formed so that the inner tube 36 surrounds the filament 32, which is a heating element, and an outer body formed so as to surround the heater body 38. A tube 40, a bottomed cylindrical cap 42 that is airtightly fitted to both ends of the outer tube 40, and a first flow path 47 that is formed between the heater body 38 and the outer tube 40 and through which the first refrigerant can flow. It is equipped with.
 フィラメント32は、加熱すると赤外線を放射する発熱体であり、本実施形態ではW(タングステン)製とした。なおフィラメント32の材料としては、他にNi-Cr合金,Mo,Ta,及びFe-Cr-Al合金などを挙げることができる。このフィラメント32は、電力供給源50から電力が供給されて、例えば700~1700℃に通電加熱されると、波長が3.5μm以下(例えば3μm付近)の赤外線領域にピークを持つ赤外線を放射する。フィラメント32に接続された電気配線34は、キャップ42に設けられ遮蔽容器60の上壁部62を貫通する配線引出部44を介して気密に外部へ引き出され、電力供給源50に接続されている。内管36,外管40は、フィラメント32から放射された電磁波のうち3.5μm以下の波長の赤外線を通過し3.5μmを超える波長の赤外線を吸収するフィルタとして機能する赤外線吸収材料で形成されている。内管36,外管40に用いるこのような赤外線透過材料としては、例えば、ゲルマニウム、シリコン、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、硫化亜鉛、カルコゲナイドガラス、透過性アルミナセラミックスなどのほか、赤外線を透過可能な石英ガラスなどが挙げられる。本実施形態では、内管36,外管40は、いずれも石英ガラスで形成されているものとした。 The filament 32 is a heating element that emits infrared rays when heated, and is made of W (tungsten) in this embodiment. Other examples of the material of the filament 32 include Ni—Cr alloy, Mo, Ta, and Fe—Cr—Al alloy. When the filament 32 is supplied with electric power from the electric power supply source 50 and heated to 700 to 1700 ° C., for example, the filament 32 emits infrared rays having a peak in the infrared region having a wavelength of 3.5 μm or less (eg, near 3 μm). . The electric wiring 34 connected to the filament 32 is drawn out to the outside airtightly through a wiring drawing portion 44 provided in the cap 42 and penetrating the upper wall portion 62 of the shielding container 60, and is connected to the power supply source 50. . The inner tube 36 and the outer tube 40 are formed of an infrared absorbing material that functions as a filter that passes infrared rays having a wavelength of 3.5 μm or less among the electromagnetic waves radiated from the filament 32 and absorbs infrared rays having a wavelength exceeding 3.5 μm. ing. Examples of such infrared transmitting materials used for the inner tube 36 and the outer tube 40 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, and transmissive alumina ceramics. Other examples include quartz glass that can transmit infrared rays. In this embodiment, both the inner tube 36 and the outer tube 40 are made of quartz glass.
 ヒーター本体38は、両端がキャップ42の内部に配置されたホルダー49に支持されている。各キャップ42は、第1冷媒出入口46を有している。第1冷媒出入口46の一方には、第1冷媒供給源52から第1冷媒が供給される。一方の第1冷媒出入口46から外管40内に流入した第1冷媒は、第1流路47を流通して他方の第1冷媒出入口46から流出するようになっている。第1流路47を流れる第1冷媒は、例えば空気や不活性ガスなどの気体であり、内管36と外管40とに接触して熱を奪うことによりこれらを冷却する。 The heater body 38 is supported at both ends by holders 49 arranged inside the cap 42. Each cap 42 has a first refrigerant inlet / outlet 46. The first refrigerant is supplied from the first refrigerant supply source 52 to one of the first refrigerant outlets 46. The first refrigerant that has flowed into the outer tube 40 from one first refrigerant inlet / outlet 46 flows through the first flow path 47 and flows out from the other first refrigerant inlet / outlet 46. The 1st refrigerant | coolant which flows through the 1st flow path 47 is gas, such as air and an inert gas, for example, and these are cooled by contacting the inner tube | pipe 36 and the outer tube | pipe 40 and taking heat away.
 こうして構成された赤外線ヒーターユニット30aでは、フィラメント32から波長が3.5μm以下にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線が内管36や外管40を通過して遮蔽容器60の内部空間に放射される。なお、内管36や外管40は、3.5μmを超える波長の赤外線を吸収するが、第1流路47を流れる第1冷媒や後述する第2流路67を流れる第2冷媒によって冷却されることで(例えば200℃以下)、自身が赤外線の二次放射体となることを抑制可能である。 In the infrared heater unit 30a thus configured, when infrared rays having a peak at a wavelength of 3.5 μm or less are emitted from the filament 32, infrared rays having a wavelength of 3.5 μm or less pass through the inner tube 36 and the outer tube 40. And radiated into the inner space of the shielding container 60. The inner tube 36 and the outer tube 40 absorb infrared rays having a wavelength exceeding 3.5 μm, but are cooled by the first refrigerant flowing through the first flow path 47 and the second refrigerant flowing through the second flow path 67 described later. (For example, 200 degrees C or less), it can suppress that self becomes an infrared secondary radiator.
 遮蔽容器60は、赤外線ヒーターユニット30のフィラメント32を覆う略直方体の部材である。この遮蔽容器60は、下壁部61と、上壁部62と、側壁部64a~64dと、を備えている。下壁部61と、上壁部62と、側壁部64a~64dとは、例えば溶接などにより接合されている。遮蔽容器60の内部空間すなわち下壁部61,上壁部62,側壁部64a~64dで囲まれた空間は、遮蔽容器60を冷却する第2冷媒が流通可能な第2流路67となっている。また、下壁部61の下面には、遮蔽容器60(下壁部61)の表面温度を検出する温度センサ56が取り付けられている(図3参照)。 The shielding container 60 is a substantially rectangular parallelepiped member that covers the filament 32 of the infrared heater unit 30. The shielding container 60 includes a lower wall portion 61, an upper wall portion 62, and side wall portions 64a to 64d. The lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d are joined together by welding, for example. The internal space of the shielding container 60, that is, the space surrounded by the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d serves as the second flow path 67 through which the second refrigerant for cooling the shielding container 60 can flow. Yes. A temperature sensor 56 for detecting the surface temperature of the shielding container 60 (lower wall portion 61) is attached to the lower surface of the lower wall portion 61 (see FIG. 3).
 下壁部61は、赤外線ヒーターユニット30a,30bの真下に放射される赤外線を遮蔽する下部遮蔽体として構成された部材である。この下壁部61は、赤外線ヒーターユニット30a,30bの真下を含む下方に位置している。下壁部61は、赤外線ヒーターユニット30a,30bよりも左右方向に幅広に形成されており、赤外線ヒーターユニット30aの右端よりも右方向から、赤外線ヒーターユニット30bの左端よりも左方向までにわたって存在している。下壁部61のうち赤外線ヒーターユニット30a,30bの真下以外の位置には、遮蔽容器60の内外に連通する断面円形の開口である孔65が複数形成されている。本実施形態では、図2に示すように、赤外線ヒーターユニット30aと赤外線ヒーターユニット30bとの左右方向の中間付近に、孔65が複数形成されている。また、孔65は、左右方向及び前後方向にそれぞれ複数形成されている。本実施形態では、孔65は左右方向に5列,前後方向に10列の計50個が略矩形状に並べて形成されているものとした(図2参照)。この孔65は、赤外線ヒーターユニット30から放射された赤外線の遮蔽容器60からの出口となる放射口の役割を果たす。この孔65は、赤外線ヒーターユニット30a,30bのフィラメント32から放射される赤外線が反射を介さずには孔65を通過できないような形状や配置をしているものとした。換言すると、フィラメント32から孔65を通過して遮蔽容器60の外部に到達する経路(仮想的な直線)を描くことができないように、孔65は形成されている。例えば、フィラメント32から孔65までの距離や、孔65の開口断面積、孔65の経路長(=下壁部61の厚さ)などを調整することで、このような孔65を形成することができる。 The lower wall portion 61 is a member configured as a lower shielding body that shields infrared rays emitted directly under the infrared heater units 30a and 30b. The lower wall portion 61 is positioned below including the infrared heater units 30a and 30b. The lower wall portion 61 is formed to be wider in the left-right direction than the infrared heater units 30a and 30b, and extends from the right side of the infrared heater unit 30a to the left side of the infrared heater unit 30b. ing. A plurality of holes 65 that are openings having a circular cross section communicating with the inside and outside of the shielding container 60 are formed at positions other than directly below the infrared heater units 30 a and 30 b in the lower wall portion 61. In the present embodiment, as shown in FIG. 2, a plurality of holes 65 are formed near the middle in the left-right direction between the infrared heater unit 30a and the infrared heater unit 30b. A plurality of holes 65 are formed in the left-right direction and the front-rear direction, respectively. In the present embodiment, the holes 65 are formed by arranging a total of 50 holes in 5 rows in the left-right direction and 10 rows in the front-rear direction in a substantially rectangular shape (see FIG. 2). The hole 65 serves as a radiation port serving as an outlet from the infrared shielding container 60 radiated from the infrared heater unit 30. The holes 65 have a shape and an arrangement such that infrared rays radiated from the filaments 32 of the infrared heater units 30a and 30b cannot pass through the holes 65 without reflection. In other words, the hole 65 is formed so that a path (virtual straight line) from the filament 32 through the hole 65 to reach the outside of the shielding container 60 cannot be drawn. For example, such a hole 65 is formed by adjusting the distance from the filament 32 to the hole 65, the opening cross-sectional area of the hole 65, the path length of the hole 65 (= thickness of the lower wall portion 61), and the like. Can do.
 上壁部62は、赤外線を反射する反射面63を有する反射体として構成された部材である。この上壁部62は、赤外線ヒーターユニット30a,30bの真上を含む上方に位置している。上壁部62は、赤外線ヒーターユニット30a,30bよりも左右方向に幅広に形成されており、赤外線ヒーターユニット30aの右端よりも右方向から、赤外線ヒーターユニット30bの左端よりも左方向までにわたって存在している。上壁部62は、赤外線ヒーターユニット30から放射される赤外線を反射可能な赤外線反射材料で形成されている。そのため、上壁部62は、遮蔽容器60の内部空間に面する部分(上壁部62の下面)である反射面63で、赤外線ヒーターユニット30からの赤外線を下方に反射する。反射面63は、略水平方向に沿った面である。赤外線反射材料としては、例えばSUS304やアルミニウムなどが挙げられる。反射面63は赤外線ヒーターユニット30からの赤外線の少なくとも一部を反射するものであればよく、例えば赤外線の一部を吸収したり透過したりしてもよい。反射面63は赤外線の反射率が高いほど好ましい。例えば、反射面63は赤外線の反射率が50%以上としてもよいし、50%超過としてもよいし、80%以上、90%以上としてもよい。特に、赤外線ヒーターユニット30から放射される波長3.5μm以下の赤外線の反射率が高いことが好ましく、波長3.5μm以下の赤外線の反射率が上記の値であってもよい。 The upper wall portion 62 is a member configured as a reflector having a reflection surface 63 that reflects infrared rays. The upper wall 62 is located above the infrared heater units 30a and 30b. The upper wall portion 62 is formed to be wider in the left-right direction than the infrared heater units 30a and 30b, and extends from the right side of the infrared heater unit 30a to the left side of the infrared heater unit 30b. ing. The upper wall portion 62 is formed of an infrared reflecting material capable of reflecting infrared rays emitted from the infrared heater unit 30. Therefore, the upper wall portion 62 reflects the infrared rays from the infrared heater unit 30 downward on the reflection surface 63 that is a portion facing the internal space of the shielding container 60 (the lower surface of the upper wall portion 62). The reflection surface 63 is a surface along a substantially horizontal direction. Examples of the infrared reflecting material include SUS304 and aluminum. The reflection surface 63 only needs to reflect at least part of the infrared rays from the infrared heater unit 30, and may absorb or transmit part of the infrared rays, for example. The reflecting surface 63 is more preferable as the reflectance of infrared rays is higher. For example, the reflective surface 63 may have an infrared reflectance of 50% or more, may exceed 50%, may be 80% or more, or 90% or more. In particular, the reflectance of infrared rays having a wavelength of 3.5 μm or less emitted from the infrared heater unit 30 is preferably high, and the reflectance of infrared rays having a wavelength of 3.5 μm or less may be the above value.
 側壁部64a~64dは、赤外線ヒーターユニット30から下方向と垂直な方向(前後左右方向)に放射される赤外線を遮蔽する側部遮蔽体として構成された部材である。側壁部64aは、赤外線ヒーターユニット30aの右方に位置している。側壁部64bは、赤外線ヒーターユニット30bの左方に位置している。側壁部64cは、赤外線ヒーターユニット30a,30bの前方に位置している。側壁部64dは、赤外線ヒーターユニット30a,30bの後方に位置している。側壁部64a~64dは、赤外線ヒーターユニット30a,30bよりも上下方向に幅広に形成されている。 The side wall portions 64a to 64d are members configured as side shields that shield infrared rays radiated from the infrared heater unit 30 in a direction perpendicular to the downward direction (front-rear and left-right directions). The side wall part 64a is located on the right side of the infrared heater unit 30a. The side wall part 64b is located on the left side of the infrared heater unit 30b. The side wall 64c is located in front of the infrared heater units 30a and 30b. The side wall 64d is located behind the infrared heater units 30a and 30b. The side wall portions 64a to 64d are formed wider in the vertical direction than the infrared heater units 30a and 30b.
 下壁部61,側壁部64a~64dは、赤外線の透過率が小さいほど好ましい。例えばフィラメント32からの赤外線の透過率が50%以下としてもよいし、20%以下、10%以下としてもよい。また、本実施形態では、下壁部61及び側壁部64a~64dも上壁部62と同様に赤外線反射材料で形成されているものとした。そのため、下壁部61のうち遮蔽容器60の内部空間に面する部分(下壁部61の上面)は、赤外線ヒーターユニット30a,30bから下方に放射された赤外線を上方に反射可能である。同様に、側壁部64a~64dのうち遮蔽容器60の内部空間に面する部分は、赤外線ヒーターユニット30a,30bから横方向(前後左右)に放射された赤外線を反射可能である。このように、本実施形態では、下壁部61及び側壁部64a~64dは、赤外線を反射することにより、赤外線ヒーターユニット30からの赤外線を遮蔽する。 The lower wall portion 61 and the side wall portions 64a to 64d are more preferable as the infrared transmittance is smaller. For example, the infrared transmittance from the filament 32 may be 50% or less, or 20% or less, or 10% or less. Further, in the present embodiment, the lower wall portion 61 and the side wall portions 64a to 64d are also formed of an infrared reflecting material like the upper wall portion 62. Therefore, the part (upper surface of the lower wall part 61) which faces the internal space of the shielding container 60 among the lower wall part 61 can reflect the infrared rays radiated | emitted downward from infrared heater unit 30a, 30b upward. Similarly, portions of the side wall portions 64a to 64d facing the inner space of the shielding container 60 can reflect infrared rays radiated from the infrared heater units 30a and 30b in the lateral direction (front and rear, left and right). As described above, in the present embodiment, the lower wall portion 61 and the side wall portions 64a to 64d shield infrared rays from the infrared heater unit 30 by reflecting infrared rays.
 また、図1に示すように、上壁部62は、第2冷媒出入口66を有している。第2冷媒出入口66の一方(図1の右側)には、第2冷媒供給源54から第2冷媒が供給される。一方の第2冷媒出入口66から遮蔽容器60内に流入した第2冷媒は、第2流路67を流通して他方(図1の左側)の第2冷媒出入口66から流出するようになっている。他方の第2冷媒出入口66から流出した第2冷媒は、排出バルブ55を経由して外部に排出される。第2冷媒は、例えば空気や不活性ガスなどの気体であり、第2流路67を流通する際に遮蔽容器60の内周面に接触して熱を奪うことによりこれらを冷却する。これにより、遮蔽容器60は、塗膜82から蒸発する溶剤の着火点未満の温度(例えば200℃以下など)に維持することが可能である。また、第2流路67は孔65と連通しており、第2流路67を流通する第2冷媒は孔65を下方向に通過して遮蔽容器60の外部(乾燥空間12a)に流出可能になっている。そして、孔65から第2冷媒を流出させることで、塗膜82へ第2冷媒を送風可能になっている。第2冷媒供給源54からの第2冷媒の供給量と排出バルブ55の開度とを調整することで、孔65からの第2冷媒の流量を調整可能である。なお、上壁部62における配線引出部44,第1冷媒出入口46等の貫通部分(図3参照)は、図示しない封止材などにより封止されており、第2流路67を流通する第2冷媒は孔65及び第2冷媒出入口66以外からは流出しないようになっている。 Further, as shown in FIG. 1, the upper wall portion 62 has a second refrigerant inlet / outlet 66. The second refrigerant is supplied from the second refrigerant supply source 54 to one of the second refrigerant inlets 66 (the right side in FIG. 1). The second refrigerant flowing into the shielding container 60 from one second refrigerant inlet / outlet 66 flows through the second flow path 67 and flows out from the other (left side in FIG. 1) second refrigerant inlet / outlet 66. . The second refrigerant flowing out from the other second refrigerant inlet / outlet 66 is discharged to the outside via the discharge valve 55. The second refrigerant is, for example, a gas such as air or an inert gas, and cools the second refrigerant by contacting the inner peripheral surface of the shielding container 60 and taking heat away when flowing through the second flow path 67. Thereby, the shielding container 60 can be maintained at a temperature lower than the ignition point of the solvent evaporating from the coating film 82 (for example, 200 ° C. or lower). Further, the second flow path 67 communicates with the hole 65, and the second refrigerant flowing through the second flow path 67 can pass through the hole 65 downward and flow out to the outside of the shielding container 60 (dry space 12a). It has become. The second refrigerant can be blown to the coating film 82 by allowing the second refrigerant to flow out of the hole 65. The flow rate of the second refrigerant from the hole 65 can be adjusted by adjusting the supply amount of the second refrigerant from the second refrigerant supply source 54 and the opening degree of the discharge valve 55. Note that penetrating portions (see FIG. 3) such as the wiring lead-out portion 44 and the first refrigerant inlet / outlet 46 in the upper wall portion 62 are sealed with a sealing material (not shown) and the like. The two refrigerants are prevented from flowing out from other than the hole 65 and the second refrigerant inlet / outlet 66.
 シート80は、特に限定するものではないが、例えば、アルミニウムや銅等の金属シートである。また、シート上の塗膜82は、乾燥後に電池用の電極として用いられるものであり、特に限定するものではないが、例えばリチウムイオン二次電池用の電極となる塗膜である。塗膜82としては、例えば、電極材(正極活物質又は負極活物質)とバインダーと導電材と溶剤とを共に混練した電極材ペーストを、シート80上に塗布したもの等が上げられる。塗膜82の厚みは、特に限定するものではないが、例えば10~1000μmである。 The sheet 80 is not particularly limited, but is a metal sheet such as aluminum or copper, for example. The coating film 82 on the sheet is used as an electrode for a battery after drying, and is not particularly limited. For example, the coating film 82 becomes an electrode for a lithium ion secondary battery. As the coating film 82, for example, an electrode material paste obtained by kneading together an electrode material (positive electrode active material or negative electrode active material), a binder, a conductive material, and a solvent on the sheet 80 can be used. The thickness of the coating film 82 is not particularly limited, but is, for example, 10 to 1000 μm.
 コントローラー90は、CPUを中心とするマイクロプロセッサーとして構成されている。このコントローラー90は、電力供給源50からフィラメント32へ供給される電力の大きさを調整するための制御信号を電力供給源50へ出力して、赤外線ヒーターユニット30のフィラメント温度を個別に制御する。また、コントローラー90は、第1冷媒供給源52の図示しない開閉弁や流量調整弁に制御信号を出力して、赤外線ヒーターユニット30a,30bの第1流路47を流れる第1冷媒の流量を個別に制御する。さらに、コントローラー90は、熱電対である温度センサ56が検出した遮蔽容器60の温度を入力したり、第2冷媒供給源54の図示しない開閉弁や流量調整弁に制御信号を出力したり、排出バルブ55の開度を調整する制御信号を出力したりして、第2流路67を流れる第2冷媒の流量を制御する。コントローラー90は、ロール17,ロール18の回転と停止とを切り換えることでシート80の搬送と停止とを切り換えたり、ロール17,ロール18の回転速度を制御することで、炉体12内のシート80及び塗膜82の通過時間やシート80及び塗膜82にかかる張力を調整する。 The controller 90 is configured as a microprocessor centered on a CPU. The controller 90 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 50 to the filament 32 to the power supply source 50 to individually control the filament temperature of the infrared heater unit 30. Further, the controller 90 outputs a control signal to an opening / closing valve and a flow rate adjustment valve (not shown) of the first refrigerant supply source 52 to individually control the flow rate of the first refrigerant flowing through the first flow path 47 of the infrared heater units 30a and 30b. To control. Further, the controller 90 inputs the temperature of the shielding container 60 detected by the temperature sensor 56 that is a thermocouple, outputs a control signal to an on-off valve and a flow rate adjustment valve (not shown) of the second refrigerant supply source 54, and discharges The flow rate of the second refrigerant flowing through the second flow path 67 is controlled by outputting a control signal for adjusting the opening degree of the valve 55. The controller 90 switches the conveyance and stop of the sheet 80 by switching between rotation and stop of the rolls 17 and 18, and controls the rotation speed of the rolls 17 and 18, thereby controlling the sheet 80 in the furnace body 12. In addition, the passage time of the coating film 82 and the tension applied to the sheet 80 and the coating film 82 are adjusted.
 次に、こうして構成された乾燥炉10を用いて塗膜82を乾燥する様子について説明する。まず、シート80上に図示しないコーターによりスクリーン印刷を行って塗膜82を形成する。そして、塗膜82の形成後に、コントローラー90がロール17,ロール18を回転させ、シート80を搬送する。これにより、乾燥炉10の左端に配置されたロール17からシート80が巻き外されていき、シート80上の塗膜82が開口15から炉体12内に搬入される。本実施形態では、塗膜82の表面が、複数の孔65が形成された略矩形状の領域と同じ大きさとなるように、塗膜82の形成及び搬送(位置決め)を行うものとした。すなわち、搬入後の塗膜82の表面が図1に示すように複数の孔65の真下に対向しているものとした。 Next, how the coating film 82 is dried using the drying furnace 10 thus configured will be described. First, the coating film 82 is formed on the sheet 80 by screen printing using a coater (not shown). Then, after the coating film 82 is formed, the controller 90 rotates the rolls 17 and 18 to convey the sheet 80. As a result, the sheet 80 is unwound from the roll 17 disposed at the left end of the drying furnace 10, and the coating film 82 on the sheet 80 is carried into the furnace body 12 through the opening 15. In the present embodiment, the coating film 82 is formed and transported (positioned) so that the surface of the coating film 82 has the same size as the substantially rectangular region in which the plurality of holes 65 are formed. That is, the surface of the coated film 82 after loading is assumed to be directly below the plurality of holes 65 as shown in FIG.
 塗膜82の搬入が完了すると、コントローラー90は、塗膜82の乾燥を行う。具体的には、コントローラー90が、電力供給源50を制御して赤外線ヒーターユニット30a,30bのフィラメント32に通電してこれを加熱する。これにより、フィラメント32からは赤外線が放射される。フィラメント32からの赤外線は、反射面63を含む遮蔽容器60の内周面で反射された後に孔65から下方へ放射され、塗膜82の表面に放射されて塗膜82を乾燥させる。ここで、上述したように、赤外線ヒーターユニット30a,30bは、3.5μmを超える波長の赤外線を吸収する内管36及び外管40を有しているため、赤外線ヒーターユニット30aからは波長が3.5μm以下の赤外線が主に放射される。波長3.5μm以下の赤外線は、水や溶剤などの分子中の水素結合を切断する能力に優れている。そのため、塗膜82を効率よく乾燥することができる。 When the loading of the coating film 82 is completed, the controller 90 dries the coating film 82. Specifically, the controller 90 controls the power supply source 50 to energize the filament 32 of the infrared heater units 30a and 30b to heat it. Thereby, infrared rays are emitted from the filament 32. Infrared rays from the filament 32 are reflected by the inner peripheral surface of the shielding container 60 including the reflecting surface 63 and then radiated downward from the holes 65 and are radiated to the surface of the coating film 82 to dry the coating film 82. Here, as described above, since the infrared heater units 30a and 30b have the inner tube 36 and the outer tube 40 that absorb infrared rays having a wavelength exceeding 3.5 μm, the infrared heater units 30a and 30b have a wavelength of 3 from the infrared heater unit 30a. Infrared rays of 5 μm or less are mainly emitted. Infrared rays having a wavelength of 3.5 μm or less are excellent in the ability to break hydrogen bonds in molecules such as water and solvents. Therefore, the coating film 82 can be efficiently dried.
 また、コントローラー90は、電力供給源50を制御すると共に、第1冷媒供給源52,第2冷媒供給源54,排出バルブ55を制御して第1流路47,第2流路67にそれぞれ第1冷媒,第2冷媒を流通させる。これにより、内管36及び外管40は、第1流路47を流れる第1冷媒や第2流路67を流れる第2冷媒によって冷却される。また、遮蔽容器60は、第2流路67を流れる第2冷媒によって冷却される。さらに、第2流路67を流れる第2冷媒は、孔65から遮蔽容器60の下方に流出して、塗膜82に向かう送風となる。なお、本実施形態では、コントローラー90は、第1冷媒の流量が、内管36及び外管40が赤外線の二次放射体とならないよう実験により予め定められた流量となるように、第1冷媒供給源52を制御するものとした。また、コントローラー90は、温度センサ56から入力した遮蔽容器60の温度に基づいて、遮蔽容器60が塗膜82から蒸発する溶剤の着火点未満の温度(例えば200℃以下など)に維持されるように、第2冷媒供給源54,排出バルブ55を制御して第2冷媒の流量を調整するものとした。コントローラー90は、第2冷媒が孔65から流出して送風となる分の流量も確保するように、第2冷媒の流量を調整するものとした。孔65からの送風は、赤外線ヒーターユニット30からの赤外線の作用により塗膜82内部から出た水分や溶剤を除去する。これにより、塗膜82をより効率よく乾燥することができる。なお、炉体12の前端部には、図示しない排気口が設けられており、塗膜82の表面上を通過した後の第2冷媒を含む乾燥空間12aの雰囲気がこの排気口から外部に排出される。 The controller 90 controls the power supply source 50 and also controls the first refrigerant supply source 52, the second refrigerant supply source 54, and the discharge valve 55, so that the first flow path 47 and the second flow path 67 respectively. 1 refrigerant and 2nd refrigerant are circulated. Thereby, the inner pipe 36 and the outer pipe 40 are cooled by the first refrigerant flowing through the first flow path 47 and the second refrigerant flowing through the second flow path 67. Further, the shielding container 60 is cooled by the second refrigerant flowing through the second flow path 67. Further, the second refrigerant flowing through the second flow path 67 flows out from the hole 65 to the lower side of the shielding container 60 and becomes air blowing toward the coating film 82. In the present embodiment, the controller 90 controls the first refrigerant so that the flow rate of the first refrigerant becomes a flow rate determined in advance by experiments so that the inner tube 36 and the outer tube 40 do not become infrared secondary radiators. The supply source 52 was controlled. Further, the controller 90 is maintained based on the temperature of the shielding container 60 input from the temperature sensor 56 so that the shielding container 60 is maintained at a temperature lower than the ignition point of the solvent evaporating from the coating film 82 (for example, 200 ° C. or less). The second refrigerant supply source 54 and the discharge valve 55 are controlled to adjust the flow rate of the second refrigerant. The controller 90 adjusts the flow rate of the second refrigerant so that the flow rate of the second refrigerant flowing out of the holes 65 and blowing air is secured. The air blown from the holes 65 removes moisture and solvent from the inside of the coating film 82 by the action of infrared rays from the infrared heater unit 30. Thereby, the coating film 82 can be dried more efficiently. An exhaust port (not shown) is provided at the front end portion of the furnace body 12, and the atmosphere of the drying space 12a including the second refrigerant after passing over the surface of the coating film 82 is discharged from the exhaust port to the outside. Is done.
 そして、赤外線放射装置20から塗膜82への赤外線の放射を所定時間継続して行って塗膜82の乾燥が完了すると、コントローラー90がロール17,ロール18を回転させ、乾燥後の塗膜82をシート80と共に開口16から炉外へ搬出する。 Then, after the infrared radiation from the infrared radiation device 20 to the coating film 82 is continuously performed for a predetermined time and the drying of the coating film 82 is completed, the controller 90 rotates the rolls 17 and 18 to dry the coating film 82 after drying. Is carried out of the opening 16 together with the sheet 80 to the outside of the furnace.
 このように、乾燥炉10は、シート80上に塗膜82を形成する塗膜形成工程と、シート80を搬送して塗膜82を炉体12の内部に搬入する搬入工程と、炉体12内部でシート80の搬送を停止して塗膜82を乾燥する乾燥工程と、シート80を搬送して乾燥後の塗膜82を搬出する搬出工程と、を行う。また、乾燥炉10は、複数の塗膜82を連続的に効率よく乾燥できるよう、塗膜82の乾燥工程と、次の塗膜82の塗膜形成工程と、を同時に行う。同様に、乾燥後の塗膜82の搬出工程と、次に乾燥する塗膜82の搬入工程と、を同時に行う。乾燥炉10は乾燥工程においてシート80の搬送を停止するため、スクリーン印刷を行う塗膜形成工程で精度良く塗膜82の印刷を行うことができる。なお、連続的に複数の塗膜82を乾燥する際には、フィラメント32への通電や内管36,外管40,遮蔽容器60の冷却は搬入工程(搬出工程)の間も継続して行ってもよい。 Thus, the drying furnace 10 includes a coating film forming process for forming the coating film 82 on the sheet 80, a loading process for transporting the sheet 80 and bringing the coating film 82 into the furnace body 12, and the furnace body 12. A drying process in which the conveyance of the sheet 80 is stopped to dry the coating film 82 and a carry-out process in which the sheet 80 is conveyed and the dried coating film 82 is unloaded are performed. Moreover, the drying furnace 10 performs simultaneously the drying process of the coating film 82, and the coating-film formation process of the following coating film 82 so that the several coating film 82 can be dried efficiently efficiently. Similarly, the carrying-out process of the coating film 82 after drying and the carrying-in process of the coating film 82 to be dried next are simultaneously performed. Since the drying furnace 10 stops the conveyance of the sheet 80 in the drying process, the coating film 82 can be accurately printed in the coating film forming process in which screen printing is performed. When the plurality of coating films 82 are continuously dried, energization of the filament 32 and cooling of the inner tube 36, the outer tube 40, and the shielding container 60 are continuously performed during the carrying-in process (carrying-out process). May be.
 ここで、赤外線放射装置20の孔65から下方向に放射される赤外線の放射エネルギーの面内均一性について説明する。図4は、赤外線ヒーターユニット30単体及び赤外線放射装置20から赤外線を放射する様子を示す説明図である。図4(a)は、比較のために示した赤外線ヒーターユニット30単体から赤外線を放射する様子を示す説明図である。図4(b)は、赤外線放射装置20から赤外線を放射する様子を示す説明図である。図4(a)に示すように、遮蔽容器60を有さず赤外線ヒーターユニット30単体から下方の塗膜82に直接に赤外線を放射する場合、例えばフィラメント32に近い部分ほど、すなわち図4(a)では塗膜82の中央に近い部分ほど、放射エネルギーが高くなる傾向となる。そのため、塗膜82の表面(図の上面)に放射される赤外線の放射エネルギーは表面内で比較的偏りやすい。一方、図4(b)に示すように遮蔽容器60を有する赤外線放射装置20から塗膜82に赤外線を放射する場合、フィラメント32の下方に直接向かう赤外線は下壁部61で反射され、反射面63を含む遮蔽容器60の内周面で反射された後の赤外線が孔65を通過して下方の塗膜82に到達する。そのため、赤外線が遮蔽容器60内部で反射されることで赤外線の放射エネルギーの偏りが緩和される。この結果、赤外線放射装置20では、発熱体の下方(下壁部61の下方)に放射される赤外線の放射エネルギーの塗膜82表面での面内均一性が向上する。 Here, the in-plane uniformity of the infrared radiation energy radiated downward from the hole 65 of the infrared radiation device 20 will be described. FIG. 4 is an explanatory diagram showing a state in which infrared rays are radiated from the infrared heater unit 30 alone and the infrared radiation device 20. FIG. 4A is an explanatory view showing a state in which infrared rays are radiated from a single infrared heater unit 30 shown for comparison. FIG. 4B is an explanatory diagram showing a state in which infrared rays are radiated from the infrared radiation device 20. As shown in FIG. 4A, when infrared rays are directly emitted from the infrared heater unit 30 alone to the lower coating film 82 without the shielding container 60, for example, the portion closer to the filament 32, that is, FIG. ), The portion closer to the center of the coating film 82 tends to have higher radiant energy. Therefore, the infrared radiation energy radiated to the surface of the coating film 82 (upper surface in the figure) is relatively biased within the surface. On the other hand, as shown in FIG. 4B, when infrared rays are radiated from the infrared radiation device 20 having the shielding container 60 to the coating film 82, the infrared rays directly directed to the lower side of the filament 32 are reflected by the lower wall portion 61 and reflected. Infrared light reflected by the inner peripheral surface of the shielding container 60 including 63 passes through the hole 65 and reaches the lower coating film 82. Therefore, the unevenness of the infrared radiation energy is alleviated by the infrared rays being reflected inside the shielding container 60. As a result, in the infrared radiation device 20, the in-plane uniformity of the infrared radiation energy radiated below the heating element (below the lower wall portion 61) on the surface of the coating film 82 is improved.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態のフィラメント32が本発明の発熱体に相当し、下壁部61が下部遮蔽体に相当し、反射面63が反射面に相当し、上壁部62が反射体に相当する。また、側壁部64a~64dが側部遮蔽体に相当し、孔65が放射口に相当し、第2流路67が遮蔽容器用冷媒流路及び反射体用冷媒流路に相当し、外管40が管状部材に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The filament 32 of the present embodiment corresponds to a heating element of the present invention, the lower wall portion 61 corresponds to a lower shield, the reflection surface 63 corresponds to a reflection surface, and the upper wall portion 62 corresponds to a reflector. Further, the side walls 64a to 64d correspond to side shields, the holes 65 correspond to radiation holes, the second flow channel 67 corresponds to a shielding container coolant channel and a reflector coolant channel, and the outer tube. 40 corresponds to a tubular member.
 以上説明した本実施形態の乾燥炉10の赤外線放射装置20によれば、フィラメント32から赤外線を含む電磁波が放射されると、フィラメント32から真下に放射される赤外線については、下壁部61により上方に反射されて遮蔽される。一方、フィラメント32から上方に放射される赤外線については、上壁部62の反射面63により反射されて、下壁部61よりも下方に到達する。すなわち、フィラメント32の真下に直接向かう赤外線は下壁部61で反射され、反射面63で反射された赤外線が下方に到達する。このため、下壁部61を有しない場合と比べて、フィラメント32の下方(下壁部61の下方)に放射される赤外線の放射エネルギーの面内均一性が向上する。したがって、下壁部61の下方に配置された塗膜82への赤外線の放射エネルギーの面内均一性を向上させることができる。 According to the infrared radiation device 20 of the drying furnace 10 of the present embodiment described above, when an electromagnetic wave including infrared rays is radiated from the filament 32, the infrared rays radiated directly from the filament 32 are moved upward by the lower wall portion 61. Is reflected and shielded. On the other hand, the infrared rays radiated upward from the filament 32 are reflected by the reflection surface 63 of the upper wall portion 62 and reach below the lower wall portion 61. In other words, the infrared light directly going directly below the filament 32 is reflected by the lower wall portion 61, and the infrared light reflected by the reflecting surface 63 reaches below. For this reason, compared with the case where the lower wall part 61 is not provided, the in-plane uniformity of infrared radiation energy radiated below the filament 32 (below the lower wall part 61) is improved. Therefore, the in-plane uniformity of infrared radiation energy to the coating film 82 arranged below the lower wall portion 61 can be improved.
 また、下壁部61は、フィラメント32から下方に放射された赤外線を上方に反射可能である。これにより、フィラメント32から下方に放射された赤外線は、下壁部61に反射され、さらに上壁部62の反射面63で反射されて、下壁部61の下方に到達可能になる。そのため、例えば下壁部61が赤外線を反射せず吸収してしまう場合に比べて、フィラメント32からの赤外線を効率よく塗膜82に放射することができる。 Further, the lower wall portion 61 can reflect the infrared rays radiated downward from the filament 32 upward. Thereby, the infrared rays radiated downward from the filament 32 are reflected by the lower wall portion 61 and further reflected by the reflecting surface 63 of the upper wall portion 62 so as to reach the lower portion of the lower wall portion 61. Therefore, for example, compared with the case where the lower wall portion 61 absorbs infrared rays without reflecting the infrared rays, the infrared rays from the filament 32 can be efficiently emitted to the coating film 82.
 さらに、遮蔽容器60は第2冷媒を流通可能な第2流路67を備えているため、上壁部62が赤外線の一部を吸収することによる過熱を抑制することができる。 Furthermore, since the shielding container 60 includes the second flow path 67 through which the second refrigerant can be circulated, it is possible to suppress overheating due to the upper wall portion 62 absorbing a part of infrared rays.
 そして、赤外線放射装置20は、フィラメント32から下方向と垂直な前後左右方向に放射される赤外線を遮蔽する側壁部64a~64dを備えている。そのため、フィラメント32から放射される赤外線が塗膜82に反射を介さず直接到達するのをより抑制できる。これにより、塗膜82への赤外線の放射エネルギーの面内均一性をより向上させることができる。 The infrared radiation device 20 includes side wall portions 64a to 64d that shield infrared rays emitted from the filament 32 in the front-rear and left-right directions perpendicular to the lower direction. Therefore, it is possible to further suppress the infrared rays radiated from the filament 32 from directly reaching the coating film 82 without reflection. Thereby, the in-plane uniformity of the infrared radiation energy to the coating film 82 can be further improved.
 そしてまた、赤外線放射装置20は、上壁部62と、下壁部61と、側壁部64a~64dと、を有し、フィラメント32を覆う遮蔽容器60を備え、遮蔽容器60は、フィラメント32の真下以外の位置に形成され反射面63で反射された赤外線が下壁部61よりも下方に到達する際の遮蔽容器60からの赤外線の出口となる孔65を有している。これにより、孔65の下方に配置された塗膜82への赤外線の放射エネルギーの面内均一性を向上させることができる。しかも、フィラメント32が遮蔽容器60に覆われていることにより、フィラメント32から放射される赤外線が塗膜82に反射を介さず直接到達するのをより抑制できる。さらに、孔65は、赤外線ヒーターユニット30a,30bのフィラメント32から放射される赤外線が反射を介さずには孔65を通過できないような形状や配置をしている。これにより、フィラメント32からの赤外線が反射を介さずに孔65を通過して直接に処理対象に到達することをより抑制して、処理対象に放射される赤外線の放射エネルギーの面内均一性をより向上させることができる。 Further, the infrared radiation device 20 includes an upper wall portion 62, a lower wall portion 61, and side wall portions 64a to 64d, and includes a shielding container 60 that covers the filament 32. The shielding container 60 includes the filament 32. It has a hole 65 that is an infrared ray exit from the shielding container 60 when infrared rays formed at positions other than directly below and reflected by the reflecting surface 63 reach below the lower wall portion 61. Thereby, the in-plane uniformity of the infrared radiation energy to the coating film 82 arrange | positioned under the hole 65 can be improved. Moreover, since the filament 32 is covered with the shielding container 60, it is possible to further suppress the infrared rays radiated from the filament 32 from directly reaching the coating film 82 without reflection. Further, the hole 65 has a shape and an arrangement such that infrared rays emitted from the filaments 32 of the infrared heater units 30a and 30b cannot pass through the hole 65 without being reflected. As a result, the infrared rays from the filament 32 pass through the holes 65 without reflection and directly reach the object to be processed, and the in-plane uniformity of the infrared radiation energy emitted to the object to be processed is reduced. It can be improved further.
 しかも、下壁部61及び側壁部64a~64dは、フィラメント32側の面がフィラメント32からの赤外線を反射可能である。これにより、フィラメント32から放射された赤外線のうち少なくとも一部は、遮蔽容器60の中で複数回反射された後に孔65から放射されることになる。そのため、孔65から塗膜82に放射される赤外線の放射エネルギーの面内均一性をより向上させることができる。また、遮蔽容器60のうち孔65を除く内周面がいずれも赤外線を反射可能であるため、フィラメント32からの赤外線をより効率よく塗膜82に放射することができる。 Moreover, the lower wall portion 61 and the side wall portions 64a to 64d can reflect infrared rays from the filament 32 on the surface on the filament 32 side. Thereby, at least a part of the infrared rays radiated from the filament 32 is radiated from the hole 65 after being reflected a plurality of times in the shielding container 60. Therefore, the in-plane uniformity of the infrared radiation energy radiated from the hole 65 to the coating film 82 can be further improved. Moreover, since all the inner peripheral surfaces except the hole 65 of the shielding container 60 can reflect infrared rays, the infrared rays from the filament 32 can be radiated to the coating film 82 more efficiently.
 さらにまた、赤外線放射装置20は、遮蔽容器60を冷却する第2冷媒が流通可能な第2流路67を備えている。これにより、赤外線が当たることによる遮蔽容器60の過熱を第2冷媒によってより抑制することができる。また、孔65は、遮蔽容器60の外部及び第2流路67と連通している開口である。これにより、第2冷媒によって遮蔽容器60を冷却できると共に、第2冷媒を孔65から下方に流出させることができる。そのため、第2冷媒として気体を流通させることで、第2冷媒が遮蔽容器60の冷却と塗膜82への送風とを兼ねることができる。 Furthermore, the infrared radiation device 20 includes a second flow path 67 through which a second refrigerant for cooling the shielding container 60 can flow. Thereby, the overheating of the shielding container 60 due to the irradiation with infrared rays can be further suppressed by the second refrigerant. The hole 65 is an opening communicating with the outside of the shielding container 60 and the second flow path 67. Thereby, the shielding container 60 can be cooled by the second refrigerant, and the second refrigerant can flow out from the hole 65 downward. Therefore, by circulating gas as the second refrigerant, the second refrigerant can serve both for cooling the shielding container 60 and blowing air to the coating film 82.
 さらにまた、赤外線ヒーターユニット30(フィラメント32)は、遮蔽容器60内に複数配置され、且つ、上下方向に垂直な左右方向で孔65の両側に配置されている。これにより、複数のフィラメント32から赤外線を放射可能であるため、孔65からの赤外線の放射強度を高くすることができる。しかも、左右方向で孔65の両側にフィラメント32が配置されているため、例えば左右の一方にしか発熱体がない場合と比べて孔65からの赤外線の放射エネルギーの面内均一性をより向上させることができる。 Furthermore, a plurality of infrared heater units 30 (filaments 32) are arranged in the shielding container 60 and arranged on both sides of the hole 65 in the left-right direction perpendicular to the up-down direction. Thereby, since infrared rays can be emitted from the plurality of filaments 32, the infrared radiation intensity from the holes 65 can be increased. Moreover, since the filaments 32 are arranged on both sides of the hole 65 in the left-right direction, for example, the in-plane uniformity of the infrared radiation energy from the hole 65 is further improved as compared with the case where the heating element is provided only on one of the left and right sides. be able to.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、反射面63は赤外線を反射する面としたが、反射面63は赤外線を正反射(鏡面反射)するものに限らず、赤外線を乱反射する面としてもよい。反射面63を赤外線を乱反射可能な面とすれば、塗膜82への赤外線の放射エネルギーの面内均一性をより向上させることができる。なお、より確実に赤外線を乱反射させることができるため、反射面63は、算術平均粗さRaが赤外線の波長以上としてもよい。例えば、反射面63は、算術平均粗さRaが近赤外線(波長0.7μ~3.5μm)の波長の最大値である3.5μm以上としてもよい。 For example, in the above-described embodiment, the reflection surface 63 is a surface that reflects infrared rays, but the reflection surface 63 is not limited to a regular reflection (specular reflection) of infrared rays, and may be a surface that irregularly reflects infrared rays. If the reflecting surface 63 is a surface capable of irregularly reflecting infrared rays, the in-plane uniformity of infrared radiation energy to the coating film 82 can be further improved. In addition, since infrared rays can be irregularly reflected more reliably, the reflective surface 63 may have an arithmetic average roughness Ra equal to or greater than the wavelength of infrared rays. For example, the reflective surface 63 may have an arithmetic average roughness Ra of 3.5 μm or more, which is the maximum value of the wavelength of near infrared rays (wavelength 0.7 μm to 3.5 μm).
 上述した実施形態では、下壁部61に形成された孔65が赤外線の放射口となっていたが、これに限られない。例えば、赤外線放射装置20が、フィラメント32からの赤外線を放射口に導く導波管を備えていてもよい。図5は、変形例の赤外線放射装置120を備えた乾燥炉110の縦断面図である。なお、乾燥炉110は、赤外線放射装置120が赤外線放射装置20と異なり導波管168を備える点、下壁部61に孔65の代わりに孔165が形成されている点、以外は、乾燥炉10と同様の構成である。そのため、乾燥炉110の構成要素のうち乾燥炉10と同じ構成要素については乾燥炉10と同じ符号を付してその説明を省略する。この乾燥炉110では、下壁部61のうち赤外線ヒーターユニット30aと赤外線ヒーターユニット30bとの左右方向の中間付近に、孔165が複数形成されている。詳細な図示は省略するが、孔165は左右方向に3列,前後方向に5列の計15個が略矩形状に並べて形成されているものとした。また、この複数の孔165の各々には、導波管168が接続されている。この導波管168は、上下方向に沿った内周面を有し、上端の開口が孔165に接続され、下端の開口169が赤外線の放射口となっている。この導波管168は、反射面63で反射された赤外線を内周面で反射することで赤外線を開口169に導く役割を果たす。この変形例の乾燥炉110では、フィラメント32から放射された赤外線のうち少なくとも一部は導波管168の内周面で反射された上で開口169から放射されて塗膜82に到達する。そのため、遮蔽容器60内部だけでなく導波管168内でも赤外線が反射することで、開口169から下方の塗膜82に放射される赤外線(特に、開口169の真下の領域に放射される赤外線)の放射エネルギーの面内均一性がより向上する。導波管168の内周面は、赤外線を全反射可能であることが好ましい。こうすれば、赤外線をより効率よく塗膜82に放射できる。導波管168の内周面は、波長3.5μm以下の赤外線を全反射可能であるものとしてもよい。また、導波管168は、上述した実施形態の孔65と同様に、フィラメント32から放射される赤外線が反射を介さずには開口169に到達できないような形状や配置をしていることが好ましい。なお、孔65と比べて導波管168は上下方向の赤外線の経路を長くしやすいため、赤外線が反射を介さずに開口169に到達できないように構成しやすい。 In the above-described embodiment, the hole 65 formed in the lower wall portion 61 is an infrared radiation outlet, but is not limited thereto. For example, the infrared radiation device 20 may include a waveguide that guides infrared rays from the filament 32 to the radiation port. FIG. 5 is a vertical cross-sectional view of a drying furnace 110 provided with a modified infrared radiation device 120. The drying furnace 110 is the same as the drying furnace except that the infrared radiation device 120 includes a waveguide 168 unlike the infrared radiation device 20, and the hole 165 is formed in the lower wall portion 61 instead of the hole 65. 10 is the same configuration. Therefore, the same components as those in the drying furnace 10 among the components in the drying furnace 110 are denoted by the same reference numerals as those in the drying furnace 10 and the description thereof is omitted. In the drying furnace 110, a plurality of holes 165 are formed in the lower wall portion 61 near the middle in the left-right direction between the infrared heater unit 30a and the infrared heater unit 30b. Although not shown in detail, the holes 165 are formed by arranging a total of 15 holes in three rows in the left-right direction and five rows in the front-rear direction in a substantially rectangular shape. A waveguide 168 is connected to each of the plurality of holes 165. The waveguide 168 has an inner peripheral surface along the vertical direction, the upper end opening is connected to the hole 165, and the lower end opening 169 is an infrared radiation outlet. The waveguide 168 plays a role of guiding the infrared light to the opening 169 by reflecting the infrared light reflected by the reflecting surface 63 on the inner peripheral surface. In the drying furnace 110 of this modification, at least a part of the infrared rays emitted from the filament 32 is reflected by the inner peripheral surface of the waveguide 168 and then emitted from the opening 169 to reach the coating film 82. For this reason, infrared rays are reflected not only inside the shielding container 60 but also inside the waveguide 168, so that infrared rays radiated from the opening 169 to the coating film 82 below (particularly, infrared rays radiated directly below the opening 169). The in-plane uniformity of the radiant energy is further improved. The inner peripheral surface of the waveguide 168 is preferably capable of totally reflecting infrared rays. If it carries out like this, infrared rays can be radiated | emitted to the coating film 82 more efficiently. The inner peripheral surface of the waveguide 168 may be capable of totally reflecting infrared rays having a wavelength of 3.5 μm or less. Further, like the hole 65 of the above-described embodiment, the waveguide 168 preferably has a shape and an arrangement such that infrared rays radiated from the filament 32 cannot reach the opening 169 without being reflected. . In addition, since the waveguide 168 can easily lengthen the infrared path in the vertical direction as compared with the hole 65, the waveguide 168 can be easily configured so that the infrared rays cannot reach the opening 169 without being reflected.
 上述した実施形態では、孔65は複数形成するものとしたが、孔65は1以上であればよい。ただし、孔65を複数形成した方が、赤外線の放射口の総面積を大きくしつつ、フィラメント32からの赤外線が反射を介さずには孔65を通過できないような構成としやすい。また、図5で示した孔165及び導波管168も、同様に複数に限らずそれぞれ1以上であればよい。 In the embodiment described above, a plurality of holes 65 are formed, but the number of holes 65 may be one or more. However, the formation of a plurality of holes 65 facilitates a configuration in which the infrared radiation from the filament 32 cannot pass through the holes 65 without reflection, while increasing the total area of the infrared radiation outlet. Similarly, the number of the holes 165 and the waveguides 168 shown in FIG.
 上述した実施形態では、孔65は開口であるものとしたが、遮蔽容器60からの赤外線の出口となればよい。すなわち、孔65は赤外線が透過可能であればよい。例えば、図6に示すように、孔65の内部に、赤外線を透過し遮蔽容器60の内外を区画する区画部材65aを備えていてもよい。この場合、孔65から塗膜82へ送風することはできないが、赤外線が区画部材65aを透過することで孔65から赤外線を塗膜82へ放射することはできる。また、区画部材65aは、波長3.5μm以下の赤外線を透過し波長3.5μmを超える赤外線を吸収する赤外線吸収材料で形成されていてもよい。こうすれば、内管36,外管40が赤外線吸収材料で形成されていなくとも、波長3.5μm以下の赤外線を選択的に塗膜82に放射して、効率的に乾燥を行うことができる。また、この場合、内管36と外管40とを備えないものとすることもできる。 In the above-described embodiment, the hole 65 is an opening, but may be an infrared ray outlet from the shielding container 60. That is, the hole 65 only needs to be able to transmit infrared rays. For example, as shown in FIG. 6, a partition member 65 a that transmits infrared rays and partitions the inside and outside of the shielding container 60 may be provided inside the hole 65. In this case, the air cannot be blown from the hole 65 to the coating film 82, but the infrared light can be radiated from the hole 65 to the coating film 82 by passing through the partition member 65 a. The partition member 65a may be formed of an infrared absorbing material that transmits infrared rays having a wavelength of 3.5 μm or less and absorbs infrared rays having a wavelength exceeding 3.5 μm. In this way, even if the inner tube 36 and the outer tube 40 are not formed of an infrared absorbing material, infrared rays having a wavelength of 3.5 μm or less can be selectively emitted to the coating film 82 and can be efficiently dried. . In this case, the inner tube 36 and the outer tube 40 may not be provided.
 上述した実施形態では、遮蔽容器60内には赤外線ヒーターユニット30が2つ配置されているものとしたが、1つとしてもよいし、3つ以上としてもよい。図7は、変形例の赤外線放射装置220の斜視図である。変形例の赤外線放射装置220は、図7に示すように、赤外線ヒーターユニット30a,30bに加えて、長手方向が左右方向である赤外線ヒーターユニット30c,30dを有している。すなわち、赤外線放射装置220は計4つの赤外線ヒーターユニット30を有している。赤外線ヒーターユニット30c,30dの構成は、赤外線ヒーターユニット30a,30bと同様である。赤外線ヒーターユニット30a~30dは、遮蔽容器60内の側壁部64a~64dの近傍にそれぞれ配置されている。そして、赤外線ヒーターユニット30a~30dは、遮蔽容器60内の側壁部64a~64dと孔65との間にそれぞれ配置されて、前後左右から孔65の周囲を囲むように位置している。これにより、孔65の周囲を囲むように赤外線ヒーターユニット30a~30dのフィラメント32が配置されるため、孔65からの赤外線の放射エネルギーの面内均一性をさらに向上させることができる。また、赤外線ヒーターユニット30の数を増やしたことで、孔65からの赤外線の放射強度を高くすることができる。また、変形例の赤外線放射装置220からさらに赤外線ヒーターユニット30を増やしてもよい。図8は、変形例の赤外線放射装置320の斜視図である。変形例の赤外線放射装置320は、図8に示すように、赤外線ヒーターユニット30a~30dに加えて、長手方向が前後方向であり赤外線ヒーターユニット30aと赤外線ヒーターユニット30bとの中間に位置する赤外線ヒーターユニット30eを有している。すなわち、赤外線放射装置320は計5つの赤外線ヒーターユニット30を有している。赤外線ヒーターユニット30eの構成は、赤外線ヒーターユニット30a~30dと同様である。また、下壁部61のうち赤外線ヒーターユニット30a~30eの真下以外の位置には、孔65の代わりに複数の孔365a,365bが形成されている。孔365aは、赤外線ヒーターユニット30aと赤外線ヒーターユニット30eとの左右方向の中間付近に複数形成されており、赤外線ヒーターユニット30a,30c,30d,30eにより周囲を囲まれている。孔365bは、赤外線ヒーターユニット30bと赤外線ヒーターユニット30eとの左右方向の中間付近に複数形成されており、赤外線ヒーターユニット30b,30c,30d,30eにより周囲を囲まれている。このようにさらに赤外線ヒーターユニット30の数を増やすことで、孔365a,365bからの赤外線の放射強度をより高くすることができる。 In the above-described embodiment, two infrared heater units 30 are arranged in the shielding container 60, but may be one, or may be three or more. FIG. 7 is a perspective view of a modified infrared radiation device 220. As shown in FIG. 7, the infrared radiation device 220 according to the modified example includes infrared heater units 30c and 30d whose longitudinal direction is the left-right direction in addition to the infrared heater units 30a and 30b. That is, the infrared radiation device 220 has a total of four infrared heater units 30. The configuration of the infrared heater units 30c and 30d is the same as that of the infrared heater units 30a and 30b. The infrared heater units 30a to 30d are disposed in the vicinity of the side wall portions 64a to 64d in the shielding container 60, respectively. The infrared heater units 30a to 30d are respectively disposed between the side walls 64a to 64d in the shielding container 60 and the hole 65, and are positioned so as to surround the hole 65 from the front, rear, right and left. Thereby, since the filament 32 of the infrared heater units 30a to 30d is disposed so as to surround the hole 65, the in-plane uniformity of the infrared radiation energy from the hole 65 can be further improved. Further, by increasing the number of infrared heater units 30, the infrared radiation intensity from the holes 65 can be increased. Moreover, you may increase the infrared heater unit 30 further from the infrared radiation apparatus 220 of a modification. FIG. 8 is a perspective view of a modified infrared radiation device 320. In addition to the infrared heater units 30a to 30d, the infrared radiation device 320 of the modified example is an infrared heater located in the middle between the infrared heater unit 30a and the infrared heater unit 30b in the longitudinal direction in addition to the infrared heater units 30a to 30d. It has a unit 30e. That is, the infrared radiation device 320 has a total of five infrared heater units 30. The configuration of the infrared heater unit 30e is the same as that of the infrared heater units 30a to 30d. In addition, a plurality of holes 365a and 365b are formed in place of the holes 65 at positions other than directly below the infrared heater units 30a to 30e in the lower wall portion 61. A plurality of holes 365a are formed near the middle in the left-right direction between the infrared heater unit 30a and the infrared heater unit 30e, and are surrounded by the infrared heater units 30a, 30c, 30d, and 30e. A plurality of holes 365b are formed near the middle in the left-right direction between the infrared heater unit 30b and the infrared heater unit 30e, and are surrounded by the infrared heater units 30b, 30c, 30d, and 30e. Thus, by further increasing the number of infrared heater units 30, the infrared radiation intensity from the holes 365a and 365b can be further increased.
 上述した実施形態では、遮蔽容器60の内周面はいずれも赤外線を反射可能であるものとしたが、少なくとも反射面63及び下壁部61が赤外線を反射可能であればよい。側壁部64a~64dは、フィラメント32からの赤外線を遮蔽できればよく、例えば赤外線を反射せず吸収するものであってもよい。 In the above-described embodiment, the inner peripheral surface of the shielding container 60 is capable of reflecting infrared rays, but it is sufficient that at least the reflection surface 63 and the lower wall portion 61 can reflect infrared rays. The side wall portions 64a to 64d only need to be able to shield infrared rays from the filament 32, and may be, for example, those that absorb infrared rays without reflecting them.
 上述した実施形態では、上壁部62は赤外線を反射する赤外線反射材料で形成されているものとしたが、反射面63が赤外線を反射可能であればよい。例えば、上壁部62の表面に赤外線を反射可能な赤外線反射層が形成されており、この赤外線反射層の表面を反射面63としてもよい。このような赤外線反射層に用いる材料としては、例えば金,白金,アルミニウムなどが挙げられる。赤外線反射層は、例えば上壁部62の表面に塗布乾燥、スパッタリングやCVD、溶射といった成膜方法を用いて赤外線反射材料を成膜することで形成することができる。なお、下壁部61や側壁部64a~64dについても、遮蔽容器60の内部空間に面する部分に赤外線反射層を形成することで、赤外線を反射可能に構成してもよい。 In the above-described embodiment, the upper wall portion 62 is formed of an infrared reflecting material that reflects infrared rays, but it is sufficient that the reflecting surface 63 can reflect infrared rays. For example, an infrared reflection layer capable of reflecting infrared rays is formed on the surface of the upper wall portion 62, and the surface of the infrared reflection layer may be used as the reflection surface 63. Examples of the material used for such an infrared reflective layer include gold, platinum, and aluminum. The infrared reflective layer can be formed, for example, by forming an infrared reflective material on the surface of the upper wall portion 62 using a film forming method such as coating and drying, sputtering, CVD, or thermal spraying. Note that the lower wall portion 61 and the side wall portions 64a to 64d may also be configured to be able to reflect infrared rays by forming an infrared reflecting layer in a portion facing the internal space of the shielding container 60.
 上述した実施形態では、遮蔽容器60のうち赤外線ヒーターユニット30が配置されている内部空間を第2流路67としたが、例えば下壁部61,上壁部62,側壁部64a~64dの各々の内部など、赤外線ヒーターユニット30が配置された内部空間とは別に第2冷媒を流通可能な第2流路を形成してもよい。こうしても、第2冷媒により遮蔽容器60を冷却することができる。 In the above-described embodiment, the internal space in which the infrared heater unit 30 is disposed in the shielding container 60 is the second flow path 67. For example, each of the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d. In addition to the internal space in which the infrared heater unit 30 is disposed, a second flow path capable of circulating the second refrigerant may be formed. Even in this case, the shielding container 60 can be cooled by the second refrigerant.
 上述した実施形態では、内管36と外管40との間の空間を第1流路47としたが、内管36と外管40との間に第1冷媒を流通させないものとしてもよい。こうしても、遮蔽容器60と外管40との間に第2冷媒を流通させることで外管40を冷却することができる。また、この場合、内管36と外管40との一方を省略してもよい。 In the above-described embodiment, the space between the inner tube 36 and the outer tube 40 is the first flow path 47, but the first refrigerant may not be circulated between the inner tube 36 and the outer tube 40. Even in this case, the outer pipe 40 can be cooled by circulating the second refrigerant between the shielding container 60 and the outer pipe 40. In this case, one of the inner tube 36 and the outer tube 40 may be omitted.
 上述した実施形態では、赤外線ヒーターユニット30が遮蔽容器60に覆われているものとしたが、フィラメント32から真下に放射される赤外線を遮蔽する下壁部61と、フィラメント32から上方に放射される赤外線を反射する上壁部62と、を備えていれば、これに限られない。例えば、側壁部64a~64dを備えないものとしてもよい。あるいは、下壁部61,上壁部62,側壁部64a~64dが互いに離間しているなど、下壁部61,上壁部62,側壁部64a~64dが接合されず独立した部材として赤外線ヒーターユニット30の周囲に配置されていてもよい。 In the above-described embodiment, the infrared heater unit 30 is covered with the shielding container 60. However, the lower wall portion 61 that shields infrared rays emitted from the filament 32 and the filament 32 is emitted upward. If it has the upper wall part 62 which reflects infrared rays, it will not be restricted to this. For example, the side walls 64a to 64d may not be provided. Alternatively, the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d are separated from each other. For example, the lower wall portion 61, the upper wall portion 62, and the side wall portions 64a to 64d are not joined to each other. It may be arranged around the unit 30.
 上述した実施形態では、赤外線ヒーターユニット30の周囲に下壁部61や上壁部62が存在するものとしたが、これに限られない。例えば、下壁部61の代わりにフィラメント32からの赤外線を遮蔽する層状の遮蔽体を外管40の表面に形成してもよい。図9は、変形例の赤外線放射装置420を備えた乾燥炉410の縦断面図である。赤外線放射装置420は、図示するように、遮蔽容器60を備えておらず、赤外線ヒーターユニット430と、赤外線ヒーターユニット30の上方を覆う板状の部材である反射板462と、を備えている。赤外線ヒーターユニット430は、外管40の外表面に形成された層状の遮蔽体461を有する(図9の拡大部分参照)点以外は、赤外線ヒーターユニット30と同じ構成である。遮蔽体461は、長手方向が外管40と同じであり、下壁部61と同様にフィラメント32から真下へ放射される赤外線を反射により遮蔽するものである。遮蔽体461は、赤外線反射材料で形成され、フィラメント32からの赤外線を上方に反射可能な上述した赤外線反射層として構成されている。遮蔽体461は、外管40の表面のうち下側を覆っており、図9ではフィラメント32からみて真下方向を0°として、外管40の表面のうち断面視で左右方向に-45°~45°(図9における反時計回り方向を正とする)の範囲を覆っている。ただし、遮蔽体461はフィラメント32から真下へ放射される赤外線を反射できれば良い。例えば、遮蔽体461は少なくともフィラメント32の真下の領域を覆っている(フィラメント32よりも左右方向の幅が広い)ものとしてもよい。遮蔽体461は、例えば-90°~90°の範囲を覆っていてもよいし、他の範囲を覆っていてもよい。乾燥工程での塗膜82の大きさやフィラメント32との位置関係に応じて、フィラメント32から放射される赤外線が反射を介さずには塗膜82に到達できないように、遮蔽体461が外管40の表面を覆う範囲を定めてもよい。反射板462は、フィラメント32からみて外管40よりも外側に配置されている。反射板462は、長手方向が赤外線ヒーターユニット30と同じであり、フィラメント32側の面である反射面463の断面形状が例えばパラボラ、楕円の弧、円弧等の曲線形状となっている。反射面463の曲線形状の焦点もしくは中心位置にフィラメント32が配置されていてもよい。反射板462は、反射面463で赤外線を下方に反射可能である。反射板462は、上述した上壁部62と同様に赤外線反射材料で形成されていてもよい。また、反射板462のフィラメント32側の表面に赤外線を反射可能な赤外線反射層が形成されており、この赤外線反射層の表面が反射面463となっていてもよい。反射板462は、遮蔽体461の真上の領域を覆っている(遮蔽体461よりも左右方向の幅が広い)ことが好ましい。この赤外線放射装置420も、上述した赤外線放射装置20と同様に、フィラメント32から真下に放射される赤外線については、遮蔽体461により反射されて遮蔽される。一方、フィラメント32から上方に放射される赤外線については、反射面463により反射されて、遮蔽体461よりも下方に到達する。これにより、赤外線放射装置20と同様に、赤外線ヒーターユニット30の下方(例えば、フィラメント32の真下や反射面463の真下など)に配置された塗膜82への赤外線の放射エネルギーの面内均一性を向上させることができる。なお、遮蔽体461は、外管40の内周面に形成してもよいし、内管36の外周面又は内周面に形成してもよい。また、反射板462は平板状であってもよい。すなわち、反射面463の断面が曲線形状ではなく直線形状としてもよい。また、反射面463が赤外線を乱反射可能であってもよい。さらに、赤外線放射装置420は、反射板462を冷却する冷媒を流通可能な反射体用冷媒流路を備えていてもよい。例えば、反射板462のフィラメント32とは反対側の面(図9の上面)に接触する配管を備え、その配管の内部空間を反射体用冷媒流路として、配管の内部に冷媒を流通させてもよい。あるいは、反射板462の内部に冷媒流路を形成して、反射板462の内部に冷媒を流通させてもよい。 In the above-described embodiment, the lower wall portion 61 and the upper wall portion 62 exist around the infrared heater unit 30, but the present invention is not limited to this. For example, instead of the lower wall portion 61, a layered shielding body that shields infrared rays from the filament 32 may be formed on the surface of the outer tube 40. FIG. 9 is a longitudinal sectional view of a drying furnace 410 provided with a modified infrared radiation device 420. As illustrated, the infrared radiation device 420 does not include the shielding container 60 but includes an infrared heater unit 430 and a reflection plate 462 that is a plate-like member that covers the infrared heater unit 30. The infrared heater unit 430 has the same configuration as the infrared heater unit 30 except that the infrared heater unit 430 has a layered shield 461 formed on the outer surface of the outer tube 40 (see the enlarged portion in FIG. 9). The shield 461 has the same longitudinal direction as that of the outer tube 40 and shields infrared rays radiated directly from the filament 32 by reflection like the lower wall portion 61. The shield 461 is made of an infrared reflecting material, and is configured as the above-described infrared reflecting layer capable of reflecting the infrared rays from the filament 32 upward. The shield 461 covers the lower side of the surface of the outer tube 40. In FIG. 9, the downward direction is 0 ° as viewed from the filament 32, and the surface of the outer tube 40 is −45 ° to the left and right in the cross-sectional view. It covers a range of 45 ° (the counterclockwise direction in FIG. 9 is positive). However, the shield 461 only needs to reflect the infrared rays radiated from the filament 32 directly below. For example, the shield 461 may cover at least the region directly below the filament 32 (the width in the left-right direction is wider than that of the filament 32). The shield 461 may cover a range of −90 ° to 90 °, for example, or may cover another range. Depending on the size of the coating film 82 in the drying process and the positional relationship with the filament 32, the shield 461 is disposed on the outer tube 40 so that infrared rays radiated from the filament 32 cannot reach the coating film 82 without reflection. You may define the range which covers the surface of. The reflection plate 462 is disposed outside the outer tube 40 when viewed from the filament 32. The reflection plate 462 has the same longitudinal direction as that of the infrared heater unit 30, and the cross-sectional shape of the reflection surface 463 that is the surface on the filament 32 side is a curved shape such as a parabola, an elliptical arc, or an arc. The filament 32 may be disposed at the focal point or the center position of the reflecting surface 463 in the curved shape. The reflecting plate 462 can reflect infrared rays downward on the reflecting surface 463. The reflecting plate 462 may be formed of an infrared reflecting material, similar to the upper wall portion 62 described above. Further, an infrared reflection layer capable of reflecting infrared rays is formed on the surface of the reflection plate 462 on the filament 32 side, and the surface of the infrared reflection layer may be a reflection surface 463. The reflection plate 462 preferably covers a region directly above the shield 461 (wider in the left-right direction than the shield 461). Similarly to the infrared radiation device 20 described above, the infrared radiation device 420 is also shielded by being reflected by the shield 461 with respect to the infrared radiation radiated directly from the filament 32. On the other hand, infrared rays radiated upward from the filament 32 are reflected by the reflecting surface 463 and reach below the shield 461. Thereby, in the same manner as the infrared radiation device 20, the in-plane uniformity of the infrared radiation energy to the coating film 82 disposed below the infrared heater unit 30 (for example, directly below the filament 32 or directly below the reflecting surface 463). Can be improved. The shield 461 may be formed on the inner peripheral surface of the outer tube 40, or may be formed on the outer peripheral surface or inner peripheral surface of the inner tube 36. Further, the reflection plate 462 may be flat. That is, the cross section of the reflecting surface 463 may be a straight shape instead of a curved shape. Further, the reflection surface 463 may be capable of irregularly reflecting infrared rays. Further, the infrared radiation device 420 may include a reflector coolant channel through which a coolant for cooling the reflector 462 can flow. For example, a pipe that contacts the surface of the reflector 462 opposite to the filament 32 (upper surface in FIG. 9) is provided, and the refrigerant is circulated through the pipe using the internal space of the pipe as a refrigerant flow path for the reflector. Also good. Alternatively, a coolant channel may be formed inside the reflecting plate 462, and the coolant may be circulated inside the reflecting plate 462.
 なお、図9では、遮蔽容器60を備えず遮蔽体461を備えた赤外線放射装置420について説明したが、赤外線放射装置が遮蔽容器60と遮蔽体461とを共に備えていてもよい。図10は、変形例の赤外線放射装置520を備えた乾燥炉510の縦断面図である。乾燥炉510の赤外線放射装置520は、赤外線ヒーターユニット30の外管40の外表面に層状の遮蔽体537が形成されている。遮蔽体537は、図9に示した遮蔽体461と同様に、フィラメント32からの赤外線を上方に反射可能な上述した赤外線反射層として構成されている。また、下壁部561に形成された孔565は、図1の孔65と異なり赤外線ヒーターユニット30の真下の領域も含めて下壁部561全体に複数形成されている。この乾燥炉510でも、乾燥炉10と同様に、フィラメント32から真下に放射される赤外線については、遮蔽体537により上方に反射されて遮蔽される。一方、フィラメント32から上方に放射される赤外線については、上壁部62の反射面63により反射されて、孔565を通過して下壁部561よりも下方に到達する。そのため、フィラメント32の下方(下壁部561の下方)に放射される赤外線の放射エネルギーの面内均一性が向上する。しかも、遮蔽体537を有することで、孔565は赤外線ヒーターユニット30の真下の領域にも形成することができるため、赤外線ヒーターユニット30の真下の領域に配置された処理対象に対しても面内均一性を保ちつつ赤外線を放射することができる。すなわち、面内均一性を保ちつつ赤外線を放射できる領域が図の左右方向に広がる。これにより、炉体12内で一度に乾燥できる塗膜82の表面積をより広くすることができ、処理効率が向上する。なお、フィラメント32から真下へ放射される赤外線を遮蔽体537が反射により遮蔽するため、下壁部561は必ずしも赤外線を反射する材料である必要はない。例えば下壁部551は赤外線を吸収する材料や赤外線を透過する材料で構成されていてもよい。また、下壁部561が赤外線を透過する場合には、孔565を形成しなくともよい。 In FIG. 9, the infrared radiation device 420 including the shielding body 461 without the shielding container 60 has been described. However, the infrared radiation device may include both the shielding container 60 and the shielding body 461. FIG. 10 is a longitudinal sectional view of a drying furnace 510 provided with a modified infrared radiation device 520. In the infrared radiation device 520 of the drying furnace 510, a layered shield 537 is formed on the outer surface of the outer tube 40 of the infrared heater unit 30. The shield 537 is configured as the above-described infrared reflecting layer capable of reflecting the infrared rays from the filament 32 upward, similarly to the shield 461 shown in FIG. Also, a plurality of holes 565 formed in the lower wall portion 561 are formed in the entire lower wall portion 561 including the region directly below the infrared heater unit 30 unlike the hole 65 of FIG. In the drying furnace 510, as in the drying furnace 10, the infrared rays emitted directly below the filament 32 are reflected and shielded upward by the shield 537. On the other hand, infrared rays radiated upward from the filament 32 are reflected by the reflecting surface 63 of the upper wall portion 62, pass through the hole 565, and reach below the lower wall portion 561. Therefore, the in-plane uniformity of infrared radiation energy radiated below the filament 32 (below the lower wall portion 561) is improved. Moreover, since the hole 565 can be formed also in the region directly under the infrared heater unit 30 by having the shield 537, it is also in-plane with respect to the processing target disposed in the region directly under the infrared heater unit 30. Infrared rays can be emitted while maintaining uniformity. That is, a region where infrared rays can be emitted while maintaining in-plane uniformity extends in the left-right direction of the figure. Thereby, the surface area of the coating film 82 which can be dried at once in the furnace body 12 can be increased, and the processing efficiency is improved. In addition, since the shielding body 537 shields the infrared rays radiated directly from the filament 32 by the reflection, the lower wall portion 561 is not necessarily made of a material that reflects the infrared rays. For example, the lower wall portion 551 may be made of a material that absorbs infrared rays or a material that transmits infrared rays. Further, when the lower wall portion 561 transmits infrared rays, the hole 565 may not be formed.
 上述した実施形態において、乾燥炉10が塗膜82の表面に向けて、あるいは塗膜82の表面と平行に送風を行う送風装置をさらに備えるものとしてもよい。 In the above-described embodiment, the drying furnace 10 may further include a blower that blows air toward the surface of the coating film 82 or in parallel with the surface of the coating film 82.
 上述した実施形態では、鉛直下方向を「下方向」として説明したが、「下方向」を基準として、上方向や左右方向を定めればよく、「下方向」が他の方向であってもよい。例えば鉛直上方向を「下方向」としてもよい。その場合、赤外線放射装置20は鉛直上方向に配置された処理対象に赤外線を放射するものとなる。 In the embodiment described above, the vertical downward direction has been described as “downward”, but it is only necessary to define the upward direction and the left-right direction with reference to “downward direction”, and even if “downward direction” is another direction. Good. For example, the vertically upward direction may be “downward”. In that case, the infrared radiation device 20 radiates infrared rays to a processing object arranged vertically upward.
 上述した実施形態では、乾燥炉10は間欠送り式としたが、これに限られない。例えば、炉体12の内部にシート80を連続的に搬送しつつ塗膜82の乾燥を行う連続式の乾燥炉として構成してもよい。あるいは、ロール17,18を備えず塗膜82が形成されたシート80を炉体12内に載置して乾燥を行うバッチ式の乾燥炉として構成してもよい。 In the embodiment described above, the drying furnace 10 is an intermittent feed type, but is not limited thereto. For example, you may comprise as a continuous-type drying furnace which dries the coating film 82, conveying the sheet | seat 80 inside the furnace body 12 continuously. Or you may comprise as a batch-type drying furnace which does not equip the rolls 17 and 18 and mounts the sheet | seat 80 in which the coating film 82 was formed in the furnace body 12, and dries.
 上述した実施形態では、処理対象である塗膜82として、乾燥後にリチウムイオン二次電池用の電極となる塗膜を例示したが、乾燥対称はこれに限られない。例えば、MLCC(積層セラミックコンデンサ)用の薄膜として用いられる塗膜を処理対象としてもよい。この場合、塗膜は例えばセラミック粉末又は金属粉末と、有機バインダーと、有機溶剤とを含むものとしてもよい。また、シートはPETなどの樹脂としてもよい。あるいは、塗膜82は、LTCC(低温焼成セラミックス)やその他のグリーンシート用の薄膜として用いられるものとしてもよい。また、本実施形態では、スクリーン印刷により塗膜82をシート80上に形成するものとしたが、これに限らず例えばグラビア印刷など他の方法を用いて塗膜82を形成してもよい。 In the above-described embodiment, the coating film 82 to be processed is exemplified by a coating film that becomes an electrode for a lithium ion secondary battery after drying, but the drying symmetry is not limited thereto. For example, a coating film used as a thin film for MLCC (multilayer ceramic capacitor) may be a processing target. In this case, the coating film may contain, for example, ceramic powder or metal powder, an organic binder, and an organic solvent. The sheet may be a resin such as PET. Alternatively, the coating film 82 may be used as a thin film for LTCC (low temperature fired ceramics) or other green sheets. In the present embodiment, the coating film 82 is formed on the sheet 80 by screen printing. However, the present invention is not limited thereto, and the coating film 82 may be formed using other methods such as gravure printing.
 上述した実施形態では、乾燥炉10は赤外線を用いて塗膜82を乾燥するものとしたが、赤外線を用いて処理対象を処理する赤外線処理装置であればよく、乾燥炉に限られない。赤外線を用いた処理としては、例えば、処理対象の架橋,イミド化などの化学反応や、脱水、アニール、などが挙げられる。 In the above-described embodiment, the drying furnace 10 dries the coating film 82 using infrared rays. However, the drying oven 10 is not limited to a drying oven as long as it is an infrared treatment apparatus that treats a treatment target using infrared rays. Examples of the treatment using infrared rays include chemical reactions such as cross-linking and imidization of the treatment target, dehydration, annealing, and the like.
 本出願は、2013年8月12日に出願された日本国特許出願第2013-167481号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2013-167482, filed on August 12, 2013, and claims the priority thereof, the entire contents of which are incorporated herein by reference.
 本発明は、処理対象に対する赤外線を用いた乾燥などの処理が必要な産業、例えばリチウムイオン二次電池の電極塗膜を製造する電池産業や、MLCC又はLTCC等を製造するセラミックス産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in industries that require treatment such as drying using infrared rays on the object to be treated, such as the battery industry that produces electrode coatings for lithium ion secondary batteries, and the ceramic industry that produces MLCC or LTCC. It is.
 10 乾燥炉、12 炉体、12a 乾燥空間、13 左端面、14 右端面、15,16 開口、17,18 ロール、20 赤外線放射装置、30,30a~30e 赤外線ヒーターユニット、32 フィラメント、34 電気配線、36 内管、38 ヒーター本体、40 外管、42 キャップ、44 配線引出部、46 第1冷媒出入口、47 第1流路、49 ホルダー、50 電力供給源、52 第1冷媒供給源、54 第2冷媒供給源、55 排出バルブ、56 温度センサ、60 遮蔽容器、61 下壁部、62 上壁部、63 反射面、64a~64d 側壁部、65 孔、65a 区画部材、66 第2冷媒出入口、67 第2流路、80 シート、82 塗膜、90 コントローラー、110 乾燥炉、120 赤外線放射装置、165 孔、168 導波管、169 開口、220,320 赤外線放射装置、365a,365b 孔、410 乾燥炉、420 赤外線放射装置、430 赤外線ヒーターユニット、461 遮蔽体、462 反射板、463 反射面、510 乾燥炉、520 赤外線放射装置、537 遮蔽体、561 下壁部、565 孔。 10 drying furnace, 12 furnace body, 12a drying space, 13 left end face, 14 right end face, 15, 16 opening, 17, 18 roll, 20 infrared radiation device, 30, 30a-30e infrared heater unit, 32 filament, 34 electrical wiring , 36 inner pipe, 38 heater body, 40 outer pipe, 42 cap, 44 wiring outlet, 46 first refrigerant inlet / outlet, 47 first flow path, 49 holder, 50 power supply source, 52 first refrigerant supply source, 54th 2 refrigerant supply source, 55 discharge valve, 56 temperature sensor, 60 shielding container, 61 lower wall part, 62 upper wall part, 63 reflecting surface, 64a-64d side wall part, 65 holes, 65a partition member, 66 second refrigerant inlet / outlet, 67 2nd flow path, 80 sheet, 82 coating film, 90 controller, 110 drying furnace, 120 External radiation device, 165 hole, 168 waveguide, 169 opening, 220, 320 infrared radiation device, 365a, 365b hole, 410 drying furnace, 420 infrared radiation device, 430 infrared heater unit, 461 shield, 462 reflector, 463 Reflective surface, 510 drying furnace, 520 infrared radiation device, 537 shield, 561 lower wall, 565 hole.

Claims (14)

  1.  加熱されると赤外線を含む電磁波を放射する発熱体と、
     所定の方向を下方向としたときに、前記発熱体から真下に放射される赤外線を上方に反射する下部遮蔽体と、
     前記発熱体から上方に放射される赤外線を前記下部遮蔽体よりも下方に到達可能に反射する反射面を有する反射体と、
     を備えた赤外線放射装置。
    A heating element that emits electromagnetic waves including infrared when heated,
    A lower shield that reflects upward the infrared rays emitted directly from the heating element when the predetermined direction is a downward direction;
    A reflector having a reflecting surface for reflecting infrared rays radiated upward from the heating element so that the infrared rays can reach below the lower shield;
    Infrared radiation device with.
  2.  前記反射面は、前記赤外線を乱反射する面である、
     請求項1に記載の赤外線放射装置。
    The reflective surface is a surface that irregularly reflects the infrared rays,
    The infrared radiation device according to claim 1.
  3.  請求項1又は2に記載の赤外線放射装置であって、
     前記発熱体から前記下方向と垂直な方向に放射される赤外線を遮蔽する側部遮蔽体、
     を備えた赤外線放射装置。
    The infrared radiation device according to claim 1 or 2,
    A side shield that shields infrared rays emitted from the heating element in a direction perpendicular to the downward direction;
    Infrared radiation device with.
  4.  請求項3に記載の赤外線放射装置であって、
     前記反射体と、前記下部遮蔽体と、前記側部遮蔽体と、を有し、前記発熱体を覆う遮蔽容器、
     を備え、
     前記遮蔽容器は、前記発熱体の真下以外の位置に形成され前記反射面で反射された赤外線が前記下部遮蔽体よりも下方に到達する際の該遮蔽容器からの該赤外線の出口となる放射口を有する、
     赤外線放射装置。
    The infrared radiation device according to claim 3,
    A shielding container having the reflector, the lower shielding body, and the side shielding body and covering the heating element;
    With
    The shielding container is a radiation port that is formed at a position other than directly below the heating element and serves as an outlet for the infrared light from the shielding container when the infrared light reflected by the reflecting surface reaches below the lower shielding body Having
    Infrared radiation device.
  5.  前記下部遮蔽体及び前記側部遮蔽体は、前記発熱体側の面が前記発熱体からの赤外線を反射可能である、
     請求項4に記載の赤外線放射装置。
    The lower shielding body and the side shielding body are capable of reflecting infrared rays from the heating element on the surface on the heating element side.
    The infrared radiation device according to claim 4.
  6.  請求項4又は5に記載の赤外線放射装置であって、
     前記遮蔽容器を冷却する冷媒が流通可能な遮蔽容器用冷媒流路、
     を備えた赤外線放射装置。
    An infrared radiation device according to claim 4 or 5,
    A refrigerant flow path for a shielding container through which a refrigerant for cooling the shielding container can flow;
    Infrared radiation device with.
  7.  請求項6に記載の赤外線放射装置であって、
     前記遮蔽容器の内側に配置され、前記発熱体からの赤外線を透過し前記発熱体を覆う管状部材、
     を備え、
     前記遮蔽容器用冷媒流路は、前記遮蔽容器と前記管状部材との間の空間である、
     赤外線放射装置。
    The infrared radiation device according to claim 6,
    A tubular member disposed inside the shielding container and transmitting infrared rays from the heating element to cover the heating element;
    With
    The shielding container coolant channel is a space between the shielding container and the tubular member.
    Infrared radiation device.
  8.  前記放射口は、前記遮蔽容器の外部及び前記遮蔽容器用冷媒流路と連通している開口である、
     請求項6又は7に記載の赤外線放射装置。
    The radiation port is an opening communicating with the outside of the shielding container and the refrigerant flow path for the shielding container.
    The infrared radiation device according to claim 6 or 7.
  9.  前記遮蔽容器は、赤外線を透過し前記放射口を塞いで前記遮蔽容器の内外を区画する区画部材を備えている、
     請求項4~7のいずれか1項に記載の赤外線放射装置。
    The shielding container includes a partition member that transmits infrared rays and blocks the radiation port to partition the inside and outside of the shielding container.
    The infrared radiation device according to any one of claims 4 to 7.
  10.  請求項4~9のいずれか1項に記載の赤外線放射装置であって、
     上下方向に沿った内周面を有し、前記反射面で反射された赤外線を該内周面が反射することで該赤外線を前記放射口に導く導波管、
     を備えた赤外線放射装置。
    The infrared radiation device according to any one of claims 4 to 9,
    A waveguide having an inner peripheral surface along the vertical direction, and guiding the infrared light to the radiation port by reflecting the infrared light reflected by the reflecting surface by the inner peripheral surface;
    Infrared radiation device with.
  11.  前記発熱体は、前記遮蔽容器内に複数配置され、且つ、上下方向に垂直な方向で前記放射口の両側に配置されている、
     請求項4~10のいずれか1項に記載の赤外線放射装置。
    A plurality of the heating elements are arranged in the shielding container, and arranged on both sides of the radiation port in a direction perpendicular to the vertical direction.
    The infrared radiation device according to any one of claims 4 to 10.
  12.  前記遮蔽容器は、前記反射体を含む上壁部と、前記下部遮蔽体を含む下壁部と、前記側部遮蔽体を含む4つの側壁部と、を有する直方体の容器であり、
     前記発熱体は、前記遮蔽容器内に複数配置され、且つ、前記遮蔽容器内の前記4つの側壁部と前記放射口との間にそれぞれ配置されて、上下方向に垂直な方向から前記放射口の周囲を囲むように位置している、
     請求項11に記載の赤外線放射装置。
    The shielding container is a rectangular parallelepiped container having an upper wall portion including the reflector, a lower wall portion including the lower shielding body, and four side wall portions including the side shielding body,
    A plurality of the heating elements are arranged in the shielding container, and are arranged between the four side wall portions in the shielding container and the radiation port, respectively, so that the radiation ports are arranged in a direction perpendicular to the vertical direction. It is located to surround the surroundings,
    The infrared radiation device according to claim 11.
  13.  請求項1~3のいずれか1項に記載の赤外線放射装置であって、
     前記発熱体からの赤外線を透過し前記発熱体を覆う管状部材、
     を備え、
     前記下部遮蔽体は、前記管状部材の内周面又は外周面に形成されている、
     赤外線放射装置。
    The infrared radiation device according to any one of claims 1 to 3,
    A tubular member that transmits infrared rays from the heating element and covers the heating element;
    With
    The lower shield is formed on the inner peripheral surface or the outer peripheral surface of the tubular member,
    Infrared radiation device.
  14.  請求項1~13のいずれか1項に記載の赤外線放射装置を備え、該赤外線放射装置の下方に位置する処理対象に該赤外線放射装置から赤外線を放射して処理を行う赤外線処理装置。 An infrared processing apparatus comprising the infrared radiation device according to any one of claims 1 to 13, wherein the infrared radiation device radiates infrared rays to a processing target positioned below the infrared radiation device.
PCT/JP2014/069925 2013-08-12 2014-07-29 Infrared radiation device and infrared treatment device WO2015022857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013167481 2013-08-12
JP2013-167481 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015022857A1 true WO2015022857A1 (en) 2015-02-19

Family

ID=52468244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069925 WO2015022857A1 (en) 2013-08-12 2014-07-29 Infrared radiation device and infrared treatment device

Country Status (1)

Country Link
WO (1) WO2015022857A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777819A (en) * 2015-04-22 2015-07-15 上柴动力海安有限公司 Diesel engine shell sand core drying furnace control system
JP2017134951A (en) * 2016-01-26 2017-08-03 日立金属株式会社 Manufacturing method and manufacturing device for enamel wire
CN108645175A (en) * 2018-05-04 2018-10-12 北京绿能嘉业新能源有限公司 A kind of lithium battery pole slice coating infrared radiation drying device
WO2019009288A1 (en) * 2017-07-05 2019-01-10 日本碍子株式会社 Infrared processing device
IT202100001580A1 (en) * 2021-01-27 2022-07-27 Cefla Soc Cooperativa APPARATUS AND METHOD FOR THE DRYING/POLYMERIZATION OF CHEMICAL PRODUCTS
EP4067797A1 (en) * 2021-01-27 2022-10-05 Cefla Societa' Cooperativa Apparatus and method for the drying/curing of chemical products
WO2023126944A1 (en) * 2021-12-31 2023-07-06 LINKOVSKI, Zvi Iheskel Electromagnetic radiation emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292890A (en) * 1985-06-20 1986-12-23 株式会社東芝 High frequency heater
JPS6218945Y2 (en) * 1983-02-24 1987-05-15
JPH06194048A (en) * 1992-12-22 1994-07-15 Ngk Insulators Ltd Far infrared ray heater
JP2873427B2 (en) * 1994-08-03 1999-03-24 積水化学工業株式会社 Heating system
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace
JP2013057477A (en) * 2011-09-09 2013-03-28 Ngk Insulators Ltd Infrared heating furnace
JP5259875B1 (en) * 2012-07-19 2013-08-07 日本碍子株式会社 Battery electrode coating film drying method and drying furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218945Y2 (en) * 1983-02-24 1987-05-15
JPS61292890A (en) * 1985-06-20 1986-12-23 株式会社東芝 High frequency heater
JPH06194048A (en) * 1992-12-22 1994-07-15 Ngk Insulators Ltd Far infrared ray heater
JP2873427B2 (en) * 1994-08-03 1999-03-24 積水化学工業株式会社 Heating system
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace
JP2013057477A (en) * 2011-09-09 2013-03-28 Ngk Insulators Ltd Infrared heating furnace
JP5259875B1 (en) * 2012-07-19 2013-08-07 日本碍子株式会社 Battery electrode coating film drying method and drying furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777819A (en) * 2015-04-22 2015-07-15 上柴动力海安有限公司 Diesel engine shell sand core drying furnace control system
JP2017134951A (en) * 2016-01-26 2017-08-03 日立金属株式会社 Manufacturing method and manufacturing device for enamel wire
WO2019009288A1 (en) * 2017-07-05 2019-01-10 日本碍子株式会社 Infrared processing device
JPWO2019009288A1 (en) * 2017-07-05 2020-04-30 日本碍子株式会社 Infrared processor
JP7061609B2 (en) 2017-07-05 2022-04-28 日本碍子株式会社 Infrared processing device
CN108645175A (en) * 2018-05-04 2018-10-12 北京绿能嘉业新能源有限公司 A kind of lithium battery pole slice coating infrared radiation drying device
IT202100001580A1 (en) * 2021-01-27 2022-07-27 Cefla Soc Cooperativa APPARATUS AND METHOD FOR THE DRYING/POLYMERIZATION OF CHEMICAL PRODUCTS
EP4067797A1 (en) * 2021-01-27 2022-10-05 Cefla Societa' Cooperativa Apparatus and method for the drying/curing of chemical products
WO2023126944A1 (en) * 2021-12-31 2023-07-06 LINKOVSKI, Zvi Iheskel Electromagnetic radiation emitting device

Similar Documents

Publication Publication Date Title
WO2015022857A1 (en) Infrared radiation device and infrared treatment device
KR101704946B1 (en) Infrared heating device and drying furnace
JP4790092B1 (en) Coating film drying furnace
KR101030421B1 (en) Light irradiation device
WO2014168229A1 (en) Drying furnace
WO2014129072A1 (en) Heater provided with nozzle and drying furnace
JP2015036590A (en) Infrared ray processing device and infrared ray processing method
JP5775224B2 (en) Infrared heating unit, infrared heating device and drying device
US20110229112A1 (en) Heating apparatus
CN105657872B (en) Infrared heater and infrared processing device
KR101969044B1 (en) Heater unit and heat treatment apparatus
JP5810074B2 (en) Drying equipment
US10739069B2 (en) Low-temperature drying apparatus
WO2015005207A1 (en) Drying furnace
CN113039165B (en) Method for producing glass article and method for heating sheet glass
JP6704764B2 (en) Infrared processor
JP2005116900A (en) Atmospheric pressure plasma processing apparatus
JP2016031816A (en) Infrared ray processing method
JP2017003169A (en) Infrared heater and infrared ray processing device
JP6824772B2 (en) Drying device and manufacturing method of dried body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP