WO2013111647A1 - Drying furnace unit and drying furnace - Google Patents

Drying furnace unit and drying furnace Download PDF

Info

Publication number
WO2013111647A1
WO2013111647A1 PCT/JP2013/050641 JP2013050641W WO2013111647A1 WO 2013111647 A1 WO2013111647 A1 WO 2013111647A1 JP 2013050641 W JP2013050641 W JP 2013050641W WO 2013111647 A1 WO2013111647 A1 WO 2013111647A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying furnace
air
vent
sheet
slurry
Prior art date
Application number
PCT/JP2013/050641
Other languages
French (fr)
Japanese (ja)
Inventor
良夫 近藤
恭介 勝山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP13740522.1A priority Critical patent/EP2808635A4/en
Priority to KR1020147020587A priority patent/KR20140115328A/en
Priority to CN201380006378.6A priority patent/CN104067080A/en
Publication of WO2013111647A1 publication Critical patent/WO2013111647A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements

Definitions

  • the present invention relates to a drying furnace unit and a drying furnace.
  • Patent Document 1 discloses a drying furnace in which four drying zones each having a carry-in port and a carry-out port are connected in a predetermined direction.
  • the top plate of each drying zone is provided with an air supply port and an exhaust port.
  • An air supply means for forcibly supplying air is attached to each air supply opening, and an exhaust means for forcibly discharging air is attached to each exhaust opening.
  • the air flow in each drying zone is made to be the same and parallel to the sheet conveying direction. This air flow may be opposite to the sheet conveyance direction, but in order to efficiently remove the evaporated organic solvent, the air flow should be the same and parallel to the sheet conveyance direction. Preferred is described.
  • the above-described drying furnace does not describe or suggest the technical idea of freely changing the air flow in each drying zone.
  • the air supply means is attached to the air supply port and the exhaust means is attached to the exhaust port, the air flow is fixed in the direction from the air supply port to the exhaust port.
  • the exhaust means is attached to the air supply port, and the air supply means is attached to the exhaust port. Then, the air flow is fixed in the direction from the exhaust port to the air supply port. . For this reason, the flow of air cannot be changed freely.
  • the main object of the present invention is to provide a drying furnace unit capable of freely changing the air flow and a drying furnace constituted by the drying furnace unit.
  • the drying oven unit of the present invention is A furnace body; A conveyance path that is provided so as to penetrate the furnace body in a predetermined direction, and a sheet coated with slurry on at least one side is conveyed in the predetermined direction; First and second vent holes respectively provided at both ends of the transport passage so that atmospheric gas flows along the slurry application surface of the sheet; Air supply means connected to the first vent and the second vent; Air from the air supply means is flowed from the first vent to the second vent along the application surface of the sheet, or along the application surface of the sheet from the second vent to the first vent. Wind direction switching means for switching whether to send air from the air supply means; It is equipped with.
  • the air direction switching means by switching the air direction switching means, the air is supplied from the air supply means along the coating surface of the sheet from the first vent to the second vent, or conversely, the second vent is connected to the second vent. It is possible to set whether to send the air from the air supply means to the one air vent along the sheet application surface. That is, the atmosphere gas flow can be freely changed by switching the wind direction switching means.
  • the air supply means may supply hot air (for example, 60 to 150 ° C.) or cold air (for example, room temperature or 40 to 50 ° C.).
  • the atmosphere gas is not particularly limited, and examples thereof include air and an inert gas (such as nitrogen).
  • the drying furnace unit of the present invention includes an infrared heater provided at a position facing the coating surface of the sheet in the conveyance path.
  • an infrared heater for example, the outer circumference of the filament is concentrically covered by a plurality of tubes functioning as a filter that absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m, and the surface temperature of the infrared heater is between these tubes.
  • a cooling fluid flow path that suppresses the increase in the temperature (see Japanese Patent No. 4790092) may be used.
  • the drying furnace unit of the present invention includes air volume adjusting means for adjusting the air volume of the air supply means. If it carries out like this, not only the wind direction of ventilation but the air volume can be changed freely.
  • the sheet may have a slurry applied to both sides thereof, and the first and second vent holes may be provided corresponding to the respective slurry application surfaces.
  • the sheet coated with the slurry on both sides can be dried at the same time, so the time is shortened compared to the case of drying one by one. As a result, production efficiency increases.
  • the drying furnace of the present invention is a unit in which a plurality of the above-described drying furnace units are connected such that each conveyance passage is continuous along the predetermined direction.
  • the flow of the atmosphere gas can be freely changed for each drying furnace unit by switching the air direction switching means of each drying furnace unit.
  • the flow of the air flow between adjacent drying furnace units can be the same direction or the reverse direction.
  • the flow of ventilation can be made to collide or the flow of ventilation can be separated.
  • the drying furnace units arranged at both ends of the plurality of drying furnace units may be set so that the air direction of the air flow is directed from outside to inside by the air direction switching means. If it carries out like this, ventilation will become difficult to blow out from the conveyance path of the drying furnace unit arrange
  • the drying furnace of the present invention includes a detecting means for detecting the amount of solvent evaporated from the slurry in each drying furnace unit, and when the amount of solvent evaporation exceeds a predetermined value for a plurality of continuous drying furnace units, Control means for controlling the wind direction switching mechanism so that the wind direction of the air blown from the furnace unit is the same direction. If the solvent evaporation amount of a plurality of continuous drying furnace units exceeds a predetermined value, assuming that the air flow direction of those drying furnace units is reversed, a place where the flow of the atmospheric gas stagnates is generated and evaporated there The accumulated solvent may accumulate. However, since the airflow direction of these drying furnace units is controlled to be the same in this case, the location where the evaporated solvent accumulates is unlikely to occur.
  • FIG. 1 is a longitudinal sectional view of a drying furnace unit 10.
  • 3 is a longitudinal sectional view of an infrared heater 36.
  • FIG. FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • It is explanatory drawing of the wind direction switching of the drying furnace unit 10 (a) is when a hot air flows from the 1st vent 21a to the 2nd vent 22a, (b) is a 1st vent from the 2nd vent 22a. It is explanatory drawing when flowing to 21a. It is explanatory drawing of the drying furnace.
  • FIG. 5 is an explanatory diagram showing a relationship between an evaporation curve and a wind direction of each of the drying furnace units U1 to U7 constituting the drying furnace 70.
  • 2 is a longitudinal sectional view of a drying furnace unit 110.
  • FIG. It is explanatory drawing of the drying furnace 170.
  • FIG. It is explanatory drawing of the modification of the drying furnace.
  • FIG. 1 is a longitudinal sectional view of the drying furnace unit 10
  • FIG. 2 is a longitudinal sectional view of the infrared heater 36
  • FIG. 3 is a sectional view taken along the line AA of FIG.
  • the drying furnace unit 10 includes a furnace body 12, a transfer passage 14, a pipe structure 20 having first and second vent holes 21a and 22a, a hot air generator 26, an exhaust blower 28, and a wind direction switching valve 30. And an infrared heater 36.
  • the furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped shape, and has openings 14a and 14b on the front end face 12a and the rear end face 12b, respectively.
  • the furnace body 12 has a length from the front end surface 12a to the rear end surface 12b of 2 to 6 m.
  • the conveyance passage 14 is a passage from the opening 14a to the opening 14b, and penetrates the furnace body 12 in the horizontal direction.
  • the sheet 60 coated with the slurry on one side passes through the conveyance path 14. Specifically, the sheet 60 is loaded from the opening 14a with the surface (slurry coating surface) 62 on which the slurry is applied facing upward, travels in the furnace body 12 in the horizontal direction, and is unloaded from the opening 14b. .
  • the pipe structure 20 penetrates in the vertical direction at a location near the rear end surface 12b in the ceiling of the furnace body 12 and the first pipe portion 21 that penetrates in the vertical direction at a location near the front end surface 12a in the ceiling of the furnace body 12.
  • the second pipe part 22 to be connected, the third pipe part 23 connecting the upper end of the first pipe part 21 and the upper end of the second pipe part 22, the intermediate position of the first pipe part 21 and the intermediate position of the second pipe part 22
  • a fourth pipe portion 24 that connects the two. That is, the third pipe portion 23 and the fourth pipe portion 24 are passages that connect the first pipe portion 21 and the second pipe portion 22 in parallel.
  • the first pipe portion 21 is bent so as to be bent in the furnace body 12 so that the vicinity of the lower end faces the horizontal direction.
  • the 1st vent 21a which is the lower end opening of the 1st pipe part 21 is the state opened toward the rear-end surface 12b.
  • the second pipe portion 22 is processed so that the vicinity of the lower end bent inside the furnace body faces the horizontal direction.
  • the 2nd vent 22a which is the lower end opening of the 2nd pipe part 22 is the state opened toward the front end surface 12a.
  • the first vent 21a and the second vent 22a are provided so as to face each other. The heights may be different, but are usually provided to be the same. For this reason, the air flowing out from one of the first and second vent holes 21a, 22a flows into the other, and the flow of the air at that time is in a direction along the slurry application surface 62 of the sheet 60.
  • the hot air generator 26 is attached to the fourth pipe portion 24 and supplies hot air to the inside of the fourth pipe portion 24.
  • the hot air generator 26 can adjust the air volume.
  • the exhaust blower 28 is attached to the third pipe portion 23 and has a function of discharging the gas inside the third pipe portion 23 to the outside. This exhaust blower 28 can also adjust the air volume.
  • the air direction switching valve 30 is provided at the joint between the first valve 31 provided at the joint between the first pipe part 21 and the fourth pipe part 24 and the second pipe part 22 and the fourth pipe part 24. And a second valve 32.
  • the first valve 31 communicates the first pipe portion 21 and the fourth pipe portion 24 and at the same time shuts off the communication between the first pipe portion 21 and the third pipe portion 23 (see the solid line in FIG. 1, the air supply position). Any of the positions where the communication between the first pipe portion 21 and the fourth pipe portion 24 is blocked and the first pipe portion 21 and the third pipe portion 23 are communicated (see the dotted line in FIG. 1, exhaust position). Can be switched.
  • the second valve 32 shuts off the communication between the second pipe part 22 and the fourth pipe part 24 and at the same time communicates the second pipe part 22 and the third pipe part 23 (refer to the solid line in FIG. 1, referred to as the exhaust position). ) And the second pipe portion 22 and the fourth pipe portion 24 and the position where the communication between the second pipe portion 22 and the third pipe portion 23 is blocked (refer to the dotted line in FIG. 1, referred to as the air supply position). It can be switched to either.
  • the valves 31 and 32 may be switched manually, or may be switched electrically using an electromagnetic solenoid or the like. Further, although not shown, a circulation piping system may be added between the pipes so as to supplement a part of the exhaust with a part of the supply air.
  • a plurality of infrared heaters 36 are attached near the ceiling of the furnace body 12.
  • the longitudinal direction of each infrared heater 36 is attached so as to be orthogonal to the transport direction.
  • the infrared heater 36 includes a heater body 42 formed so that the inner tube 40 surrounds the filament 38, an outer tube 44 formed so as to surround the heater body 42, and an outer tube 44.
  • a bottomed cylindrical cap 46 that is airtightly fitted to both ends of the tube 44, and a flow path 48 that is formed between the heater body 42 and the outer tube 44 and through which the cooling fluid can flow.
  • the filament 38 is energized and heated to 700 to 1200 ° C., and emits infrared rays having a peak at a wavelength around 3 ⁇ m.
  • the electrical wiring 38 a connected to the filament 38 is led out to the outside airtightly through a wiring lead-out portion 46 a provided in the cap 46.
  • the inner tube 40 is made of quartz glass, borosilicate crown glass, or the like, and functions as a filter that passes infrared rays having a wavelength of 3.5 ⁇ m or less and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m.
  • the heater body 42 is supported by holders 50 arranged at both ends inside the cap 46.
  • the outer tube 44 is made of quartz glass, borosilicate crown glass, or the like, and passes through infrared rays having a wavelength of 3.5 ⁇ m or less and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m.
  • Each cap 46 has a fluid inlet / outlet 46b.
  • the flow path 48 is configured such that the cooling fluid flows from one fluid inlet / outlet 46b to the other fluid inlet / outlet 46b.
  • the cooling fluid flowing through the flow channel 48 is, for example, air or an inert gas, and cools each of the tubes 40 and 44 by contacting the inner tube 40 and the outer tube 44 to remove heat.
  • infrared heater 36 when infrared light having a peak near 3 ⁇ m is emitted from the filament 38, infrared light having a wavelength of 3.5 ⁇ m or less passes through the inner tube 40 and the outer tube 44 and passes through the conveyance path.
  • the slurry is applied to the slurry application surface 62 of the sheet 60.
  • Infrared light having this wavelength is said to be excellent in the ability to break hydrogen bonds of the organic solvent contained in the slurry application surface 62 of the sheet 60, and can efficiently evaporate the organic solvent.
  • the inner tube 40 and the outer tube 44 absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, but are cooled by the cooling fluid flowing through the flow path 48, and thus are less than the ignition point of the organic solvent evaporating from the slurry application surface 62. It is possible to maintain the temperature.
  • Such an infrared heater 36 is disposed in an internal space of an arch-shaped recess 52 provided in a reflector near the ceiling of the furnace body 12.
  • the arch-shaped recess 52 is formed so as to extend in a direction orthogonal to the conveyance direction, and has a cross-sectional shape that is a curved shape such as a parabola, an elliptical arc, or an arc, and has a focal point or a center position.
  • Infrared heater 36 is arranged.
  • infrared light having a wavelength of 3.5 ⁇ m or less emitted from the infrared heater 36 is reflected by the arch-shaped recess 52 and efficiently irradiated onto the slurry application surface 62.
  • FIG. 4 is an explanatory diagram of the air direction switching of the drying furnace unit 10, (a) shows when hot air flows from the first vent 21 a to the second vent 22 a, and (b) shows hot air from the second vent 22 a. It is explanatory drawing when flowing to 1 vent 21a.
  • the first valve 31 When flowing hot air from the first vent 21a to the second vent 22a, as shown in FIG. 4A, the first valve 31 is set to the air supply position and the second valve 32 is set to the exhaust position. Specifically, the first valve 31 is set at a position where the first pipe portion 21 and the fourth pipe portion 24 communicate with each other and the communication between the first pipe portion 21 and the third pipe portion 23 is blocked. Further, the second valve 32 is set at a position where the communication between the second pipe portion 22 and the fourth pipe portion 24 is blocked and the second pipe portion 22 and the third pipe portion 23 are communicated. Then, the hot air supplied from the hot air generator 26 to the fourth pipe part 24 is blown out from the first vent 21 a through the first pipe part 21. On the other hand, the exhaust blower 28 exhausts gas from the third pipe portion 23 via the second vent 22 a and the second pipe portion 22. As a result, hot air flows into the furnace body 12 from the first vent 21a to the second vent 22a.
  • the second valve 32 When flowing hot air from the second vent 22a to the first vent 21a, as shown in FIG. 4 (b), the second valve 32 is set to the supply position and the first valve 31 is set to the exhaust position. Specifically, the second valve 32 is set at a position where the second pipe portion 22 and the fourth pipe portion 24 communicate with each other and the communication between the second pipe portion 22 and the third pipe portion 23 is blocked. Further, the first valve 31 is set at a position where the communication between the first pipe part 21 and the fourth pipe part 24 is blocked and the first pipe part 21 and the third pipe part 23 are communicated. Then, the hot air supplied from the hot air generator 26 to the fourth pipe portion 24 is blown out from the second vent 22 a through the second pipe portion 22. On the other hand, the exhaust blower 28 exhausts gas from the third pipe part 23 via the first vent 21 a and the first pipe part 21. As a result, hot air flows into the furnace body 12 from the second vent 22a to the first vent 21a.
  • FIG. 5 is an explanatory view of the drying furnace 70
  • FIG. 6 is an explanatory view showing the relationship between the evaporation curve and the wind direction of each drying furnace unit 10 constituting the drying furnace 70.
  • the drying furnace 70 is formed by connecting one front end face 12 a and the other rear end face 12 b with bolts for adjacent drying furnace units 10.
  • the opening 14a of one front end surface 12a and the opening 14b of the other rear end surface 12b are kept airtight by a packing (not shown).
  • the material of the packing may be any material that can withstand an organic solvent, and examples thereof include polytetrafluoroethylene. If the sealing property of the packing 18 is good, the bolt connection may be omitted.
  • the drying furnace 70 is installed in the drying furnace installation chamber, the exhaust blower 28 may be installed outside the drying furnace installation chamber. Even if installed in the room, the blower outlet and the exhaust port to the outside of the building are connected by a duct, so that the exhaust from the exhaust blower 28 is not released into the drying furnace installation room.
  • a drying furnace 70 is configured by connecting seven drying furnace units 10.
  • each drying furnace unit 10 will be referred to as a drying furnace unit U1, a drying furnace unit U2,.
  • the sheet 60 is unwound from the roll 72 disposed at the left end of the drying furnace 70, and immediately before being loaded into the drying furnace 70, the slurry is applied to the upper surface by a coater (not shown) and passes through the opening 14a of the drying furnace unit U1. It is carried into the drying furnace 70.
  • the sheet 60 passes through each of the drying furnace units U1 to U7, whereby the organic solvent evaporates from the slurry application surface 62, and the evaporated organic solvent is discharged to the outside by the exhaust blower 28, and finally the drying furnace unit. It is carried out from the opening 14b of U7 and wound around a roll 74 installed at the right end of the drying furnace 70.
  • the organic solvent evaporates from the slurry application surface 62 due to the action of infrared rays irradiated from the infrared heater 36 and hot air supplied from the hot air generator 26.
  • each unit is considered independently, and the policy is to ensure the amount of hot air necessary to dilute the volatile solvent within that range. Even in this case, in an area where the amount of solvent evaporation is large, it is desirable to improve safety by using a mechanism that links the supply and exhaust of each unit as described above.
  • the direction of the hot air is set in a direction from the outside to the inside. For this reason, it becomes difficult for hot air to blow out from the opening 14a of the drying furnace unit U1 and from the opening 14b of the drying furnace unit U7.
  • the connection point is set at a position where the amount of solvent evaporation is small as described above. It is desirable.
  • the evaporation curve differs depending on the slurry to be applied, it is necessary to change the connection point to an appropriate position according to the type of the slurry. In the present invention, since the direction of wind can be changed for each drying furnace unit, such an operation becomes possible.
  • the sheet 60 having the slurry application surface 62 is not particularly limited, and for example, a sheet coated with an electrode for a lithium ion secondary battery may be used.
  • a sheet obtained by applying an electrode material slurry obtained by kneading a positive electrode active material (or a negative electrode active material) together with a binder, a conductive material, and an organic solvent onto a metal sheet such as aluminum or copper.
  • the infrared heater 36 since the infrared heater 36 is provided, when it is difficult to dry the slurry application surface 62 only with hot air, the slurry application surface 62 can be dried in a short time by using the infrared heater 36 together. .
  • the infrared heater 36 irradiates infrared rays having a wavelength of 3.5 ⁇ m or less and keeps the heater surface temperature below the ignition point of the organic solvent, the organic solvent can be efficiently evaporated, and the organic solvent ignites. There is no risk of doing so.
  • the hot air generator 26 and the exhaust blower 28 can adjust the air volume, not only the direction of the hot air but also the air volume can be freely changed.
  • the drying furnace 70 is formed by connecting a plurality of drying furnace units U1 to U7 so that each conveyance path is continuous along the conveyance direction of the sheet 60, the wind direction switching valve of each drying furnace unit U1 to U7.
  • the air flow can be freely changed for each of the drying furnace units U 1 to U 7.
  • the flow of hot air between adjacent drying furnace units can be in the same direction or in the reverse direction.
  • the flow of a hot air can be made to collide, or the flow of a hot air can be separated. Based on the evaporation curve, the flow of hot air in each of the drying furnace units U1 to U7 can be adjusted so as not to cause a pool of solvents.
  • the drying furnace units U1 and U7 arranged at both ends of the drying furnace 70 are set so that the direction of the hot air is directed from the outside to the inside, the drying furnace unit U1 is also fed from the transport passage 14 of the drying furnace unit U1. Hot air is less likely to be blown out from the U7 conveyance path 14. As a result, the environment of the drying furnace installation chamber in which the drying furnace 70 is installed can be favorably maintained.
  • the drying furnace unit 10 and the drying furnace 70 that dry the sheet 60 coated with the slurry on one side are exemplified.
  • the drying oven unit 110 and the drying oven 170 may be used.
  • symbol is attached
  • the drying furnace unit 110 shown in FIG. 7 is used for drying the sheet 160 whose both surfaces are the slurry application surfaces 162.
  • the drying furnace unit 110 includes a pipe structure 20 having first and second vent holes 21a and 22a, a hot air generator 26, an exhaust blower 28, a wind direction switching valve 30, and an infrared heater 36, and each slurry. It is provided corresponding to the coating surface 162. Further, the wind direction switching can be performed by the first and second valves 31 and 32 of the wind direction switching valve 30 as in the above-described embodiment.
  • the drying furnace 170 shown in FIG. 8 is a unit in which a plurality of such drying furnace units 110 are connected so that each conveyance passage 14 is connected in a straight line along the horizontal direction.
  • the connection method is the same as that of the drying furnace 70.
  • each drying furnace unit 110 is referred to as a drying furnace unit U1, a drying furnace unit U2,..., And a drying furnace unit U7 in order from the left.
  • the sheet 160 is unwound from the roll 72 disposed at the left end of the drying furnace 170, and immediately before being loaded into the drying furnace 70, slurry is applied to both the upper and lower surfaces by a rotor (not shown) and passes through the opening 14a of the drying furnace unit U1. Then, it is carried into the drying furnace 70.
  • the sheet 160 passes through each of the drying furnace units U1 to U7, whereby the organic solvent evaporates from the upper and lower slurry application surfaces 162, and the evaporated organic solvent is discharged to the outside by each exhaust blower 28. It is unloaded from the opening 14b of the drying furnace unit U7 and wound around a roll 74 installed at the right end of the drying furnace 170. Also in this case, similarly to the drying furnace 70 described above, the direction of hot air in each of the drying units U1 to U7 is determined based on the evaporation curve obtained by numerical simulation.
  • the opening 14b of the drying furnace unit U7 is also set from the opening 14a of the drying furnace unit U1.
  • the hot air is difficult to blow out.
  • the sheet 160 having both surfaces coated with the slurry can be simultaneously dried, so that the time is shortened as compared with the case where each sheet is dried one by one. As a result, production efficiency increases.
  • the hot air direction of each of the drying furnace units U1 to U7 is determined based on the evaporation curve, but the hot air direction may be changed while the sheet 60 is being dried.
  • the wind direction may be changed manually or automatically.
  • a sensor S for detecting the amount of solvent evaporation evaporated from the slurry application surface 62 is attached to each drying furnace unit 10 constituting the drying furnace 70.
  • solenoid valves are employed as the first and second valves 31 and 32.
  • the controller C is prepared, each sensor S is connected to the input port of the controller C, and the first and second valves 31 and 32 are connected to the output port.
  • a signal related to the amount of solvent evaporation output from each sensor S is input to the controller C. Further, a drive signal is output from the controller C to the first and second valves 31 and 32. Then, the controller C determines whether or not the solvent evaporation amount exceeds a predetermined threshold value for a plurality of continuous drying furnace units, and when it exceeds, the direction of hot air of the plurality of drying furnace units becomes the same direction.
  • the first and second valves 31 and 32 are controlled. If the amount of solvent evaporation in a plurality of continuous drying furnace units exceeds the threshold, assuming that the direction of hot air in those drying furnace units is reversed, a location where the air flow stagnates occurs and the solvent evaporated there May accumulate.
  • the sensor S may be selected depending on the organic solvent used in the slurry.
  • a hydrocarbon (HC) sensor is selected for a hydrocarbon solvent
  • an alcohol sensor is selected for an alcohol solvent. Good.
  • the conveying path 14 may be provided with several support rollers that support the sheet 60 from below. In this way, it is possible to prevent the sheet 60 from being bent by gravity.
  • both surfaces of the sheet 160 are the slurry application surface 162 as shown in FIG. 7 and FIG. 8, if the support roller is provided, the slurry application surface 62 comes into contact with the support roller and unintended irregularities are generated. It is preferable not to provide a roller.
  • the infrared heater 36 is provided on the ceiling of the furnace body 12. However, the infrared heater 36 is omitted when the slurry application surface 62 of the sheet 60 is thin and can be sufficiently dried only with hot air. May be.
  • the outer periphery of the filament 38 is concentrically covered by the plurality of tubes 40 and 44 that function as a filter that absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m as the infrared heater 36. , 44 in which a cooling fluid flow path 48 that suppresses the rise in the surface temperature of the infrared heater 36 is formed, but other infrared heaters may be used.
  • the drying furnace 70 has a plurality of drying furnace units 10 connected in series, but the drying furnace unit 10 may be used alone as a drying furnace.
  • air is used as the atmospheric gas of each drying furnace unit 10, but an inert gas such as nitrogen may be used instead of air.
  • the hot air generator 26 is used as the air supply means.
  • the hot air generator 26 is not particularly limited to this.
  • a cold air generator that generates cold air of 40 to 50 ° C. may be used.
  • the present invention relates to an industry in which a sheet coated with a slurry needs to be dried, for example, a battery industry for producing an electrode coating film of a lithium ion secondary battery, or a ceramic for producing a ceramic laminate comprising two layers of ceramic sintered bodies It can be used in industry, film industry for manufacturing optical film products, and the like.
  • Drying furnace unit 12 furnace body, 12a front end face, 12b rear end face, 14 transport passage, 14a opening, 14b opening, 20 pipe structure, 21 first pipe part, 21a first vent, 22 second pipe part, 22a 2nd vent, 23 3rd pipe part, 24 4th pipe part, 26 hot air generator, 28 exhaust blower, 30 air direction switching valve, 31 1st valve, 32 2nd valve, 36 infrared heater, 38 filament, 38a Electrical wiring, 40 inner pipe, 42 heater body, 44 outer pipe, 46 cap, 46a wiring outlet, 46b fluid inlet / outlet, 48 flow path, 50 holder, 52 arched recess, 60 sheet, 62 slurry application surface, 70 drying Furnace, 72 rolls, 74 rolls, 110 drying furnace units, 160 shi DOO, 162 slurry coated surface, 170 drying oven, C controller, S sensors, U1 ⁇ U7 drying oven unit.

Abstract

A drying furnace unit (10) equipped with: a furnace body (12); a transport passage (14); a pipe structure (20) having first and second ventilation holes (21a, 22a); a hot breeze generation device (26); an exhaust blower (28); and a breeze direction switching valve (30). The breeze direction switching valve (30) is formed with first and second valves (31, 32). By switching the first and second valves (31, 32) the hot breeze generated by the hot breeze generation device (26) can be switched between flowing from the first ventilation hole (21a) to the second ventilation hole (22a) and flowing from the second ventilation hole (22a) to the first ventilation hole (21a).

Description

乾燥炉ユニット及び乾燥炉Drying furnace unit and drying furnace
 本発明は、乾燥炉ユニット及び乾燥炉に関する。 The present invention relates to a drying furnace unit and a drying furnace.
 従来より、スラリーが塗布されたシートを乾燥するための乾燥炉が知られている。例えば、特許文献1には、搬入口と搬出口とを有する乾燥ゾーンを所定方向に沿って4つ連なるように連結した乾燥炉が開示されている。各乾燥ゾーンの天板には、給気口と排気口とが設けられている。そして、各給気口には空気を強制的に供給する給気手段が取り付けられ、各排気口には空気を強制的に排出する排気手段が取り付けられている。この乾燥炉では、各乾燥ゾーンにおける空気の流れは、シートの搬送方向と同一かつ平行になるようにしている。この空気の流れは、シートの搬送方向と反対方向にしてもよいが、蒸発した有機溶剤の除去を効率的に行うためには、空気の流れをシートの搬送方向と同一かつ平行にすることが好ましいと説明されている。 Conventionally, a drying furnace for drying a sheet coated with slurry is known. For example, Patent Document 1 discloses a drying furnace in which four drying zones each having a carry-in port and a carry-out port are connected in a predetermined direction. The top plate of each drying zone is provided with an air supply port and an exhaust port. An air supply means for forcibly supplying air is attached to each air supply opening, and an exhaust means for forcibly discharging air is attached to each exhaust opening. In this drying furnace, the air flow in each drying zone is made to be the same and parallel to the sheet conveying direction. This air flow may be opposite to the sheet conveyance direction, but in order to efficiently remove the evaporated organic solvent, the air flow should be the same and parallel to the sheet conveyance direction. Preferred is described.
特開2008-302297号公報JP 2008-302297 A
 しかしながら、上述の乾燥炉では、各乾燥ゾーンにおいて空気の流れを自由に変更するという技術思想は記載も示唆もなされていない。すなわち、給気口には給気手段が取り付けられ、排気口には排気手段が取り付けられているため、空気の流れは給気口から排気口へ向かう方向に固定される。空気の流れを逆にするには、給気口に排気手段を取り付け、排気口に給気手段を取り付けることになるが、そうすると空気の流れは排気口から給気口へ向かう方向に固定される。このため、空気の流れを自由に変更することはできない。 However, the above-described drying furnace does not describe or suggest the technical idea of freely changing the air flow in each drying zone. In other words, since the air supply means is attached to the air supply port and the exhaust means is attached to the exhaust port, the air flow is fixed in the direction from the air supply port to the exhaust port. In order to reverse the air flow, the exhaust means is attached to the air supply port, and the air supply means is attached to the exhaust port. Then, the air flow is fixed in the direction from the exhaust port to the air supply port. . For this reason, the flow of air cannot be changed freely.
 本発明は、空気の流れを自由に変更することのできる乾燥炉ユニット及びその乾燥炉ユニットにより構成される乾燥炉を提供することを主目的とする。 The main object of the present invention is to provide a drying furnace unit capable of freely changing the air flow and a drying furnace constituted by the drying furnace unit.
 本発明の乾燥炉ユニットは、
 炉体と、
 前記炉体を所定方向に貫通するように設けられ、少なくとも片面にスラリーが塗布されたシートが前記所定方向に搬送される搬送通路と、
 前記シートのスラリー塗布面に沿って雰囲気ガスが流れるように前記搬送通路の両端にそれぞれ設けられた第1及び第2通気口と、
 前記第1通気口及び前記第2通気口に接続された送風供給手段と、
 前記第1通気口から前記第2通気口へ前記シートの塗布面に沿って前記送風供給手段からの送風を流すか、前記第2通気口から前記第1通気口へ前記シートの塗布面に沿って前記送風供給手段からの送風を流すかを切り替える風向切替手段と、
 を備えたものである。
The drying oven unit of the present invention is
A furnace body;
A conveyance path that is provided so as to penetrate the furnace body in a predetermined direction, and a sheet coated with slurry on at least one side is conveyed in the predetermined direction;
First and second vent holes respectively provided at both ends of the transport passage so that atmospheric gas flows along the slurry application surface of the sheet;
Air supply means connected to the first vent and the second vent;
Air from the air supply means is flowed from the first vent to the second vent along the application surface of the sheet, or along the application surface of the sheet from the second vent to the first vent. Wind direction switching means for switching whether to send air from the air supply means;
It is equipped with.
 この乾燥炉ユニットでは、風向切替手段を切り替えることにより、第1通気口から第2通気口へシートの塗布面に沿って送風供給手段からの送風を流すか、逆に、第2通気口から第1通気口へシートの塗布面に沿って送風供給手段からの送風を流すかを設定することができる。つまり、風向切替手段を切り替えることにより雰囲気ガスの流れを自由に変更することができる。 In this drying furnace unit, by switching the air direction switching means, the air is supplied from the air supply means along the coating surface of the sheet from the first vent to the second vent, or conversely, the second vent is connected to the second vent. It is possible to set whether to send the air from the air supply means to the one air vent along the sheet application surface. That is, the atmosphere gas flow can be freely changed by switching the wind direction switching means.
 なお、送風供給手段は、熱風(例えば60~150℃)を供給してもよいし、冷風(例えば常温とか40~50℃)を供給してもよい。また、雰囲気ガスとしては、特に限定するものではないが、例えば空気や不活性ガス(窒素など)が挙げられる。 Note that the air supply means may supply hot air (for example, 60 to 150 ° C.) or cold air (for example, room temperature or 40 to 50 ° C.). The atmosphere gas is not particularly limited, and examples thereof include air and an inert gas (such as nitrogen).
 本発明の乾燥炉ユニットは、前記搬送通路のうち前記シートの塗布面に対向する位置に設けられた赤外線ヒーターを備えることが好ましい。こうすれば、送風だけでスラリー塗布面を乾燥するのが困難な場合には、赤外線ヒーターを併用することにより短時間でスラリー塗布面を乾燥することができる。こうした赤外線ヒーターとしては、例えば、フィラメントの外周が3.5μmを超える波長の赤外線を吸収するフィルタとして機能する複数の管によって同心円状に覆われ、これらの複数の管の間に赤外線ヒーターの表面温度の上昇を抑制する冷却流体の流路を形成したもの(特許第4790092号参照)を用いてもよい。 It is preferable that the drying furnace unit of the present invention includes an infrared heater provided at a position facing the coating surface of the sheet in the conveyance path. In this way, when it is difficult to dry the slurry application surface only by air blowing, the slurry application surface can be dried in a short time by using an infrared heater together. As such an infrared heater, for example, the outer circumference of the filament is concentrically covered by a plurality of tubes functioning as a filter that absorbs infrared rays having a wavelength exceeding 3.5 μm, and the surface temperature of the infrared heater is between these tubes. In this case, a cooling fluid flow path that suppresses the increase in the temperature (see Japanese Patent No. 4790092) may be used.
 本発明の乾燥炉ユニットは、前記送風供給手段の風量を調節する風量調節手段を備えることが好ましい。こうすれば、送風の風向だけでなく風量も自由に変更することができる。 It is preferable that the drying furnace unit of the present invention includes air volume adjusting means for adjusting the air volume of the air supply means. If it carries out like this, not only the wind direction of ventilation but the air volume can be changed freely.
 本発明の乾燥炉ユニットにおいて、前記シートは、両面にスラリーが塗布されたものであり、前記第1及び第2通気口は、各スラリー塗布面に対応して設けられていてもよい。こうすれば、両面にスラリーが塗布されたシートを両面同時に乾燥することができるため、片方ずつ乾燥する場合に比べて時間が短縮される。その結果、生産効率が上がる。 In the drying furnace unit of the present invention, the sheet may have a slurry applied to both sides thereof, and the first and second vent holes may be provided corresponding to the respective slurry application surfaces. In this way, the sheet coated with the slurry on both sides can be dried at the same time, so the time is shortened compared to the case of drying one by one. As a result, production efficiency increases.
 本発明の乾燥炉は、上述した乾燥炉ユニットを、各搬送通路が前記所定方向に沿って連なるように複数連結したものである。 The drying furnace of the present invention is a unit in which a plurality of the above-described drying furnace units are connected such that each conveyance passage is continuous along the predetermined direction.
 この乾燥炉では、各乾燥炉ユニットの風向切替手段を切り替えることにより、各乾燥炉ユニットごとに雰囲気ガスの流れを自由に変更することができる。例えば、隣り合う乾燥炉ユニットの送風の流れを同じ方向にしたり逆方向にしたりすることができる。また、逆方向にする場合、送風の流れが衝突するようにしたり、送風の流れが離れていくようにしたりすることができる。 In this drying furnace, the flow of the atmosphere gas can be freely changed for each drying furnace unit by switching the air direction switching means of each drying furnace unit. For example, the flow of the air flow between adjacent drying furnace units can be the same direction or the reverse direction. Moreover, when making it a reverse direction, the flow of ventilation can be made to collide or the flow of ventilation can be separated.
 本発明の乾燥炉において、前記複数の乾燥炉ユニットのうち両端に配置された乾燥炉ユニットは、前記風向切替手段によって送風の風向が外から内へ向かうように設定されていてもよい。こうすれば、乾燥炉の一端に配置された乾燥炉ユニットの搬送通路からも他端に配置された乾燥炉ユニットの搬送通路からも送風が吹き出しにくくなる。その結果、乾燥炉が設置されている部屋の環境を良好に維持することができる。 In the drying furnace of the present invention, the drying furnace units arranged at both ends of the plurality of drying furnace units may be set so that the air direction of the air flow is directed from outside to inside by the air direction switching means. If it carries out like this, ventilation will become difficult to blow out from the conveyance path of the drying furnace unit arrange | positioned at the other end also from the conveyance path of the drying furnace unit arrange | positioned at one end of a drying furnace. As a result, the environment of the room in which the drying furnace is installed can be favorably maintained.
 本発明の乾燥炉は、各乾燥炉ユニットにおいてスラリーから蒸発した溶媒蒸発量を検出する検出手段と、連続する複数の乾燥炉ユニットについて前記溶媒蒸発量が所定値を超えたときには、該複数の乾燥炉ユニットの送風の風向が同じ方向となるよう前記風向切替機構を制御する制御手段と、を備えていてもよい。連続する複数の乾燥炉ユニットの溶媒蒸発量が所定値を超えている場合、それらの乾燥炉ユニットの送風の風向を逆向きにしたとすると、雰囲気ガスの流れが淀む箇所が生じ、そこに蒸発した溶媒が溜まってしまうことがある。しかし、ここでは、それらの乾燥炉ユニットの送風の風向を同じ方向となるように制御するため、蒸発した溶媒が溜まってしまう箇所が生じにくい。 The drying furnace of the present invention includes a detecting means for detecting the amount of solvent evaporated from the slurry in each drying furnace unit, and when the amount of solvent evaporation exceeds a predetermined value for a plurality of continuous drying furnace units, Control means for controlling the wind direction switching mechanism so that the wind direction of the air blown from the furnace unit is the same direction. If the solvent evaporation amount of a plurality of continuous drying furnace units exceeds a predetermined value, assuming that the air flow direction of those drying furnace units is reversed, a place where the flow of the atmospheric gas stagnates is generated and evaporated there The accumulated solvent may accumulate. However, since the airflow direction of these drying furnace units is controlled to be the same in this case, the location where the evaporated solvent accumulates is unlikely to occur.
乾燥炉ユニット10の縦断面図である。1 is a longitudinal sectional view of a drying furnace unit 10. 赤外線ヒーター36の縦断面図である。3 is a longitudinal sectional view of an infrared heater 36. FIG. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 乾燥炉ユニット10の風向切替の説明図であり、(a)は熱風が第1通気口21aから第2通気口22aへ流れるとき、(b)は熱風が第2通気口22aから第1通気口21aへ流れるときの説明図である。It is explanatory drawing of the wind direction switching of the drying furnace unit 10, (a) is when a hot air flows from the 1st vent 21a to the 2nd vent 22a, (b) is a 1st vent from the 2nd vent 22a. It is explanatory drawing when flowing to 21a. 乾燥炉70の説明図である。It is explanatory drawing of the drying furnace. 蒸発曲線と乾燥炉70を構成する各乾燥炉ユニットU1~U7の風向との関係を示す説明図である。FIG. 5 is an explanatory diagram showing a relationship between an evaporation curve and a wind direction of each of the drying furnace units U1 to U7 constituting the drying furnace 70. 乾燥炉ユニット110の縦断面図である。2 is a longitudinal sectional view of a drying furnace unit 110. FIG. 乾燥炉170の説明図である。It is explanatory drawing of the drying furnace 170. FIG. 乾燥炉70の変形例の説明図である。It is explanatory drawing of the modification of the drying furnace.
 次に、本発明の好適な一実施形態について、図面を用いて説明する。図1は乾燥炉ユニット10の縦断面図、図2は赤外線ヒーター36の縦断面図、図3は図2のA-A断面図である。 Next, a preferred embodiment of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of the drying furnace unit 10, FIG. 2 is a longitudinal sectional view of the infrared heater 36, and FIG. 3 is a sectional view taken along the line AA of FIG.
 乾燥炉ユニット10は、炉体12と、搬送通路14と、第1及び第2通気口21a,22aを有するパイプ構造体20と、熱風発生機26と、排気ブロワ28と、風向切替バルブ30と、赤外線ヒーター36とを備えている。 The drying furnace unit 10 includes a furnace body 12, a transfer passage 14, a pipe structure 20 having first and second vent holes 21a and 22a, a hot air generator 26, an exhaust blower 28, and a wind direction switching valve 30. And an infrared heater 36.
 炉体12は、略直方体に形成された断熱構造体であり、前端面12a及び後端面12bにそれぞれ開口14a,14bを有している。この炉体12は、前端面12aから後端面12bまでの長さが2~6mである。 The furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped shape, and has openings 14a and 14b on the front end face 12a and the rear end face 12b, respectively. The furnace body 12 has a length from the front end surface 12a to the rear end surface 12b of 2 to 6 m.
 搬送通路14は、開口14aから開口14bに至る通路であり、炉体12を水平方向に貫通している。片面にスラリーが塗布されたシート60は、この搬送通路14を通過していく。具体的には、シート60は、スラリーが塗布された面(スラリー塗布面)62を上にして、開口14aから搬入され、炉体12の内部を水平方向に進行し、開口14bから搬出される。 The conveyance passage 14 is a passage from the opening 14a to the opening 14b, and penetrates the furnace body 12 in the horizontal direction. The sheet 60 coated with the slurry on one side passes through the conveyance path 14. Specifically, the sheet 60 is loaded from the opening 14a with the surface (slurry coating surface) 62 on which the slurry is applied facing upward, travels in the furnace body 12 in the horizontal direction, and is unloaded from the opening 14b. .
 パイプ構造体20は、炉体12の天井のうち前端面12aに近い箇所で上下方向に貫通する第1パイプ部21と、炉体12の天井のうち後端面12bに近い箇所で上下方向に貫通する第2パイプ部22と、第1パイプ部21の上端と第2パイプ部22の上端とを繋ぐ第3パイプ部23と、第1パイプ部21の中間位置と第2パイプ部22の中間位置とを繋ぐ第4パイプ部24とを備えている。つまり、第3パイプ部23と第4パイプ部24は、第1パイプ部21と第2パイプ部22を並列的に繋ぐ通路となっている。第1パイプ部21は、炉体12の内部で屈曲されて下端近傍が水平方向を向くように加工されている。このため、第1パイプ部21の下端開口である第1通気口21aは、後端面12bに向かって開いた状態となっている。また、第2パイプ部22は、炉体の内部で屈曲された下端近傍が水平方向を向くように加工されている。このため、第2パイプ部22の下端開口である第2通気口22aは、前端面12aに向かって開いた状態となっている。そして、第1通気口21aと第2通気口22aとは、互いに向かい合うように設けられている。高さは異なっていても良いが、通常は同じになるように設けられる場合が多い。このため、第1及び第2通気口21a,22aの一方から流出した空気はもう一方へ流入するが、そのときの空気の流れはシート60のスラリー塗布面62に沿った方向となる。 The pipe structure 20 penetrates in the vertical direction at a location near the rear end surface 12b in the ceiling of the furnace body 12 and the first pipe portion 21 that penetrates in the vertical direction at a location near the front end surface 12a in the ceiling of the furnace body 12. The second pipe part 22 to be connected, the third pipe part 23 connecting the upper end of the first pipe part 21 and the upper end of the second pipe part 22, the intermediate position of the first pipe part 21 and the intermediate position of the second pipe part 22 And a fourth pipe portion 24 that connects the two. That is, the third pipe portion 23 and the fourth pipe portion 24 are passages that connect the first pipe portion 21 and the second pipe portion 22 in parallel. The first pipe portion 21 is bent so as to be bent in the furnace body 12 so that the vicinity of the lower end faces the horizontal direction. For this reason, the 1st vent 21a which is the lower end opening of the 1st pipe part 21 is the state opened toward the rear-end surface 12b. The second pipe portion 22 is processed so that the vicinity of the lower end bent inside the furnace body faces the horizontal direction. For this reason, the 2nd vent 22a which is the lower end opening of the 2nd pipe part 22 is the state opened toward the front end surface 12a. The first vent 21a and the second vent 22a are provided so as to face each other. The heights may be different, but are usually provided to be the same. For this reason, the air flowing out from one of the first and second vent holes 21a, 22a flows into the other, and the flow of the air at that time is in a direction along the slurry application surface 62 of the sheet 60.
 熱風発生機26は、第4パイプ部24に取り付けられており、熱風を第4パイプ部24の内部へ供給するものである。この熱風発生機26は、風量の調節が可能となっている。 The hot air generator 26 is attached to the fourth pipe portion 24 and supplies hot air to the inside of the fourth pipe portion 24. The hot air generator 26 can adjust the air volume.
 排気ブロワ28は、第3パイプ部23に取り付けられており、第3パイプ部23の内部の気体を外部へ排出する機能を有する。この排気ブロワ28も、風量の調節が可能となっている。 The exhaust blower 28 is attached to the third pipe portion 23 and has a function of discharging the gas inside the third pipe portion 23 to the outside. This exhaust blower 28 can also adjust the air volume.
 風向切替バルブ30は、第1パイプ部21と第4パイプ部24との繋ぎ目に設けられた第1バルブ31と、第2パイプ部22と第4パイプ部24との繋ぎ目に設けられた第2バルブ32とを備えている。第1バルブ31は、第1パイプ部21と第4パイプ部24とを連通すると共に第1パイプ部21と第3パイプ部23との連通を遮断する位置(図1の実線参照、給気位置という)と、第1パイプ部21と第4パイプ部24との連通を遮断すると共に第1パイプ部21と第3パイプ部23とを連通する位置(図1の点線参照、排気位置)のいずれかに切り替えられるものである。第2バルブ32は、第2パイプ部22と第4パイプ部24との連通を遮断すると共に第2パイプ部22と第3パイプ部23とを連通する位置(図1の実線参照、排気位置という)と、第2パイプ部22と第4パイプ部24とを連通すると共に第2パイプ部22と第3パイプ部23との連通を遮断する位置(図1の点線参照、給気位置という)のいずれかに切り替えられるものである。各バルブ31,32は、手動で切り替えるようにしてもよいし、電磁ソレノイドなどを利用して電気的に切り替えるようにしてもよい。さらには、図示はしていないが、各パイプ間には排気の一部を給気の一部に補填するような循環用の配管系統が付加されてもよい。 The air direction switching valve 30 is provided at the joint between the first valve 31 provided at the joint between the first pipe part 21 and the fourth pipe part 24 and the second pipe part 22 and the fourth pipe part 24. And a second valve 32. The first valve 31 communicates the first pipe portion 21 and the fourth pipe portion 24 and at the same time shuts off the communication between the first pipe portion 21 and the third pipe portion 23 (see the solid line in FIG. 1, the air supply position). Any of the positions where the communication between the first pipe portion 21 and the fourth pipe portion 24 is blocked and the first pipe portion 21 and the third pipe portion 23 are communicated (see the dotted line in FIG. 1, exhaust position). Can be switched. The second valve 32 shuts off the communication between the second pipe part 22 and the fourth pipe part 24 and at the same time communicates the second pipe part 22 and the third pipe part 23 (refer to the solid line in FIG. 1, referred to as the exhaust position). ) And the second pipe portion 22 and the fourth pipe portion 24 and the position where the communication between the second pipe portion 22 and the third pipe portion 23 is blocked (refer to the dotted line in FIG. 1, referred to as the air supply position). It can be switched to either. The valves 31 and 32 may be switched manually, or may be switched electrically using an electromagnetic solenoid or the like. Further, although not shown, a circulation piping system may be added between the pipes so as to supplement a part of the exhaust with a part of the supply air.
 赤外線ヒーター36は、炉体12の天井近くに複数取り付けられている。各赤外線ヒーター36の長手方向は、搬送方向と直交するように取り付けられている。赤外線ヒーター36は、図2及び図3に示すように、フィラメント38を内管40が囲むように形成されたヒーター本体42と、このヒーター本体42を囲むように形成された外管44と、外管44の両端に気密に嵌め込まれた有底筒状のキャップ46と、ヒーター本体42と外管44との間に形成され冷却流体が流通可能な流路48とを備えている。フィラメント38は、700~1200℃に通電加熱され、波長が3μm付近にピークを持つ赤外線を放射する。このフィラメント38に接続された電気配線38aは、キャップ46に設けられた配線引出部46aを介して気密に外部へ引き出されている。内管40は、石英ガラスやホウ珪酸クラウンガラスなどで作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルタとして機能する。ヒーター本体42は、両端がキャップ46の内部に配置されたホルダー50に支持されている。外管44は、内管40と同様、石英ガラスやホウ珪酸クラウンガラスなどで作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルタとして機能する。各キャップ46は、流体出入口46bを有している。流路48は、一方の流体出入口46bから他方の流体出入口46bへ冷却流体が流れるようになっている。流路48を流れる冷却流体は、例えば空気や不活性ガスなどであり、内管40と外管44に接触して熱を奪うことにより各管40,44を冷却する。こうした赤外線ヒーター36は、フィラメント38から波長が3μm付近にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線は内管40や外管44を通過して搬送通路を通過するシート60のスラリー塗布面62に照射される。この波長の赤外線は、シート60のスラリー塗布面62に含まれる有機溶剤の水素結合を切断する能力に優れるといわれており、効率的に有機溶剤を蒸発させることができる。一方、内管40や外管44は、3.5μmを超える波長の赤外線を吸収するが、流路48を流れる冷却流体によって冷却されるため、スラリー塗布面62から蒸発する有機溶剤の着火点未満の温度に維持することが可能である。 A plurality of infrared heaters 36 are attached near the ceiling of the furnace body 12. The longitudinal direction of each infrared heater 36 is attached so as to be orthogonal to the transport direction. As shown in FIGS. 2 and 3, the infrared heater 36 includes a heater body 42 formed so that the inner tube 40 surrounds the filament 38, an outer tube 44 formed so as to surround the heater body 42, and an outer tube 44. A bottomed cylindrical cap 46 that is airtightly fitted to both ends of the tube 44, and a flow path 48 that is formed between the heater body 42 and the outer tube 44 and through which the cooling fluid can flow. The filament 38 is energized and heated to 700 to 1200 ° C., and emits infrared rays having a peak at a wavelength around 3 μm. The electrical wiring 38 a connected to the filament 38 is led out to the outside airtightly through a wiring lead-out portion 46 a provided in the cap 46. The inner tube 40 is made of quartz glass, borosilicate crown glass, or the like, and functions as a filter that passes infrared rays having a wavelength of 3.5 μm or less and absorbs infrared rays having a wavelength exceeding 3.5 μm. The heater body 42 is supported by holders 50 arranged at both ends inside the cap 46. As with the inner tube 40, the outer tube 44 is made of quartz glass, borosilicate crown glass, or the like, and passes through infrared rays having a wavelength of 3.5 μm or less and absorbs infrared rays having a wavelength exceeding 3.5 μm. Function. Each cap 46 has a fluid inlet / outlet 46b. The flow path 48 is configured such that the cooling fluid flows from one fluid inlet / outlet 46b to the other fluid inlet / outlet 46b. The cooling fluid flowing through the flow channel 48 is, for example, air or an inert gas, and cools each of the tubes 40 and 44 by contacting the inner tube 40 and the outer tube 44 to remove heat. In the infrared heater 36, when infrared light having a peak near 3 μm is emitted from the filament 38, infrared light having a wavelength of 3.5 μm or less passes through the inner tube 40 and the outer tube 44 and passes through the conveyance path. The slurry is applied to the slurry application surface 62 of the sheet 60. Infrared light having this wavelength is said to be excellent in the ability to break hydrogen bonds of the organic solvent contained in the slurry application surface 62 of the sheet 60, and can efficiently evaporate the organic solvent. On the other hand, the inner tube 40 and the outer tube 44 absorb infrared rays having a wavelength exceeding 3.5 μm, but are cooled by the cooling fluid flowing through the flow path 48, and thus are less than the ignition point of the organic solvent evaporating from the slurry application surface 62. It is possible to maintain the temperature.
 こうした赤外線ヒーター36は、炉体12の天井近くの反射板に設けられたアーチ状窪み部52の内部空間に配置されている。アーチ状窪み部52は、赤外線ヒーター36と同様、搬送方向と直交する方向に延びるように形成され、断面形状がパラボラ、楕円の弧、円弧等の曲線形状となっており、その焦点もしくは中心位置に赤外線ヒーター36が配置されている。その結果、赤外線ヒーター36から発せられた3.5μm以下の波長の赤外線は、アーチ状窪み部52で反射され、効率的にスラリー塗布面62へ照射される。 Such an infrared heater 36 is disposed in an internal space of an arch-shaped recess 52 provided in a reflector near the ceiling of the furnace body 12. Similarly to the infrared heater 36, the arch-shaped recess 52 is formed so as to extend in a direction orthogonal to the conveyance direction, and has a cross-sectional shape that is a curved shape such as a parabola, an elliptical arc, or an arc, and has a focal point or a center position. Infrared heater 36 is arranged. As a result, infrared light having a wavelength of 3.5 μm or less emitted from the infrared heater 36 is reflected by the arch-shaped recess 52 and efficiently irradiated onto the slurry application surface 62.
 次に、乾燥炉ユニット10の風向切替について説明する。図4は乾燥炉ユニット10の風向切替の説明図であり、(a)は熱風が第1通気口21aから第2通気口22aへ流れるとき、(b)は熱風が第2通気口22aから第1通気口21aへ流れるときの説明図である。 Next, the air direction switching of the drying furnace unit 10 will be described. FIG. 4 is an explanatory diagram of the air direction switching of the drying furnace unit 10, (a) shows when hot air flows from the first vent 21 a to the second vent 22 a, and (b) shows hot air from the second vent 22 a. It is explanatory drawing when flowing to 1 vent 21a.
 熱風を第1通気口21aから第2通気口22aへ流す場合、図4(a)に示すように、第1バルブ31を給気位置、第2バルブ32を排気位置にセットする。具体的には、第1バルブ31を、第1パイプ部21と第4パイプ部24とを連通すると共に第1パイプ部21と第3パイプ部23との連通を遮断する位置にセットする。また、第2バルブ32を、第2パイプ部22と第4パイプ部24との連通を遮断すると共に第2パイプ部22と第3パイプ部23とを連通する位置にセットする。すると、熱風発生機26から第4パイプ部24へ供給された熱風は、第1パイプ部21を通って第1通気口21aから吹き出される。一方、排気ブロワ28は、第2通気口22a、第2パイプ部22を介して第3パイプ部23から気体を排気する。その結果、炉体12の内部には、熱風が第1通気口21aから第2通気口22aへ流れる。 When flowing hot air from the first vent 21a to the second vent 22a, as shown in FIG. 4A, the first valve 31 is set to the air supply position and the second valve 32 is set to the exhaust position. Specifically, the first valve 31 is set at a position where the first pipe portion 21 and the fourth pipe portion 24 communicate with each other and the communication between the first pipe portion 21 and the third pipe portion 23 is blocked. Further, the second valve 32 is set at a position where the communication between the second pipe portion 22 and the fourth pipe portion 24 is blocked and the second pipe portion 22 and the third pipe portion 23 are communicated. Then, the hot air supplied from the hot air generator 26 to the fourth pipe part 24 is blown out from the first vent 21 a through the first pipe part 21. On the other hand, the exhaust blower 28 exhausts gas from the third pipe portion 23 via the second vent 22 a and the second pipe portion 22. As a result, hot air flows into the furnace body 12 from the first vent 21a to the second vent 22a.
 熱風を第2通気口22aから第1通気口21aへ流す場合、図4(b)に示すように、第2バルブ32を給気位置、第1バルブ31を排気位置にセットする。具体的には、第2バルブ32を、第2パイプ部22と第4パイプ部24とを連通すると共に第2パイプ部22と第3パイプ部23との連通を遮断する位置にセットする。また、第1バルブ31を、第1パイプ部21と第4パイプ部24との連通を遮断すると共に第1パイプ部21と第3パイプ部23とを連通する位置にセットする。すると、熱風発生機26から第4パイプ部24へ供給された熱風は、第2パイプ部22を通って第2通気口22aから吹き出される。一方、排気ブロワ28は、第1通気口21a、第1パイプ部21を介して第3パイプ部23から気体を排気する。その結果、炉体12の内部には、熱風が第2通気口22aから第1通気口21aへ流れる。 When flowing hot air from the second vent 22a to the first vent 21a, as shown in FIG. 4 (b), the second valve 32 is set to the supply position and the first valve 31 is set to the exhaust position. Specifically, the second valve 32 is set at a position where the second pipe portion 22 and the fourth pipe portion 24 communicate with each other and the communication between the second pipe portion 22 and the third pipe portion 23 is blocked. Further, the first valve 31 is set at a position where the communication between the first pipe part 21 and the fourth pipe part 24 is blocked and the first pipe part 21 and the third pipe part 23 are communicated. Then, the hot air supplied from the hot air generator 26 to the fourth pipe portion 24 is blown out from the second vent 22 a through the second pipe portion 22. On the other hand, the exhaust blower 28 exhausts gas from the third pipe part 23 via the first vent 21 a and the first pipe part 21. As a result, hot air flows into the furnace body 12 from the second vent 22a to the first vent 21a.
 次に、こうした乾燥炉ユニット10を、各搬送通路14が水平方向に沿って一直線に連なるように複数連結した乾燥炉70について説明する。図5は乾燥炉70の説明図、図6は蒸発曲線と乾燥炉70を構成する各乾燥炉ユニット10の風向との関係を示す説明図である。 Next, a description will be given of a drying furnace 70 in which a plurality of such drying furnace units 10 are connected so that the transport passages 14 are connected in a straight line along the horizontal direction. FIG. 5 is an explanatory view of the drying furnace 70, and FIG. 6 is an explanatory view showing the relationship between the evaporation curve and the wind direction of each drying furnace unit 10 constituting the drying furnace 70.
 乾燥炉70は、図5に示すように、隣接する乾燥炉ユニット10につき、一方の前端面12aと他方の後端面12bとをボルトにより連結したものである。このとき、一方の前端面12aの開口14aと他方の後端面12bの開口14bとは、図示しないパッキンにより気密が保持されている。パッキンの材質は、有機溶剤に耐えられるものであればよく、例えばポリテトラフルオロエチレンなどが挙げられる。パッキン18のシール性がよければ、ボルト連結を省略してもよい。また、乾燥炉70は、乾燥炉設置室に設置されているが、排気ブロワ28は、乾燥炉設置室の外部に設置されていることもある。室内に設置されていたとしてもブロア出口と建物外部への排気口はダクトで接続されるため、排気ブロワ28からの排気が乾燥炉設置室に放出されることはない。 As shown in FIG. 5, the drying furnace 70 is formed by connecting one front end face 12 a and the other rear end face 12 b with bolts for adjacent drying furnace units 10. At this time, the opening 14a of one front end surface 12a and the opening 14b of the other rear end surface 12b are kept airtight by a packing (not shown). The material of the packing may be any material that can withstand an organic solvent, and examples thereof include polytetrafluoroethylene. If the sealing property of the packing 18 is good, the bolt connection may be omitted. Moreover, although the drying furnace 70 is installed in the drying furnace installation chamber, the exhaust blower 28 may be installed outside the drying furnace installation chamber. Even if installed in the room, the blower outlet and the exhaust port to the outside of the building are connected by a duct, so that the exhaust from the exhaust blower 28 is not released into the drying furnace installation room.
 いま、図6のように、7つの乾燥炉ユニット10を連結して乾燥炉70を構成したとする。便宜上、各乾燥炉ユニット10を左から順に乾燥炉ユニットU1,乾燥炉ユニットU2,……,乾燥炉ユニットU7と称することとする。シート60は、乾燥炉70の左端に配置されたロール72から巻き外され、乾燥炉70に搬入される直前に図示しないコーターによって上面にスラリーが塗布され、乾燥炉ユニットU1の開口14aを通って乾燥炉70内へ搬入される。その後、シート60は、各乾燥炉ユニットU1~U7を通過することによりスラリー塗布面62から有機溶剤が蒸発し、その蒸発した有機溶剤が排気ブロワ28によって外部へ排出され、最終的に乾燥炉ユニットU7の開口14bから搬出され、乾燥炉70の右端に設置されたロール74に巻き取られる。スラリー塗布面62から有機溶剤が蒸発するのは、赤外線ヒーター36から照射される赤外線と熱風発生機26から供給される熱風の作用による。 Now, as shown in FIG. 6, it is assumed that a drying furnace 70 is configured by connecting seven drying furnace units 10. For convenience, each drying furnace unit 10 will be referred to as a drying furnace unit U1, a drying furnace unit U2,. The sheet 60 is unwound from the roll 72 disposed at the left end of the drying furnace 70, and immediately before being loaded into the drying furnace 70, the slurry is applied to the upper surface by a coater (not shown) and passes through the opening 14a of the drying furnace unit U1. It is carried into the drying furnace 70. Thereafter, the sheet 60 passes through each of the drying furnace units U1 to U7, whereby the organic solvent evaporates from the slurry application surface 62, and the evaporated organic solvent is discharged to the outside by the exhaust blower 28, and finally the drying furnace unit. It is carried out from the opening 14b of U7 and wound around a roll 74 installed at the right end of the drying furnace 70. The organic solvent evaporates from the slurry application surface 62 due to the action of infrared rays irradiated from the infrared heater 36 and hot air supplied from the hot air generator 26.
 ところで、予めこうした乾燥炉70を用いてスラリー塗布面62を有するシート60を乾燥した場合の数値シミュレーションを行い、得られた蒸発曲線が図6に示すプロファイルを持つものだったとする。この蒸発曲線は、シート60が乾燥炉ユニットU1に搬入された直後はシート温度が十分上昇していないため有機溶剤の蒸発量が少なく、その後、乾燥炉ユニットU2から乾燥炉ユニットU4までは蒸発量が非常に大きくなり、乾燥炉ユニットU5以降では有機溶剤のほぼ全量が蒸発してしまった後であるため蒸発量が少なくなっている。この蒸発曲線において、点線で示した蒸発量の閾値を超えている複数の乾燥炉ユニットU2~U4では、熱風の風向をすべて同じに揃えておかないと、溶剤溜まりが発生するおそれがある。すなわち、乾燥炉ユニットU2~U4において熱風の風向が他のユニットと異なるものが存在した場合、その熱風の風向が異なる箇所(例えば熱風同士が衝突する箇所もしくは離れていく箇所)で空気の流れが淀む箇所が生じ、そこに蒸発した溶媒が溜まってしまうことがある。しかし、ここでは、それらの乾燥炉ユニットの熱風の風向を同じ方向となるようにするため、蒸発した溶媒が溜まってしまう箇所が生じにくい。通常設計において、各ユニットを独立で考え、その範囲内で揮発溶剤を希釈するために必要な熱風量を確保するという方針が立てられている。それを基本とする場合でも、溶剤の蒸発量が大きいエリアでは、上記のように各ユニットの給排気に連携をもたせる機構を用いて、より安全性を高めることが望ましい。 Incidentally, it is assumed that a numerical simulation is performed in advance when the sheet 60 having the slurry application surface 62 is dried using such a drying furnace 70, and the obtained evaporation curve has a profile shown in FIG. This evaporation curve shows that the sheet temperature does not rise sufficiently immediately after the sheet 60 is carried into the drying furnace unit U1, so the amount of evaporation of the organic solvent is small, and thereafter the evaporation amount from the drying furnace unit U2 to the drying furnace unit U4. Is very large, and after the drying furnace unit U5, since almost all of the organic solvent has evaporated, the amount of evaporation is small. In this evaporation curve, in a plurality of drying furnace units U2 to U4 that exceed the evaporation amount threshold value indicated by the dotted line, if all the hot air directions are not the same, there is a possibility that a solvent pool will occur. That is, when there are air dryers in which the direction of hot air is different from that of other units in the drying furnace units U2 to U4, the flow of air is different at locations where the directions of the hot air are different (for example, where the hot air collides or moves away). A hazy spot may occur and the evaporated solvent may accumulate there. However, here, in order to make the direction of the hot air of these drying furnace units be the same direction, the location where the evaporated solvent accumulates is unlikely to occur. In normal design, each unit is considered independently, and the policy is to ensure the amount of hot air necessary to dilute the volatile solvent within that range. Even in this case, in an area where the amount of solvent evaporation is large, it is desirable to improve safety by using a mechanism that links the supply and exhaust of each unit as described above.
 また、乾燥炉70の両端に位置する乾燥炉ユニットU1,U7では、熱風の風向を外から内へ向かう方向にしている。このため、乾燥炉ユニットU1の開口14aからも乾燥炉ユニットU7の開口14bからも熱風が吹き出しにくくなる。この場合、両者の風向きは逆となるため、必ず炉内で1点は風向きが対向する接続点が生ずることになるが、その接続点は、上述したように溶剤蒸発量の小さい位置に設定されることが望ましい。しかし、塗布されるスラリーによって蒸発曲線は異なるため、当該スラリーの種類に応じて、前記接続点を適切な位置に変動させる必要が生ずる。本発明においては、各乾燥炉ユニットごとに風向きを変更できるため、そうした操作が可能となる。 Further, in the drying furnace units U1 and U7 located at both ends of the drying furnace 70, the direction of the hot air is set in a direction from the outside to the inside. For this reason, it becomes difficult for hot air to blow out from the opening 14a of the drying furnace unit U1 and from the opening 14b of the drying furnace unit U7. In this case, since the wind directions of the two are reversed, there is always a connection point where the wind direction is opposite in the furnace, but the connection point is set at a position where the amount of solvent evaporation is small as described above. It is desirable. However, since the evaporation curve differs depending on the slurry to be applied, it is necessary to change the connection point to an appropriate position according to the type of the slurry. In the present invention, since the direction of wind can be changed for each drying furnace unit, such an operation becomes possible.
 なお、スラリー塗布面62を有するシート60としては、特に限定するものではないが、例えば、リチウムイオン二次電池用の電極を塗布したシートを用いてもよい。こうしたシートとしては、正極活物質(又は負極活物質)をバインダーと導電材と有機溶剤と共に混練した電極材スラリーを、アルミニウムや銅等の金属製のシート上に塗布したものなどが挙げられる。あるいは、未焼成セラミックの成形体を塗布した焼成セラミック製のシートを用いてもよい。こうしたシートとしては、セラミック粒子をバインダーと水(又は有機溶剤)に混練したスラリーを、焼成セラミックス製のシート上に塗布したものなどが挙げられる。 The sheet 60 having the slurry application surface 62 is not particularly limited, and for example, a sheet coated with an electrode for a lithium ion secondary battery may be used. Examples of such a sheet include a sheet obtained by applying an electrode material slurry obtained by kneading a positive electrode active material (or a negative electrode active material) together with a binder, a conductive material, and an organic solvent onto a metal sheet such as aluminum or copper. Or you may use the sheet | seat made from the baking ceramic which apply | coated the unfired ceramic molded object. Examples of such sheets include those obtained by applying a slurry obtained by kneading ceramic particles in a binder and water (or an organic solvent) onto a sheet made of fired ceramics.
 以上説明した本実施形態の乾燥炉ユニット10によれば、風向切替バルブ30を切り替えることにより、第1通気口21aから第2通気口22aへシート60のスラリー塗布面62に沿って熱風を流すか、逆に、第2通気口22aから第1通気口21aへシート60のスラリー塗布面62に沿って熱風を流すかを設定することができる。つまり、風向切替バルブ30を切り替えることにより空気の流れを自由に変更することができる。 According to the drying furnace unit 10 of the present embodiment described above, whether hot air is caused to flow along the slurry application surface 62 of the sheet 60 from the first vent 21a to the second vent 22a by switching the air direction switching valve 30. On the contrary, it can be set whether hot air is made to flow along the slurry application surface 62 of the sheet 60 from the second vent 22a to the first vent 21a. That is, the air flow can be freely changed by switching the wind direction switching valve 30.
 また、赤外線ヒーター36を備えているため、熱風だけでスラリー塗布面62を乾燥するのが困難な場合には、赤外線ヒーター36を併用することにより短時間でスラリー塗布面62を乾燥することができる。特に、赤外線ヒーター36は、3.5μm以下の波長の赤外線を照射すると共にヒーター表面温度を有機溶剤の着火点未満に低く維持するため、効率よく有機溶剤を蒸発することができるし、有機溶剤が着火するおそれもない。 Moreover, since the infrared heater 36 is provided, when it is difficult to dry the slurry application surface 62 only with hot air, the slurry application surface 62 can be dried in a short time by using the infrared heater 36 together. . In particular, since the infrared heater 36 irradiates infrared rays having a wavelength of 3.5 μm or less and keeps the heater surface temperature below the ignition point of the organic solvent, the organic solvent can be efficiently evaporated, and the organic solvent ignites. There is no risk of doing so.
 更に、熱風発生機26や排気ブロワ28は風量の調節が可能なため、熱風の風向だけでなく風量も自由に変更することができる。 Furthermore, since the hot air generator 26 and the exhaust blower 28 can adjust the air volume, not only the direction of the hot air but also the air volume can be freely changed.
 更にまた、乾燥炉70は、乾燥炉ユニットU1~U7を、各搬送通路がシート60の搬送方向に沿って連なるように複数連結したものであるため、各乾燥炉ユニットU1~U7の風向切替バルブ30を切り替えることにより、各乾燥炉ユニットU1~U7ごとに空気の流れを自由に変更することができる。例えば、隣り合う乾燥炉ユニットの熱風の流れを同じ方向にしたり逆方向にしたりすることができる。また、逆方向にする場合、熱風の流れが衝突するようにしたり、熱風の流れが離れていくようにしたりすることができる。蒸発曲線に基づいて溶媒だまりが生じないように各乾燥炉ユニットU1~U7の熱風の流れを調整することもできる。 Furthermore, since the drying furnace 70 is formed by connecting a plurality of drying furnace units U1 to U7 so that each conveyance path is continuous along the conveyance direction of the sheet 60, the wind direction switching valve of each drying furnace unit U1 to U7. By switching 30, the air flow can be freely changed for each of the drying furnace units U 1 to U 7. For example, the flow of hot air between adjacent drying furnace units can be in the same direction or in the reverse direction. Moreover, when making it a reverse direction, the flow of a hot air can be made to collide, or the flow of a hot air can be separated. Based on the evaporation curve, the flow of hot air in each of the drying furnace units U1 to U7 can be adjusted so as not to cause a pool of solvents.
 そしてまた、乾燥炉70のうち両端に配置された乾燥炉ユニットU1,U7は熱風の風向が外から内へ向かうように設定されているため、乾燥炉ユニットU1の搬送通路14からも乾燥炉ユニットU7の搬送通路14からも熱風が吹き出しにくくなる。その結果、乾燥炉70が設置されている乾燥炉設置室の環境を良好に維持することができる。 Moreover, since the drying furnace units U1 and U7 arranged at both ends of the drying furnace 70 are set so that the direction of the hot air is directed from the outside to the inside, the drying furnace unit U1 is also fed from the transport passage 14 of the drying furnace unit U1. Hot air is less likely to be blown out from the U7 conveyance path 14. As a result, the environment of the drying furnace installation chamber in which the drying furnace 70 is installed can be favorably maintained.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、片面にスラリーを塗布したシート60を乾燥する乾燥炉ユニット10及び乾燥炉70を例示したが、図7及び図8に示すように、両面にスラリーを塗布したシート160を乾燥する乾燥炉ユニット110及び乾燥炉170としてもよい。なお、乾燥炉ユニット110及び乾燥炉170のうち、上述した乾燥炉ユニット10及び乾燥炉70と同じ構成要素について同じ符号を付し、その説明を省略する。図7に示す乾燥炉ユニット110は、両面がスラリー塗布面162であるシート160を乾燥するのに用いられるものである。この乾燥炉ユニット110は、第1及び第2通気口21a,22aを有するパイプ構造体20と、熱風発生機26と、排気ブロワ28と、風向切替バルブ30と、赤外線ヒーター36とを、各スラリー塗布面162に対応して設けたものである。また、風向切替については、上述した実施形態と同様、風向切替バルブ30の第1及び第2バルブ31,32によって行うことができる。 For example, in the above-described embodiment, the drying furnace unit 10 and the drying furnace 70 that dry the sheet 60 coated with the slurry on one side are exemplified. However, as shown in FIGS. 7 and 8, the sheet 160 coated with the slurry on both sides. The drying oven unit 110 and the drying oven 170 may be used. In addition, the same code | symbol is attached | subjected about the same component as the drying furnace unit 10 and the drying furnace 70 mentioned above among the drying furnace unit 110 and the drying furnace 170, and the description is abbreviate | omitted. The drying furnace unit 110 shown in FIG. 7 is used for drying the sheet 160 whose both surfaces are the slurry application surfaces 162. The drying furnace unit 110 includes a pipe structure 20 having first and second vent holes 21a and 22a, a hot air generator 26, an exhaust blower 28, a wind direction switching valve 30, and an infrared heater 36, and each slurry. It is provided corresponding to the coating surface 162. Further, the wind direction switching can be performed by the first and second valves 31 and 32 of the wind direction switching valve 30 as in the above-described embodiment.
 図8に示す乾燥炉170は、こうした乾燥炉ユニット110を、各搬送通路14が水平方向に沿って一直線に連なるように複数連結したものである。連結方法は、乾燥炉70と同様である。ここでも、便宜上、各乾燥炉ユニット110を左から順に乾燥炉ユニットU1,乾燥炉ユニットU2,……,乾燥炉ユニットU7と称することとする。シート160は、乾燥炉170の左端に配置されたロール72から巻き外され、乾燥炉70に搬入される直前に図示しないローターによって上下両面にスラリーが塗布され、乾燥炉ユニットU1の開口14aを通って乾燥炉70内へ搬入される。その後、シート160は、各乾燥炉ユニットU1~U7を通過することにより上下のスラリー塗布面162から有機溶剤が蒸発し、その蒸発した有機溶剤が各排気ブロワ28によって外部へ排出され、最終的に乾燥炉ユニットU7の開口14bから搬出され、乾燥炉170の右端に設置されたロール74に巻き取られる。この場合も、上述した乾燥炉70と同様、数値シミュレーションによって得られた蒸発曲線に基づいて各乾燥ユニットU1~U7での熱風の風向を決定する。また、乾燥炉170の両端に位置する乾燥炉ユニットU1,U7では、熱風の風向を外から内へ向かう方向に設定することにより、乾燥炉ユニットU1の開口14aからも乾燥炉ユニットU7の開口14bからも熱風が吹き出しにくくする。以上の乾燥炉ユニット110及び乾燥炉170によれば、両面にスラリーが塗布されたシート160を両面同時に乾燥することができるため、片方ずつ乾燥する場合に比べて時間が短縮される。その結果、生産効率が上がる。 The drying furnace 170 shown in FIG. 8 is a unit in which a plurality of such drying furnace units 110 are connected so that each conveyance passage 14 is connected in a straight line along the horizontal direction. The connection method is the same as that of the drying furnace 70. Also here, for convenience, each drying furnace unit 110 is referred to as a drying furnace unit U1, a drying furnace unit U2,..., And a drying furnace unit U7 in order from the left. The sheet 160 is unwound from the roll 72 disposed at the left end of the drying furnace 170, and immediately before being loaded into the drying furnace 70, slurry is applied to both the upper and lower surfaces by a rotor (not shown) and passes through the opening 14a of the drying furnace unit U1. Then, it is carried into the drying furnace 70. Thereafter, the sheet 160 passes through each of the drying furnace units U1 to U7, whereby the organic solvent evaporates from the upper and lower slurry application surfaces 162, and the evaporated organic solvent is discharged to the outside by each exhaust blower 28. It is unloaded from the opening 14b of the drying furnace unit U7 and wound around a roll 74 installed at the right end of the drying furnace 170. Also in this case, similarly to the drying furnace 70 described above, the direction of hot air in each of the drying units U1 to U7 is determined based on the evaporation curve obtained by numerical simulation. Further, in the drying furnace units U1 and U7 located at both ends of the drying furnace 170, by setting the direction of the hot air in the direction from the outside to the inside, the opening 14b of the drying furnace unit U7 is also set from the opening 14a of the drying furnace unit U1. The hot air is difficult to blow out. According to the drying furnace unit 110 and the drying furnace 170 described above, the sheet 160 having both surfaces coated with the slurry can be simultaneously dried, so that the time is shortened as compared with the case where each sheet is dried one by one. As a result, production efficiency increases.
 上述した実施形態では、蒸発曲線に基づいて各乾燥炉ユニットU1~U7の熱風の風向を決定したが、シート60を乾燥している最中に熱風の風向を変更してもよい。この場合の風向の変更は手動で行ってもよいし、自動で行ってもよい。自動で風向の変更を行う場合の一例を、図9に基づいて以下に説明する。乾燥炉70を構成する各乾燥炉ユニット10に、スラリー塗布面62から蒸発した溶媒蒸発量を検出するセンサSを取り付ける。また、第1及び第2バルブ31,32としてソレノイドバルブを採用する。更に、コントローラーCを準備し、コントローラーCの入力ポートに各センサSを接続し、出力ポートに第1及び第2バルブ31,32を接続する。これにより、コントローラーCには、各センサSから出力される溶媒蒸発量に関する信号が入力される。また、コントローラーCからは、第1及び第2バルブ31,32へ駆動信号が出力される。そして、コントローラーCは、連続する複数の乾燥炉ユニットについて溶媒蒸発量が予め定めた閾値を超えたか否かを判定し、超えたときには、該複数の乾燥炉ユニットの熱風の風向が同じ方向となるよう第1及び第2バルブ31,32を制御する。連続する複数の乾燥炉ユニットの溶媒蒸発量が閾値を超えている場合、それらの乾燥炉ユニットの熱風の風向を逆向きにしたとすると、空気の流れが淀む箇所が生じ、そこに蒸発した溶媒が溜まってしまうことがある。しかし、ここでは、それらの乾燥炉ユニットの熱風の風向を同じ方向となるように制御するため、蒸発した溶媒が溜まってしまう箇所が生じにくい。なお、センサSは、スラリーに用いられている有機溶剤に応じて機種を選択すればよく、例えば炭化水素系溶媒であればハイドロカーボン(HC)センサ、アルコール溶媒であればアルコールセンサを選択すればよい。 In the embodiment described above, the hot air direction of each of the drying furnace units U1 to U7 is determined based on the evaporation curve, but the hot air direction may be changed while the sheet 60 is being dried. In this case, the wind direction may be changed manually or automatically. An example of the case where the wind direction is automatically changed will be described below with reference to FIG. A sensor S for detecting the amount of solvent evaporation evaporated from the slurry application surface 62 is attached to each drying furnace unit 10 constituting the drying furnace 70. In addition, solenoid valves are employed as the first and second valves 31 and 32. Further, the controller C is prepared, each sensor S is connected to the input port of the controller C, and the first and second valves 31 and 32 are connected to the output port. As a result, a signal related to the amount of solvent evaporation output from each sensor S is input to the controller C. Further, a drive signal is output from the controller C to the first and second valves 31 and 32. Then, the controller C determines whether or not the solvent evaporation amount exceeds a predetermined threshold value for a plurality of continuous drying furnace units, and when it exceeds, the direction of hot air of the plurality of drying furnace units becomes the same direction. The first and second valves 31 and 32 are controlled. If the amount of solvent evaporation in a plurality of continuous drying furnace units exceeds the threshold, assuming that the direction of hot air in those drying furnace units is reversed, a location where the air flow stagnates occurs and the solvent evaporated there May accumulate. However, here, since the direction of the hot air of these drying furnace units is controlled to be the same direction, the location where the evaporated solvent accumulates hardly occurs. The sensor S may be selected depending on the organic solvent used in the slurry. For example, a hydrocarbon (HC) sensor is selected for a hydrocarbon solvent, and an alcohol sensor is selected for an alcohol solvent. Good.
 上述した実施形態において、搬送通路14には、シート60を下方から支える支持ローラを数個設けてもよい。こうすれば、重力によってシート60が撓むのを防止することができる。但し、図7及び図8のようにシート160の両面がスラリー塗布面162の場合には、支持ローラを設けるとスラリー塗布面62が支持ローラと接触して意図しない凹凸が生じたりするため、支持ローラを設けないことが好ましい。 In the above-described embodiment, the conveying path 14 may be provided with several support rollers that support the sheet 60 from below. In this way, it is possible to prevent the sheet 60 from being bent by gravity. However, when both surfaces of the sheet 160 are the slurry application surface 162 as shown in FIG. 7 and FIG. 8, if the support roller is provided, the slurry application surface 62 comes into contact with the support roller and unintended irregularities are generated. It is preferable not to provide a roller.
 上述した実施形態では、炉体12の天井に赤外線ヒーター36を設けたが、シート60のスラリー塗布面62の厚みが薄く、熱風だけで十分乾燥が可能な場合には、赤外線ヒーター36を省略してもよい。 In the embodiment described above, the infrared heater 36 is provided on the ceiling of the furnace body 12. However, the infrared heater 36 is omitted when the slurry application surface 62 of the sheet 60 is thin and can be sufficiently dried only with hot air. May be.
 上述した実施形態では、赤外線ヒーター36として、フィラメント38の外周が3.5μmを超える波長の赤外線を吸収するフィルタとして機能する複数の管40,44によって同心円状に覆われ、これらの複数の管40,44の間に赤外線ヒーター36の表面温度の上昇を抑制する冷却流体の流路48を形成したものを用いたが、その他の赤外線ヒーターを用いても構わない。 In the above-described embodiment, the outer periphery of the filament 38 is concentrically covered by the plurality of tubes 40 and 44 that function as a filter that absorbs infrared rays having a wavelength exceeding 3.5 μm as the infrared heater 36. , 44 in which a cooling fluid flow path 48 that suppresses the rise in the surface temperature of the infrared heater 36 is formed, but other infrared heaters may be used.
 上述した実施形態では、乾燥炉70は乾燥炉ユニット10を複数連ねたものとしたが、乾燥炉ユニット10を単独で乾燥炉として用いてもよい。 In the above-described embodiment, the drying furnace 70 has a plurality of drying furnace units 10 connected in series, but the drying furnace unit 10 may be used alone as a drying furnace.
 上述した実施形態では、各乾燥炉ユニット10の雰囲気ガスとして空気を用いたが、空気の代わりに窒素などの不活性ガスを用いてもよい。 In the above-described embodiment, air is used as the atmospheric gas of each drying furnace unit 10, but an inert gas such as nitrogen may be used instead of air.
 上述した実施形態では、送風供給手段として、熱風発生機26を用いたが、特にこれに限定されるものではなく、例えば40~50℃の冷風を発生する冷風発生機を用いてもよい。 In the above-described embodiment, the hot air generator 26 is used as the air supply means. However, the hot air generator 26 is not particularly limited to this. For example, a cold air generator that generates cold air of 40 to 50 ° C. may be used.
 本出願は、2012年1月23日に出願された日本国特許出願第2012-10631号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2012-10631 filed on January 23, 2012, and the entire contents of which are incorporated herein by reference.
 本発明は、スラリーが塗布されたシートを乾燥する必要のある産業、例えばリチウムイオン二次電池の電極塗膜を製造する電池産業や2層のセラミック焼結体からなるセラミック積層体を製造するセラミック産業、光学フィルム製品を製造するフィルム産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention relates to an industry in which a sheet coated with a slurry needs to be dried, for example, a battery industry for producing an electrode coating film of a lithium ion secondary battery, or a ceramic for producing a ceramic laminate comprising two layers of ceramic sintered bodies It can be used in industry, film industry for manufacturing optical film products, and the like.
10 乾燥炉ユニット、12 炉体、12a 前端面、12b 後端面、14 搬送通路、14a 開口、14b 開口、20 パイプ構造体、21 第1パイプ部、21a 第1通気口、22 第2パイプ部、22a 第2通気口、23 第3パイプ部、24 第4パイプ部、26 熱風発生機、28 排気ブロワ、30 風向切替バルブ、31 第1バルブ、32 第2バルブ、36 赤外線ヒーター、38 フィラメント、38a 電気配線、40 内管、42 ヒーター本体、44 外管、46 キャップ、46a 配線引出部、46b 流体出入口、48 流路、50 ホルダー、52 アーチ状窪み部、60 シート、62 スラリー塗布面、70 乾燥炉、72 ロール、74 ロール、110 乾燥炉ユニット、160 シート、162 スラリー塗布面、170 乾燥炉、C コントローラー、S センサ、U1~U7 乾燥炉ユニット。 10 Drying furnace unit, 12 furnace body, 12a front end face, 12b rear end face, 14 transport passage, 14a opening, 14b opening, 20 pipe structure, 21 first pipe part, 21a first vent, 22 second pipe part, 22a 2nd vent, 23 3rd pipe part, 24 4th pipe part, 26 hot air generator, 28 exhaust blower, 30 air direction switching valve, 31 1st valve, 32 2nd valve, 36 infrared heater, 38 filament, 38a Electrical wiring, 40 inner pipe, 42 heater body, 44 outer pipe, 46 cap, 46a wiring outlet, 46b fluid inlet / outlet, 48 flow path, 50 holder, 52 arched recess, 60 sheet, 62 slurry application surface, 70 drying Furnace, 72 rolls, 74 rolls, 110 drying furnace units, 160 shi DOO, 162 slurry coated surface, 170 drying oven, C controller, S sensors, U1 ~ U7 drying oven unit.

Claims (7)

  1.  炉体と、
     前記炉体を所定方向に貫通するように設けられ、少なくとも片面にスラリーが塗布されたシートが前記所定方向に搬送される搬送通路と、
     前記シートのスラリー塗布面に沿って雰囲気ガスが流れるように前記搬送通路の両端にそれぞれ設けられた第1及び第2通気口と、
     前記第1通気口及び前記第2通気口に接続された送風供給手段と、
     前記第1通気口から前記第2通気口へ前記シートの塗布面に沿って前記送風供給手段からの送風を流すか、前記第2通気口から前記第1通気口へ前記シートの塗布面に沿って前記送風供給手段からの送風を流すかを切り替える風向切替手段と、
     を備えた乾燥炉ユニット。
    A furnace body;
    A conveyance path that is provided so as to penetrate the furnace body in a predetermined direction, and a sheet coated with slurry on at least one side is conveyed in the predetermined direction;
    First and second vent holes respectively provided at both ends of the transport passage so that atmospheric gas flows along the slurry application surface of the sheet;
    Air supply means connected to the first vent and the second vent;
    The air is supplied from the air supply means along the sheet application surface from the first vent to the second vent, or along the sheet application surface from the second vent to the first vent. Wind direction switching means for switching whether to send air from the air supply means;
    Drying oven unit equipped with.
  2.  請求項1に記載の乾燥炉ユニットであって、
     前記搬送通路のうち前記シートの塗布面に対向する位置に設けられた赤外線ヒーターを備える、乾燥炉ユニット。
    A drying furnace unit according to claim 1,
    A drying furnace unit comprising an infrared heater provided at a position facing the coating surface of the sheet in the conveyance path.
  3.  請求項1又は2に記載の乾燥炉ユニットであって、
     前記送風供給手段の風量を調節する風量調節手段を備える、乾燥炉ユニット。
    A drying furnace unit according to claim 1 or 2,
    A drying furnace unit comprising air volume adjusting means for adjusting the air volume of the air supply means.
  4.  前記シートは、両面にスラリーが塗布されたものであり、
     前記第1及び第2通気口は、各スラリー塗布面に対応して設けられている、
     請求項1~3のいずれか1項に記載の乾燥炉ユニット。
    The sheet is a slurry coated on both sides,
    The first and second vent holes are provided corresponding to each slurry application surface,
    The drying furnace unit according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載の乾燥炉ユニットを、各搬送通路が前記所定方向に沿って連なるように複数連結した乾燥炉。 A drying furnace in which a plurality of the drying furnace units according to any one of claims 1 to 4 are connected so that each conveyance path is continuous along the predetermined direction.
  6.  前記複数の乾燥炉ユニットのうち両端に配置された乾燥炉ユニットは、前記風向切替手段によって送風の風向が外から内へ向かうように設定されている、
     請求項5に記載の乾燥炉。
    The drying furnace units disposed at both ends of the plurality of drying furnace units are set so that the air direction of the air flow is directed from the outside to the inside by the air direction switching means.
    The drying furnace according to claim 5.
  7.  請求項5又は6に記載の乾燥炉であって、
     各乾燥炉ユニットにおいてスラリーから蒸発した溶媒蒸発量を検出する検出手段と、
     連続する複数の乾燥炉ユニットについて前記溶媒蒸発量が所定値を超えたときには、該複数の乾燥炉ユニットの送風の風向が同じ方向となるよう前記風向切替機構を制御する制御手段と、
     を備えた乾燥炉。
    A drying furnace according to claim 5 or 6,
    Detecting means for detecting the amount of solvent evaporated from the slurry in each drying furnace unit;
    When the solvent evaporation amount exceeds a predetermined value for a plurality of continuous drying furnace units, control means for controlling the air direction switching mechanism so that the air direction of the air of the plurality of drying furnace units is the same direction;
    Drying furnace equipped with.
PCT/JP2013/050641 2012-01-23 2013-01-16 Drying furnace unit and drying furnace WO2013111647A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13740522.1A EP2808635A4 (en) 2012-01-23 2013-01-16 Drying furnace unit and drying furnace
KR1020147020587A KR20140115328A (en) 2012-01-23 2013-01-16 Drying furnace unit and drying furnace
CN201380006378.6A CN104067080A (en) 2012-01-23 2013-01-16 Drying furnace unit and drying furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010631 2012-01-23
JP2012-010631 2012-01-23

Publications (1)

Publication Number Publication Date
WO2013111647A1 true WO2013111647A1 (en) 2013-08-01

Family

ID=48873368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050641 WO2013111647A1 (en) 2012-01-23 2013-01-16 Drying furnace unit and drying furnace

Country Status (5)

Country Link
EP (1) EP2808635A4 (en)
JP (1) JPWO2013111647A1 (en)
KR (1) KR20140115328A (en)
CN (1) CN104067080A (en)
WO (1) WO2013111647A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016432A1 (en) * 2014-01-16 2015-07-17 Sunkiss Matherm Radiation AIR RECYCLING VENTILATION ASSEMBLY FOR INFRARED RADIATION EMITTER WITH TEMPERATURE CONTROL
CN110014662A (en) * 2019-03-11 2019-07-16 江苏科强新材料股份有限公司 The preparation process of totally-enclosed bullet train aramid fiber rubber composite material
CN110849090A (en) * 2019-12-25 2020-02-28 广东利元亨智能装备股份有限公司 Preheating drying furnace
CN112414085A (en) * 2020-12-15 2021-02-26 广州凯能电器科技有限公司 Modularization sludge drying-machine
JP2021110528A (en) * 2020-01-10 2021-08-02 ドライングシステム株式会社 Dryer, and drying method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729257B (en) * 2015-03-25 2016-08-17 苏州华策纺织科技有限公司 A kind of cloth drying device
KR102383920B1 (en) * 2016-03-28 2022-04-08 엔지케이 인슐레이터 엘티디 low temperature drying device
CN108355907A (en) * 2018-05-21 2018-08-03 浙江吉高实业有限公司 One kind being based on copper-clad plate technique gluing production line
CN111750659A (en) * 2020-08-04 2020-10-09 山东省玛丽亚农业机械有限公司 Waste heat recycling drying system and drying method
IT202100002936A1 (en) * 2021-02-10 2022-08-10 Ecosys S R L APPARATUS FOR THE TREATMENT OF A CHEMICAL PRODUCT APPLIED TO THE SURFACES OF ITEMS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336871A (en) * 1986-07-28 1988-02-17 Hirano Kinzoku Kk Drying and heat treating device making use of infrared radiation
JPS63152681U (en) * 1987-03-30 1988-10-06
JPH06221760A (en) * 1993-01-25 1994-08-12 Ichikin Eng:Kk Vertical type continuous drying device for sheet material
JPH10337520A (en) * 1997-06-06 1998-12-22 Hirano Tecseed Co Ltd Drying device
JP2008302297A (en) 2007-06-07 2008-12-18 Toppan Printing Co Ltd Drying device and drying method of coated film, and manufacturing apparatus and manufacturing method of coated object using them
JP4790092B1 (en) 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606805A (en) * 1996-04-01 1997-03-04 Meyer; Jens-Uwe Process for drying a coated moving web
JP2001310150A (en) * 2000-04-28 2001-11-06 Nippon Paint Co Ltd Apparatus and method for waste gas treatment for hot- air drying oven for coating and hot-air drying oven for coating using the same
JP3930801B2 (en) * 2002-12-12 2007-06-13 株式会社リコー Continuous drying method and continuous drying apparatus
JP3988676B2 (en) * 2003-05-01 2007-10-10 セイコーエプソン株式会社 Coating apparatus, thin film forming method, thin film forming apparatus, and semiconductor device manufacturing method
US6954994B1 (en) * 2004-06-30 2005-10-18 Hewlett-Packard Development Company, L.P. Moisture removal mechanism
KR101309055B1 (en) * 2006-05-18 2013-09-16 후지필름 가부시키가이샤 Method and apparatus for drying substance to be dried
JP2008302303A (en) * 2007-06-07 2008-12-18 Toppan Printing Co Ltd Dryer and method for drying coated film, and apparatus and method for preparing coated object employing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336871A (en) * 1986-07-28 1988-02-17 Hirano Kinzoku Kk Drying and heat treating device making use of infrared radiation
JPS63152681U (en) * 1987-03-30 1988-10-06
JPH06221760A (en) * 1993-01-25 1994-08-12 Ichikin Eng:Kk Vertical type continuous drying device for sheet material
JPH10337520A (en) * 1997-06-06 1998-12-22 Hirano Tecseed Co Ltd Drying device
JP2008302297A (en) 2007-06-07 2008-12-18 Toppan Printing Co Ltd Drying device and drying method of coated film, and manufacturing apparatus and manufacturing method of coated object using them
JP4790092B1 (en) 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808635A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016432A1 (en) * 2014-01-16 2015-07-17 Sunkiss Matherm Radiation AIR RECYCLING VENTILATION ASSEMBLY FOR INFRARED RADIATION EMITTER WITH TEMPERATURE CONTROL
WO2015107296A1 (en) * 2014-01-16 2015-07-23 Sunkiss Matherm Radiation Air-recycling ventilation assembly for an infrared radiation emitter, with temperature control
CN110014662A (en) * 2019-03-11 2019-07-16 江苏科强新材料股份有限公司 The preparation process of totally-enclosed bullet train aramid fiber rubber composite material
CN110849090A (en) * 2019-12-25 2020-02-28 广东利元亨智能装备股份有限公司 Preheating drying furnace
JP2021110528A (en) * 2020-01-10 2021-08-02 ドライングシステム株式会社 Dryer, and drying method
JP7272658B2 (en) 2020-01-10 2023-05-12 ドライングシステム株式会社 Drying equipment and drying method
CN112414085A (en) * 2020-12-15 2021-02-26 广州凯能电器科技有限公司 Modularization sludge drying-machine

Also Published As

Publication number Publication date
KR20140115328A (en) 2014-09-30
EP2808635A4 (en) 2015-07-15
EP2808635A1 (en) 2014-12-03
JPWO2013111647A1 (en) 2015-05-11
CN104067080A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2013111647A1 (en) Drying furnace unit and drying furnace
JP4790092B1 (en) Coating film drying furnace
KR101704946B1 (en) Infrared heating device and drying furnace
JP5932356B2 (en) How to use the drying oven
KR20150020309A (en) Infrared processing apparatus and method
WO2014129072A1 (en) Heater provided with nozzle and drying furnace
JP2013137139A (en) Drying device and heat treatment system
WO2014168229A1 (en) Drying furnace
JP5810074B2 (en) Drying equipment
WO2015022857A1 (en) Infrared radiation device and infrared treatment device
KR101969044B1 (en) Heater unit and heat treatment apparatus
TWI583540B (en) Dehydration device
JP6368436B2 (en) Low temperature drying equipment
JP2006334823A (en) Low temperature-drying apparatus, panel body and assembling method of panel body
JP6356080B2 (en) Conveying roller, heat treatment apparatus and infrared processing apparatus
CN105457865B (en) Cycle drying unit module in car gas catalysis nonflame infra-red radiation hot wind
JP2012241922A (en) Batch type coating film drying furnace
JP6704764B2 (en) Infrared processor
JP2014035086A (en) Drying furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555225

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013740522

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147020587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE