WO2014163158A1 - 建築窓用複層ガラス - Google Patents
建築窓用複層ガラス Download PDFInfo
- Publication number
- WO2014163158A1 WO2014163158A1 PCT/JP2014/059880 JP2014059880W WO2014163158A1 WO 2014163158 A1 WO2014163158 A1 WO 2014163158A1 JP 2014059880 W JP2014059880 W JP 2014059880W WO 2014163158 A1 WO2014163158 A1 WO 2014163158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- glass plate
- thickness
- layer
- architectural windows
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/677—Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
- E06B3/6775—Evacuating or filling the gap during assembly
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C27/00—Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
- C03C27/06—Joining glass to glass by processes other than fusing
- C03C27/10—Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/663—Elements for spacing panes
- E06B3/66304—Discrete spacing elements, e.g. for evacuated glazing units
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/673—Assembling the units
- E06B3/67326—Assembling spacer elements with the panes
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/673—Assembling the units
- E06B3/67391—Apparatus travelling around the periphery of the pane or the unit
Definitions
- the present invention relates to a double-glazed glass for architectural windows, and particularly to a double-glazed glass for architectural windows using a chemically strengthened glass plate.
- Double-glazed glass has become widespread as an energy-saving window that reduces the load of indoor air conditioning in buildings.
- the double-glazed glass is one in which two glass plates are held at intervals through a hollow layer by spacers arranged around the entire periphery thereof. Due to the presence of this hollow layer, when the multi-layer glass is placed in the sash, the heat conduction inside and outside can be reduced to reduce the heating and cooling load.
- patent document 1 has the suggestion about using the tempered glass chemically strengthened for the glass plate in paragraph 0060.
- the strength generally decreases.
- the rigidity of the glass plate itself is reduced and the glass plate is easily bent. If the glass plate bends excessively, tensile stress is generated on the surface side of the glass plate that is convex in a curved state, and the glass plate breaks when this tensile stress exceeds the breaking stress.
- a tempered glass in which a compressive stress is previously formed on the surface of the glass plate so as to resist the tensile stress generated on the convex side.
- a thin glass plate typically a glass plate having a thickness of 2.5 mm or less.
- the reason is as follows.
- the physical strengthening utilizes a temperature difference between the surface and the inside of the glass plate, which is caused by rapidly cooling the glass plate after heating. Quenching for forming a desired temperature difference on a glass plate having a thickness of 2.5 mm or less requires a considerably large cooling capacity industrially. Therefore, it can be said that the chemical strengthening treatment is suitable for the strengthening treatment of the glass plate having a thickness of 2.5 mm or less.
- the present invention provides a double-glazed glass for architectural windows that is thin and lightweight and can suppress the scattering of fragments as much as possible in the event of breakage.
- the present invention provides a multilayer glass for architectural windows, comprising: a plurality of glass plates; and a spacer disposed on the periphery of the plurality of glass plates so as to form a hollow layer between the plurality of glass plates.
- the glass plate disposed on the indoor side of the plurality of glass plates has first and second main surfaces, and end surfaces interposed between the first and second main surfaces, and is chemically strengthened.
- the first hollow layer is formed between the first, second and third glass plates, and the first and second glass plates, and the second hollow layer is formed between the second and third glass plates.
- the first glass plate arranged on the indoor side is the first and second A glass plate having a main surface and an end surface interposed between the first and second main surfaces, a surface compressive stress being formed on both of the main surfaces by a chemical strengthening treatment, and a tensile stress being formed inside.
- the glass plate has a thickness of 1.0 to 2.5 mm, both surface compressive stress values of 400 to 900 MPa, tensile stress value of 1 to 25 MPa, and compressive stress layers on both main surfaces.
- the thickness in the plate thickness direction is 7 to 25 ⁇ m, To provide a multi-layer glass built window.
- FIG. 1 It is a fragmentary sectional view which shows an example of the multilayer glass for architectural windows of this invention. It is a perspective view explaining the glass plate used for the multilayer glass for architectural windows shown in FIG.
- FIG. 1 is a partial cross-sectional view showing an example of a multi-layer glass for architectural windows of the present invention.
- the multi-layer glass 10 for architectural windows includes a first glass plate 20 (indoor side glass plate), a second glass plate 30, a third glass plate 40 (outdoor glass plate), The first hollow layer 12 formed between the second glass plates, the second hollow layer 14 formed between the second and third glass plates, the first spacer 11, and the second spacer 13.
- the first spacer 11 is disposed on the entire periphery of the periphery between the first glass plate 20 and the second glass plate 30.
- the second spacer 13 is disposed on the entire periphery of the periphery between the second glass plate 30 and the third glass plate 40.
- the first hollow layer 12 is between the first glass plate 20 and the second glass plate 30
- the second hollow layer 14 is between the second glass plate 30 and the third glass plate 40. Each is provided in between.
- FIG. 2 is a perspective view for explaining the glass plate 20 used in the multi-layer glass 10 for architectural windows shown in FIG.
- the glass plate 20 is disposed on the indoor side of the multi-layer glass 10 for architectural windows shown in FIG. 1, and as shown in FIG. 2, the first main surface 21a, the second main surface 21b, and the main surface 21a. And end surface 22 interposed between 21b.
- the thickness t of the glass plate 20 is 1.0 to 2.5 mm.
- the glass plate 20 is a chemically strengthened glass plate having a compressive stress layer of 7 to 25 ⁇ m in the plate thickness direction on the main surfaces 21a and 21b.
- the compressive stress values of the main surfaces 21a and 21b are 400 to 900 MPa, respectively.
- the value of the tensile stress formed inside the glass plate 20 is 1 to 25 MPa.
- the glass plate 20 disposed on the indoor side has a plate thickness of 1.1 to 2.2 mm, a surface compressive stress value of both main surfaces of 600 to 850 MPa, a tensile stress value of 4 to 20 MPa,
- the thickness in the thickness direction of the compressive stress layer on both main surfaces is preferably 15 to 25 ⁇ m.
- the glass plate 20 disposed on the indoor side has a thickness of 1.2 to 2.1 mm, a surface compressive stress value of both main surfaces of 650 to 800 MPa, and a tensile stress value of suppressing the scattering.
- the thickness in the thickness direction of the compressive stress layer on both main surfaces is preferably 5 to 17 MPa and 18 to 25 ⁇ m.
- the area of a main surface is 5000 cm ⁇ 2 > or more as what exhibits the effect of this invention, and it is further more useful that it is 10,000 cm ⁇ 2 > or more. That is, if the area of the double glazing for architectural windows increases, the absolute value of deflection tends to increase. If the deflection increases, the scattered distance of the fragments during the shotback test tends to increase. Therefore, as in the present invention, it is beneficial for a multilayer glass having a large area to use a glass plate that has been subjected to chemical strengthening treatment with the energy stored therein as small as possible and to which a desired principal surface compressive stress is applied. is there.
- a compressive stress layer may be formed on the end surface as well as the main surface.
- the end face may not have a compressive stress layer.
- this end face is a surface subjected to a protective treatment such as a coating or chemical treatment.
- Compressive stress formed on the glass plate arranged on the indoor side in the present invention may be uniformly formed in the main surface direction of the glass plate or may be distributed in the surface. According to the above chemical strengthening treatment, compressive stress can be obtained almost uniformly except for treatment unevenness. Therefore, in measuring various values related to compressive stress, the center of the main surface (a point where diagonal lines intersect when the glass plate is rectangular, or a point corresponding to this when the glass plate is not rectangular) may be used as a representative point.
- ions having a small ionic radius for example, Na ions
- ions having a large ionic radius in the molten salt for example, K ions
- a method of immersing glass in a heated potassium nitrate molten salt can be mentioned.
- potassium nitrate molten salt, or potassium nitrate salts in the present invention other KNO 3, including those containing KNO 3 and 10 wt% or less of NaNO 3.
- the chemical strengthening treatment conditions for forming a compressive stress layer having a desired surface compressive stress on the glass differ depending on the thickness of the glass plate, but the glass substrate is placed in a molten potassium nitrate salt at 350 to 550 ° C. for 2 to 20 hours. It is typically immersed. From an economical point of view, it is preferable to immerse under conditions of 350 to 500 ° C. and 2 to 16 hours, and a more preferable immersion time is 2 to 10 hours.
- the method for producing the glass plate in the present invention there are no particular restrictions on the method for producing the glass plate in the present invention. For example, an appropriate amount of various raw materials are prepared, heated to about 1400-1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. It is manufactured by forming into a plate shape by a downdraw method, a press method, etc., and then cooling to a desired size after slow cooling.
- positioned at least indoor side in this invention is 400 degreeC or more. Thereby, relaxation of the surface compressive stress during ion exchange can be suppressed. More preferably, it is 550 degreeC or more.
- the temperature T2 at which the viscosity of the glass plate disposed at least on the indoor side in the present invention is 10 2 dPa ⁇ s is preferably 1800 ° C. or lower, more preferably 1750 ° C. or lower.
- the temperature T4 at which the viscosity of the glass in the present invention is 10 4 dPa ⁇ s is preferably 1350 ° C. or lower.
- the specific gravity ⁇ of the glass plate disposed at least on the indoor side is preferably 2.37 to 2.55.
- the Young's modulus E of the glass plate disposed at least on the indoor side is preferably 65 GPa or more.
- the Poisson's ratio ⁇ of the glass plate disposed at least indoors in the present invention is preferably 0.25 or less. As a result, the scratch resistance of the glass, particularly the scratch resistance after long-term use, is sufficient.
- the glass plate arranged on the indoor side in the present invention may be chemically strengthened glass plate cut to a desired size, or may be cut to a desired size after first chemical strengthening. Needless to say.
- the chemically strengthened glass plate according to the present invention is expressed in terms of mole percentage on the basis of oxide. SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, K 2 O. 0-10%, MgO 0-14%, ZrO 2 0-5% and CaO 0-10%.
- SiO 2 is 56 to 75%
- Al 2 O 3 is 5 to 20%
- Na 2 O is 8 to 22%
- K 2 O is 0 to 10%
- MgO is 0 to 14%
- ZrO 2 is 0 to More preferably, it is a chemically strengthened glass containing 5% and 0-5% CaO.
- the percentage display indicates the molar percentage display content.
- SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass.
- the content of SiO 2 is 56% or more, preferably 60% or more, more preferably 63% or more, and further preferably 65% or more. Further, the content of SiO 2 is 75% or less, preferably 73% or less, more preferably 71% or less.
- the content of SiO 2 is 56% or more, it is advantageous in terms of stability and weather resistance as glass.
- the content of SiO 2 is 75% or less, it is advantageous in terms of meltability and moldability.
- Al 2 O 3 has an effect of improving ion exchange performance in chemical strengthening, and particularly has a large effect of improving surface compressive stress (CS). It is also known as a component that improves the weather resistance of glass. Moreover, there exists an effect
- the content of Al 2 O 3 is 1% or more, preferably 3% or more, more preferably 5% or more. Further, the content of Al 2 O 3, the content of Al 2 O 3 is more than 20%, preferably 17% or less, more preferably 12% or less, more preferably 10% or less, particularly preferably 7 % Or less.
- the total content of SiO 2 and Al 2 O 3 SiO 2 + Al 2 O 3 is preferably 80% or less. If it exceeds 80%, the viscosity of the glass at a high temperature may increase and melting may be difficult, more preferably 79% or less, and still more preferably 78% or less. Further, SiO 2 + Al 2 O 3 is preferably 70% or more. If it is less than 70%, the crack resistance when an indentation is made decreases, more preferably 72% or more.
- Na 2 O is an essential component for forming a surface compressive stress layer by ion exchange, and has an effect of increasing the depth of compressive stress (DOL). Moreover, it is a component which lowers the high temperature viscosity and devitrification temperature of glass, and improves the meltability and moldability of glass.
- the content of Na 2 O is 8% or more, preferably 12% or more, more preferably 13% or more. Further, the content of Na 2 O is 22% or less, preferably 20% or less, more preferably 16% or less. When the content of Na 2 O is 8% or more, a desired surface compressive stress layer can be formed by ion exchange. On the other hand, when the content of Na 2 O is 22% or less, sufficient weather resistance can be obtained.
- K 2 O is not essential, but may be contained because it has an effect of increasing the ion exchange rate and deepening the DOL. On the other hand, if the amount of K 2 O is excessive, sufficient CS cannot be obtained. When it contains K 2 O, it is preferably 10% or less, more preferably 8% or less, and even more preferably 6% or less. When the content of K 2 O is 10% or less, sufficient CS can be obtained.
- MgO is not essential, but is a component that stabilizes the glass.
- the content of MgO is preferably 2% or more, more preferably 3% or more, and still more preferably 3.6% or more. Further, the content of MgO is 14% or less, preferably 8% or less, more preferably 6% or less.
- the content of MgO is 2% or more, the chemical resistance of the glass becomes good. The meltability at high temperature becomes good and devitrification hardly occurs. On the other hand, when the content of MgO is 14% or less, the difficulty of devitrification is maintained, and a sufficient ion exchange rate is obtained.
- ZrO 2 is not essential, but it is generally known that ZrO 2 has an effect of increasing the surface compressive stress in chemical strengthening.
- CaO is not essential, but is a component that stabilizes the glass. Since CaO tends to inhibit the exchange of alkali ions, the content is preferably reduced or not contained particularly when it is desired to increase the DOL. On the other hand, in order to improve chemical resistance, 2% or more is preferable, more preferably 4% or more, and still more preferably 6% or more. The amount in the case of containing CaO is 10% or less, preferably 9% or less, more preferably 8.2% or less. When the content of CaO is 10% or less, a sufficient ion exchange rate is maintained, and a desired DOL is obtained.
- SrO is not essential, but may be contained for the purpose of lowering the high temperature viscosity of the glass and lowering the devitrification temperature. Since SrO has the effect of lowering the ion exchange efficiency, it is preferable not to contain it especially when it is desired to increase the DOL.
- the amount of SrO is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
- BaO is not essential, but may be contained for the purpose of lowering the high temperature viscosity of the glass and lowering the devitrification temperature. Since BaO has the effect of increasing the specific gravity of the glass, it is preferably not contained when the weight is intended to be reduced.
- the BaO content when contained is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
- TiO 2 is abundant in natural raw materials and is known to be a yellow coloring source.
- the content of TiO 2 is preferably 0.3% or less, more preferably 0.2% or less, and still more preferably 0.1% or less. If the content of TiO 2 exceeds 0.3%, the glass becomes yellowish.
- chloride, fluoride, and the like may be appropriately contained as a glass melting fining agent.
- the glass of the present invention consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 5% or less, more preferably 3% or less, and typically 1% or less.
- the other components will be described as an example.
- ZnO may be contained, for example, up to 2% in order to improve the meltability of the glass at a high temperature. However, when it is produced by the float process, it is preferably not contained because it is reduced by a float bath and becomes a product defect.
- B 2 O 3 may be contained in a range of less than 1% in order to improve the meltability at high temperature or the glass strength. In general, when an alkali component of Na 2 O or K 2 O and B 2 O 3 are contained at the same time, volatilization becomes intense and the brick is remarkably eroded. Therefore, it is preferable that B 2 O 3 is not substantially contained.
- Li 2 O is a component that lowers the strain point and facilitates stress relaxation, and as a result makes it impossible to obtain a stable surface compressive stress layer.
- the amount is preferably less than 1%, more preferably 0.05% or less, particularly preferably less than 0.01%.
- a well-known spacer can be used as the spacer in the present invention.
- an aluminum strip is rolled into a cylindrical shape, and a spacer body in which a desiccant such as zeolite is placed inside is made of glass using a primary seal such as butyl rubber and a secondary seal such as polysulfide rubber or silicone.
- a primary seal such as butyl rubber and a secondary seal such as polysulfide rubber or silicone.
- lifted
- the glass plate in the present invention may be provided with various functional coatings.
- a typical example is one in which a silver-based thin film is formed on the surface of the indoor side glass plate on the hollow layer side to provide low radiation performance.
- a heat ray reflective film or a hydrophilic thin film can be provided arbitrarily regardless of whether it is indoors or outdoors.
- the glass plate used for the multilayer glass of the present invention may be a single glass or a laminated glass in which two or more glass plates are laminated via an intermediate film such as polyvinyl butyral or ethylene vinyl acetate. May be.
- the hollow layer in the present invention may be filled with an inert gas.
- the thickness of the hollow layer is preferably 6 to 16 mm in order to obtain sufficient heat insulation and soundproofing properties as the double-glazed glass.
- the sound insulation performance of an object generally depends on the mass of the object. When the plate thickness of the glass plate to be used is reduced as in the double-glazed glass of the present invention, there is a concern that the sound insulation performance is lowered. Therefore, the sound insulation can be improved by making the thicknesses of the plurality of hollow layers arranged in parallel in a cross-sectional view different.
- FIG. 1 shows an example of a multi-layer glass 10 composed of three glass plates 20, 30, 40 and two hollow layers 12, 14, one of four or more glass plates and the number thereof. It may be a multi-layer glass composed of a few hollow layers.
- Multi-layer glass for architectural windows having a structure as shown in Tables 1 and 2 was prepared.
- L and S are glass plate types
- “L” represents “LEOFLEX (registered trademark)” manufactured by Asahi Glass Co., Ltd.
- S represents soda lime silica glass.
- the number in () following this type indicates the thickness (unit: mm) of the glass plate.
- the number in the column of the hollow layer indicates the thickness (unit: mm) of the hollow layer.
- the external dimensions of these glass plates are all 700 (mm) ⁇ 1140 (mm).
- CS represents the surface compressive stress value (unit: MPa)
- DOL represents the depth of the compressive stress layer (that is, the thickness direction of the compressive stress layer on the principal surface).
- Thickness (unit: ⁇ m)
- CT indicates the value of tensile stress (unit: MPa).
- the glass plate is expressed in terms of mole percentage on the basis of oxide, SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, and K 2 O is 0 to 10%.
- % MgO 0-14%, ZrO 2 0-5% and CaO 0-10%.
- the value of the reinforced physical property given as a result of the adjustment is the surface compressive stress CS (unit: MPa) of the main surface and the thickness of the compressive stress layer in the plate thickness direction on the main surface using a surface stress meter FSM-6000 manufactured by Orihara Seisakusho. DOL (unit: ⁇ m) was measured, and internal tensile stress CT (unit: MPa) was calculated and obtained.
- symbol of the glass plate in Table 1, 2 and a hollow layer shows the same thing as the code
- the multilayer glass of each structural example shown in Table 1 and Table 2 was made to collide an impactor with a glass plate (glass plate of reference numeral 20 in FIG. 1) arranged on the indoor side. It used for the shotback test.
- the results are shown in Table 3.
- “fall height” indicates the drop height (unit: cm) of the impacting body when the glass plate is crushed by the shotback test.
- the “maximum scattering distance” indicates the maximum scattering distance (unit: m) of the fragments scattered as a result of the test.
- the fragment weight (g) at the maximum scattering distance” indicates the maximum weight (unit: g) of the fragments scattered at the maximum scattering distance.
- “0.15 g scattering distance” indicates the maximum scattering distance (unit: m) of a fragment exceeding 0.15 g.
- the strength physical properties surface compressive stress value “CS” and tensile stress value “CT”) of the glass plate arranged indoors when subjected to chemical strengthening treatment, and compression
- the stress depth “DOL” and the plate thickness t were entered in Table 3 (units are the same as above).
- the multilayer glass of Examples 1 to 32 is a multilayer glass according to an example of the present invention.
- the multilayer glasses of Examples 1 to 32 are multilayer glasses according to preferred embodiments of the present invention.
- the multilayer glass of Examples 33 to 36 is a multilayer glass according to a comparative example.
- Examples 37 to 41 are multilayer glasses according to Reference Examples.
- the drop height in the shotback test according to JIS R3206 is 10 cm, and the indoor glass plate does not scatter, or many indoor glass plates do not scatter in the same configuration.
- the chemically strengthened glass plate of a present Example is cut
- the maximum scattering distance is 5.5 m and 4.0 m, and the maximum scattering distance of fragments exceeding 0.15 g is 3. 0 m. Therefore, according to the multilayer glass of Examples 1 and 2, the scattering distance could be suppressed even with a glass plate having a thickness of 1.1 mm.
- the maximum scattering distance was 3.0 m
- the maximum scattering distance of fragments exceeding 0.15 g was 3.0 m.
- the maximum scattering distance was 4.0 m
- the maximum scattering distance of fragments exceeding 0.15 g was 3.0 m. Therefore, according to the double-glazed glass of Examples 3 to 6, the end face is chamfered with a 400th grindstone, so that the thickness is 1. even under severe conditions (drop height is 30 cm). It was found that even a 1 mm glass plate tends to suppress the scattering distance.
- the maximum scattering distance when the drop height was 20 cm, the maximum scattering distance was 3.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 3.5 m.
- the maximum scattering distance When the drop height was 40 cm, the maximum scattering distance was 4.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 4.5 m. Therefore, according to the double-glazed glass of Examples 7 to 9, the end face is R-chamfered with an 800-number grindstone, so that the thickness is 1. even under severe conditions (fall height is 40 cm). It was found that even a 1 mm glass plate tends to suppress the scattering distance.
- the maximum scattering distance when the drop height was 20 cm, the maximum scattering distance was 3.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 2.0 m. .
- the maximum scattering distance When the drop height was 48 cm, the maximum scattering distance was 6.5 m, and the maximum scattering distance of the fragments exceeding 0.15 g was 5.5 m. Therefore, according to the multilayer glass of Examples 10 to 13, the scattering distance could be suppressed even with a severe condition (falling height of 48 cm) or a glass plate with a thickness of 1.3 mm.
- the maximum scattering distance when the drop height was 20 cm, the maximum scattering distance was 3.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 2.5 m. .
- the maximum scattering distance When the drop height was 48 cm, the maximum scattering distance was 5.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 4.0 m. Therefore, according to the multilayer glass of Examples 14 to 16, the scattering distance could be suppressed even with a severe condition (falling height of 48 cm) even with a glass plate with a thickness of 1.3 mm.
- the maximum scattering distance was 5.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 4.5 m.
- the maximum scattering distance was 5.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 5.5 m. Therefore, according to the multilayer glass of Examples 17 to 20, the end face is chamfered with a 400th grindstone, so that the thickness is 2.0 mm even under severe conditions (fall height is 77 cm). It was found that the scattering distance could be reduced even with the glass plate.
- the maximum scattering distance when the drop height is 20 cm, the maximum scattering distance is 2.5 m, and the maximum scattering distance of fragments exceeding 0.15 g is 2.5 m or less. It was. When the drop height was 38 cm, the maximum scattering distance was 3.5 m, and the maximum scattering distance of fragments exceeding 0.15 g was 3.5 m. Therefore, according to the multilayer glass of Examples 21 to 23, the scattering distance could be suppressed even with a severe condition (falling height of 38 cm) or a glass plate with a thickness of 2.0 mm.
- the multilayer glass of Examples 24 to 25 when the drop height is 20 cm, the maximum scattering distance is 4.5 m, and the maximum scattering distance of fragments exceeding 0.15 g is 3.5 m or less. It was. Therefore, according to the multilayer glass of Examples 24 to 25, since the end face was R-chamfered with a 400th grindstone, it was found that the scattering distance could be suppressed even with a glass plate having a thickness of 1.1 mm. According to the multilayer glass of Examples 26 to 28, when the drop height was 20 cm, the maximum scattering distance was 3.0 m, and the maximum scattering distance of fragments exceeding 0.15 g was 3.0 m. . Therefore, according to the multi-layer glass of Examples 26 to 28, since the end face was R-chamfered with an 800-number grindstone, it was found that the scattering distance could be suppressed even with a glass plate having a thickness of 1.1 mm.
- the weight of the glass of the structural example shown by Table 1 and Table 2 is demonstrated.
- an index of the heat insulation property of glass there is a heat transmissivity (so-called U value).
- the U value is the amount of heat that passes through 1 m 2 of glass per hour when the temperature difference between inside and outside is 1 ° C., expressed in watts.
- the heat transmissibility (U value) of Patent Document 1 is 1.8 W / m 2 ⁇ K at the smallest.
- the chemically strengthened thin glass plate of the present invention a glass plate with a silver two-layer Low-E film 3 mm (outdoor glass plate) + a hollow layer containing argon gas 15 mm + a glass plate 1.3 mm + argon gas
- Entered hollow layer 15 mm + Silver 2-layer glass plate with low-E film 1.3 mm (indoor glass plate) U value can be 0.6 W / m 2 ⁇ K.
- the chemically strengthened thin glass plate of the present invention when used (a glass plate with a silver two-layer Low-E film 3 mm (outdoor glass plate) + a hollow layer 12 mm with argon gas + a glass plate 1.3 mm + argon gas)
- the U value can be 0.7 W / m 2 ⁇ K. Therefore, by using the thin chemically strengthened glass plate of the present invention, it is possible to obtain high heat insulation performance (high energy saving effect) as compared with the conventional multilayer glass.
- the multi-layer glass according to the reference example is a normal multi-layer glass.
- the double-glazed glass of Example 40 having the longest scattering distance in the shotback test has a scattering distance of 0.15 g of fragments of less than 4.5 m.
- the scattering of fragments is suppressed to the extent that it is inferior to ordinary multilayer glass. That is, the multi-layer glass of the present invention has a strength equivalent to that when a float glass plate of 3 mm is used by using a thin chemically strengthened glass plate having a predetermined strength, and a conventional multi-layer glass. It is possible to provide a double-glazed glass that is lighter than.
- the multilayer glass for architectural windows of the present invention is thin and lightweight, can suppress scattering of fragments as much as possible, and can exhibit a high energy saving effect. Glass can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
なお、特許文献1は、段落0060に、ガラス板に化学強化された強化ガラスを用いることについての示唆がある。
よって、化学強化ガラスの破損の際に破片の飛散をできるだけ抑えることが求められる。しかし、特許文献1には、複層ガラスとして使用する場合において、ガラス板がどの程度の化学強化が必要であるかの具体的な記載はない。
また、特許文献1のガラス板の総重量は、最も薄いガラスを使った場合(総厚18mm)、計算上、30kg/m2=12.1(実測値)×2.5となり、重い。
図1は、本発明の建築窓用複層ガラスの一例を示す、部分断面図である。建築窓用複層ガラス10は、第1のガラス板20(室内側のガラス板)と、第2のガラス板30と、第3のガラス板40(室外側のガラス板)と、第1および第2のガラス板間に形成された第1の中空層12と、第2および第3のガラス板間に形成された第2の中空層14と、第1のスペーサ11と、第2のスペーサ13とを有する。第1のスペーサ11は、第1のガラス板20と第2のガラス板30との間の周縁全周に配されている。第2のスペーサ13は、第2のガラス板30と第3のガラス板40との間の周縁全周に配されている。こうして第1の中空層12は、第1のガラス板20と第2のガラス板30との間に、第2の中空層14は、第2のガラス板30と第3のガラス板40との間に、それぞれ設けられている。
本発明における少なくとも室内側に配されるガラス板のガラスの粘度が102dPa・sとなる温度T2は、好ましくは1800℃以下、より好ましくは1750℃以下である。
本発明におけるガラスの粘度が104dPa・sとなる温度T4は、1350℃以下であることが好ましい。
本発明における少なくとも室内側に配されるガラス板のガラスのヤング率Eは、65GPa以上であることが好ましい。これによって、ガラスのカバーガラスとしての剛性や破壊強度が充分となる。
本発明における少なくとも室内側に配されるガラス板のガラスのポアソン比σは、0.25以下であることが好ましい。これによってガラスの耐傷つき性、特に長期使用後の耐傷つき性が充分となる。
ここで、本発明における化学強化ガラス板は、酸化物基準のモル百分率表示でSiO2を56~75%、Al2O3を1~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~10%含有することを特徴とする。また、SiO2を56~75%、Al2O3を5~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~5%含有する化学強化ガラスであることがより好ましい。以降、百分率表示は、特に断らない限り、モル百分率表示含有量を示す。
SiO2は、ガラス微細構造の中で網目構造を形成する成分として知られており、ガラスを構成する主要成分である。SiO2の含有量は、56%以上であり、好ましくは60%以上、より好ましくは63%以上、さらに好ましくは65%以上である。また、SiO2の含有量は、75%以下であり、好ましくは73%以下、より好ましくは71%以下である。SiO2の含有量が56%以上であると、ガラスとしての安定性や耐候性の点で優位である。一方、SiO2の含有量が75%以下であると、熔解性および成形性の点で優位である。
ZrO2は、必須ではないが、一般に、化学強化での表面圧縮応力を大きくする作用があることが知られている。しかし、少量のZrO2を含有してもコスト増加の割には、その効果は大きくない。したがって、コストが許す範囲で任意の割合のZrO2を含有することが出来る。含有する場合は、5%以下であることが好ましい。
BaOは、必須ではないが、ガラスの高温粘性を下げ、失透温度を下げる目的で含有してもよい。BaOはガラスの比重を重くする作用があるため、軽量化を意図する場合には含有しないことが好ましい。含有する場合のBaO量は3%以下が好ましく、より好ましくは2%以下、さらに好ましくは1%以下である。
この他、ガラスの熔融の清澄剤として、塩化物、フッ化物などを適宜含有してもよい。本発明のガラスは、本質的に以上で説明した成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は5%以下であることが好ましく、より好ましくは3%以下、典型的には1%以下である。以下、上記その他成分について例示的に説明する。
B2O3は、高温での熔融性またはガラス強度の向上のために、1%未満の範囲で含有してもよい。一般的には、Na2OまたはK2Oのアルカリ成分とB2O3を同時に含有すると揮散が激しくなり、煉瓦を著しく浸食するので、B2O3は実質的に含有しないことが好ましい。
Li2Oは、歪点を低くして応力緩和を起こりやすくし、その結果安定した表面圧縮応力層を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は1%未満であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。
ここで、当該ガラス板は、酸化物基準のモル百分率表示でSiO2を56~75%、Al2O3を1~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~10%含有する化学強化されたガラスである。
これら例1~32の複層ガラスによれば、JISR3206に準拠したショットバック試験における落下高さが10cmで、室内側ガラス板が飛散しない、または同じ構成において多くの室内側ガラス板が飛散しない。
例1~2の複層ガラスによれば、落下高さが20cmの場合、最大飛散距離は、5.5m、4.0mであり、0.15gを超えた破片の最大飛散距離は、3.0mであった。よって、例1~2の複層ガラスによれば、厚さが1.1mmのガラス板でも飛散距離を抑えることができた。
例26~28の複層ガラスによれば、落下高さが20cmの場合、最大飛散距離は、3.0mであり、0.15gを超えた破片の最大飛散距離は、3.0mであった。よって、例26~28の複層ガラスによれば、端面を800番手の砥石でR面取りをしているため、厚さが1.1mmのガラス板でも飛散距離を抑えられる傾向がわかった。
構成例1~3、8~12の複層ガラスによれば、3枚のガラスの総重量は、約8.25kg/m2=(1.1+1.1+1.1)×2.5(ここにおいて、括弧内の数値は、板厚(mm)を表し、それに続く数値は比重を表す。以下同様)である。また、構成例4の複層ガラスによれば、3枚のガラスの総重量は、約13.5kg/m2=(1.3+1.1+3.0)×2.5である。また、構成例5の複層ガラスによれば、3枚のガラスの総重量は、約9.75kg/m2=(1.3+1.3+1.3)×2.5である。また、構成例6の複層ガラスによれば、3枚のガラスの総重量は、約15.25kg/m2=(2.0+1.1+3.0)×2.5である。また、構成例7の複層ガラスによれば、3枚のガラスの総重量は、約15kg/m2=(2.0+2.0+2.0)×2.5である。
また、ガラスの断熱性の指標として、熱貫流率(いわゆる、U値)というものがある。U値とは、内外の温度差が1℃あった場合に、1時間あたりガラス1m2を通過する熱量をワットで表したものである。ここで、特許文献1の熱貫流率(U値)は、最も小さいもので1.8W/m2・Kである。
なお、2013年4月3日に出願された日本特許出願2013-077556号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
Claims (15)
- 複数枚のガラス板と、該複数枚のガラス板間に中空層を形成するように前記複数枚のガラス板の周縁に配置されたスペーサと、を備えた建築窓用複層ガラスにおいて、前記複数枚のガラス板のうち、室内側に配されるガラス板が、第1および第2の主面、ならびに第1および第2の主面間に介在する端面を有し、化学強化処理により前記主面の双方に表面圧縮応力が形成され内部に引張応力が形成されたガラス板であって、該ガラス板は、板厚が1.0~2.5mm、前記双方の表面圧縮応力の値が400~900MPa、前記引張応力の値が1~25MPa、前記主面の双方における圧縮応力層の板厚方向の厚さが7~25μmであることを特徴とする、建築窓用複層ガラス。
- 前記室内側に配されるガラス板の板厚が1.2~2.2mm、前記表面圧縮応力の値が600~850MPa、前記引張応力の値が4~20MPa、前記主面における圧縮応力層の板厚方向の厚さが15~25μmである、請求項1に記載の建築窓用複層ガラス。
- 前記建築窓用複層ガラスについて、前記室内側に配されるガラス板側からのJISR3206に準拠したショットバック試験を行なった際、その落下高さが10cmで飛散せず、20cm以上で飛散した際の0.15g超の破片の飛散距離が4.5m以下である、請求項1または2に記載の建築窓用複層ガラス。
- 前記主面の面積が5000cm2以上である、請求項1~3のいずれか1項に記載の建築窓用複層ガラス。
- 前記室内側に配されるガラス板は、下記酸化物基準のモル百分率表示で、SiO2を56~75%、Al2O3を1~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~10%含有するガラスからなる、請求項1~4のいずれか1項に記載の建築窓用複層ガラス。
- 前記室内側に配されるガラス板は、下記酸化物基準のモル百分率表示で、SiO2を56~75%、Al2O3を5~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~5%含有するガラスからなる、請求項1~4のいずれか1項に記載の建築窓用複層ガラス。
- 前記中空層の厚さが6~16mmである、請求項1~6のいずれか1項に記載の建築窓用複層ガラス。
- 第1、2および3のガラス板と、第1および第2のガラス板間に第1の中空層ならびに第2および第3のガラス板間に第2の中空層を形成するようにそれぞれガラス板の周縁に配置された第1および第2スペーサと、を備えた建築窓用複層ガラスにおいて、室内側に配される第1のガラス板が、第1および第2の主面、ならびに第1および第2の主面間に介在する端面を有し、化学強化処理により前記主面の双方に表面圧縮応力が形成され内部に引張応力が形成されたガラス板であって、該ガラス板は、板厚が1.0~2.5mm、前記双方の表面圧縮応力の値が400~900MPa、前記引張応力の値が1~25MPa、前記主面の双方における圧縮応力層の板厚方向の厚さが7~25μmであることを特徴とする、建築窓用複層ガラス。
- 第1中空層の厚さと第2中空層の厚さとが6~16mmである、請求項8に記載の建築窓用複層ガラス。
- 第1中空層の厚さと第2中空層の厚さとが異なる、請求項9に記載の建築窓用複層ガラス。
- 前記室内側に配されるガラス板の板厚が1.2~2.2mm、前記表面圧縮応力の値が600~850MPa、前記引張応力の値が4~20MPa、前記主面における圧縮応力層の板厚方向の厚さが15~25μmである、請求項8~10のいずれか1項に記載の建築窓用複層ガラス。
- 前記建築窓用複層ガラスについて、前記室内側に配されるガラス板側からのJISR3206に準拠したショットバック試験を行なった際、その落下高さが10cmで飛散せず、20cm以上で飛散した際の0.15g超の破片の飛散距離が4.5m以下である、請求項8~11のいずれか1項に記載の建築窓用複層ガラス。
- 前記主面の面積が5000cm2以上である、請求項8~12のいずれか1項に記載の建築窓用複層ガラス。
- 前記室内側に配される第1のガラス板は、下記酸化物基準のモル百分率表示で、SiO2を56~75%、Al2O3を1~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~10%含有するガラスからなる、請求項8~13のいずれか1項に記載の建築窓用複層ガラス。
- 前記室内側に配される第1のガラス板は、下記酸化物基準のモル百分率表示で、SiO2を56~75%、Al2O3を5~20%、Na2Oを8~22%、K2Oを0~10%、MgOを0~14%、ZrO2を0~5%、CaOを0~5%含有するガラスからなる、請求項8~13のいずれか1項に記載の建築窓用複層ガラス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14778207.2A EP2982657A4 (en) | 2013-04-03 | 2014-04-03 | DOUBLE GLAZING FOR BUILDING WINDOWS |
JP2015510138A JP6311704B2 (ja) | 2013-04-03 | 2014-04-03 | 建築窓用複層ガラス |
CN201480019598.7A CN105073676A (zh) | 2013-04-03 | 2014-04-03 | 建筑窗用多层玻璃 |
US14/870,577 US20160017654A1 (en) | 2013-04-03 | 2015-09-30 | Multiple glazing for building window |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013077556 | 2013-04-03 | ||
JP2013-077556 | 2013-04-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/870,577 Continuation US20160017654A1 (en) | 2013-04-03 | 2015-09-30 | Multiple glazing for building window |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014163158A1 true WO2014163158A1 (ja) | 2014-10-09 |
Family
ID=51658449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059880 WO2014163158A1 (ja) | 2013-04-03 | 2014-04-03 | 建築窓用複層ガラス |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160017654A1 (ja) |
EP (1) | EP2982657A4 (ja) |
JP (1) | JP6311704B2 (ja) |
CN (1) | CN105073676A (ja) |
WO (1) | WO2014163158A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017206850A (ja) * | 2016-05-17 | 2017-11-24 | 株式会社大林組 | 建物の外装システム |
JP2020059639A (ja) * | 2018-10-12 | 2020-04-16 | 日本板硝子株式会社 | 複層ガラス |
JP2020059649A (ja) * | 2014-06-26 | 2020-04-16 | コーニング インコーポレイテッド | 断熱ガラスユニット |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016169143A (ja) * | 2015-03-10 | 2016-09-23 | 旭硝子株式会社 | 化学強化ガラス |
CN105565647A (zh) * | 2015-12-14 | 2016-05-11 | 厦门博恩思应用材料科技有限公司 | 一种不完全熔合玻璃组及其制备方法 |
CN108395096A (zh) * | 2017-02-08 | 2018-08-14 | 中国南玻集团股份有限公司 | 玻璃及浮法玻璃 |
US11312658B2 (en) | 2017-12-21 | 2022-04-26 | Corning Incorporated | Multi-layer insulated glass unit comprising a low CTE glass layer |
CN108516700B (zh) * | 2018-03-27 | 2019-12-10 | 东莞泰升玻璃有限公司 | 一种高强度钢化玻璃的加工工艺 |
CN114096490B (zh) * | 2019-06-27 | 2023-12-19 | Agc株式会社 | 强化玻璃板及其制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000145310A (ja) * | 1998-11-06 | 2000-05-26 | Central Glass Co Ltd | 複層ガラス |
JP2010006684A (ja) | 2008-05-28 | 2010-01-14 | Central Glass Co Ltd | 複層ガラス |
JP2011236083A (ja) * | 2010-05-11 | 2011-11-24 | Central Glass Co Ltd | 複層ガラス |
WO2013031855A1 (ja) * | 2011-08-31 | 2013-03-07 | 日本電気硝子株式会社 | 強化ガラス基板及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2313220A1 (en) * | 1998-03-17 | 1999-09-23 | Nippon Sheet Glass Co., Ltd. | Double-glazing unit |
JP5467490B2 (ja) * | 2007-08-03 | 2014-04-09 | 日本電気硝子株式会社 | 強化ガラス基板の製造方法及び強化ガラス基板 |
JP5743125B2 (ja) * | 2007-09-27 | 2015-07-01 | 日本電気硝子株式会社 | 強化ガラス及び強化ガラス基板 |
US8835007B2 (en) * | 2011-01-19 | 2014-09-16 | Nippon Electric Glass Co., Ltd. | Tempered glass and tempered glass sheet |
CN202300006U (zh) * | 2011-10-26 | 2012-07-04 | 杭州中天玻璃有限公司 | 多腔中空玻璃 |
-
2014
- 2014-04-03 WO PCT/JP2014/059880 patent/WO2014163158A1/ja active Application Filing
- 2014-04-03 JP JP2015510138A patent/JP6311704B2/ja active Active
- 2014-04-03 CN CN201480019598.7A patent/CN105073676A/zh active Pending
- 2014-04-03 EP EP14778207.2A patent/EP2982657A4/en not_active Withdrawn
-
2015
- 2015-09-30 US US14/870,577 patent/US20160017654A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000145310A (ja) * | 1998-11-06 | 2000-05-26 | Central Glass Co Ltd | 複層ガラス |
JP2010006684A (ja) | 2008-05-28 | 2010-01-14 | Central Glass Co Ltd | 複層ガラス |
JP2011236083A (ja) * | 2010-05-11 | 2011-11-24 | Central Glass Co Ltd | 複層ガラス |
WO2013031855A1 (ja) * | 2011-08-31 | 2013-03-07 | 日本電気硝子株式会社 | 強化ガラス基板及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2982657A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020059649A (ja) * | 2014-06-26 | 2020-04-16 | コーニング インコーポレイテッド | 断熱ガラスユニット |
JP2017206850A (ja) * | 2016-05-17 | 2017-11-24 | 株式会社大林組 | 建物の外装システム |
JP2020059639A (ja) * | 2018-10-12 | 2020-04-16 | 日本板硝子株式会社 | 複層ガラス |
JP7096751B2 (ja) | 2018-10-12 | 2022-07-06 | 日本板硝子株式会社 | 複層ガラス |
Also Published As
Publication number | Publication date |
---|---|
EP2982657A4 (en) | 2016-11-30 |
EP2982657A1 (en) | 2016-02-10 |
JPWO2014163158A1 (ja) | 2017-02-16 |
JP6311704B2 (ja) | 2018-04-18 |
CN105073676A (zh) | 2015-11-18 |
US20160017654A1 (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6311704B2 (ja) | 建築窓用複層ガラス | |
JP7569883B2 (ja) | 非誤差関数圧縮応力プロファイルによるイオン交換ガラス及びその提供方法 | |
JP6256763B2 (ja) | 合わせガラス | |
KR102341851B1 (ko) | 하이브리드 소다-라임 실리케이트 및 알루미노실리케이트 유리 제품 | |
EP2736855B1 (en) | Laminated and ion-exchanged strengthened glass laminates and their manufacturing method | |
WO2018199046A1 (ja) | 化学強化ガラスおよび化学強化用ガラス | |
TW201726575A (zh) | 化學強化玻璃及化學強化用玻璃 | |
JP6137390B2 (ja) | 化学強化用ガラス及び化学強化ガラス並びに化学強化ガラスの製造方法 | |
WO2014196407A1 (ja) | 化学強化用ガラスおよび化学強化ガラス並びに化学強化ガラスの製造方法 | |
JP6538662B2 (ja) | イオン交換ガラスを製造する方法および結果として得られた装置 | |
KR20150060782A (ko) | 이온 교환 유리의 제조 방법 및 최종 장치 | |
JP2015231945A (ja) | 亀裂および引っ掻き抵抗性のガラスおよびそれから製造されたエンクロージャ | |
WO2015088010A1 (ja) | 化学強化用ガラスおよび化学強化ガラス並びに化学強化ガラスの製造方法 | |
WO2017183381A1 (ja) | 車両用合わせガラス | |
US20160060164A1 (en) | Chemically tempered glass plate | |
WO2017065286A1 (ja) | ガラス樹脂積層体 | |
JP2015143182A (ja) | 可動ホーム柵用のガラス基板および合わせガラス | |
JP2014218422A (ja) | 防火ガラス、防火ガラスの評価方法及び防火ガラスの製造方法 | |
WO2017183382A1 (ja) | 車両用合わせガラス | |
JP2016075122A (ja) | 遮音壁 | |
JP2022170718A (ja) | 遮音板 | |
WO2018074198A1 (ja) | 化学強化ガラス板 | |
JP6965881B2 (ja) | 化学強化ガラス板 | |
WO2016056460A1 (ja) | 積層板および積層板の製造方法 | |
JP7044101B2 (ja) | 化学強化ガラス板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480019598.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14778207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015510138 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014778207 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014778207 Country of ref document: EP |