WO2014168229A1 - Drying furnace - Google Patents

Drying furnace Download PDF

Info

Publication number
WO2014168229A1
WO2014168229A1 PCT/JP2014/060455 JP2014060455W WO2014168229A1 WO 2014168229 A1 WO2014168229 A1 WO 2014168229A1 JP 2014060455 W JP2014060455 W JP 2014060455W WO 2014168229 A1 WO2014168229 A1 WO 2014168229A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
wavelength
infrared rays
drying
coating film
Prior art date
Application number
PCT/JP2014/060455
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 藤田
良夫 近藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2014168229A1 publication Critical patent/WO2014168229A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/151Radiant burners with radiation intensifying means other than screens or perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0026Electric heating elements or system with a generator of electromagnetic radiations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to a drying furnace.
  • Patent Literature 1 describes a drying furnace using an infrared heater including a heating element, and an inner tube and an outer tube surrounding the heating element.
  • the inner tube and the outer tube of the infrared heater function as a filter that transmits infrared light having a wavelength of 3.5 ⁇ m or less and absorbs infrared light having a wavelength exceeding 3.5 ⁇ m.
  • Infrared rays having a wavelength of 3.5 ⁇ m or less are said to be excellent in ability to break hydrogen bonds, and it is said that infrared rays having this wavelength can be radiated to an object to be dried to efficiently perform drying.
  • infrared rays having a wavelength of less than 2 ⁇ m may be emitted from the infrared heater.
  • the infrared rays may overheat the furnace body or the drying object of the drying furnace, and the drying object may be overheated.
  • the drying target is overheated, for example, a large amount of air for cooling is required, and the energy consumption during drying may increase.
  • the present invention has been made to solve such a problem, and has as its main object to further suppress overheating of an object to be dried by infrared rays having a wavelength of less than 2 ⁇ m from an infrared heater.
  • the drying furnace of the present invention is A furnace body for drying the object to be dried; An infrared heater having a heating element disposed in the furnace and emitting an electromagnetic wave including infrared; Selective reflection that is disposed between the heating element and the object to be dried in the furnace, reflects at least part of infrared rays having a wavelength of less than 2 ⁇ m, and transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • Body An infrared absorber disposed in the furnace body on the side opposite to the selective reflector as viewed from the heating element and capable of absorbing at least part of infrared rays having a wavelength of less than 2 ⁇ m; It is equipped with.
  • the infrared rays having a wavelength of less than 2 ⁇ m out of the electromagnetic waves are reflected by the selective reflector. Is done. Therefore, it can suppress that the infrared rays with a wavelength of less than 2 ⁇ m linearly reach the drying target side from the heating element. Moreover, the infrared light reflected by the selective reflector is radiated from the selective reflector toward the heating element, but this is absorbed by the infrared absorber.
  • the infrared rays after being reflected by the selective reflector are further reflected by the furnace body and the like and reach the drying target side.
  • the infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m emitted from the infrared heater can pass through the selective reflector and reach the drying target side, the infrared drying target can be dried.
  • the selective reflector preferably transmits at least a part of infrared rays having a wavelength of 2 ⁇ m to 3.5 ⁇ m.
  • Infrared rays having a wavelength of 3.5 ⁇ m or less are excellent in the ability to break hydrogen bonds in molecules such as water and solvents, so that the selective reflector can pass through this to dry the object to be dried more efficiently.
  • the selective reflector may be capable of reflecting not only infrared rays having a wavelength of less than 2 ⁇ m but also at least a part of electromagnetic waves having a wavelength shorter than 0.7 ⁇ m and shorter than infrared rays.
  • the infrared absorber may be capable of absorbing at least a part of an electromagnetic wave with a wavelength shorter than 0.7 ⁇ m and shorter than 0.7 ⁇ m.
  • the selective reflector and the infrared absorber may be in the form of a layer (film) formed on the surface of another member, or may be in the form of an independent member.
  • the selective reflector has a higher transmittance of infrared light having a wavelength of 2 to 4 ⁇ m than that of infrared light having a wavelength of less than 2 ⁇ m.
  • the transmittance of infrared light having a wavelength of 2 to 4 ⁇ m is higher than the transmittance of infrared light having a wavelength of less than 2 ⁇ m means that the total transmittance of infrared light having a wavelength of 2 to 4 ⁇ m is larger than the total transmittance of infrared light having a wavelength of less than 2 ⁇ m.
  • the selective reflector may have a total transmittance of infrared light having a wavelength of less than 2 ⁇ m of 20% or less and a total transmittance of infrared light having a wavelength of 2 to 4 ⁇ m of 80% or more.
  • the selective reflector may have a total transmittance of infrared rays having a wavelength of 2 to 3.5 ⁇ m of 80% or more.
  • the infrared heater includes a tubular member that transmits at least a part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m and surrounds the heating element.
  • the tubular member has an inner peripheral surface and an outer peripheral surface.
  • the selective reflector may be provided in a region including the side opposite to the infrared absorber as viewed from the heating element. In this case, it is possible to further suppress overheating of the drying target due to infrared rays having a wavelength of less than 2 ⁇ m from the infrared heater without arranging the selective reflector as a member different from the infrared heater in the furnace.
  • the infrared heater transmits a first tube that transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m and surrounds the heating element, and a second tube that is the tubular member surrounding the heating element and the first tube.
  • the first tube has an infrared ray having a wavelength of 2 ⁇ m to 4 ⁇ m in a region including at least one of an inner peripheral surface and an outer peripheral surface including a side opposite to the drying target when viewed from the heating element. You may have the reflection layer which reflects at least one part.
  • infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m are reflected by the reflective layer. Therefore, infrared rays having this wavelength can be efficiently irradiated onto the object to be dried, and the drying efficiency is improved.
  • the drying furnace of the present invention comprises a partition that partitions the space in which the infrared heater is disposed and the space in which the drying object is disposed in the furnace body, and transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • the partition may have the selective reflector. In this way, the space in which the infrared heater is disposed and the space in which the drying target is disposed are partitioned, so that the former space, objects in the space, furnace bodies facing the space, etc. are less than 2 ⁇ m in wavelength. Even when heated by infrared rays, the object to be dried is not easily heated.
  • the partition has the selective reflector means that the entire partition is a selective reflector.
  • the partition may have a selective reflector on the entire surface.
  • the furnace body may have the infrared absorber on the inner peripheral surface. If it carries out like this, the infrared rays reflected by the selective reflector can be absorbed with an infrared absorber, without arrange
  • the infrared absorber may have a refrigerant flow path through which a refrigerant can flow.
  • the infrared absorber can further suppress overheating by absorbing infrared rays, and the overheating of the infrared absorber has an adverse effect on the drying target (for example, overheating of the drying target). Giving more control.
  • FIG. 1 is a longitudinal sectional view of a drying furnace 10.
  • FIG. FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heater 30 and the infrared absorption plate 70 of FIG. 1. It is explanatory drawing which shows an example of the wavelength characteristic of the infrared rays radiated
  • FIG. 1 is a longitudinal sectional view of a drying furnace 10 according to an embodiment of the present invention.
  • the drying furnace 10 uses an infrared ray to dry the coating film 82 applied on the sheet 80 as an object to be dried, and the furnace body 12, the air supply device 20, the exhaust device 25, and the infrared heater 30. And an infrared absorption plate 70 and a controller 90.
  • the drying furnace 10 includes a roll 17 provided in front of the furnace body 12 (left side in FIG. 1) and a roll 18 provided in the rear of the furnace body 12 (right side in FIG. 1).
  • the drying furnace 10 is configured as a roll-to-roll type drying furnace in which a sheet 80 having a coating film 82 formed on its upper surface is continuously conveyed by rolls 17 and 18 and dried.
  • the furnace body 12 is for drying the coating film 82.
  • the furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped, and is formed in the space 12a that is an internal space, and the front end face 13 and the rear end face 14 of the furnace body, and openings that serve as entrances to the space 12a from the outside. 15 and 16.
  • the furnace body 12 has a length from the front end face 13 to the rear end face 14 of, for example, 2 to 10 m.
  • the furnace body 12 includes a transfer passage 19 that is a passage from the opening 17 to the opening 18.
  • the conveyance passage 19 penetrates the furnace body 12 in the horizontal direction.
  • the sheet 80 on which the coating film 82 is applied on one side passes through the conveyance path 19.
  • the air supply device 20 is a device that supplies (blows) fluid to the surface side of the sheet 80 and cools the coating film 82 and the sheet 80 that pass through the furnace body 12.
  • the air supply device 20 includes an air supply fan 21, a pipe structure 22, and an air supply port 23.
  • the air supply fan 21 is attached to the pipe structure 22 and supplies fluid to the inside of the pipe structure 22.
  • the fluid is cold air that can cool the sheet 80, and is, for example, room temperature or air of 50 ° C. or lower.
  • the air supply fan 21 can adjust the flow rate and temperature of the fluid.
  • the pipe structure 22 serves as a fluid passage from the air supply fan 21.
  • the pipe structure 22 forms a passage from the air supply fan 21 through the ceiling of the furnace body 12 to the inside of the furnace body 12.
  • the air supply port 23 serves as a supply port of the fluid from the air supply fan 21 to the furnace body 12.
  • the air supply port 23 is provided at an end of the furnace body 12 on the opening 16 side that is the carry-out side of the sheet 80, and opens horizontally toward the opening 15 side that is the carry-in side. Thereby, the air supply device 20 supplies the fluid in the direction opposite to the conveying direction of the sheet 80 (in the left direction in FIG. 1).
  • the exhaust device 25 is a device that discharges the atmospheric gas in the furnace body 12.
  • the exhaust device 25 includes an exhaust fan 26, a pipe structure 27, and an exhaust port 28.
  • the exhaust port 28 is provided at an end of the furnace body 12 on the opening 15 side that is the carry-in side of the sheet 80, and opens horizontally toward the opening 16 side that is the carry-out side.
  • the exhaust port 28 is attached to the pipe structure 27, and sucks in atmospheric gas in the furnace body 12 (mainly air blown from the air supply device 20 after flowing along the surface of the coating film 82). Guide into the body 27.
  • the pipe structure 27 serves as a flow path for the atmospheric gas from the exhaust port 28 to the exhaust fan 26.
  • the pipe structure 27 forms a passage from the exhaust port 28 through the ceiling of the furnace body 12 to the exhaust fan 26.
  • the exhaust fan 26 is attached to the pipe structure 27 and exhausts the atmospheric gas inside the pipe structure 27.
  • the infrared heater 30 is a device that irradiates the coating film 82 passing through the furnace body 12 with infrared rays, and a plurality of infrared heaters 30 are attached near the ceiling of the space 12 a in the furnace body 12.
  • a plurality of infrared heaters 30 (six in this embodiment) are arranged substantially uniformly from the front end face 13 side to the rear end face 14 side.
  • the plurality of infrared heaters 30 have the same configuration, and are attached so that the longitudinal direction thereof and the conveying direction of the coating film 82 are orthogonal to each other.
  • the configuration of one infrared heater 30 will be described.
  • FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heater 30 and the infrared absorbing plate 70 of FIG.
  • the cross section shown in FIG. 2 is a surface cut so as to pass through the center line of the heater body 33.
  • the infrared heater 30 includes a heater body 33 formed so that a tungsten filament 31 is surrounded by an inner tube 32, and an inner tube 32 provided outside the heater body 33.
  • a first outer tube 34 formed as described above, and a second outer tube 35 provided outside the first outer tube 34 so as to surround the first outer tube 34, and at both ends thereof Is fitted with a cap 40 (FIG. 2).
  • the infrared heater 30 includes a temperature sensor 49 that detects the surface temperature of the second outer tube 35 (see FIG. 2).
  • the temperature sensor 49 is disposed on the coating film 82 side (the lower side of FIGS. 1 and 2) of the second outer tube 35 as shown in FIG.
  • the inner tube 32, the first outer tube 34, and the second outer tube 35 are arranged concentrically, and the filament 31 is positioned at the center of the circle.
  • the heater body 33 is supported at both ends by holders 45 arranged inside the cap 40.
  • power is supplied to the filament 31 from a power supply source 50 (see FIG. 2) arranged outside the furnace body 12, and the filament 31 is heated to a predetermined temperature (eg, 1200 to 1700 ° C.). And radiates electromagnetic waves including infrared rays.
  • the electromagnetic wave radiated by the filament 31 is not particularly limited.
  • the peak wavelength is in the infrared region (the wavelength is 0.7 ⁇ m to 8 ⁇ m) or the near infrared region (the wavelength is 0.7 ⁇ m to 3.5 ⁇ m).
  • an electromagnetic wave having a peak wavelength of around 3.5 ⁇ m is emitted.
  • the inner tube 32 is a tube having a circular cross section surrounding the filament 31, and is formed of an infrared transmitting material that absorbs part of the electromagnetic waves radiated from the filament 31 and transmits infrared rays.
  • an infrared transmitting material used for the inner tube 32 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, transparent alumina ceramics, and infrared rays. Examples include transmissive quartz glass.
  • the inner tube 32 is formed of quartz glass that absorbs infrared light having a wavelength exceeding 4 ⁇ m and transmits infrared light having a wavelength of 4 ⁇ m or less as a part of the electromagnetic wave among the above-described infrared transmitting materials. It was. Further, the inside of the inner tube 32 is in a vacuum atmosphere or a halogen atmosphere. The electric wiring 31 a connected to the filament 31 is drawn out to the outside airtightly through a wiring drawing portion 47 provided in the cap 40, and is connected to the power supply source 50. As shown in FIG. 2, the cap 40 is formed by integrally molding a disc-shaped lid 44 and cylindrical portions 42 and 43 erected on the lid 44. The left and right ends of the first outer tube 34 and the second outer tube 35 are fixed to cylindrical portions 42 and 43, respectively.
  • the first outer tube 34 and the second outer tube 35 are tubes formed of the above-described infrared transmitting material.
  • the first outer tube 34 and the second outer tube 35 are formed of a quartz glass material that absorbs infrared light having a wavelength exceeding 4 ⁇ m and transmits infrared light having a wavelength of 4 ⁇ m or less. It was supposed to be.
  • the first outer tube 34 and the second outer tube 35 can be cooled to, for example, 200 ° C. or less by the refrigerant flowing through the refrigerant flow path 39.
  • a reflective layer 36 is formed on the outer peripheral surface of the first outer tube 34.
  • the reflection layer 36 is formed in a region on the outer peripheral surface of the first outer tube 34 that includes the side opposite to the coating film 82 (upper side in FIG. 1) when viewed from the filament 31, and only a part of the periphery of the filament 31 is formed. It is provided to cover.
  • the reflective layer 36 covers the entire upper half of the first outer tube 34.
  • the reflective layer 36 is arranged so that the filament 31 is positioned at the center position of a circle including the arc of the cross section.
  • the reflection layer 36 is formed of an infrared reflecting material that reflects at least a part of infrared rays of the electromagnetic waves radiated from the filament 31.
  • the reflective layer 36 is formed of a material that reflects at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • the reflective layer 36 is formed by depositing an infrared reflective material on the surface of the first outer tube 34 using a film deposition method such as coating, drying, sputtering, CVD, or thermal spraying.
  • the reflective layer 36 faces the refrigerant flow path 39 and is cooled by the refrigerant flowing through the refrigerant flow path 39.
  • a selective reflection layer 37 is formed on the outer peripheral surface of the second outer tube 35.
  • the selective reflection layer 37 is disposed between the filament 31 and the coating film 82 in the space 12 a of the furnace body 12. More specifically, the selective reflection layer 37 is formed on the outer peripheral surface of the second outer tube 35 in a region including the same side as the coating film 82 (lower side in FIG. 1) as viewed from the filament 31. It is provided so as to cover only a part of the periphery. In the present embodiment, the selective reflection layer 37 covers the entire lower half of the outer peripheral surface of the second outer tube 35.
  • the selective reflection layer 37 is arranged so that the filament 31 is located at the center position of a circle including the arc of the cross section.
  • the selective reflection layer 37 is formed of a selective reflection material that reflects at least part of infrared rays having a wavelength of less than 2 ⁇ m and transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m among electromagnetic waves radiated from the filament 31. . Thereby, the selective reflection layer 37 functions as a filter that selectively transmits infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • the selective reflection layer 37 preferably has a higher transmittance of infrared light having a wavelength of 2 to 4 ⁇ m than that of infrared light having a wavelength of less than 2 ⁇ m.
  • the selective reflection layer 37 has a total transmittance of infrared light having a wavelength of less than 2 ⁇ m of 20% or less, and a total transmittance of infrared light having a wavelength of 2 to 4 ⁇ m of 80% or more.
  • the selective reflection layer 37 may transmit electromagnetic waves having a wavelength exceeding 4 ⁇ m or may reflect electromagnetic waves having a wavelength exceeding 4 ⁇ m. In the former case, the selective reflection layer 37 functions as a low-pass filter, and in the latter case, the selective reflection layer 37 functions as a band-pass filter. In the present embodiment, the selective reflection layer 37 transmits electromagnetic waves having a wavelength exceeding 4 ⁇ m.
  • the selective reflection layer 37 that can reflect electromagnetic waves in a specific wavelength region is selectively reflected by using a film forming method in which, for example, a coating film containing a cholesteric liquid crystal material is applied to the surface of the second outer tube 35 and dried and cured.
  • the material can be formed by film formation.
  • the selective reflection layer 37 may be formed by coating a cholesteric liquid crystal film layer by layer and forming a selective reflection material including a plurality of cholesteric liquid crystal layers. The formation of such a selective reflection material is described in, for example, Japanese Patent Application Laid-Open No. 2012-181359.
  • the refrigerant channel 39 is a space between the first outer tube 34 and the second outer tube 35, and allows refrigerant to flow through a fluid inlet / outlet 48 provided in the cap 40.
  • the refrigerant is a fluid such as air.
  • the fluid inlet / outlet port 48 is connected to a first refrigerant supply source 60 disposed outside the furnace body 12.
  • the refrigerant supplied from the first refrigerant supply source 60 flows into the refrigerant channel 39 from one fluid inlet / outlet 48, flows through the refrigerant channel 39, and flows out from the other fluid inlet / outlet 48.
  • the refrigerant flowing through the refrigerant flow path 39 plays a role of reducing the temperature of the second outer pipe 35 and the temperature of the first outer pipe 34 which are the outer surfaces of the infrared heater 30 or adjusting the temperature to an arbitrary temperature.
  • the infrared absorbing plate 70 is a substantially rectangular parallelepiped member that mainly absorbs infrared rays radiated from the infrared heater 30, and a plurality of infrared absorbing plates 70 are attached between the ceiling of the space 12 a in the furnace body 12 and the infrared heater 30.
  • six infrared absorbing plates 70 are arranged, and each infrared absorbing plate 70 corresponds to the infrared heater 30 on a one-to-one basis, and between the corresponding infrared heater 30 and the ceiling of the furnace body 12. It is attached.
  • the infrared absorbing plate 70 is disposed in the space 12 a of the furnace body 12 on the side opposite to the selective reflection layer 37 (upper side in FIGS. 1 and 2) when viewed from the filament 31 of the infrared heater 30.
  • the plurality of infrared absorbing plates 70 have the same configuration, and are attached so that the longitudinal direction is orthogonal to the conveying direction.
  • the configuration of one infrared absorption plate 70 will be described.
  • the infrared absorbing plate 70 is formed such that the width in the front-rear direction (the left and right widths in FIG. 1) is larger than the outer diameter of the infrared heater 30. Further, the infrared absorbing plate 70 is disposed so as to cover a region opposite to the coating film 82 of the infrared heater 30 (a region immediately above the infrared heater 30 in FIGS. 1 and 2).
  • the infrared absorbing plate 70 is formed of an infrared absorbing material capable of absorbing at least a part of infrared rays having a wavelength of less than 2 ⁇ m.
  • Examples of such an infrared absorbing material used for the infrared absorbing plate 70 include a Si—SiC composite material (silicon-impregnated SiC) obtained by impregnating a porous body containing SiC with molten Si.
  • the infrared absorption plate 70 is hollow inside, and the space inside this is a refrigerant flow path 79.
  • the refrigerant can flow through two fluid inlets / outlets 78 provided in the infrared absorption plate 70.
  • the refrigerant may be a fluid, for example, a gas such as air or a liquid such as water. In the present embodiment, the refrigerant is water.
  • the fluid inlet / outlet port 78 is connected to a second refrigerant supply source 65 disposed outside the furnace body 12.
  • the refrigerant supplied from the second refrigerant supply source 65 flows into the refrigerant channel 79 from one fluid inlet / outlet 78, flows through the refrigerant channel 79, and flows out from the other fluid inlet / outlet 78.
  • the refrigerant flowing through the refrigerant flow path 79 serves to lower the temperature of the infrared absorbing plate 70 that is heated by absorbing infrared rays.
  • the infrared absorption plate 70 can be cooled to, for example, 200 ° C. or less by the refrigerant flowing through the refrigerant flow path 79.
  • the sheet 80 is not particularly limited, but is a resin sheet, for example, and in this embodiment is made of a PET film.
  • the sheet 80 is not particularly limited, but has a thickness of 10 to 100 ⁇ m and a width of 200 to 1000 mm, for example.
  • the coating film 82 is applied to the upper surface of the sheet 80 and is used as a thin film for MLCC (multilayer ceramic capacitor) after drying, for example.
  • the coating film 82 includes, for example, ceramic powder or metal powder, an organic binder, and an organic solvent.
  • the thickness of the coating film 82 is not particularly limited, but is, for example, 20 to 1000 ⁇ m.
  • the controller 90 is configured as a microprocessor centered on a CPU.
  • the controller 90 outputs a control signal to the air supply fan 21 and the exhaust fan 26 to control the temperature and air volume of the fluid blown from the air supply port 23, and exhaust from the exhaust port 28 in the atmosphere of the space 12 a. Control the amount.
  • the controller 90 inputs the temperature of the second outer pipe 35 detected by the temperature sensor 49 that is a thermocouple, or opens and closes provided in the middle of the pipe connecting the first refrigerant supply source 60 and the fluid inlet / outlet port 48.
  • a control signal is output to the valve 61 and the flow rate adjusting valve 62 to individually control the flow rate of the refrigerant flowing through the refrigerant flow path 39 of the infrared heater 30 (see FIG.
  • the controller 90 outputs a control signal to the on-off valve 66 and the flow rate adjustment valve 67 provided in the middle of the pipe connecting the second refrigerant supply source 65 and the fluid inlet / outlet 78, and the infrared absorbing plate 70.
  • the flow rate of the refrigerant flowing through the refrigerant flow path 79 is individually controlled.
  • the controller 90 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 50 to the filament 31 to the power supply source 50 to individually control the filament temperature of the infrared heater 30.
  • the controller 90 can adjust the passing time of the sheet 80 and the coating film 82 in the furnace body 12 and the tension applied to the sheet 80 and the coating film 82 by controlling the rotation speed of the rolls 17 and 18. .
  • the controller 90 rotates the rolls 17 and 18 and starts conveying the sheet 80.
  • the sheet 80 is unwound from the roll 17 disposed at the left end of the drying furnace 10.
  • the sheet 80 is coated with a coating film 82 on the upper surface by a coater (not shown) immediately before being brought into the furnace body 12 from the opening 15.
  • coated is conveyed in the furnace body 12.
  • the controller 90 controls the air supply fan 21, the exhaust fan 26, the power supply source 50, the first refrigerant supply source 60, and the second refrigerant supply source 65.
  • the coating film 82 formed on the upper surface of the sheet 80 is dried by being irradiated with infrared rays from the infrared heater 30.
  • the cool air from the air supply device 20 cools the coating film 82 and the sheet 80 and removes the solvent evaporated from the coating film 82.
  • the controller 90 determines the temperature and flow rate of the air supply fan 21 so that the temperature of the sheet 80 becomes a predetermined value (for example, 60 ° C., 50 ° C., 45 ° C., etc.) below the glass transition point (about 70 ° C.) of the PET film. To control.
  • the flow rate and temperature may be determined in advance.
  • the temperature and the flow rate may be adjusted so that the temperature of the sheet 80 is kept below the glass transition point based on the temperature detected by a temperature sensor provided on the sheet 80 or in the furnace body 12.
  • the coating film 82 is dried to form a thin film while the sheet 80 is kept below the glass transition point, and is transported from the opening 16.
  • this thin film (coating film 82) is wound with the sheet
  • FIG. 3 is an explanatory diagram illustrating an example of wavelength characteristics of infrared rays emitted from the infrared heater 30.
  • the infrared heater 30 emits infrared light having a peak wavelength of about 3.5 ⁇ m from the filament 31 (solid line in FIG. 3).
  • This infrared ray includes infrared rays having a wavelength of 2 to 4 ⁇ m and infrared rays having a wavelength of less than 2 ⁇ m.
  • the infrared heater 30 has the inner tube
  • Infrared light reflected by the selective reflection layer 37 is emitted from the selective reflection layer 37 toward the filament 31 (upward in FIG. 1), and this is absorbed by the infrared absorption plate 70.
  • the infrared rays that reach the coating film 82 and the sheet 80 from the infrared heater 30 have a small ratio of components having a wavelength exceeding 4 ⁇ m or components having a wavelength of less than 2 ⁇ m.
  • infrared light having a wavelength of 2 ⁇ m to 4 ⁇ m is reflected by the reflective layer 36 and radiated to the coating film 82 side.
  • Infrared rays that reach the coating film 82 and the sheet 80 from the infrared heater 30 have a higher proportion of components having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • the furnace body 12 of this embodiment corresponds to the furnace body of the present invention
  • the filament 31 corresponds to a heating element
  • the infrared heater 30 corresponds to an infrared heater
  • the selective reflection layer 37 corresponds to a selective reflector
  • the plate 70 corresponds to an infrared absorber.
  • the second outer tube 35 corresponds to the tubular member and the second tube
  • the first outer tube 34 corresponds to the first tube
  • the refrigerant channel 79 corresponds to the refrigerant channel.
  • the coating film 82 corresponds to an object to be dried.
  • the drying furnace 10 of the present embodiment described above is disposed in the furnace body 12 so as to be positioned between the filament 31 and the coating film 82, reflects at least part of infrared rays having a wavelength of less than 2 ⁇ m, and has a wavelength of 2 ⁇ m to A selective reflection layer 37 that transmits at least a part of infrared rays of 4 ⁇ m and a selective reflection layer 37 that is disposed on the opposite side of the selective reflection layer 37 from the filament 31 in the furnace body 12 and can absorb at least a part of infrared rays having a wavelength of less than 2 ⁇ m An infrared absorption plate 70 is provided.
  • infrared rays having a wavelength of less than 2 ⁇ m can be prevented from linearly reaching the coating film 82 side from the filament 31.
  • the presence of the infrared ray absorbing plate 70 can also prevent the infrared rays after being reflected by the selective reflection layer 37 from being further reflected by the furnace body 12 and the like and reaching the coating film 82 side. Thereby, overheating of the coating film 82 can be further suppressed.
  • infrared rays having a wavelength of less than 2 ⁇ m reach the coating film 82 side, for example, the coating film 82 or the sheet 80 may be overheated, and the coating film 82 may be deformed to adversely affect the coating film 82.
  • the influence on the coating film 82 by the infrared rays with a wavelength of less than 2 ⁇ m from the infrared heater 30 can be further suppressed.
  • the amount of cold air from the air supply fan 21 required to keep the coating film 82 below a predetermined temperature or keep the sheet 80 below the glass transition point increases. However, this can also be suppressed. Thereby, the amount of energy consumption at the time of drying can be reduced more.
  • the infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m emitted from the infrared heater 30 can pass through the selective reflection layer 37 and reach the coating film 82 side. Can do.
  • the infrared heater 30 has a second outer tube 35 that transmits at least a part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m and surrounds the filament 31.
  • the second outer tube 35 has an inner peripheral surface and an outer peripheral surface.
  • a selective reflection layer 37 is provided in a region including the side opposite to the infrared absorption plate 70 as viewed from the filament 31 among at least one of them. For this reason, the selective reflection layer 37 is not disposed in the furnace body 12 as a member different from the infrared heater 30, and the influence on the coating film 82 by infrared rays having a wavelength of less than 2 ⁇ m from the infrared heater 30 can be further suppressed. it can.
  • the infrared heater 30 includes a first outer tube 34 that transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m and surrounds the filament 31, and a second outer tube 35 that surrounds the filament 31 and the first outer tube 34.
  • the first outer tube 34 transmits at least a part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m in a region including at least one of the inner peripheral surface and the outer peripheral surface including the side opposite to the coating film 82 when viewed from the filament 31. It has a reflective layer 36 that reflects.
  • infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m can be reflected among electromagnetic waves radiated from the filament 31 in the direction opposite to the coating film 82. Thereby, the infrared rays of this wavelength can be efficiently irradiated onto the coating film 82 to improve the drying efficiency.
  • the infrared absorbing plate 70 has a refrigerant flow path 79 through which a refrigerant can flow. For this reason, the infrared ray absorbing plate 70 can be cooled with the refrigerant, and the infrared ray absorbing plate 70 can be further suppressed from absorbing infrared rays and overheating. Thereby, it can suppress more that the overheating of the infrared rays absorption plate 70 exerts a bad influence on the coating film 82.
  • the selective reflection layer 37 is formed on the second outer tube 35 of the infrared heater 30.
  • the present invention is not limited to this, and is positioned between the filament 31 and the coating film 82 in the furnace body 12.
  • the selective reflection layer 37 may be disposed as described above.
  • FIG. 4 is a longitudinal sectional view of a modified drying furnace 110.
  • the drying apparatus 110 is different from the infrared heater 30 in that the infrared heater 130 does not include the selective reflection layer 37, includes the partition 185 and the selective reflection layer 137, and includes the infrared absorption layer 170 instead of the infrared absorption plate 70.
  • the configuration is the same as that of the drying furnace 10.
  • the partition wall 185 is provided inside the furnace body 12. Of the space 12 a of the furnace body 12, a space in which the infrared heater 30 is provided and a space in which the coating film 82 is disposed (conveyed) It is a member which partitions off horizontally.
  • the partition wall 185 transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m, and is formed of the above-described infrared transmitting material such as quartz glass similar to the inner tube 32 or the like.
  • a selective reflection layer 137 is formed on the surface of the partition wall 85 on the infrared heater 30 side (upper surface in FIG. 4).
  • the selective reflection layer 137 is formed of the same selective reflection material as the selective reflection layer 37 described above.
  • the infrared absorption layer 170 is disposed on the inner peripheral surface of the furnace body 12 on the surface opposite to the selective reflection layer 137 (upper side in FIG. 4) when viewed from the filament 31.
  • This infrared absorption layer 170 is formed by applying and drying a material capable of absorbing at least part of infrared rays having a wavelength of less than 2 ⁇ m, such as black body paint, on the inner peripheral surface of the furnace body 12.
  • the selective reflection layer 137 can prevent infrared rays having a wavelength of less than 2 ⁇ m from reaching the coating film 82 side from the filament 31 as in the above-described embodiment. Further, the infrared ray absorbing layer 170 can also suppress the infrared ray after being reflected by the selective reflection layer 137 from being further reflected by the furnace body 12 or the like. Moreover, since the space in which the infrared heater 30 is disposed and the space in which the coating film 82 is disposed are partitioned by the partition 185, the space in which the infrared heater 30 is disposed, the object in the space, and the space are faced.
  • the coating film 82 and the sheet 80 are not easily heated. Therefore, the influence on the coating film 82 by the infrared rays having a wavelength of less than 2 ⁇ m from the infrared heater 30 can be further suppressed. Further, since the infrared absorption layer 170 is formed on the inner peripheral surface of the furnace body 12, it is reflected by the selective reflection layer 137 without disposing an independent member such as the infrared absorption plate 70 in the furnace body 12. Infrared light can be absorbed by an infrared absorber.
  • the infrared absorption layer 170 does not have a coolant channel, but it is not always necessary to cool the infrared absorption layer 170. This is because the space is partitioned by the partition 185, and even if the infrared absorption layer 170 itself is overheated, there is little influence on the space on the coating film 82 side.
  • the infrared heater 130 may include the selective reflection layer 37 similarly to the infrared heater 30, and the infrared absorption plate 70 may be disposed in the furnace body 12.
  • the selective reflection layer 37 is formed on the outer peripheral surface of the second outer tube 35, but may be formed on the inner peripheral surface.
  • the selective reflection layer 37 is formed by directly forming a selective reflection material on the surface of the second outer tube 35, but is not limited thereto.
  • a selective reflection film manufactured by forming a selective reflection material on a resin film as a substrate may be prepared and bonded to the surface of the second outer tube 35.
  • the substrate of the selective reflection film transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • a selective reflection film may be used instead of the selective reflection layer 137 in the same manner. Or you may arrange
  • the reflective layer 36 is formed on the outer peripheral surface of the first outer tube 34, but may be formed on the inner peripheral surface.
  • the reflective layer 36 may not be provided.
  • one infrared absorbing plate 70 is disposed for each infrared heater 30, but the present invention is not limited to this.
  • one infrared absorption plate 70 may be disposed so as to cover the side opposite to the selective reflection layer 37 among the plurality of infrared heaters 30.
  • the drying furnace 10 may include the infrared absorption layer 170 of the drying furnace 110 instead of the infrared absorption plate 70.
  • the inner tube 32, the first outer tube 34, and the second outer tube 35 are made of quartz glass that absorbs infrared light having a wavelength exceeding 4 ⁇ m and transmits infrared light having a wavelength of 4 ⁇ m or less. Any infrared ray having a wavelength of 2 ⁇ m to 4 ⁇ m can be used.
  • one or more of the inner tube 32, the first outer tube 34, and the second outer tube 35 may absorb infrared light having a wavelength exceeding 3.5 ⁇ m and transmit infrared light having a wavelength of 3.5 ⁇ m or less.
  • the selective reflection layer 37 transmits at least part of infrared rays having a wavelength of 2 ⁇ m to 4 ⁇ m.
  • the selective reflection layer 37 may transmit at least part of infrared rays having a wavelength of 2 ⁇ m to 3.5 ⁇ m. Infrared rays having a wavelength of 3.5 ⁇ m or less are excellent in the ability to cut hydrogen bonds in molecules such as water and solvents, so that the inner tube 32, the first outer tube 34, the second outer tube 35, and the selective reflection layer 37 are formed. By passing through this, the coating film 82 can be dried more efficiently.
  • the filament 31 emits an electromagnetic wave having a peak wavelength in the vicinity of 3.5 ⁇ m.
  • the present invention is not limited to the case where the peak wavelength is in the region of 2 ⁇ m to 4 ⁇ m. It may be in the excess area.
  • the inner tube 32, the first outer tube 34, the second outer tube 35, and the selective reflection layer 37 suppress the arrival of infrared rays having a wavelength of less than 2 ⁇ m or infrared rays having a wavelength of more than 4 ⁇ m.
  • the peak wavelength of the electromagnetic wave emitted by the filament 31 is not in the region of 2 ⁇ m to 4 ⁇ m, the inner tube 32, the first outer tube 34, the second outer tube 35, and the selective reflection layer 37 reach the coating film 82.
  • the peak wavelength of the electromagnetic wave can be set to 2 ⁇ m to 4 ⁇ m. However, in order to further improve the drying efficiency, it is preferable that the peak wavelength of the electromagnetic wave emitted from the filament 31 is in the region of 2 ⁇ m to 4 ⁇ m.
  • the coating film 82 is used as a thin film for MLCC, but is not limited thereto.
  • it may be used as a thin film for LTCC (low temperature fired ceramics) or other green sheets.
  • the coating film 82 is good also as what is used as a coating film used as an electrode for batteries, such as a lithium ion secondary battery.
  • the coating film 82 may be obtained by applying an electrode material paste obtained by kneading together an electrode material (positive electrode active material or negative electrode active material), a binder, a conductive material, and a solvent onto the sheet 80.
  • the sheet 80 may be a metal sheet such as aluminum or copper. Further, the temperature of the air blown from the air supply fan 21 may be appropriately changed according to the material of the coating film 82 and the sheet 80, and may be blown in the range of 40 to 400 ° C., for example.
  • the present invention can be used in industries that require drying of an object to be dried, such as a coating film, for example, a ceramic industry that manufactures MLCC, LTCC, and the like, a battery industry that manufactures an electrode coating film of a lithium ion secondary battery, and the like.
  • a coating film for example, a ceramic industry that manufactures MLCC, LTCC, and the like, a battery industry that manufactures an electrode coating film of a lithium ion secondary battery, and the like.

Abstract

A drying furnace (10) provided with: an infrared-ray heater (30); a selectively reflective layer (37) that is positioned, within a furnace body (12), between a filament (31) and a coating film (82), reflects at least part of an infrared ray having a wavelength of less than 2μm, and transmits at least part of an infrared ray having a wavelength of 2-4μm; and an infrared-ray absorbing plate (70) that is positioned within the furnace body (12) at the opposite side of the filament (31) to the selectively reflective layer (37), and can absorb at least part of an infrared ray having a wavelength of less than 2μm. The infrared-ray heater (30) includes a second outer tube (35) that transmits at least part of an infrared ray having a wavelength of 2-4μm, and surrounds the filament (31). At least one of the inner peripheral surface and the outer peripheral surface of the second outer tube (35) includes the selectively reflective layer (37) in a region containing the opposite side of the filament (31) to the infrared-ray absorbing plate (70).

Description

乾燥炉drying furnace
 本発明は、乾燥炉に関する。 The present invention relates to a drying furnace.
 従来、塗膜などの乾燥対象を赤外線ヒーターを用いて乾燥する乾燥炉が知られている。例えば、特許文献1には、発熱体と、発熱体を囲む内管及び外管と、を備えた赤外線ヒーターを用いた乾燥炉が記載されている。この乾燥炉では、赤外線ヒーターの内管及び外管が3.5μm以下の波長の赤外線を透過し、3.5μmを超える波長の赤外線を吸収するフィルタとして機能している。3.5μm以下の波長の赤外線は、水素結合を切断する能力に優れるといわれており、この波長の赤外線を乾燥対象に放射して、効率的に乾燥を行うことができるとしている。 Conventionally, a drying furnace for drying an object to be dried such as a coating film using an infrared heater is known. For example, Patent Literature 1 describes a drying furnace using an infrared heater including a heating element, and an inner tube and an outer tube surrounding the heating element. In this drying furnace, the inner tube and the outer tube of the infrared heater function as a filter that transmits infrared light having a wavelength of 3.5 μm or less and absorbs infrared light having a wavelength exceeding 3.5 μm. Infrared rays having a wavelength of 3.5 μm or less are said to be excellent in ability to break hydrogen bonds, and it is said that infrared rays having this wavelength can be radiated to an object to be dried to efficiently perform drying.
特許4790092号公報Japanese Patent No. 4790092
 ところで、このような赤外線ヒーターを用いた乾燥炉で乾燥を行う場合、赤外線ヒーターからは波長2μm未満の赤外線も放射される場合がある。この波長2μm未満の赤外線が放射されると、この赤外線が例えば乾燥炉の炉体や乾燥対象を過熱してしまうなどにより、乾燥対象が過熱する場合があった。乾燥対象が過熱すると、例えば冷却のための送風が大量に必要になり、乾燥時のエネルギー消費量が増大する場合があった。 Incidentally, when drying is performed in a drying furnace using such an infrared heater, infrared rays having a wavelength of less than 2 μm may be emitted from the infrared heater. When infrared rays having a wavelength of less than 2 μm are emitted, the infrared rays may overheat the furnace body or the drying object of the drying furnace, and the drying object may be overheated. When the drying target is overheated, for example, a large amount of air for cooling is required, and the energy consumption during drying may increase.
 本発明はこのような課題を解決するためになされたものであり、赤外線ヒーターからの波長2μm未満の赤外線による乾燥対象の過熱をより抑制することを主目的とする。 The present invention has been made to solve such a problem, and has as its main object to further suppress overheating of an object to be dried by infrared rays having a wavelength of less than 2 μm from an infrared heater.
 本発明の乾燥炉は、
 乾燥対象の乾燥を行うための炉体と、
 前記炉体内に配置され、赤外線を含む電磁波を放射する発熱体を有する赤外線ヒーターと、
 前記炉体内で前記発熱体と前記乾燥対象との間に位置するように配置され、波長2μm未満の赤外線の少なくとも一部を反射し且つ波長2μm~4μmの赤外線の少なくとも一部を透過する選択反射体と、
 前記炉体内で前記発熱体からみて前記選択反射体とは反対側に配置され、波長2μm未満の赤外線の少なくとも一部を吸収可能な赤外線吸収体と、
 を備えたものである。
The drying furnace of the present invention is
A furnace body for drying the object to be dried;
An infrared heater having a heating element disposed in the furnace and emitting an electromagnetic wave including infrared;
Selective reflection that is disposed between the heating element and the object to be dried in the furnace, reflects at least part of infrared rays having a wavelength of less than 2 μm, and transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm. Body,
An infrared absorber disposed in the furnace body on the side opposite to the selective reflector as viewed from the heating element and capable of absorbing at least part of infrared rays having a wavelength of less than 2 μm;
It is equipped with.
 この本発明の乾燥炉では、赤外線ヒーターの発熱体から赤外線を含む電磁波が放射されると、その電磁波のうち波長2μm未満の赤外線については、乾燥対象方向に放射されたものが選択反射体で反射される。そのため、波長2μm未満の赤外線が発熱体から直線的に乾燥対象側に到達することを抑制できる。しかも、選択反射体で反射された赤外線は、選択反射体から発熱体側に放射されることになるが、これは赤外線吸収体で吸収される。そのため、選択反射体で反射された後の赤外線が炉体などでさらに反射されて乾燥対象側に到達することも抑制できる。以上により、赤外線ヒーターからの波長2μm未満の赤外線による乾燥対象の過熱をより抑制することができる。なお、赤外線ヒーターから放射された波長2μm~4μmの赤外線については、選択反射体を透過して乾燥対象側に到達できるため、この赤外線により乾燥対象を乾燥することができる。この場合において、選択反射体は、波長2μm~3.5μmの赤外線の少なくとも一部を透過することが好ましい。波長3.5μm以下の赤外線は、水や溶剤などの分子中の水素結合を切断する能力に優れているため、選択反射体がこれを透過することでより効率よく乾燥対象を乾燥することができる。また、選択反射体は、波長2μm未満の赤外線だけでなく、赤外線よりも波長の短い0.7μm未満の電磁波の少なくとも一部についても反射可能であってもよい。この場合、赤外線吸収体は、赤外線よりも波長の短い0.7μm未満の電磁波の少なくとも一部についても吸収可能であってもよい。また、選択反射体及び赤外線吸収体は、他の部材の表面に形成された層状(膜状)の形態としてもよいし、独立した部材の形態としてもよい。 In the drying furnace of the present invention, when an electromagnetic wave including infrared rays is radiated from the heating element of the infrared heater, the infrared rays having a wavelength of less than 2 μm out of the electromagnetic waves are reflected by the selective reflector. Is done. Therefore, it can suppress that the infrared rays with a wavelength of less than 2 μm linearly reach the drying target side from the heating element. Moreover, the infrared light reflected by the selective reflector is radiated from the selective reflector toward the heating element, but this is absorbed by the infrared absorber. Therefore, it can also be suppressed that the infrared rays after being reflected by the selective reflector are further reflected by the furnace body and the like and reach the drying target side. As described above, it is possible to further suppress overheating of an object to be dried by infrared rays having a wavelength of less than 2 μm from the infrared heater. In addition, since the infrared rays having a wavelength of 2 μm to 4 μm emitted from the infrared heater can pass through the selective reflector and reach the drying target side, the infrared drying target can be dried. In this case, the selective reflector preferably transmits at least a part of infrared rays having a wavelength of 2 μm to 3.5 μm. Infrared rays having a wavelength of 3.5 μm or less are excellent in the ability to break hydrogen bonds in molecules such as water and solvents, so that the selective reflector can pass through this to dry the object to be dried more efficiently. . The selective reflector may be capable of reflecting not only infrared rays having a wavelength of less than 2 μm but also at least a part of electromagnetic waves having a wavelength shorter than 0.7 μm and shorter than infrared rays. In this case, the infrared absorber may be capable of absorbing at least a part of an electromagnetic wave with a wavelength shorter than 0.7 μm and shorter than 0.7 μm. The selective reflector and the infrared absorber may be in the form of a layer (film) formed on the surface of another member, or may be in the form of an independent member.
 この場合において、選択反射体は、波長2μm未満の赤外線の透過率よりも波長2~4μmの赤外線の透過率の方が高いものとすることが好ましい。なお、「波長2μm未満の赤外線の透過率よりも波長2~4μmの赤外線の透過率の方が高い」とは、波長2μm未満の赤外線の全透過率よりも波長2~4μmの赤外線の全透過率が高い場合のほか、波長2μm未満の赤外線の全透過率よりも高い透過率となる波長の範囲が波長2~4μmの範囲内に存在している場合も含む。例えば、選択反射体は、波長2μm未満の赤外線の全透過率が20%以下であり、波長2~4μmの赤外線の全透過率が80%以上としてもよい。また、選択反射体は、波長2~3.5μmの赤外線の全透過率が80%以上としてもよい。 In this case, it is preferable that the selective reflector has a higher transmittance of infrared light having a wavelength of 2 to 4 μm than that of infrared light having a wavelength of less than 2 μm. “The transmittance of infrared light having a wavelength of 2 to 4 μm is higher than the transmittance of infrared light having a wavelength of less than 2 μm” means that the total transmittance of infrared light having a wavelength of 2 to 4 μm is larger than the total transmittance of infrared light having a wavelength of less than 2 μm. In addition to the case where the rate is high, the case where the wavelength range in which the transmittance is higher than the total transmittance of infrared rays having a wavelength of less than 2 μm exists in the range of 2 to 4 μm is also included. For example, the selective reflector may have a total transmittance of infrared light having a wavelength of less than 2 μm of 20% or less and a total transmittance of infrared light having a wavelength of 2 to 4 μm of 80% or more. The selective reflector may have a total transmittance of infrared rays having a wavelength of 2 to 3.5 μm of 80% or more.
 本発明の乾燥炉において、前記赤外線ヒーターは、波長2μm~4μmの赤外線の少なくとも一部を透過し前記発熱体を囲む管状部材、を有しており、前記管状部材は、内周面と外周面との少なくとも一方のうち、前記発熱体からみて前記赤外線吸収体とは反対側を含む領域に前記選択反射体を有していてもよい。こうすれば、選択反射体を赤外線ヒーターとは別の部材として炉体内に配置することなく、赤外線ヒーターからの波長2μm未満の赤外線による乾燥対象の過熱をより抑制することができる。 In the drying furnace of the present invention, the infrared heater includes a tubular member that transmits at least a part of infrared rays having a wavelength of 2 μm to 4 μm and surrounds the heating element. The tubular member has an inner peripheral surface and an outer peripheral surface. The selective reflector may be provided in a region including the side opposite to the infrared absorber as viewed from the heating element. In this case, it is possible to further suppress overheating of the drying target due to infrared rays having a wavelength of less than 2 μm from the infrared heater without arranging the selective reflector as a member different from the infrared heater in the furnace.
 この場合において、前記赤外線ヒーターは、波長2μm~4μmの赤外線の少なくとも一部を透過し前記発熱体を囲む第1管と、該発熱体及び該第1管を囲む前記管状部材である第2管と、を有しており、前記第1管は、内周面と外周面との少なくとも一方のうち、前記発熱体からみて前記乾燥対象とは反対側を含む領域に波長2μm~4μmの赤外線の少なくとも一部を反射する反射層を有していてもよい。こうすれば、赤外線ヒーターの発熱体から乾燥対象とは反対方向に放射された電磁波のうち、波長2μm~4μmの赤外線は反射層によって反射される。そのため、この波長の赤外線を乾燥対象に効率よく照射でき、乾燥効率が向上する。 In this case, the infrared heater transmits a first tube that transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm and surrounds the heating element, and a second tube that is the tubular member surrounding the heating element and the first tube. The first tube has an infrared ray having a wavelength of 2 μm to 4 μm in a region including at least one of an inner peripheral surface and an outer peripheral surface including a side opposite to the drying target when viewed from the heating element. You may have the reflection layer which reflects at least one part. In this way, among the electromagnetic waves radiated from the heating element of the infrared heater in the direction opposite to the object to be dried, infrared rays having a wavelength of 2 μm to 4 μm are reflected by the reflective layer. Therefore, infrared rays having this wavelength can be efficiently irradiated onto the object to be dried, and the drying efficiency is improved.
 本発明の乾燥炉において、前記炉体内で前記赤外線ヒーターが配置された空間と前記乾燥対象が配置される空間とを仕切り、波長2μm~4μmの赤外線の少なくとも一部を透過する隔壁、を備え、前記隔壁は、前記選択反射体を有していてもよい。こうすれば、赤外線ヒーターが配置された空間と前記乾燥対象が配置される空間とが仕切られているため、前者の空間やその空間内の物体,その空間に面する炉体などが波長2μm未満の赤外線により過熱した場合でも、乾燥対象が過熱されにくい。したがって、赤外線ヒーターからの波長2μm未満の赤外線による乾燥対象の過熱をより抑制することができる。ここで、「前記隔壁は、前記選択反射体を有する」とは、隔壁全体が選択反射体である場合を含む意である。また、隔壁は、表面全体に選択反射体を有するものとしてもよい。 The drying furnace of the present invention comprises a partition that partitions the space in which the infrared heater is disposed and the space in which the drying object is disposed in the furnace body, and transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm. The partition may have the selective reflector. In this way, the space in which the infrared heater is disposed and the space in which the drying target is disposed are partitioned, so that the former space, objects in the space, furnace bodies facing the space, etc. are less than 2 μm in wavelength. Even when heated by infrared rays, the object to be dried is not easily heated. Therefore, it is possible to further suppress overheating of the drying target due to infrared rays having a wavelength of less than 2 μm from the infrared heater. Here, “the partition has the selective reflector” means that the entire partition is a selective reflector. The partition may have a selective reflector on the entire surface.
 上述した隔壁を備える態様の本発明の乾燥炉において、前記炉体は、内周面に前記赤外線吸収体を有していてもよい。こうすれば、赤外線吸収体を独立した部材として炉体内に配置することなく、選択反射体で反射された赤外線を赤外線吸収体で吸収できる。 In the drying furnace of the present invention having the above-described partition, the furnace body may have the infrared absorber on the inner peripheral surface. If it carries out like this, the infrared rays reflected by the selective reflector can be absorbed with an infrared absorber, without arrange | positioning an infrared absorber as an independent member in a furnace body.
 本発明の乾燥炉において、前記赤外線吸収体は、冷媒が流通可能な冷媒流路を内部に有していてもよい。こうすれば、赤外線吸収体を冷媒で冷却できるため、赤外線吸収体が赤外線を吸収して過熱するのをより抑制でき、赤外線吸収体の過熱が乾燥対象に悪影響(例えば乾燥対象の過熱など)を与えることをより抑制できる。 In the drying furnace of the present invention, the infrared absorber may have a refrigerant flow path through which a refrigerant can flow. In this way, since the infrared absorber can be cooled with the refrigerant, the infrared absorber can further suppress overheating by absorbing infrared rays, and the overheating of the infrared absorber has an adverse effect on the drying target (for example, overheating of the drying target). Giving more control.
乾燥炉10の縦断面図である。1 is a longitudinal sectional view of a drying furnace 10. FIG. 図1の赤外線ヒーター30と赤外線吸収プレート70との断面を示すA-A断面図である。FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heater 30 and the infrared absorption plate 70 of FIG. 1. 赤外線ヒーター30から放射される赤外線の波長特性の一例を示す説明図である。It is explanatory drawing which shows an example of the wavelength characteristic of the infrared rays radiated | emitted from the infrared heater. 変形例の乾燥炉110の縦断面図である。It is a longitudinal cross-sectional view of the drying furnace 110 of the modification.
 次に、本発明の実施形態について、図面を用いて説明する。図1は、本発明の一実施形態である乾燥炉10の縦断面図である。乾燥炉10は、シート80上に塗布された乾燥対象としての塗膜82の乾燥を赤外線を用いて行うものであり、炉体12と、給気装置20と、排気装置25と、赤外線ヒーター30と、赤外線吸収プレート70と、コントローラー90と、を備えている。また、乾燥炉10は、炉体12の前方(図1の左側)に設けられたロール17と、炉体12の後方(図1の右側)に設けられたロール18と、を備えている。この乾燥炉10は、塗膜82が上面に形成されたシート80を、ロール17,18により連続的に搬送して乾燥を行う、ロールトゥロール方式の乾燥炉として構成されている。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a drying furnace 10 according to an embodiment of the present invention. The drying furnace 10 uses an infrared ray to dry the coating film 82 applied on the sheet 80 as an object to be dried, and the furnace body 12, the air supply device 20, the exhaust device 25, and the infrared heater 30. And an infrared absorption plate 70 and a controller 90. Moreover, the drying furnace 10 includes a roll 17 provided in front of the furnace body 12 (left side in FIG. 1) and a roll 18 provided in the rear of the furnace body 12 (right side in FIG. 1). The drying furnace 10 is configured as a roll-to-roll type drying furnace in which a sheet 80 having a coating film 82 formed on its upper surface is continuously conveyed by rolls 17 and 18 and dried.
 炉体12は、塗膜82の乾燥を行うためのものである。炉体12は、略直方体に形成された断熱構造体であり、内部の空間である空間12aと、炉体の前端面13及び後端面14にそれぞれ形成され外部から空間12aへの出入口となる開口15,16を有している。この炉体12は、前端面13から後端面14までの長さが例えば2~10mである。炉体12は、開口17から開口18に至る通路である搬送通路19を備えている。搬送通路19は、炉体12を水平方向に貫通している。片面に塗膜82が塗布されたシート80は、この搬送通路19を通過していく。 The furnace body 12 is for drying the coating film 82. The furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped, and is formed in the space 12a that is an internal space, and the front end face 13 and the rear end face 14 of the furnace body, and openings that serve as entrances to the space 12a from the outside. 15 and 16. The furnace body 12 has a length from the front end face 13 to the rear end face 14 of, for example, 2 to 10 m. The furnace body 12 includes a transfer passage 19 that is a passage from the opening 17 to the opening 18. The conveyance passage 19 penetrates the furnace body 12 in the horizontal direction. The sheet 80 on which the coating film 82 is applied on one side passes through the conveyance path 19.
 給気装置20は、流体をシート80の表面側に供給(送風)して炉体12内を通過する塗膜82やシート80を冷却させる装置である。給気装置20は、給気ファン21と、パイプ構造体22と、給気口23と、を備えている。給気ファン21は、パイプ構造体22に取り付けられており、流体をパイプ構造体22の内部へ供給するものである。流体は、シート80を冷却可能な冷風であり、例えば常温や50℃以下の空気である。給気ファン21は、流体の流量や温度の調節が可能となっている。パイプ構造体22は、給気ファン21からの流体の通路となるものである。パイプ構造体22は、給気ファン21から炉体12の天井を貫通して炉体12の内部までの通路を形成している。給気口23は、給気ファン21からの流体の炉体12への供給口となるものである。この給気口23は、炉体12のうちシート80の搬出側である開口16側の端部に設けられ、搬入側である開口15側に向けて水平に開口している。これにより、給気装置20は、シート80の搬送方向とは反対方向に(図1の左方向に)流体を供給する。 The air supply device 20 is a device that supplies (blows) fluid to the surface side of the sheet 80 and cools the coating film 82 and the sheet 80 that pass through the furnace body 12. The air supply device 20 includes an air supply fan 21, a pipe structure 22, and an air supply port 23. The air supply fan 21 is attached to the pipe structure 22 and supplies fluid to the inside of the pipe structure 22. The fluid is cold air that can cool the sheet 80, and is, for example, room temperature or air of 50 ° C. or lower. The air supply fan 21 can adjust the flow rate and temperature of the fluid. The pipe structure 22 serves as a fluid passage from the air supply fan 21. The pipe structure 22 forms a passage from the air supply fan 21 through the ceiling of the furnace body 12 to the inside of the furnace body 12. The air supply port 23 serves as a supply port of the fluid from the air supply fan 21 to the furnace body 12. The air supply port 23 is provided at an end of the furnace body 12 on the opening 16 side that is the carry-out side of the sheet 80, and opens horizontally toward the opening 15 side that is the carry-in side. Thereby, the air supply device 20 supplies the fluid in the direction opposite to the conveying direction of the sheet 80 (in the left direction in FIG. 1).
 排気装置25は、炉体12内の雰囲気ガスを排出する装置である。排気装置25は、排気ファン26と、パイプ構造体27と、排気口28と、を備えている。排気口28は、炉体12のうちシート80の搬入側である開口15側の端部に設けられ、搬出側である開口16側に向けて水平に開口している。排気口28はパイプ構造体27に取り付けられており、炉体12内の雰囲気ガス(主に塗膜82の表面に沿って流れた後の給気装置20からの送風)を吸気してパイプ構造体27内に導く。パイプ構造体27は、排気口28から排気ファン26への雰囲気ガスの流路となるものである。パイプ構造体27は、排気口28から炉体12の天井を貫通して排気ファン26までの通路を形成している。排気ファン26は、パイプ構造体27に取り付けられており、パイプ構造体27内部の雰囲気ガスを排気する。 The exhaust device 25 is a device that discharges the atmospheric gas in the furnace body 12. The exhaust device 25 includes an exhaust fan 26, a pipe structure 27, and an exhaust port 28. The exhaust port 28 is provided at an end of the furnace body 12 on the opening 15 side that is the carry-in side of the sheet 80, and opens horizontally toward the opening 16 side that is the carry-out side. The exhaust port 28 is attached to the pipe structure 27, and sucks in atmospheric gas in the furnace body 12 (mainly air blown from the air supply device 20 after flowing along the surface of the coating film 82). Guide into the body 27. The pipe structure 27 serves as a flow path for the atmospheric gas from the exhaust port 28 to the exhaust fan 26. The pipe structure 27 forms a passage from the exhaust port 28 through the ceiling of the furnace body 12 to the exhaust fan 26. The exhaust fan 26 is attached to the pipe structure 27 and exhausts the atmospheric gas inside the pipe structure 27.
 赤外線ヒーター30は、炉体12内を通過する塗膜82に赤外線を照射する装置であり、炉体12内の空間12aの天井近くに複数取り付けられている。本実施形態では、赤外線ヒーター30は前端面13側から後端面14側にわたって略均等に複数本(本実施形態では6本)配置されている。この複数の赤外線ヒーター30は、いずれも同様の構成をしており、その長手方向と塗膜82の搬送方向とが直交するように取り付けられている。以下、1つの赤外線ヒーター30の構成について説明する。 The infrared heater 30 is a device that irradiates the coating film 82 passing through the furnace body 12 with infrared rays, and a plurality of infrared heaters 30 are attached near the ceiling of the space 12 a in the furnace body 12. In the present embodiment, a plurality of infrared heaters 30 (six in this embodiment) are arranged substantially uniformly from the front end face 13 side to the rear end face 14 side. The plurality of infrared heaters 30 have the same configuration, and are attached so that the longitudinal direction thereof and the conveying direction of the coating film 82 are orthogonal to each other. Hereinafter, the configuration of one infrared heater 30 will be described.
 図2は図1の赤外線ヒーター30と赤外線吸収プレート70との断面を示すA-A断面図である。なお、図2に示した断面はヒーター本体33の中心線を通るように切断した面である。図1,図2に示すように、赤外線ヒーター30は、タングステン製のフィラメント31を内管32が囲むように形成されたヒーター本体33と、このヒーター本体33の外側に設けられ内管32を囲むように形成された第1外管34と、第1外管34の外側に設けられ第1外管34を囲むように形成された第2外管35と、を備えており、これらの両端にはキャップ40が取り付けられている(図2)。第1外管34と第2外管35との間の空間は、冷媒(例えば空気)を流通可能な冷媒流路39となっている。また、赤外線ヒーター30は、第2外管35の表面温度を検出する温度センサ49を備えている(図2参照)。温度センサ49は、本実施形態では図2に示すように第2外管35のうち塗膜82側(図1,2の下側)に配置されているものとした。なお、内管32,第1外管34,第2外管35は同心円状に配置されており、その円の中心にフィラメント31が位置するようになっている。 FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heater 30 and the infrared absorbing plate 70 of FIG. The cross section shown in FIG. 2 is a surface cut so as to pass through the center line of the heater body 33. As shown in FIGS. 1 and 2, the infrared heater 30 includes a heater body 33 formed so that a tungsten filament 31 is surrounded by an inner tube 32, and an inner tube 32 provided outside the heater body 33. A first outer tube 34 formed as described above, and a second outer tube 35 provided outside the first outer tube 34 so as to surround the first outer tube 34, and at both ends thereof Is fitted with a cap 40 (FIG. 2). A space between the first outer pipe 34 and the second outer pipe 35 is a refrigerant flow path 39 through which a refrigerant (for example, air) can flow. The infrared heater 30 includes a temperature sensor 49 that detects the surface temperature of the second outer tube 35 (see FIG. 2). In the present embodiment, the temperature sensor 49 is disposed on the coating film 82 side (the lower side of FIGS. 1 and 2) of the second outer tube 35 as shown in FIG. The inner tube 32, the first outer tube 34, and the second outer tube 35 are arranged concentrically, and the filament 31 is positioned at the center of the circle.
 ヒーター本体33は、両端がキャップ40の内部に配置されたホルダー45に支持されている。このヒーター本体33は、炉体12の外部に配置された電力供給源50(図2参照)からフィラメント31へ電力が供給されて、フィラメント31が所定温度(例えば1200~1700℃)に加熱されると、赤外線を含む電磁波を放射する。フィラメント31が放射する電磁波は、特に限定するものではないが、例えば、ピーク波長が赤外線領域(波長が0.7μm~8μmの領域)や近赤外線領域(波長が0.7μm~3.5μmの領域)にあるものである。本実施形態では、ピーク波長が3.5μm付近の電磁波を放射するものとした。内管32は、フィラメント31を囲む断面円形の管であり、フィラメント31から放射された電磁波の一部を吸収し且つ赤外線を透過する赤外線透過材料で形成されている。内管32に用いるこのような赤外線透過材料としては、例えば、ゲルマニウム、シリコン、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、硫化亜鉛、カルコゲナイドガラス、透過性アルミナセラミックスなどのほか、赤外線を透過可能な石英ガラスなどが挙げられる。本実施形態では、内管32は、上述した赤外線透過材料のうち、電磁波の一部として波長が4μmを超える赤外線を吸収し且つ波長が4μm以下の赤外線を透過する石英ガラスで形成されているものとした。また、内管32の内部は、真空雰囲気又はハロゲン雰囲気となっている。このフィラメント31に接続された電気配線31aは、キャップ40に設けられた配線引出部47を介して気密に外部へ引き出され、電力供給源50に接続されている。キャップ40は、図2に示すように、円盤状の蓋44と、その蓋44に立設された円筒部42,43とを一体成形したものである。第1外管34及び第2外管35の左右両端は、それぞれ円筒部42,43に固定されている。 The heater body 33 is supported at both ends by holders 45 arranged inside the cap 40. In the heater body 33, power is supplied to the filament 31 from a power supply source 50 (see FIG. 2) arranged outside the furnace body 12, and the filament 31 is heated to a predetermined temperature (eg, 1200 to 1700 ° C.). And radiates electromagnetic waves including infrared rays. The electromagnetic wave radiated by the filament 31 is not particularly limited. For example, the peak wavelength is in the infrared region (the wavelength is 0.7 μm to 8 μm) or the near infrared region (the wavelength is 0.7 μm to 3.5 μm). ). In this embodiment, an electromagnetic wave having a peak wavelength of around 3.5 μm is emitted. The inner tube 32 is a tube having a circular cross section surrounding the filament 31, and is formed of an infrared transmitting material that absorbs part of the electromagnetic waves radiated from the filament 31 and transmits infrared rays. Examples of such an infrared transmitting material used for the inner tube 32 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, transparent alumina ceramics, and infrared rays. Examples include transmissive quartz glass. In the present embodiment, the inner tube 32 is formed of quartz glass that absorbs infrared light having a wavelength exceeding 4 μm and transmits infrared light having a wavelength of 4 μm or less as a part of the electromagnetic wave among the above-described infrared transmitting materials. It was. Further, the inside of the inner tube 32 is in a vacuum atmosphere or a halogen atmosphere. The electric wiring 31 a connected to the filament 31 is drawn out to the outside airtightly through a wiring drawing portion 47 provided in the cap 40, and is connected to the power supply source 50. As shown in FIG. 2, the cap 40 is formed by integrally molding a disc-shaped lid 44 and cylindrical portions 42 and 43 erected on the lid 44. The left and right ends of the first outer tube 34 and the second outer tube 35 are fixed to cylindrical portions 42 and 43, respectively.
第1外管34及び第2外管35は、上述した赤外線透過材料で形成された管である。本実施形態では、第1外管34及び第2外管35は、内管32と同様に、波長が4μmを超える赤外線を吸収し且つ4μm以下の赤外線については透過する石英ガラス材料で形成されているものとした。なお、第1外管34,第2外管35は、冷媒流路39を流れる冷媒によって、例えば200℃以下に冷却可能になっている。 The first outer tube 34 and the second outer tube 35 are tubes formed of the above-described infrared transmitting material. In the present embodiment, like the inner tube 32, the first outer tube 34 and the second outer tube 35 are formed of a quartz glass material that absorbs infrared light having a wavelength exceeding 4 μm and transmits infrared light having a wavelength of 4 μm or less. It was supposed to be. Note that the first outer tube 34 and the second outer tube 35 can be cooled to, for example, 200 ° C. or less by the refrigerant flowing through the refrigerant flow path 39.
 第1外管34の外周面には、反射層36が形成されている。この反射層36は、第1外管34の外周面のうち、フィラメント31からみて塗膜82とは反対側(図1の上側)を含む領域に形成され、フィラメント31の周囲の一部のみを覆うように設けられている。本実施形態では、反射層36は、第1外管34の上側半分を全て覆っているものとした。反射層36は、その断面の円弧を含む円の中心位置にフィラメント31が位置するように配置されている。この反射層36は、フィラメント31から放射される電磁波のうち赤外線の少なくとも一部を反射する赤外線反射材料で形成されている。赤外線反射材料としては、例えば金,白金,アルミニウムなどが挙げられる。本実施形態では、反射層36は、波長2μm~4μmの赤外線の少なくとも一部を反射する材料で形成されているものとした。この反射層36は、第1外管34の表面に塗布乾燥、スパッタリングやCVD、溶射といった成膜方法を用いて赤外線反射材料を成膜することで形成されている。また、反射層36は、冷媒流路39に面しており、冷媒流路39を流れる冷媒によって冷却される。 A reflective layer 36 is formed on the outer peripheral surface of the first outer tube 34. The reflection layer 36 is formed in a region on the outer peripheral surface of the first outer tube 34 that includes the side opposite to the coating film 82 (upper side in FIG. 1) when viewed from the filament 31, and only a part of the periphery of the filament 31 is formed. It is provided to cover. In the present embodiment, the reflective layer 36 covers the entire upper half of the first outer tube 34. The reflective layer 36 is arranged so that the filament 31 is positioned at the center position of a circle including the arc of the cross section. The reflection layer 36 is formed of an infrared reflecting material that reflects at least a part of infrared rays of the electromagnetic waves radiated from the filament 31. Examples of the infrared reflecting material include gold, platinum, and aluminum. In the present embodiment, the reflective layer 36 is formed of a material that reflects at least part of infrared rays having a wavelength of 2 μm to 4 μm. The reflective layer 36 is formed by depositing an infrared reflective material on the surface of the first outer tube 34 using a film deposition method such as coating, drying, sputtering, CVD, or thermal spraying. The reflective layer 36 faces the refrigerant flow path 39 and is cooled by the refrigerant flowing through the refrigerant flow path 39.
 第2外管35の外周面には、選択反射層37が形成されている。この選択反射層37は、炉体12の空間12a内においてフィラメント31と塗膜82との間に位置するように配置されている。より具体的には、選択反射層37は、第2外管35の外周面のうち、フィラメント31からみて塗膜82と同じ側(図1の下側)を含む領域に形成され、フィラメント31の周囲の一部のみを覆うように設けられている。本実施形態では、選択反射層37は、第2外管35の外周面の下側半分を全て覆っているものとした。選択反射層37は、その断面の円弧を含む円の中心位置にフィラメント31が位置するように配置されている。この選択反射層37は、フィラメント31から放射される電磁波のうち波長2μm未満の赤外線の少なくとも一部を反射し且つ波長2μm~4μmの赤外線の少なくとも一部を透過する選択反射材料で形成されている。これにより、選択反射層37は、波長2μm~4μmの赤外線を選択的に透過するフィルターとして機能する。選択反射層37は、波長2μm未満の赤外線の透過率よりも波長2~4μmの赤外線の透過率の方が高いものとすることが好ましい。本実施形態では、選択反射層37は、波長2μm未満の赤外線の全透過率が20%以下であり、波長2~4μmの赤外線の全透過率が80%以上であるものとした。なお、選択反射層37は、波長4μmを超える電磁波を透過するものとしてもよいし、波長4μmを超える電磁波を反射するものとしてもよい。前者の場合は選択反射層37がローパスフィルターとして機能し、後者の場合は選択反射層37がバンドパスフィルターとして機能する。本実施形態では、選択反射層37は波長4μmを超える電磁波を透過するものとした。このように特定の波長領域の電磁波を反射可能な選択反射層37は、例えばコレステリック液晶材料を含む塗膜を第2外管35の表面に塗布乾燥及び硬化させるといった成膜方法を用いて選択反射材料を成膜して形成することができる。なお、コレステリック液晶の膜を1層ずつ塗り重ねていき、複数のコレステリック液晶層からなる選択反射材料を形成して選択反射層37としてもよい。このような選択反射材料の形成については、例えば特開2012-181359号公報に記載されている。 A selective reflection layer 37 is formed on the outer peripheral surface of the second outer tube 35. The selective reflection layer 37 is disposed between the filament 31 and the coating film 82 in the space 12 a of the furnace body 12. More specifically, the selective reflection layer 37 is formed on the outer peripheral surface of the second outer tube 35 in a region including the same side as the coating film 82 (lower side in FIG. 1) as viewed from the filament 31. It is provided so as to cover only a part of the periphery. In the present embodiment, the selective reflection layer 37 covers the entire lower half of the outer peripheral surface of the second outer tube 35. The selective reflection layer 37 is arranged so that the filament 31 is located at the center position of a circle including the arc of the cross section. The selective reflection layer 37 is formed of a selective reflection material that reflects at least part of infrared rays having a wavelength of less than 2 μm and transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm among electromagnetic waves radiated from the filament 31. . Thereby, the selective reflection layer 37 functions as a filter that selectively transmits infrared rays having a wavelength of 2 μm to 4 μm. The selective reflection layer 37 preferably has a higher transmittance of infrared light having a wavelength of 2 to 4 μm than that of infrared light having a wavelength of less than 2 μm. In the present embodiment, the selective reflection layer 37 has a total transmittance of infrared light having a wavelength of less than 2 μm of 20% or less, and a total transmittance of infrared light having a wavelength of 2 to 4 μm of 80% or more. The selective reflection layer 37 may transmit electromagnetic waves having a wavelength exceeding 4 μm or may reflect electromagnetic waves having a wavelength exceeding 4 μm. In the former case, the selective reflection layer 37 functions as a low-pass filter, and in the latter case, the selective reflection layer 37 functions as a band-pass filter. In the present embodiment, the selective reflection layer 37 transmits electromagnetic waves having a wavelength exceeding 4 μm. In this way, the selective reflection layer 37 that can reflect electromagnetic waves in a specific wavelength region is selectively reflected by using a film forming method in which, for example, a coating film containing a cholesteric liquid crystal material is applied to the surface of the second outer tube 35 and dried and cured. The material can be formed by film formation. Alternatively, the selective reflection layer 37 may be formed by coating a cholesteric liquid crystal film layer by layer and forming a selective reflection material including a plurality of cholesteric liquid crystal layers. The formation of such a selective reflection material is described in, for example, Japanese Patent Application Laid-Open No. 2012-181359.
 冷媒流路39は、第1外管34と第2外管35との間の空間であり、キャップ40に設けられた流体出入口48を通じて冷媒が流通可能となっている。冷媒は、例えば空気などの流体である。流体出入口48は、炉体12の外部に配置された第1冷媒供給原60と接続されている。この第1冷媒供給原60から供給された冷媒は、一方の流体出入口48から冷媒流路39内に流入し、冷媒流路39内を流通して他方の流体出入口48から流出する。冷媒流路39を流通する冷媒は、赤外線ヒーター30の外面である第2外管35の温度や第1外管34の温度を下げたり、任意の温度に調整したりする役割を果たす。 The refrigerant channel 39 is a space between the first outer tube 34 and the second outer tube 35, and allows refrigerant to flow through a fluid inlet / outlet 48 provided in the cap 40. The refrigerant is a fluid such as air. The fluid inlet / outlet port 48 is connected to a first refrigerant supply source 60 disposed outside the furnace body 12. The refrigerant supplied from the first refrigerant supply source 60 flows into the refrigerant channel 39 from one fluid inlet / outlet 48, flows through the refrigerant channel 39, and flows out from the other fluid inlet / outlet 48. The refrigerant flowing through the refrigerant flow path 39 plays a role of reducing the temperature of the second outer pipe 35 and the temperature of the first outer pipe 34 which are the outer surfaces of the infrared heater 30 or adjusting the temperature to an arbitrary temperature.
 赤外線吸収プレート70は、主に赤外線ヒーター30から放射された赤外線を吸収する略直方体の部材であり、炉体12内の空間12aの天井と赤外線ヒーター30との間に、複数取り付けられている。本実施形態では、赤外線吸収プレート70は6個配置されており、各赤外線吸収プレート70が赤外線ヒーター30と1対1に対応して、対応する赤外線ヒーター30と炉体12の天井との間に取り付けられている。すなわち、赤外線吸収プレート70は、炉体12の空間12a内で赤外線ヒーター30のフィラメント31からみて選択反射層37とは反対側(図1,図2の上側)に配置されている。この複数の赤外線吸収プレート70は、いずれも同様の構成をしており、長手方向が搬送方向と直交するように取り付けられている。以下、1つの赤外線吸収プレート70の構成について説明する。 The infrared absorbing plate 70 is a substantially rectangular parallelepiped member that mainly absorbs infrared rays radiated from the infrared heater 30, and a plurality of infrared absorbing plates 70 are attached between the ceiling of the space 12 a in the furnace body 12 and the infrared heater 30. In the present embodiment, six infrared absorbing plates 70 are arranged, and each infrared absorbing plate 70 corresponds to the infrared heater 30 on a one-to-one basis, and between the corresponding infrared heater 30 and the ceiling of the furnace body 12. It is attached. That is, the infrared absorbing plate 70 is disposed in the space 12 a of the furnace body 12 on the side opposite to the selective reflection layer 37 (upper side in FIGS. 1 and 2) when viewed from the filament 31 of the infrared heater 30. The plurality of infrared absorbing plates 70 have the same configuration, and are attached so that the longitudinal direction is orthogonal to the conveying direction. Hereinafter, the configuration of one infrared absorption plate 70 will be described.
 赤外線吸収プレート70は、図1に示すように、赤外線ヒーター30の外径よりも前後方向の幅(図1の左右の幅)が大きくなるように形成されている。また、赤外線吸収プレート70は、赤外線ヒーター30の塗膜82とは反対側の領域(図1,2における赤外線ヒーター30の直上の領域)を覆うように配置されている。この赤外線吸収プレート70は、波長2μm未満の赤外線の少なくとも一部を吸収可能な赤外線吸収材料で形成されている。赤外線吸収プレート70に用いるこのような赤外線吸収材料としては、例えば、SiCを含む多孔質体に溶融Siを含浸させてなるSi-SiC系複合材料(シリコン含浸SiC)などが挙げられる。赤外線吸収プレート70は、内部が中空になっており、この内部の空間が冷媒流路79となっている。この冷媒流路79は赤外線吸収プレート70に設けられた2箇所の流体出入口78を通じて冷媒が流通可能となっている。冷媒は、流体であればよく、例えば空気などの気体としてもよいし、水などの液体としてもよい。本実施形態では、冷媒は水であるものとした。流体出入口78は、炉体12の外部に配置された第2冷媒供給源65と接続されている。この第2冷媒供給源65から供給された冷媒は、一方の流体出入口78から冷媒流路79内に流入し、冷媒流路79内を流通して他方の流体出入口78から流出する。冷媒流路79を流通する冷媒は、赤外線を吸収して加熱される赤外線吸収プレート70の温度を下げる役割を果たす。なお、赤外線吸収プレート70は、冷媒流路79を流れる冷媒によって、例えば200℃以下に冷却可能になっている。 As shown in FIG. 1, the infrared absorbing plate 70 is formed such that the width in the front-rear direction (the left and right widths in FIG. 1) is larger than the outer diameter of the infrared heater 30. Further, the infrared absorbing plate 70 is disposed so as to cover a region opposite to the coating film 82 of the infrared heater 30 (a region immediately above the infrared heater 30 in FIGS. 1 and 2). The infrared absorbing plate 70 is formed of an infrared absorbing material capable of absorbing at least a part of infrared rays having a wavelength of less than 2 μm. Examples of such an infrared absorbing material used for the infrared absorbing plate 70 include a Si—SiC composite material (silicon-impregnated SiC) obtained by impregnating a porous body containing SiC with molten Si. The infrared absorption plate 70 is hollow inside, and the space inside this is a refrigerant flow path 79. In the refrigerant flow path 79, the refrigerant can flow through two fluid inlets / outlets 78 provided in the infrared absorption plate 70. The refrigerant may be a fluid, for example, a gas such as air or a liquid such as water. In the present embodiment, the refrigerant is water. The fluid inlet / outlet port 78 is connected to a second refrigerant supply source 65 disposed outside the furnace body 12. The refrigerant supplied from the second refrigerant supply source 65 flows into the refrigerant channel 79 from one fluid inlet / outlet 78, flows through the refrigerant channel 79, and flows out from the other fluid inlet / outlet 78. The refrigerant flowing through the refrigerant flow path 79 serves to lower the temperature of the infrared absorbing plate 70 that is heated by absorbing infrared rays. The infrared absorption plate 70 can be cooled to, for example, 200 ° C. or less by the refrigerant flowing through the refrigerant flow path 79.
 シート80は、特に限定するものではないが、例えば樹脂製のシートであり、本実施形態ではPETフィルムからなるものとした。シート80は、特に限定するものではないが、例えば厚さ10~100μm,幅200~1000mmである。また、塗膜82は、シート80の上面に塗布されたものであり、例えば乾燥後にMLCC(積層セラミックコンデンサ)用の薄膜として用いられるものである。塗膜82は、例えばセラミック粉末又は金属粉末と、有機バインダーと、有機溶剤とを含むものである。塗膜82の厚みは、特に限定するものではないが、例えば20~1000μmである。 The sheet 80 is not particularly limited, but is a resin sheet, for example, and in this embodiment is made of a PET film. The sheet 80 is not particularly limited, but has a thickness of 10 to 100 μm and a width of 200 to 1000 mm, for example. The coating film 82 is applied to the upper surface of the sheet 80 and is used as a thin film for MLCC (multilayer ceramic capacitor) after drying, for example. The coating film 82 includes, for example, ceramic powder or metal powder, an organic binder, and an organic solvent. The thickness of the coating film 82 is not particularly limited, but is, for example, 20 to 1000 μm.
 コントローラー90は、CPUを中心とするマイクロプロセッサーとして構成されている。このコントローラー90は、給気ファン21や排気ファン26に制御信号を出力して、給気口23から送風される流体の温度及び風量を制御したり、空間12aの雰囲気の排気口28からの排気量を制御したりする。また、コントローラー90は、熱電対である温度センサ49が検出した第2外管35の温度を入力したり、第1冷媒供給原60と流体出入口48とを接続する配管の途中に設けられた開閉弁61及び流量調整弁62に制御信号を出力したりして、赤外線ヒーター30の冷媒流路39を流れる冷媒の流量を個別に制御する(図2参照)。同様に、コントローラー90は、第2冷媒供給原65と流体出入口78とを接続する配管の途中に設けられた開閉弁66及び流量調整弁67に制御信号を出力したりして、赤外線吸収プレート70の冷媒流路79を流れる冷媒の流量を個別に制御する。更に、コントローラー90は、電力供給源50からフィラメント31へ供給される電力の大きさを調整するための制御信号を電力供給源50へ出力して、赤外線ヒーター30のフィラメント温度を個別に制御する。また、コントローラー90は、ロール17,ロール18の回転速度を制御することで、炉体12内のシート80及び塗膜82の通過時間やシート80及び塗膜82にかかる張力を調整することができる。 The controller 90 is configured as a microprocessor centered on a CPU. The controller 90 outputs a control signal to the air supply fan 21 and the exhaust fan 26 to control the temperature and air volume of the fluid blown from the air supply port 23, and exhaust from the exhaust port 28 in the atmosphere of the space 12 a. Control the amount. Further, the controller 90 inputs the temperature of the second outer pipe 35 detected by the temperature sensor 49 that is a thermocouple, or opens and closes provided in the middle of the pipe connecting the first refrigerant supply source 60 and the fluid inlet / outlet port 48. A control signal is output to the valve 61 and the flow rate adjusting valve 62 to individually control the flow rate of the refrigerant flowing through the refrigerant flow path 39 of the infrared heater 30 (see FIG. 2). Similarly, the controller 90 outputs a control signal to the on-off valve 66 and the flow rate adjustment valve 67 provided in the middle of the pipe connecting the second refrigerant supply source 65 and the fluid inlet / outlet 78, and the infrared absorbing plate 70. The flow rate of the refrigerant flowing through the refrigerant flow path 79 is individually controlled. Furthermore, the controller 90 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 50 to the filament 31 to the power supply source 50 to individually control the filament temperature of the infrared heater 30. Further, the controller 90 can adjust the passing time of the sheet 80 and the coating film 82 in the furnace body 12 and the tension applied to the sheet 80 and the coating film 82 by controlling the rotation speed of the rolls 17 and 18. .
 次に、こうして構成された乾燥炉10を用いて塗膜82を乾燥する様子について説明する。まず、コントローラー90がロール17,ロール18を回転させ、シート80の搬送を開始する。これにより、乾燥炉10の左端に配置されたロール17からシート80が巻き外されていく。また、シート80は開口15から炉体12内に搬入される直前に図示しないコーターによって上面に塗膜82が塗布される。そして、塗膜82が塗布されたシート80は、炉体12内に搬送される。このとき、コントローラー90は、給気ファン21,排気ファン26,電力供給源50,第1冷媒供給原60,第2冷媒供給源65を制御する。これにより、シート80が炉体12の空間12a内を通過する間に、シート80の上面に形成された塗膜82は、赤外線ヒーター30からの赤外線が照射されることによって乾燥される。また、これと同時に、給気装置20からの冷風が塗膜82やシート80を冷却したり、塗膜82から蒸発した溶剤を除去したりする。なお、コントローラー90は、シート80の温度がPETフィルムのガラス転移点(約70℃)以下の所定値(例えば60℃、50℃、45℃など)となるように給気ファン21の温度や流量を制御する。この流量や温度はあらかじめ定められているものとしてもよい。あるいは、例えばシート80上や炉体12内に設けられた温度センサが検出した温度に基づいてシート80の温度がガラス転移点以下に保たれるように温度や流量を調整するものとしてもよい。こうして、シート80がガラス転移点以下に保たれたままで塗膜82が乾燥されて薄膜となり、開口16から搬出される。そして、この薄膜(塗膜82)は、炉体12の右端に設置されたロール18にシート80とともに巻き取られる。その後、薄膜はシート80から剥離され、所定形状に切断されて積層され、MLCCが製造される。 Next, how the coating film 82 is dried using the drying furnace 10 thus configured will be described. First, the controller 90 rotates the rolls 17 and 18 and starts conveying the sheet 80. As a result, the sheet 80 is unwound from the roll 17 disposed at the left end of the drying furnace 10. The sheet 80 is coated with a coating film 82 on the upper surface by a coater (not shown) immediately before being brought into the furnace body 12 from the opening 15. And the sheet | seat 80 with which the coating film 82 was apply | coated is conveyed in the furnace body 12. FIG. At this time, the controller 90 controls the air supply fan 21, the exhaust fan 26, the power supply source 50, the first refrigerant supply source 60, and the second refrigerant supply source 65. Thereby, while the sheet 80 passes through the space 12 a of the furnace body 12, the coating film 82 formed on the upper surface of the sheet 80 is dried by being irradiated with infrared rays from the infrared heater 30. At the same time, the cool air from the air supply device 20 cools the coating film 82 and the sheet 80 and removes the solvent evaporated from the coating film 82. Note that the controller 90 determines the temperature and flow rate of the air supply fan 21 so that the temperature of the sheet 80 becomes a predetermined value (for example, 60 ° C., 50 ° C., 45 ° C., etc.) below the glass transition point (about 70 ° C.) of the PET film. To control. The flow rate and temperature may be determined in advance. Alternatively, for example, the temperature and the flow rate may be adjusted so that the temperature of the sheet 80 is kept below the glass transition point based on the temperature detected by a temperature sensor provided on the sheet 80 or in the furnace body 12. In this way, the coating film 82 is dried to form a thin film while the sheet 80 is kept below the glass transition point, and is transported from the opening 16. And this thin film (coating film 82) is wound with the sheet | seat 80 on the roll 18 installed in the right end of the furnace body 12. FIG. Thereafter, the thin film is peeled off from the sheet 80, cut into a predetermined shape and laminated, and an MLCC is manufactured.
 ここで、塗膜82を乾燥する際の赤外線ヒーター30から放射される赤外線について説明する。図3は、赤外線ヒーター30から放射される赤外線の波長特性の一例を示す説明図である。上述したように、赤外線ヒーター30は、フィラメント31からピーク波長が3.5μm付近にある赤外線を放射する(図3の実線)。この赤外線には、波長が2~4μmの赤外線や、波長が2μm未満の赤外線が含まれている。そして、赤外線ヒーター30は、上述した赤外線透過材料で形成された内管32,第1外管34第2外管35を有しているため、4μmを超える波長領域の赤外線はこれらに吸収される(図3の領域A)。また、赤外線ヒーター30は、上述した選択反射材料で形成された選択反射層37をフィラメント31と塗膜82との間に有しているため、波長2μm未満の赤外線のうち塗膜82方向(図1の下方向)に放射されたものが選択反射層37で反射される(図3の領域B)。選択反射層37で反射された赤外線は、選択反射層37からフィラメント31側(図1の上方向)に放射されることになるが、これは赤外線吸収プレート70で吸収される。これらにより、赤外線ヒーター30から塗膜82やシート80へ到達する赤外線は、波長4μm超過の成分や波長2μm未満の成分の割合の小さいものとなる。また、フィラメント31から塗膜82とは反対方向(図1の上方向)に放射された電磁波のうち、波長2μm~4μmの赤外線は反射層36によって反射されて塗膜82側へ放射されるため、赤外線ヒーター30から塗膜82やシート80へ到達する赤外線は、波長2μm~4μmの成分の割合がより多いものとなる。 Here, the infrared rays emitted from the infrared heater 30 when the coating film 82 is dried will be described. FIG. 3 is an explanatory diagram illustrating an example of wavelength characteristics of infrared rays emitted from the infrared heater 30. As described above, the infrared heater 30 emits infrared light having a peak wavelength of about 3.5 μm from the filament 31 (solid line in FIG. 3). This infrared ray includes infrared rays having a wavelength of 2 to 4 μm and infrared rays having a wavelength of less than 2 μm. And since the infrared heater 30 has the inner tube | pipe 32, the 1st outer tube | pipe 34, and the 2nd outer tube | pipe 35 which were formed with the infrared rays transmissive material mentioned above, the infrared rays of a wavelength range exceeding 4 micrometers are absorbed by these. (Area A in FIG. 3). Further, since the infrared heater 30 has the selective reflection layer 37 formed of the selective reflection material described above between the filament 31 and the coating film 82, the infrared ray having a wavelength of less than 2 μm is directed toward the coating film 82 (see FIG. 1 is reflected by the selective reflection layer 37 (region B in FIG. 3). Infrared light reflected by the selective reflection layer 37 is emitted from the selective reflection layer 37 toward the filament 31 (upward in FIG. 1), and this is absorbed by the infrared absorption plate 70. As a result, the infrared rays that reach the coating film 82 and the sheet 80 from the infrared heater 30 have a small ratio of components having a wavelength exceeding 4 μm or components having a wavelength of less than 2 μm. Of the electromagnetic waves radiated from the filament 31 in the direction opposite to the coating film 82 (upward direction in FIG. 1), infrared light having a wavelength of 2 μm to 4 μm is reflected by the reflective layer 36 and radiated to the coating film 82 side. Infrared rays that reach the coating film 82 and the sheet 80 from the infrared heater 30 have a higher proportion of components having a wavelength of 2 μm to 4 μm.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の炉体12が本発明の炉体に相当し、フィラメント31が発熱体に相当し、赤外線ヒーター30が赤外線ヒーターに相当し、選択反射層37が選択反射体に相当し、赤外線吸収プレート70が赤外線吸収体に相当する。また、第2外管35が管状部材及び第2管に相当し、第1外管34が第1管に相当し、冷媒流路79が冷媒流路に相当する。塗膜82が乾燥対象に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The furnace body 12 of this embodiment corresponds to the furnace body of the present invention, the filament 31 corresponds to a heating element, the infrared heater 30 corresponds to an infrared heater, the selective reflection layer 37 corresponds to a selective reflector, and absorbs infrared rays. The plate 70 corresponds to an infrared absorber. The second outer tube 35 corresponds to the tubular member and the second tube, the first outer tube 34 corresponds to the first tube, and the refrigerant channel 79 corresponds to the refrigerant channel. The coating film 82 corresponds to an object to be dried.
 以上説明した本実施形態の乾燥炉10は、炉体12内でフィラメント31と塗膜82との間に位置するように配置され、波長2μm未満の赤外線の少なくとも一部を反射し且つ波長2μm~4μmの赤外線の少なくとも一部を透過する選択反射層37と、炉体12内でフィラメント31からみて選択反射層37とは反対側に配置され、波長2μm未満の赤外線の少なくとも一部を吸収可能な赤外線吸収プレート70とを備えている。そのため、波長2μm未満の赤外線がフィラメント31から直線的に塗膜82側に到達することを抑制できる。しかも、赤外線吸収プレート70があることにより、選択反射層37で反射された後の赤外線が炉体12などでさらに反射されて塗膜82側に到達することも抑制できる。これらにより、塗膜82の過熱をより抑制することができる。また、波長2μm未満の赤外線が塗膜82側に到達すると、例えば塗膜82やシート80が過熱してしまい、シート80の変形が起きることで塗膜82に悪影響を与える場合がある。本実施形態の乾燥炉10では、このような赤外線ヒーター30からの波長2μm未満の赤外線による塗膜82への影響もより抑制することができる。また、シート80や塗膜82が過熱すると、例えば塗膜82を所定温度以下に保ったりシート80をガラス転移点以下に保ったりするために必要な給気ファン21からの冷風の量が増大するが、これも抑制できる。これにより、乾燥時の消費エネルギー量をより低減することができる。なお、乾燥炉10では、赤外線ヒーター30から放射される波長2μm~4μmの赤外線については、選択反射層37を透過して塗膜82側に到達できるため、この赤外線により塗膜82を乾燥することができる。 The drying furnace 10 of the present embodiment described above is disposed in the furnace body 12 so as to be positioned between the filament 31 and the coating film 82, reflects at least part of infrared rays having a wavelength of less than 2 μm, and has a wavelength of 2 μm to A selective reflection layer 37 that transmits at least a part of infrared rays of 4 μm and a selective reflection layer 37 that is disposed on the opposite side of the selective reflection layer 37 from the filament 31 in the furnace body 12 and can absorb at least a part of infrared rays having a wavelength of less than 2 μm An infrared absorption plate 70 is provided. Therefore, infrared rays having a wavelength of less than 2 μm can be prevented from linearly reaching the coating film 82 side from the filament 31. In addition, the presence of the infrared ray absorbing plate 70 can also prevent the infrared rays after being reflected by the selective reflection layer 37 from being further reflected by the furnace body 12 and the like and reaching the coating film 82 side. Thereby, overheating of the coating film 82 can be further suppressed. In addition, when infrared rays having a wavelength of less than 2 μm reach the coating film 82 side, for example, the coating film 82 or the sheet 80 may be overheated, and the coating film 82 may be deformed to adversely affect the coating film 82. In the drying furnace 10 of this embodiment, the influence on the coating film 82 by the infrared rays with a wavelength of less than 2 μm from the infrared heater 30 can be further suppressed. Further, when the sheet 80 or the coating film 82 is overheated, for example, the amount of cold air from the air supply fan 21 required to keep the coating film 82 below a predetermined temperature or keep the sheet 80 below the glass transition point increases. However, this can also be suppressed. Thereby, the amount of energy consumption at the time of drying can be reduced more. In the drying furnace 10, the infrared rays having a wavelength of 2 μm to 4 μm emitted from the infrared heater 30 can pass through the selective reflection layer 37 and reach the coating film 82 side. Can do.
 また、赤外線ヒーター30は、波長2μm~4μmの赤外線の少なくとも一部を透過しフィラメント31を囲む第2外管35を有しており、第2外管35は、内周面と外周面との少なくとも一方のうち、フィラメント31からみて赤外線吸収プレート70とは反対側を含む領域に選択反射層37を有している。このため、選択反射層37を赤外線ヒーター30とは別の部材として炉体12内に配置することなく、赤外線ヒーター30からの波長2μm未満の赤外線による塗膜82への影響をより抑制することができる。 The infrared heater 30 has a second outer tube 35 that transmits at least a part of infrared rays having a wavelength of 2 μm to 4 μm and surrounds the filament 31. The second outer tube 35 has an inner peripheral surface and an outer peripheral surface. A selective reflection layer 37 is provided in a region including the side opposite to the infrared absorption plate 70 as viewed from the filament 31 among at least one of them. For this reason, the selective reflection layer 37 is not disposed in the furnace body 12 as a member different from the infrared heater 30, and the influence on the coating film 82 by infrared rays having a wavelength of less than 2 μm from the infrared heater 30 can be further suppressed. it can.
 さらに、赤外線ヒーター30は、波長2μm~4μmの赤外線の少なくとも一部を透過しフィラメント31を囲む第1外管34と、フィラメント31及び第1外管34を囲む第2外管35と、を有しており、第1外管34は、内周面と外周面との少なくとも一方のうち、フィラメント31からみて塗膜82とは反対側を含む領域に波長2μm~4μmの赤外線の少なくとも一部を反射する反射層36を有している。このため、フィラメント31から塗膜82とは反対方向に放射された電磁波のうち、波長2μm~4μmの赤外線を反射することができる。これにより、この波長の赤外線を塗膜82に効率よく照射して乾燥効率を向上させることができる。 Further, the infrared heater 30 includes a first outer tube 34 that transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm and surrounds the filament 31, and a second outer tube 35 that surrounds the filament 31 and the first outer tube 34. The first outer tube 34 transmits at least a part of infrared rays having a wavelength of 2 μm to 4 μm in a region including at least one of the inner peripheral surface and the outer peripheral surface including the side opposite to the coating film 82 when viewed from the filament 31. It has a reflective layer 36 that reflects. For this reason, infrared rays having a wavelength of 2 μm to 4 μm can be reflected among electromagnetic waves radiated from the filament 31 in the direction opposite to the coating film 82. Thereby, the infrared rays of this wavelength can be efficiently irradiated onto the coating film 82 to improve the drying efficiency.
 さらにまた、赤外線吸収プレート70は、冷媒が流通可能な冷媒流路79を内部に有している。このため、赤外線吸収プレート70を冷媒で冷却でき、赤外線吸収プレート70が赤外線を吸収して過熱するのをより抑制できる。これにより、赤外線吸収プレート70の過熱が塗膜82に悪影響を与えることをより抑制できる。 Furthermore, the infrared absorbing plate 70 has a refrigerant flow path 79 through which a refrigerant can flow. For this reason, the infrared ray absorbing plate 70 can be cooled with the refrigerant, and the infrared ray absorbing plate 70 can be further suppressed from absorbing infrared rays and overheating. Thereby, it can suppress more that the overheating of the infrared rays absorption plate 70 exerts a bad influence on the coating film 82. FIG.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、赤外線ヒーター30の第2外管35に選択反射層37を形成するものとしたが、これに限らず炉体12内でフィラメント31と塗膜82との間に位置するように選択反射層37を配置すればよい。図4は、変形例の乾燥炉110の縦断面図である。乾燥装置110は、赤外線ヒーター130が赤外線ヒーター30と異なり選択反射層37を備えない点、隔壁185及び選択反射層137を備える点、赤外線吸収プレート70を備えない代わりに赤外線吸収層170を備える点、以外は、乾燥炉10と同様の構成である。そのため、乾燥炉110の構成要素のうち乾燥炉10と同じ構成要素については乾燥炉10と同じ符号を付してその説明を省略する。隔壁185は、図4に示すように、炉体12内部に設けられ、炉体12の空間12aのうち赤外線ヒーター30が設けられた空間と塗膜82が配置される(搬送される)空間とを水平に仕切る部材である。この隔壁185は、波長2μm~4μmの赤外線の少なくとも一部を透過するものであり、例えば内管32などと同様の石英ガラスなど、上述した赤外線透過材料により形成されている。この隔壁85のうち赤外線ヒーター30側の表面(図4の上面)には選択反射層137が形成されている。この選択反射層137は、上述した選択反射層37と同じ選択反射材料で形成されている。赤外線吸収層170は、炉体12の内周面のうちフィラメント31からみて選択反射層137とは反対側(図4における上側)の面に配置されている。この赤外線吸収層170は、例えば黒体塗料などの、波長2μm未満の赤外線の少なくとも一部を吸収可能な材料を炉体12の内周面に塗布乾燥して形成されている。この乾燥炉110でも、上述した実施形態と同様に、波長2μm未満の赤外線がフィラメント31から塗膜82側に到達することを選択反射層137によって抑制できる。また、赤外線吸収層170により、選択反射層137で反射された後の赤外線が炉体12などでさらに反射されることも抑制できる。しかも、隔壁185によって赤外線ヒーター30が配置された空間と塗膜82が配置される空間とが仕切られているため、赤外線ヒーター30が配置された空間やその空間内の物体,その空間に面する炉体12などが波長2μm未満の赤外線により過熱した場合でも、塗膜82やシート80が過熱されにくい。したがって、赤外線ヒーター30からの波長2μm未満の赤外線による塗膜82への影響をより抑制することができる。また、赤外線吸収層170は炉体12の内周面に形成したものであるため、赤外線吸収プレート70のような独立した部材を炉体12内に配置することなく、選択反射層137で反射された赤外線を赤外線吸収体で吸収できる。なお、赤外線吸収層170は、赤外線吸収プレート70とは異なり冷媒流路を有していないが、必ずしも赤外線吸収層170を冷却する必要はない。隔壁185により空間が仕切られており、赤外線吸収層170自身が過熱しても塗膜82側の空間への影響が少ないためである。図4の乾燥炉110において、赤外線ヒーター130が赤外線ヒーター30と同様に選択反射層37を備えていてもよいし、炉体12内に赤外線吸収プレート70が配置されていていてもよい。 For example, in the above-described embodiment, the selective reflection layer 37 is formed on the second outer tube 35 of the infrared heater 30. However, the present invention is not limited to this, and is positioned between the filament 31 and the coating film 82 in the furnace body 12. The selective reflection layer 37 may be disposed as described above. FIG. 4 is a longitudinal sectional view of a modified drying furnace 110. The drying apparatus 110 is different from the infrared heater 30 in that the infrared heater 130 does not include the selective reflection layer 37, includes the partition 185 and the selective reflection layer 137, and includes the infrared absorption layer 170 instead of the infrared absorption plate 70. Other than these, the configuration is the same as that of the drying furnace 10. Therefore, the same components as those in the drying furnace 10 among the components in the drying furnace 110 are denoted by the same reference numerals as those in the drying furnace 10 and the description thereof is omitted. As shown in FIG. 4, the partition wall 185 is provided inside the furnace body 12. Of the space 12 a of the furnace body 12, a space in which the infrared heater 30 is provided and a space in which the coating film 82 is disposed (conveyed) It is a member which partitions off horizontally. The partition wall 185 transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm, and is formed of the above-described infrared transmitting material such as quartz glass similar to the inner tube 32 or the like. A selective reflection layer 137 is formed on the surface of the partition wall 85 on the infrared heater 30 side (upper surface in FIG. 4). The selective reflection layer 137 is formed of the same selective reflection material as the selective reflection layer 37 described above. The infrared absorption layer 170 is disposed on the inner peripheral surface of the furnace body 12 on the surface opposite to the selective reflection layer 137 (upper side in FIG. 4) when viewed from the filament 31. This infrared absorption layer 170 is formed by applying and drying a material capable of absorbing at least part of infrared rays having a wavelength of less than 2 μm, such as black body paint, on the inner peripheral surface of the furnace body 12. In this drying furnace 110 as well, the selective reflection layer 137 can prevent infrared rays having a wavelength of less than 2 μm from reaching the coating film 82 side from the filament 31 as in the above-described embodiment. Further, the infrared ray absorbing layer 170 can also suppress the infrared ray after being reflected by the selective reflection layer 137 from being further reflected by the furnace body 12 or the like. Moreover, since the space in which the infrared heater 30 is disposed and the space in which the coating film 82 is disposed are partitioned by the partition 185, the space in which the infrared heater 30 is disposed, the object in the space, and the space are faced. Even when the furnace body 12 or the like is heated by infrared rays having a wavelength of less than 2 μm, the coating film 82 and the sheet 80 are not easily heated. Therefore, the influence on the coating film 82 by the infrared rays having a wavelength of less than 2 μm from the infrared heater 30 can be further suppressed. Further, since the infrared absorption layer 170 is formed on the inner peripheral surface of the furnace body 12, it is reflected by the selective reflection layer 137 without disposing an independent member such as the infrared absorption plate 70 in the furnace body 12. Infrared light can be absorbed by an infrared absorber. Unlike the infrared absorption plate 70, the infrared absorption layer 170 does not have a coolant channel, but it is not always necessary to cool the infrared absorption layer 170. This is because the space is partitioned by the partition 185, and even if the infrared absorption layer 170 itself is overheated, there is little influence on the space on the coating film 82 side. In the drying furnace 110 of FIG. 4, the infrared heater 130 may include the selective reflection layer 37 similarly to the infrared heater 30, and the infrared absorption plate 70 may be disposed in the furnace body 12.
 上述した実施形態では、選択反射層37は第2外管35の外周面に形成するものとしたが、内周面に形成してもよい。また、選択反射層37は、第2外管35の表面に選択反射材料を直接成膜して形成するものとしたが、これに限られない。例えば、基体としての樹脂フィルム上に選択反射材料を成膜して製造された選択反射フィルムを用意し、これを第2外管35の表面に接合してもよい。この場合、選択反射フィルムの基体は、波長2μm~4μmの赤外線の少なくとも一部を透過するものとすることが好ましい。上述した図3の乾燥炉110においても、同様に選択反射層137の代わりに選択反射フィルムを用いてもよい。あるいは、選択反射層37,137の代わりに選択反射材料からなる独立した部材を、炉体12内でフィラメント31と塗膜82との間に位置するように配置してもよい。 In the above-described embodiment, the selective reflection layer 37 is formed on the outer peripheral surface of the second outer tube 35, but may be formed on the inner peripheral surface. In addition, the selective reflection layer 37 is formed by directly forming a selective reflection material on the surface of the second outer tube 35, but is not limited thereto. For example, a selective reflection film manufactured by forming a selective reflection material on a resin film as a substrate may be prepared and bonded to the surface of the second outer tube 35. In this case, it is preferable that the substrate of the selective reflection film transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm. In the drying furnace 110 of FIG. 3 described above, a selective reflection film may be used instead of the selective reflection layer 137 in the same manner. Or you may arrange | position the independent member which consists of selective reflection materials instead of the selective reflection layers 37 and 137 so that it may be located in the furnace body 12 between the filament 31 and the coating film 82. FIG.
 上述した実施形態では、反射層36は第1外管34の外周面に形成するものとしたが、内周面に形成してもよい。また、反射層36を備えないものとしてもよい。 In the above-described embodiment, the reflective layer 36 is formed on the outer peripheral surface of the first outer tube 34, but may be formed on the inner peripheral surface. The reflective layer 36 may not be provided.
 上述した実施形態では、赤外線吸収プレート70は赤外線ヒーター30毎に1つ配置するものとしたが、これに限られない。例えば、複数の赤外線ヒーター30のうち選択反射層37とは反対側を覆うように、1つの赤外線吸収プレート70を配置してもよい。また、乾燥炉10において赤外線吸収プレート70の代わりに乾燥炉110の赤外線吸収層170を備えるものとしてもよい。 In the above-described embodiment, one infrared absorbing plate 70 is disposed for each infrared heater 30, but the present invention is not limited to this. For example, one infrared absorption plate 70 may be disposed so as to cover the side opposite to the selective reflection layer 37 among the plurality of infrared heaters 30. Further, the drying furnace 10 may include the infrared absorption layer 170 of the drying furnace 110 instead of the infrared absorption plate 70.
 上述した実施形態では、内管32,第1外管34,第2外管35は、波長4μmを超える赤外線を吸収し且つ4μm以下の赤外線を透過する石英ガラスで形成されているものとしたが、波長2μm~4μmの赤外線の少なくとも一部を透過するものであればよい。例えば、内管32,第1外管34,第2外管35のいずれか1以上が、波長が3.5μmを超える赤外線を吸収し且つ波長が3.5μm以下の赤外線を透過するものとしてもよい。同様に、選択反射層37は、波長2μm~4μmの赤外線の少なくとも一部を透過するものとしたが、波長2μm~3.5μmの赤外線の少なくとも一部を透過するものとしてもよい。波長3.5μm以下の赤外線は、水や溶剤などの分子中の水素結合を切断する能力に優れているため、内管32,第1外管34,第2外管35,選択反射層37がこれを透過することでより効率よく塗膜82を乾燥することができる。 In the above-described embodiment, the inner tube 32, the first outer tube 34, and the second outer tube 35 are made of quartz glass that absorbs infrared light having a wavelength exceeding 4 μm and transmits infrared light having a wavelength of 4 μm or less. Any infrared ray having a wavelength of 2 μm to 4 μm can be used. For example, one or more of the inner tube 32, the first outer tube 34, and the second outer tube 35 may absorb infrared light having a wavelength exceeding 3.5 μm and transmit infrared light having a wavelength of 3.5 μm or less. Good. Similarly, the selective reflection layer 37 transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm. However, the selective reflection layer 37 may transmit at least part of infrared rays having a wavelength of 2 μm to 3.5 μm. Infrared rays having a wavelength of 3.5 μm or less are excellent in the ability to cut hydrogen bonds in molecules such as water and solvents, so that the inner tube 32, the first outer tube 34, the second outer tube 35, and the selective reflection layer 37 are formed. By passing through this, the coating film 82 can be dried more efficiently.
 上述した実施形態では、フィラメント31はピーク波長が3.5μm付近の電磁波を放射するものとしたが、ピーク波長が2μm~4μmの領域にある場合に限らず、ピーク波長が2μm未満の領域や4μm超過の領域にあってもよい。この場合でも、波長2μm未満の赤外線や波長4μm超過の赤外線については内管32,第1外管34,第2外管35,選択反射層37によって塗膜82への到達が抑制される。すなわち、フィラメント31が放射する電磁波のピーク波長が2μm~4μmの領域にない場合でも、内管32,第1外管34,第2外管35,選択反射層37によって、塗膜82へ到達する電磁波のピーク波長を2μm~4μmとすることができる。ただし、乾燥効率がより向上するため、フィラメント31が放射する電磁波のピーク波長が2μm~4μmの領域にあることが好ましい。 In the embodiment described above, the filament 31 emits an electromagnetic wave having a peak wavelength in the vicinity of 3.5 μm. However, the present invention is not limited to the case where the peak wavelength is in the region of 2 μm to 4 μm. It may be in the excess area. Even in this case, the inner tube 32, the first outer tube 34, the second outer tube 35, and the selective reflection layer 37 suppress the arrival of infrared rays having a wavelength of less than 2 μm or infrared rays having a wavelength of more than 4 μm. That is, even when the peak wavelength of the electromagnetic wave emitted by the filament 31 is not in the region of 2 μm to 4 μm, the inner tube 32, the first outer tube 34, the second outer tube 35, and the selective reflection layer 37 reach the coating film 82. The peak wavelength of the electromagnetic wave can be set to 2 μm to 4 μm. However, in order to further improve the drying efficiency, it is preferable that the peak wavelength of the electromagnetic wave emitted from the filament 31 is in the region of 2 μm to 4 μm.
 上述した実施形態では、塗膜82はMLCC用の薄膜として用いられるものとしたが、これに限られない。例えば、LTCC(低温焼成セラミックス)やその他のグリーンシート用の薄膜として用いるものとしてもよい。あるいは、塗膜82がリチウムイオン二次電池などの電池用の電極となる塗膜として用いられるものとしてもよい。この場合、塗膜82は、例えば、電極材(正極活物質又は負極活物質)とバインダーと導電材と溶剤とを共に混練した電極材ペーストを、シート80上に塗布したものとしてもよい。塗膜82が電池用の電極となる塗膜である場合、シート80は、アルミニウムや銅等の金属シートとしてもよい。また、塗膜82やシート80の材質に応じて、給気ファン21からの送風の温度は適宜変更してもよく、例えば40~400℃の範囲で送風するものとしてもよい。 In the embodiment described above, the coating film 82 is used as a thin film for MLCC, but is not limited thereto. For example, it may be used as a thin film for LTCC (low temperature fired ceramics) or other green sheets. Or the coating film 82 is good also as what is used as a coating film used as an electrode for batteries, such as a lithium ion secondary battery. In this case, for example, the coating film 82 may be obtained by applying an electrode material paste obtained by kneading together an electrode material (positive electrode active material or negative electrode active material), a binder, a conductive material, and a solvent onto the sheet 80. When the coating film 82 is a coating film that serves as an electrode for a battery, the sheet 80 may be a metal sheet such as aluminum or copper. Further, the temperature of the air blown from the air supply fan 21 may be appropriately changed according to the material of the coating film 82 and the sheet 80, and may be blown in the range of 40 to 400 ° C., for example.
 本出願は、2013年4月11日に出願された日本国特許出願第2013-083032号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2013-083032 filed on April 11, 2013, and the contents of all of the contents are included in this specification by reference.
 本発明は、塗膜などの乾燥対象の乾燥が必要な産業、例えばMLCCやLTCC等を製造するセラミックス産業、リチウムイオン二次電池の電極塗膜を製造する電池産業などに利用可能である。 The present invention can be used in industries that require drying of an object to be dried, such as a coating film, for example, a ceramic industry that manufactures MLCC, LTCC, and the like, a battery industry that manufactures an electrode coating film of a lithium ion secondary battery, and the like.
 10,110 乾燥炉、12 炉体、12a 空間、13 前端面、14 後端面、15,16 開口、17,18 ロール、19 搬送通路、20 給気装置、21 給気ファン、22 パイプ構造体、23 給気口、25 排気装置、26 排気ファン、27 パイプ構造体、28 排気口、30,130 赤外線ヒーター、31 フィラメント、31a 電気配線、32 内管、33 ヒーター本体、34 第1外管、35 第2外管、36 反射層、37,137 選択反射層、39 冷媒流路、40 キャップ、42~43 円筒部、44 蓋、45 ホルダー、47 配線引出部、48 流体出入口、49 温度センサ、50 電力供給源、60 第1冷媒供給源、61 開閉弁、62 流量調整弁、65 第2冷媒供給源、66 開閉弁、67 流量調整弁、70 赤外線吸収プレート、78 流体出入口、79 冷媒流路、80 シート、82 塗膜、90 コントローラー、170 赤外線吸収層、185 隔壁。 10, 110 Drying furnace, 12 furnace body, 12a space, 13 front end face, 14 rear end face, 15, 16 opening, 17, 18 roll, 19 transport passage, 20 air supply device, 21 air supply fan, 22 pipe structure, 23 air supply port, 25 exhaust device, 26 exhaust fan, 27 pipe structure, 28 exhaust port, 30, 130 infrared heater, 31 filament, 31a electrical wiring, 32 inner tube, 33 heater body, 34 first outer tube, 35 Second outer tube, 36 reflective layer, 37, 137 selective reflective layer, 39 refrigerant flow path, 40 cap, 42-43 cylindrical part, 44 lid, 45 holder, 47 wiring outlet, 48 fluid inlet / outlet, 49 temperature sensor, 50 Power supply source, 60 first refrigerant supply source, 61 on-off valve, 62 flow rate adjustment valve, 65 second refrigerant supply source, 6-off valve, 67 flow control valve, 70 an infrared absorbing plate, 78 a fluid inlet and outlet, 79 a refrigerant flow passage, 80 sheets, 82 coating film, 90 controller, 170 an infrared absorbing layer, 185 bulkhead.

Claims (6)

  1.  乾燥対象の乾燥を行うための炉体と、
     前記炉体内に配置され、赤外線を含む電磁波を放射する発熱体を有する赤外線ヒーターと、
     前記炉体内で前記発熱体と前記乾燥対象との間に位置するように配置され、波長2μm未満の赤外線の少なくとも一部を反射し且つ波長2μm~4μmの赤外線の少なくとも一部を透過する選択反射体と、
     前記炉体内で前記発熱体からみて前記選択反射体とは反対側に配置され、波長2μm未満の赤外線の少なくとも一部を吸収可能な赤外線吸収体と、
     を備えた乾燥炉。
    A furnace body for drying the object to be dried;
    An infrared heater having a heating element that is disposed in the furnace and emits electromagnetic waves including infrared;
    Selective reflection that is disposed in the furnace so as to be positioned between the heating element and the object to be dried, reflects at least part of infrared rays having a wavelength of less than 2 μm, and transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm. Body,
    An infrared absorber disposed on the opposite side to the selective reflector as viewed from the heating element in the furnace, and capable of absorbing at least part of infrared rays having a wavelength of less than 2 μm;
    Drying oven equipped with.
  2.  前記赤外線ヒーターは、波長2μm~4μmの赤外線の少なくとも一部を透過し前記発熱体を囲む管状部材、を有しており、
     前記管状部材は、内周面と外周面との少なくとも一方のうち、前記発熱体からみて前記赤外線吸収体とは反対側を含む領域に前記選択反射体を有している、
     請求項1に記載の乾燥炉。
    The infrared heater includes a tubular member that transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm and surrounds the heating element;
    The tubular member has the selective reflector in a region including at least one of an inner peripheral surface and an outer peripheral surface including a side opposite to the infrared absorber when viewed from the heating element.
    The drying furnace according to claim 1.
  3.  前記赤外線ヒーターは、波長2μm~4μmの赤外線の少なくとも一部を透過し前記発熱体を囲む第1管と、該発熱体及び該第1管を囲む前記管状部材である第2管と、を有しており、
     前記第1管は、内周面と外周面との少なくとも一方のうち、前記発熱体からみて前記乾燥対象とは反対側を含む領域に波長2μm~4μmの赤外線の少なくとも一部を反射する反射層を有している、
     請求項2に記載の乾燥炉。
    The infrared heater includes a first tube that transmits at least part of infrared rays having a wavelength of 2 μm to 4 μm and surrounds the heating element, and a second tube that is the tubular member surrounding the heating element and the first tube. And
    The first tube is a reflective layer that reflects at least a part of infrared light having a wavelength of 2 μm to 4 μm in a region including at least one of an inner peripheral surface and an outer peripheral surface including a side opposite to the object to be dried when viewed from the heating element. have,
    The drying furnace according to claim 2.
  4.  前記炉体内で前記赤外線ヒーターが配置された空間と前記乾燥対象が配置される空間とを仕切り、波長2μm~4μmの赤外線の少なくとも一部を透過する隔壁、
     を備え、
     前記隔壁は、前記選択反射体を有している、
     請求項1~3のいずれか1項に記載の乾燥炉。
    A partition partitioning a space in which the infrared heater is disposed and a space in which the drying target is disposed in the furnace, and transmitting at least part of infrared rays having a wavelength of 2 μm to 4 μm;
    With
    The partition has the selective reflector,
    The drying furnace according to any one of claims 1 to 3.
  5.  前記炉体は、内周面に前記赤外線吸収体を有している、
     請求項4に記載の乾燥炉。
    The furnace body has the infrared absorber on the inner peripheral surface,
    The drying furnace according to claim 4.
  6.  前記赤外線吸収体は、冷媒が流通可能な冷媒流路を内部に有している、
     請求項1~5のいずれか1項に記載の乾燥炉。
    The infrared absorber has a refrigerant flow path through which a refrigerant can flow.
    The drying furnace according to any one of claims 1 to 5.
PCT/JP2014/060455 2013-04-11 2014-04-11 Drying furnace WO2014168229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013083032 2013-04-11
JP2013-083032 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014168229A1 true WO2014168229A1 (en) 2014-10-16

Family

ID=51689630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060455 WO2014168229A1 (en) 2013-04-11 2014-04-11 Drying furnace

Country Status (2)

Country Link
TW (1) TW201510451A (en)
WO (1) WO2014168229A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721897B1 (en) * 2014-11-28 2015-05-20 日本碍子株式会社 Infrared treatment device and infrared heater
EP3026980A1 (en) * 2014-11-28 2016-06-01 NGK Insulators, Ltd. Infrared heater and infrared processing device
JP2016207505A (en) * 2015-04-23 2016-12-08 日本碍子株式会社 Infrared heater and infrared processing apparatus
KR20180124110A (en) * 2016-03-24 2018-11-20 엔지케이 인슐레이터 엘티디 Processing device using spinning device and spinning device
EP3438588A4 (en) * 2016-03-28 2019-11-20 NGK Insulators, Ltd. Low-temperature drying apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266685B1 (en) * 2020-02-17 2021-06-21 엔지케이 인슐레이터 엘티디 heat treatment furnace
KR102559551B1 (en) * 2021-03-11 2023-07-27 주식회사 한국제이텍트써모시스템 Heater unit of heat treatment oven

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace
JP2013148310A (en) * 2012-01-23 2013-08-01 Ngk Insulators Ltd Drying furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace
JP2013148310A (en) * 2012-01-23 2013-08-01 Ngk Insulators Ltd Drying furnace

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721897B1 (en) * 2014-11-28 2015-05-20 日本碍子株式会社 Infrared treatment device and infrared heater
EP3026980A1 (en) * 2014-11-28 2016-06-01 NGK Insulators, Ltd. Infrared heater and infrared processing device
JP2016103408A (en) * 2014-11-28 2016-06-02 日本碍子株式会社 Infrared ray processing device and infrared heater
US10757760B2 (en) 2014-11-28 2020-08-25 Ngk Insulators, Ltd. Infrared heater and infrared processing device
JP2016207505A (en) * 2015-04-23 2016-12-08 日本碍子株式会社 Infrared heater and infrared processing apparatus
EP3435735A4 (en) * 2016-03-24 2019-10-16 NGK Insulators, Ltd. Radiation device and processing device using same radiation device
CN108925146A (en) * 2016-03-24 2018-11-30 日本碍子株式会社 Radiation appliance and the processing unit for using radiation appliance
US10701762B2 (en) 2016-03-24 2020-06-30 Ngk Insulators, Ltd. Heat radiation device, and processing device using heat radiation device
KR20180124110A (en) * 2016-03-24 2018-11-20 엔지케이 인슐레이터 엘티디 Processing device using spinning device and spinning device
KR102352533B1 (en) * 2016-03-24 2022-01-19 엔지케이 인슐레이터 엘티디 Spinning device and processing device using spinning device
CN108925146B (en) * 2016-03-24 2022-02-11 日本碍子株式会社 Radiation device and processing device using the same
EP3438588A4 (en) * 2016-03-28 2019-11-20 NGK Insulators, Ltd. Low-temperature drying apparatus
US10739069B2 (en) 2016-03-28 2020-08-11 Ngk Insulators, Ltd. Low-temperature drying apparatus

Also Published As

Publication number Publication date
TW201510451A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
WO2014168229A1 (en) Drying furnace
WO2014073289A1 (en) Infrared heating device and drying furnace
KR101030421B1 (en) Light irradiation device
WO2015022857A1 (en) Infrared radiation device and infrared treatment device
WO2014129072A1 (en) Heater provided with nozzle and drying furnace
JP2015036590A (en) Infrared ray processing device and infrared ray processing method
JP2012132662A (en) Coating film drying furnace
TWI600343B (en) Infrared heating unit, infrared heating device and drying device
WO2013111647A1 (en) Drying furnace unit and drying furnace
CN105657872B (en) Infrared heater and infrared processing device
KR101969044B1 (en) Heater unit and heat treatment apparatus
JP5810074B2 (en) Drying equipment
JP5932356B2 (en) How to use the drying oven
JP6368436B2 (en) Low temperature drying equipment
WO2015005207A1 (en) Drying furnace
CN113039165B (en) Method for producing glass article and method for heating sheet glass
TWI577957B (en) Heater unit and heat treatment apparatus
JP6704764B2 (en) Infrared processor
JP6293509B2 (en) Infrared heater and infrared heater unit
JP2014035086A (en) Drying furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP