WO2016056460A1 - 積層板および積層板の製造方法 - Google Patents

積層板および積層板の製造方法 Download PDF

Info

Publication number
WO2016056460A1
WO2016056460A1 PCT/JP2015/077937 JP2015077937W WO2016056460A1 WO 2016056460 A1 WO2016056460 A1 WO 2016056460A1 JP 2015077937 W JP2015077937 W JP 2015077937W WO 2016056460 A1 WO2016056460 A1 WO 2016056460A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
chemically strengthened
glass plate
low
strengthened glass
Prior art date
Application number
PCT/JP2015/077937
Other languages
English (en)
French (fr)
Inventor
和也 矢尾板
祐一 深川
石田 光
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016056460A1 publication Critical patent/WO2016056460A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a laminate and a method for producing the laminate.
  • a laminate having a transparent plate and a Low-E (Low ⁇ Emissivity) film formed on the transparent plate is known as a laminated plate attached to an opening such as a window (see, for example, Patent Document 1).
  • the Low-E film restricts the passage of heat by suppressing radiant heat transfer.
  • Tempered glass may be required as a transparent plate. However, it is difficult to cut glass after heat strengthening. Therefore, there is a manufacturing method in which a heat-strengthening is performed after cutting into a required size in advance, and then a Low-E film is formed (first manufacturing method). There is also a manufacturing method in which a Low-E film is formed on glass that has not been heat-strengthened and cut to the required size before heat-strengthening (second manufacturing method).
  • both the first and second manufacturing methods have a problem that the glass has to be cut to a required size in advance, and productivity is inferior in an era when various glass sizes are required.
  • the second manufacturing method since the Low-E film is formed before the heat strengthening process, it is necessary to adjust the characteristics of the Low-E film before and after the heat strengthening process. There is a problem that the selectivity is limited.
  • the Low-E film is formed by the first and second manufacturing methods, the Low-E film is also formed on the side surface of the tempered glass.
  • the Low-E film formed on the side surface has concerns about poor appearance of the glass and poor contact with other members.
  • the present invention has been made in view of the above problems, and provides a method for manufacturing a laminated plate with improved productivity and low-E membrane selectivity, and a laminated plate with good appearance and contact.
  • the method for producing a laminate according to one aspect of the present invention is a method for producing a laminate having a transparent plate containing chemically strengthened glass and a Low-E film formed on the transparent plate, the transparent plate and A cutting step of cutting both of the Low-E films at the same position.
  • a method of manufacturing a laminated plate comprising: preparing a chemically strengthened glass plate having a thickness of 2 mm or less; forming a Low-E film on the chemically strengthened glass plate; Cutting the chemically strengthened glass plate on which the Low-E film has been formed into a predetermined size.
  • the laminated sheet of one embodiment of the present invention includes a chemically strengthened glass sheet having a thickness of 2 mm or less and a Low-E film provided on the chemically strengthened glass sheet, and a tensile stress layer is formed on a side surface of the chemically strengthened glass sheet. Is exposed, and the Low-E film is not provided on the region.
  • FIG. 1 is a flowchart showing a method for manufacturing a laminated board according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a laminate obtained by the manufacturing method of FIG. In FIG. 2, the state of the chemically strengthened glass 20 and the Low-E film 30 before cutting is indicated by broken lines.
  • the manufacturing method of the laminated board 10 has the reinforcement
  • the chemically strengthened glass 20 as a transparent plate is produced by chemically treating the glass plate.
  • the chemical treatment method include an ion exchange method.
  • the glass is immersed in a treatment solution (for example, potassium nitrate molten salt), and ions having a small ion radius (for example, Na ions) contained in the glass are exchanged for ions having a large ion radius (for example, K ions).
  • a treatment solution for example, potassium nitrate molten salt
  • ions having a small ion radius for example, Na ions
  • ions having a large ion radius for example, K ions
  • the magnitude of the compressive stress on the glass surface (hereinafter referred to as “surface compressive stress CS”) and the depth DOL of the compressive stress layer formed on the glass surface can be adjusted by the chemical treatment time and the chemical treatment temperature, respectively.
  • surface compressive stress CS increases, the formation of scratches on the glass surface can be suppressed, but it is difficult to cut the glass.
  • depth DOL of the compressive stress layer is increased, the formation of scratches on the glass surface can be suppressed, but it is difficult to cut the glass.
  • the surface compressive stress CS is 400 to 900 MPa and the depth DOL of the compressive stress layer is 7 to 25 ⁇ m, the formation of scratches on the glass surface can be suppressed and the glass can be cut.
  • the surface compressive stress CS is preferably 600 to 850 MPa.
  • the depth DOL of the compressive stress layer is preferably 18 to 25 ⁇ m.
  • the thickness of the glass plate is 0.02 mm to 2 mm or less. When the glass plate is 2 mm or less, the glass plate may be warped when chemically strengthened, and it is difficult to cut, and this is particularly noticeable in a glass plate produced by the float process.
  • the Low-E film includes a plurality of layers because the stress becomes larger. In particular, it can be suitably used for a glass plate having a size of 2 square meters or more.
  • the chemically tempered glass 20 is expressed in terms of mole percentage on an oxide basis, SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, K 2 O is 0 to 10%, It contains 0-14% MgO, 0-5% ZrO 2 and 0-10% CaO.
  • % means mol%.
  • SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass.
  • the content of SiO 2 is 56% or more, preferably 60% or more, more preferably 63% or more, and further preferably 65% or more. Further, the content of SiO 2 is 75% or less, preferably 73% or less, more preferably 71% or less.
  • the content of SiO 2 is 56% or more, it is advantageous in terms of stability and weather resistance as glass.
  • the content of SiO 2 is 75% or less, it is advantageous in terms of meltability and moldability.
  • Al 2 O 3 has an effect of improving ion exchange performance in chemical strengthening, and particularly has a large effect of improving surface compressive stress (CS). It is also known as a component that improves the weather resistance of glass. Moreover, there exists an effect
  • the content of Al 2 O 3 is 1% or more, preferably 3% or more, more preferably 5% or more.
  • the content of Al 2 O 3 is 20% or less, preferably 17% or less, more preferably 12% or less, still more preferably 10% or less, and particularly preferably 7% or less.
  • the total SiO 2 + Al 2 O 3 content of SiO 2 and Al 2 O 3 is preferably 80% or less. If it exceeds 80%, the viscosity of the glass at high temperature may increase and melting may be difficult, and it is preferably 79% or less, more preferably 78% or less. Further, it is preferable that SiO 2 + Al 2 O 3 is 70% or more. If it is less than 70%, the crack resistance when an indentation is attached is lowered, more preferably 72% or more.
  • Na 2 O is an essential component that forms compressive stress by ion exchange, and has the effect of increasing the depth (DOL) of the compressive stress layer. Moreover, it is a component which lowers the high temperature viscosity and devitrification temperature of glass, and improves the meltability and moldability of glass.
  • the content of Na 2 O is 8% or more, preferably 12% or more, more preferably 13% or more. Further, the content of Na 2 O is 22% or less, preferably 20% or less, more preferably 16% or less. When the content of Na 2 O is 8% or more, a desired compressive stress can be formed by ion exchange. On the other hand, when the content of Na 2 O is 22% or less, sufficient weather resistance can be obtained.
  • K 2 O is not essential, but may be contained because it has the effect of increasing the ion exchange rate and deepening the DOL. On the other hand, if the amount of K 2 O is excessive, sufficient CS cannot be obtained. Preferably 10% or less when they contain K 2 O, preferably 8% or less, more preferably 6% or less. When the content of K 2 O is 10% or less, sufficient CS can be obtained.
  • MgO is not essential, but is a component that stabilizes the glass.
  • the content of MgO is 2% or more, preferably 3% or more, more preferably 3.6% or more. Further, the content of MgO is 14% or less, preferably 8% or less, more preferably 6% or less.
  • the content of MgO is 2% or more, the chemical resistance of the glass becomes good. The meltability at high temperature becomes good and devitrification hardly occurs.
  • the content of MgO is 14% or less, the difficulty of devitrification is maintained, and a sufficient ion exchange rate is obtained.
  • ZrO 2 is not essential, but it is generally known that ZrO 2 has an action of increasing the surface compressive stress in chemical strengthening. However, even if a small amount of ZrO 2 is contained, the effect is not great for the cost increase. Therefore, an arbitrary proportion of ZrO 2 can be contained as long as the cost permits. When it contains, it is preferable that it is 5% or less.
  • CaO is not essential, but is a component that stabilizes the glass. Since CaO tends to inhibit the exchange of alkali ions, it is preferable that the content is reduced or not contained particularly when it is desired to increase the DOL. On the other hand, in order to improve chemical resistance, it is preferable to contain 2% or more, preferably 4% or more, more preferably 6% or more. The amount in the case of containing CaO is 10% or less, preferably 9% or less, more preferably 8.2% or less. When the content of CaO is 10% or less, a sufficient ion exchange rate is maintained, and a desired DOL is obtained.
  • SrO is not essential, but may be contained for the purpose of lowering the high temperature viscosity of the glass and lowering the devitrification temperature. Since SrO has the effect of lowering the ion exchange efficiency, it is preferable not to contain it especially when it is desired to increase the DOL. When contained, the amount of SrO is 3% or less, preferably 2% or less, more preferably 1% or less.
  • BaO is not essential, but may be contained for the purpose of lowering the high temperature viscosity of the glass and lowering the devitrification temperature. Since BaO has the effect of increasing the specific gravity of the glass, it is preferably not contained when the weight is intended to be reduced.
  • the BaO content when contained is 3% or less, preferably 2% or less, more preferably 1% or less.
  • TiO 2 is abundant in natural raw materials and is known to be a yellow coloring source.
  • the content of TiO 2 is 0.3% or less, preferably 0.2% or less, more preferably 0.1% or less. If the content of TiO 2 exceeds 0.3%, the glass becomes yellowish.
  • the chemically strengthened glass 20 may contain other components, for example, components resulting from a fining agent.
  • components resulting from a fining agent As the clarifier, chloride, fluoride, or the like is used.
  • the total content of other components is preferably 5% or less, more preferably 3% or less, and typically 1% or less.
  • the other components will be described as an example.
  • ZnO may be contained, for example, up to 2% in order to improve the meltability of the glass at a high temperature. However, when it is produced by the float process, it is preferably not contained because it is reduced by a float bath and becomes a product defect.
  • B 2 O 3 may be contained in a range of less than 1% in order to improve the meltability at high temperature or the glass strength. In general, when an alkali component of Na 2 O or K 2 O and B 2 O 3 are contained at the same time, volatilization becomes intense and the brick is remarkably eroded. Therefore, it is preferable that B 2 O 3 is not substantially contained.
  • Li 2 O is a component that lowers the strain point and facilitates stress relaxation, and as a result makes it impossible to obtain a stable compressive stress. Therefore, Li 2 O is preferably not contained, and even if it is contained, its content is 1 % Is preferable, more preferably 0.05% or less, and particularly preferably less than 0.01%.
  • the Low-E film 30 is formed on the chemically strengthened glass 20.
  • the film forming step S12 is performed after the strengthening step S11. Since the chemical treatment is performed without the Low-E film 30, the entire glass surface can be chemically treated. Further, deterioration of the Low-E film 30 due to chemical treatment can be prevented, and selectivity of the Low-E film 30 can be improved.
  • the Low-E film 30 restricts the passage of heat by suppressing radiant heat transfer.
  • the Low-E film 30 may be a general one, and is a laminate of a transparent dielectric film, an infrared reflecting film, and a transparent dielectric film.
  • Typical examples of the transparent dielectric film include metal oxides and metal nitrides.
  • Typical metal oxides include zinc oxide and tin oxide.
  • a typical example of the infrared reflecting film is a metal film.
  • a typical metal film is silver (Ag).
  • the number of infrared reflection films sandwiched between two transparent dielectric films may be one, or two, three, or four or more layers.
  • both the chemically strengthened glass 20 and the Low-E film 30 are cut at the same position.
  • a scribe cutter or a laser is used for the cutting.
  • the chemically strengthened glass 20 is fixed to the stage with the Low-E film 30 facing upward, and a scribe cutter is pressed against the Low-E film 30 and pulled to form a scribe line. Generation of contact scratches with the stage of the Low-E film 30 can be prevented.
  • the chemically tempered glass 20 is fixed to the stage with the Low-E film 30 facing upward, and the Low-E film 30 is irradiated with a laser and its irradiation position is moved to thereby generate a scribe line. Form. Generation of contact scratches with the stage of the Low-E film 30 can be prevented.
  • the scribe line penetrates the Low-E film 30 and is also formed on the surface of the chemically strengthened glass 20. By applying an external force to the chemically strengthened glass 20, the chemically strengthened glass 20 can be cut along the scribe line.
  • the external force applied to the chemically strengthened glass 20 may be either mechanical stress or thermal stress.
  • the chemically strengthened glass 20 can be fully cut.
  • the unstrengthened layer is exposed on the cut surface 21 of the chemically strengthened glass 20.
  • both main surfaces 22 and 23 of the chemically strengthened glass 20 are covered with a compressive stress layer.
  • the CS and DOL of the compressive stress layer are not substantially changed before and after cutting.
  • the laminated board 10 shown in FIG. 2 is obtained by the manufacturing method shown in FIG.
  • the laminated plate 10 is used as a part of a multilayer glass attached to an opening such as a window. Examples of windows include building windows and vehicle windows.
  • the laminated board 10 may be attached to the opening part of the door of a refrigerator.
  • the laminate 10 has a chemically strengthened glass 20 after cutting and a Low-E film 30 after cutting.
  • a transparent plate is composed of only one chemically strengthened glass 20.
  • the laminated plate 10 has a cut surface 11 continuously formed on the side surface of the chemically strengthened glass 20 and the side surface of the Low-E film 30.
  • the cut surface 11 of the laminated plate 10 includes a cut surface 21 of the chemically strengthened glass 20 and a cut surface 31 of the Low-E film 30.
  • the cut surface 21 of the chemically strengthened glass 20 and the cut surface 31 of the Low-E film 30 are flush with each other.
  • the chemically strengthened glass 20 has an unreinforced layer on the cut surface 21.
  • the presence or absence of the cut surface 11 of the laminate 10 can be determined by the presence or absence of the unreinforced layer.
  • the Low-E film 30 is not formed on the cut surface 21 which is the side surface of the chemically strengthened glass 20 constituting the laminated plate 10 of the present embodiment.
  • the laminated plate 10 of the present embodiment is used as architectural glass, if the Low-E film is formed on the side surface, the Low-E film on the side surface is provided in the side-by-side configuration.
  • IGU Insulated Glass Units
  • the Low-E film 30 is not formed on the side surface of the laminated plate 10 of the present embodiment, the laminated plate 10 in which the above problems are solved can be provided.
  • the chemically strengthened glass 20 constituting the laminated plate 10 of the present embodiment has an unreinforced layer on the cut surface 21. That is, the tensile stress layer is exposed on the side surface of the chemically strengthened glass 20. If the Low-E film 30 is formed on the surface where the tensile stress layer is exposed, there is a risk that cracks are likely to occur in the Low-E film. Since the film quality of the Low-E film in which the crack is generated is deteriorated, there is a high possibility of causing a poor appearance and poor contact. Therefore, in the case of the chemically strengthened glass 20 in which the tensile stress layer is exposed on the side surface, it is preferable that the Low-E film is not formed on the side surface. Since the Low-E film 30 is not formed on the side surface of the laminate 10 of the present embodiment, the laminate 10 in which the above problems are solved can be provided.
  • the cut surface 11 of the laminated plate 10 of the present embodiment includes the cut surface 21 of the chemically strengthened glass 20 and the cut surface 31 of the Low-E film 30,
  • the side surface of the Low-E film 30 is continuous, that is, has no step. This is because the Low-E film 30 and the chemically strengthened glass 20 are cut in the same step in the cutting step S13.
  • the Low-E film 30 is formed on the chemically strengthened glass 20 previously cut to a predetermined size, the Low-E film is also formed on the cut surface which is the side surface of the chemically strengthened glass.
  • the cutting step S13 it is preferable to cut the Low-E film 30 and the chemically strengthened glass 20 in the same step.
  • netted glass may be used instead of the chemically strengthened glass of the present embodiment.
  • the netted glass is a glass in which a metal net is enclosed, and is intended to prevent scattering of the glass in the event of a fire.
  • the netted glass is cut, the net is exposed to the cut surface that is the side surface of the glass. Therefore, the side surface of the glass is coated with a rust preventive material to protect the net.
  • the rust preventive material and the Low-E film are not compatible with each other and may cause a decrease in function and adhesion, it is preferable that the Low-E film is not formed on the side surface of the glass.
  • the Low-E film is formed on the chemically strengthened glass previously cut to a predetermined size, the rust preventive material and the Low-E film come into contact with each other. Therefore, it is preferable to cut the Low-E film and the meshed glass in the same process.
  • the laminate 10 is downsized by cutting the laminate 10 composed of the chemically strengthened glass 20 and the Low-E film 30.
  • the laminated plate 10 matching the opening is obtained. Since the strengthening step S11 and the film forming step S12 can be performed before the size of the opening is determined, productivity can be improved.
  • the laminated sheet manufactured in the first embodiment is a part of the multilayer glass, whereas the laminated sheet manufactured in the present modification is a multilayer glass.
  • the difference will be mainly described.
  • FIG. 3 is a flowchart showing a method for manufacturing a laminated board according to a first modification of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a laminated plate obtained by the manufacturing method of FIG. In FIG. 4, the state of the chemically strengthened glass 20 and the Low-E film 30 before cutting is indicated by broken lines.
  • the manufacturing method of a laminated board has strengthening process S11, film-forming process S12, cutting process S13, removal process S14, and bonding process S15. Removal process S14 is performed after cutting process S13, and bonding process S15 is performed after removal process S14.
  • the outer peripheral portion of the low-E film 30 after cutting shown in FIG. 1 is removed, and the outer peripheral portion of the surface covered with the low-E film 30 in the chemically strengthened glass 20 is exposed. At this time, the cut surface 31 of the Low-E film 30 is also removed.
  • a removing method for example, polishing is used.
  • the outer peripheral portion of the Low-E film 30 referred to here is the Low-E film 30 formed in the main surface 22 in a region from the side surface to 10 mm.
  • the chemically strengthened glass 20 and the glass plate 40 are bonded through the spacer 50.
  • the glass plate 40 is disposed on the side opposite to the chemically strengthened glass 20 with the Low-E film 30 as a reference.
  • the laminate 110 shown in FIG. 4 is obtained by the manufacturing method shown in FIG.
  • the laminated plate 110 includes the chemically strengthened glass 20 after cutting, the Low-E film 30 after cutting and removal of the outer peripheral portion (hereinafter also referred to as the remainder of the Low-E film 30), the glass plate 40, the spacer 50, and the primary seal. 51, a secondary seal 52 and a sealed space 53 are provided.
  • the laminated plate 110 is a multi-layer glass including two glass plates facing each other, and is attached to an opening such as a window. When the laminated plate 110 is attached to the opening, either the chemically strengthened glass 20 or the glass plate 40 may face outward.
  • the glass plate 40 has the same size as the chemically strengthened glass 20 after cutting in plan view.
  • the glass plate 40 is chemically tempered glass, heat tempered glass, untempered glass, or the like. Although the glass plate 40 is a single plate in FIG. 4, it may be a part of a multilayer glass or a part of a laminated glass.
  • a Low-E film may be formed on the surface of the glass plate 40 facing the chemically strengthened glass 20.
  • the spacer 50 keeps the space between the chemically strengthened glass 20 and the glass plate 40.
  • the spacer 50 is formed in a frame shape and surrounds the sealed space 53.
  • a pillar that keeps a distance between the chemically strengthened glass 20 and the glass plate 40 may be provided inside the sealed space 53.
  • the spacer 50 has a hollow portion 55.
  • the hollow portion 55 and the sealed space 53 communicate with each other, and the hollow portion 55 is filled with a desiccant 56.
  • the sealed space 53 can be dried.
  • the primary seal 51 is formed between the chemically strengthened glass 20 and the spacer 50, and bonds the chemically strengthened glass 20 and the spacer 50 together.
  • the primary seal 51 is formed between the spacer 50 and the glass plate 40 and adheres the spacer 50 and the glass plate 40.
  • the secondary seal 52 surrounds the primary seal 51 and seals the sealed space 53 together with the primary seal 51.
  • the sealed space 53 accommodates the remaining part of the Low-E film 30.
  • the remaining portion of the Low-E film 30 does not protrude from the sealed space 53. Since the sealed space 53 is isolated from the atmosphere, contact between moisture in the atmosphere and the Low-E film 30 can be prevented, and deterioration of the Low-E film 30 can be limited.
  • the sealed space 53 dry air or inert gas is enclosed.
  • the air pressure in the sealed space 53 may be the same as the atmospheric pressure, or may be smaller than the atmospheric pressure.
  • the sealed space 53 may be evacuated.
  • the laminated plate 10 composed of the chemically strengthened glass 20 and the Low-E film 30 is cut in the cutting step S13 as in the first embodiment. Therefore, the laminated board 10 can be downsized according to the opening part which attaches the laminated board 10, and the laminated board 10 which fits an opening part is obtained. Since the strengthening step S11 and the film forming step S12 can be performed before the size of the opening is determined, productivity can be improved.
  • the removing step S14 is performed before the bonding step S15, whereas in the present modified example, the removing step S14 is not performed.
  • the difference will be mainly described.
  • FIG. 5 is a flowchart showing a method for manufacturing a laminated board according to a second modification of the first embodiment.
  • 6 is a cross-sectional view showing a laminate obtained by the manufacturing method of FIG. In FIG. 6, the state of the chemically strengthened glass 20 and the Low-E film 30 before cutting is indicated by broken lines.
  • the manufacturing method of a laminated board has strengthening process S11, film-forming process S12, cutting process S13, and bonding process S15, as shown in FIG.
  • the removal process S14 shown in FIG. 3 is not performed before the bonding process S15. Therefore, the cut surface 31 of the Low-E film 30 is not removed, and the laminated plate 210 in which the cut surface 31 of the Low-E film 30 and the cut surface 21 of the chemically strengthened glass 20 are flush with each other is obtained.
  • the laminated plate 210 has a chemically strengthened glass 20 after cutting, a low-E film 30 after cutting, a glass plate 40, a spacer 50, a primary seal 51, a secondary seal 52, and a sealed space 53.
  • the laminated plate 210 is a double-glazed glass including two glass plates, and is attached to an opening such as a window. When the laminated plate 210 is attached to the opening, either the chemically strengthened glass 20 or the glass plate 40 may face outward.
  • the laminated plate 10 composed of the chemically strengthened glass 20 and the Low-E film 30 is cut in the cutting step S13 as in the first embodiment. Therefore, the laminated board 10 can be downsized according to the opening part which attaches the laminated board 10, and the laminated board 10 which fits an opening part is obtained. Since the strengthening step S11 and the film forming step S12 can be performed before the size of the opening is determined, productivity can be improved.
  • the removal process S14 shown in FIG. 3 is not performed, so that the manufacturing cost can be reduced.
  • the multilayer glass of the first modification includes two glass plates, whereas the multilayer glass of the modification includes three glass plates.
  • the difference will be mainly described.
  • FIG. 7 is a flowchart showing a method for manufacturing a laminated board according to a third modification of the first embodiment.
  • FIG. 8 is a cross-sectional view showing a laminate obtained by the manufacturing method of FIG. In FIG. 8, the state of the chemically strengthened glass 20 and the Low-E film 30 before cutting is indicated by broken lines.
  • the manufacturing method of a laminated board has reinforcement
  • sealing process S16 is performed after bonding process S15 in FIG. 7, as long as it is performed after cutting process S13, it may be performed before bonding process S15 and is performed before removal process S14. Also good.
  • the chemically strengthened glass 20 and the glass plate 60 are bonded together via the spacer 70, and a sealed space 73 is formed on the side opposite to the Low-E film 30 with respect to the chemically strengthened glass 20.
  • the glass plate 60 is disposed on the side opposite to the Low-E film 30 with respect to the chemically strengthened glass 20.
  • the laminated plate 310 shown in FIG. 8 is obtained by the manufacturing method shown in FIG.
  • the laminated plate 310 includes the chemically strengthened glass 20 after cutting, the Low-E film 30 after cutting and removal of the outer peripheral portion, the glass plate 40, the spacer 50, the primary seal 51, the secondary seal 52, the sealed space 53, the glass plate. 60, a spacer 70, a primary seal 71, a secondary seal 72, and a sealed space 73.
  • the laminated plate 310 is attached to the opening, either the glass plate 40 or the glass plate 60 may face outward.
  • the glass plate 60 has the same size as the chemically strengthened glass 20 after cutting in plan view.
  • the glass plate 60 is chemically tempered glass, heat tempered glass, untempered glass, or the like. Although the glass plate 60 is a single plate in FIG. 8, it may be a part of a multi-layer glass or a part of a laminated glass.
  • a Low-E film may be formed on the surface of the glass plate 60 facing the chemically strengthened glass 20.
  • the spacer 70 keeps the space between the chemically strengthened glass 20 and the glass plate 60.
  • the spacer 70 is formed in a frame shape and surrounds the sealed space 73.
  • a pillar that keeps a distance between the chemically strengthened glass 20 and the glass plate 60 may be provided inside the sealed space 73.
  • the spacer 70 has a hollow portion 75.
  • the hollow portion 75 and the sealed space 73 are in communication with each other, and the hollow portion 75 is filled with a desiccant 76.
  • the sealed space 73 can be dried.
  • the primary seal 71 is formed between the chemically strengthened glass 20 and the spacer 70, and bonds the chemically strengthened glass 20 and the spacer 70 together.
  • the primary seal 71 is formed between the spacer 70 and the glass plate 60, and bonds the spacer 70 and the glass plate 60.
  • the secondary seal 72 surrounds the primary seal 71 and seals the sealed space 73 together with the primary seal 71.
  • Dry air or inert gas is sealed in the sealed space 73.
  • the air pressure in the sealed space 73 may be the same as the atmospheric pressure, or may be smaller than the atmospheric pressure.
  • the sealed space 73 may be evacuated.
  • the laminated plate 10 composed of the chemically strengthened glass 20 and the Low-E film 30 is cut in the cutting step S13 as in the first embodiment. Therefore, the laminated board 10 can be downsized according to the opening part which attaches the laminated board 10, and the laminated board 10 which fits an opening part is obtained. Since the strengthening step S11 and the film forming step S12 can be performed before the size of the opening is determined, productivity can be improved.
  • the transparent plate is composed of only one chemically strengthened glass 20, whereas in the present embodiment, the transparent plate is a laminated glass.
  • the difference will be mainly described.
  • FIG. 9 is a flowchart showing a method for manufacturing a laminate according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a laminated board obtained by the manufacturing method of FIG. In FIG. 10, the state of the laminated glass 80 and the Low-E film 30 before cutting is indicated by broken lines.
  • the method for manufacturing a laminated board includes a strengthening step S11, a crimping step S21, a film forming step S12, and a cutting step S13.
  • a plurality of glass plates 82 and 83 facing each other and an intermediate film 84 disposed therebetween are thermocompression bonded to produce a laminated glass 80 as a transparent plate.
  • the number of glass plates constituting the laminated glass 80 is two in this embodiment, but may be three or more. In this case, there are two or more intermediate films.
  • the intermediate film 84 is composed of a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, etc., and includes a vinyl polymer, an ethylene-vinyl monomer copolymer, a styrene copolymer, a polyurethane resin, a fluororesin, and an acrylic resin. It is preferably composed of one or more types selected from resins. For example, polyvinyl butyral resin (PVB) is typical.
  • One of the glass plates 82 and 83 facing each other is chemically tempered glass that has been chemically treated in the tempering step S11.
  • the strengthening step S11 is performed before the crimping step S21. Since the chemical treatment is performed without the intermediate film 84, the entire glass surface can be chemically treated. In addition, the deterioration of the intermediate film due to the chemical treatment can be prevented.
  • the remainder of the plurality of glass plates 82 and 83 is chemically strengthened glass chemically treated in the strengthening step S11 in the present embodiment, but may be heat strengthened glass or unstrengthened glass.
  • crimping process S21 is performed as a process of producing the laminated glass 80
  • an adhesion process may be performed.
  • an adhesive may be disposed between the intermediate film and the glass plate, or the intermediate film may be formed with the adhesive.
  • the Low-E film 30 is formed on the laminated glass 80.
  • the Low-E film 30 may be formed on either main surface of the laminated glass 80.
  • the film forming step S12 is performed after the pressure bonding step S21. Degradation of the Low-E film 30 due to pressure bonding can be prevented.
  • the Low-E film 30 is formed after the pressure-bonding step S21.
  • a glass plate on which the Low-E film 30 is formed in advance at the time of the pressure-bonding step S21 may be used.
  • both the laminated glass 80 and the Low-E film 30 are cut at the same position.
  • a scribe cutter or a laser is used for the cutting.
  • scribe lines are formed on both main surfaces of the laminated glass 80, respectively.
  • One scribe line is formed through the Low-E film 30. Then, by applying an external force to the laminated glass 80, the laminated glass 80 can be cut along the scribe line.
  • the external force applied to the laminated glass 80 may be either mechanical stress or thermal stress.
  • the laminated glass 80 when using a laser, it is also possible to fully cut the laminated glass 80 instead of forming a scribe line in the laminated glass 80. In this case, it is preferable to fix the laminated glass 80 to the stage with the Low-E film 30 facing the laser light source side. Generation of contact scratches with the stage of the Low-E film 30 can be prevented.
  • the unstrengthened layer is exposed on the cut surface of the chemically strengthened glass included in the laminated glass 80.
  • both main surfaces of the chemically strengthened glass are covered with a compressive stress layer.
  • the CS and DOL of the compressive stress layer are not substantially changed before and after cutting.
  • the laminated plate 410 shown in FIG. 10 is obtained by the manufacturing method shown in FIG.
  • the laminated plate 410 is used as a part of a multilayer glass attached to an opening such as a window.
  • the laminated board 410 may be attached to the opening part of the door of a refrigerator.
  • the laminated plate 410 has a laminated glass 80 after cutting and a Low-E film 30 after cutting.
  • Laminated glass 80 includes chemically tempered glass after cutting.
  • the laminated plate 410 has a cut surface 411 formed continuously on both the laminated glass 80 and the Low-E film 30 on the outer periphery.
  • the cut surface 411 of the laminated plate 410 includes a cut surface 81 of the laminated glass 80 and a cut surface 31 of the Low-E film 30.
  • the cut surface 81 of the laminated glass 80 and the cut surface 31 of the Low-E film 30 are flush with each other.
  • the chemically strengthened glass included in the laminated glass 80 has an unstrengthened layer on the cut surface 81.
  • the presence or absence of the cut surface 411 of the laminate 410 can be determined by the presence or absence of the unreinforced layer.
  • the laminated plate 410 is downsized by cutting the laminated plate 410 composed of the laminated glass 80 including the chemically strengthened glass and the Low-E film 30. By downsizing the laminated plate 410 according to the opening to which the laminated plate 410 is attached, the laminated plate 410 that matches the opening is obtained. Since the strengthening step S11 and the film forming step S12 can be performed before the size of the opening is determined, productivity can be improved.
  • the laminated sheet manufactured in the second embodiment is a part of the multilayer glass, whereas the laminated sheet manufactured in the present modification is a multilayer glass.
  • the difference will be mainly described.
  • FIG. 11 is a flowchart showing a method for manufacturing a laminated board according to a first modification of the second embodiment.
  • 12 is a cross-sectional view showing a laminate obtained by the manufacturing method of FIG. In FIG. 12, the state of the laminated glass 80 and the Low-E film 30 before cutting is indicated by broken lines.
  • the method for manufacturing a laminated board includes a strengthening step S11, a crimping step S21, a film forming step S12, a cutting step S13, a removing step S14, and a bonding step S15. Removal process S14 is performed after cutting process S13, and bonding process S15 is performed after removal process S14.
  • the outer periphery of the cut Low-E film 30 shown in FIG. 9 is removed, and the outer periphery of the surface covered with the Low-E film 30 in the laminated glass 80 is exposed. At this time, the cut surface 31 of the Low-E film 30 is also removed.
  • a removing method for example, polishing is used.
  • the laminated glass 80 and the glass plate 40 are bonded through the spacer 50.
  • the glass plate 40 is disposed on the side opposite to the laminated glass 80 with the Low-E film 30 as a reference.
  • the laminated plate 510 shown in FIG. 12 is obtained by the manufacturing method shown in FIG.
  • Laminated plate 510 includes laminated glass 80 after cutting, Low-E film 30 after cutting and removal of the outer peripheral portion, glass plate 40, spacer 50, primary seal 51, secondary seal 52, and sealed space 53.
  • Laminated plate 510 is a multi-layer glass including three glass plates, and is attached to an opening such as a window. When the laminated plate 510 is attached to the opening, either the laminated glass 80 or the glass plate 40 may face outward.
  • the laminated plate 410 composed of the laminated glass 80 and the Low-E film 30 is cut in the cutting step S13 as in the second embodiment. Therefore, the laminated plate 410 can be downsized according to the opening part to which the laminated plate 410 is attached, and the laminated plate 410 which fits an opening part is obtained. Since the strengthening step S11 and the film forming step S12 can be performed before the size of the opening is determined, productivity can be improved.
  • removal process S14 shown in FIG. 11 does not need to be similar to the second modification of the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

化学強化ガラスを含む透明板と、該透明板に成膜されるLow-E膜とを有する積層板の製造方法であって、前記透明板および前記Low-E膜の両方を同じ位置で切断する切断工程を有する、積層板の製造方法。

Description

積層板および積層板の製造方法
 本発明は、積層板および積層板の製造方法に関する。
 窓などの開口部に取り付けられる積層板として、透明板と、透明板に成膜されるLow-E(Low Emissivity)膜とを有するものが知られている(例えば特許文献1参照)。Low-E膜は、放射伝熱を抑制することで、熱の通過を制限する。
日本国特開2009-280464号公報
 透明板として、強化ガラスが求められる場合がある。しかし、熱強化ガラスは、熱強化した後にガラスを切断することが困難である。そこで、予め必要とされるサイズに切断してから熱強化を行い、その後にLow-E膜を形成する製造方法がある(第1の製造方法)。また、熱強化していないガラスにLow-E膜を形成し、必要とされるサイズに切断してから熱強化を行う製造方法もある(第2の製造方法)。
 しかしながら、第1及び第2のいずれの製造方法は、予め必要とされるサイズにガラスを切断しなければならず、様々なガラスサイズが要求される時代において、生産性が劣るという問題がある。また、第2の製造方法は、熱強化処理前に、Low-E膜を形成することから、熱強化処理前後のLow-E膜の特性を調整する必要があり、形成するLow-E膜の選択性に限度があるという問題点がある。
 また、第1及び第2の製造方法でLow-E膜を形成すると、強化ガラスの側面にもLow-E膜が成膜されてしまう。側面に成膜されたLow-E膜は、ガラスの外観不良や他の部材との接触不良が懸念される。
 本発明は、上記課題に鑑みてなされたものであって、生産性及びLow-E膜の選択性が改善された積層板の製造方法及び外観や接触性の良好な積層板を提供する。
 本発明の一態様の積層板の製造方法は、化学強化ガラスを含む透明板と、該透明板に成膜されるLow-E膜とを有する積層板の製造方法であって、前記透明板および前記Low-E膜の両方を同じ位置で切断する切断工程を有する。
 また、本発明の別態様の積層板の製造方法は、厚さが2mm以下の化学強化ガラス板を用意する工程と、前記化学強化ガラス板上にLow-E膜を成膜する工程と、前記Low-E膜の成膜がされた前記化学強化ガラス板を所定の寸法に切断する工程と、を備える。
 本発明の一態様の積層板は厚さが2mm以下の化学強化ガラス板と、前記化学強化ガラス板上に設けられたLow-E膜とを備え、前記化学強化ガラス板の側面に引っ張り応力層が露出している領域を有し、前記領域上には前記Low-E膜が設けられていない。
 本発明の一態様によれば、生産性及びLow-E膜の選択性が改善された積層板の製造方法及び外観や接触性の良好な積層板を提供することができる。
本発明の第1実施形態による積層板の製造方法を示すフローチャートである。 図1の製造方法により得られる積層板を示す断面図である。 第1実施形態の第1変形例による積層板の製造方法を示すフローチャートである。 図3の製造方法により得られる積層板を示す断面図である。 第1実施形態の第2変形例による積層板の製造方法を示すフローチャートである。 図5の製造方法により得られる積層板を示す断面図である。 第1実施形態の第3変形例による積層板の製造方法を示すフローチャートである。 図7の製造方法により得られる積層板を示す断面図である。 本発明の第2実施形態による積層板の製造方法を示すフローチャートである。 図9の製造方法により得られる積層板を示す断面図である。 第2実施形態の第1変形例による積層板の製造方法を示すフローチャートである。 図11の製造方法により得られる積層板を示す断面図である。
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。本明細書において、数値範囲を表す「~」はその前後の数値を含む範囲を意味する。
 [第1実施形態]
 図1は、本発明の第1実施形態による積層板の製造方法を示すフローチャートである。図2は、図1の製造方法により得られる積層板を示す断面図である。図2において、切断前の化学強化ガラス20およびLow-E膜30の状態を破線で示す。
 積層板10の製造方法は、図1に示すように、強化工程S11、成膜工程S12、および切断工程S13を有する。
 強化工程S11では、ガラス板を化学処理することにより透明板としての化学強化ガラス20を作製する。化学処理の方法としては、例えばイオン交換法などがある。イオン交換法は、ガラスを処理液(例えば硝酸カリウム溶融塩)に浸漬し、ガラスに含まれるイオン半径の小さなイオン(例えばNaイオン)をイオン半径の大きなイオン(例えばKイオン)に交換することで、ガラス表面に圧縮応力を生じさせる。圧縮応力はガラスの表面全体に均一に生じ、ガラスの表面全体に均一な深さの圧縮応力層が形成される。
 ガラス表面の圧縮応力(以下、表面圧縮応力CSという)の大きさ、ガラス表面に形成される圧縮応力層の深さDOLは、それぞれ、化学処理時間、および化学処理温度により調整できる。表面圧縮応力CSが大きいほど、ガラス表面の傷の形成が抑制できるが、ガラスの切断が困難である。同様に、圧縮応力層の深さDOLが大きいほど、ガラス表面の傷の形成が抑制できるが、ガラスの切断が困難である。
 表面圧縮応力CSが400~900MPaであり、圧縮応力層の深さDOLが7~25μmであることで、ガラス表面の傷の形成が抑制でき、且つ、ガラスの切断が可能である。表面圧縮応力CSは好ましくは600~850MPaである。圧縮応力層の深さDOLは好ましくは18~25μmである。ガラス板の厚さは0.02mm~2mm以下である。ガラス板が2mm以下の場合、化学強化した際にガラス板が反る可能性があり切断することが困難であり、特にフロート法で製造したガラス板に顕著にみられる。しかし、予め化学強化したガラス板にLow-E膜を成膜することでLow-E膜の膜応力により化学強化されたガラス板の反りを緩和することが出来るため、切断し易くなる。ガラス板の厚さが薄くなればなるほど反り易いため、Low-E膜を成膜してから切断することが効果的である。なお、Low-E膜が複数層からなる場合、応力がより大きくなるため好ましい。特に、2平方メートル以上のサイズのガラス板に好適に使用できる。
 化学強化ガラス20は、酸化物基準のモル百分率表示でSiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有する。以下、各成分について説明するが、%はモル%を意味する。
 SiOは、ガラス微細構造の中で網目構造を形成する成分として知られており、ガラスを構成する主要成分である。SiOの含有量は、56%以上であり、好ましくは60%以上、より好ましくは63%以上、さらに好ましくは65%以上である。また、SiOの含有量は、75%以下であり、好ましくは73%以下、より好ましくは71%以下である。SiOの含有量が56%以上であるとガラスとしての安定性や耐候性の点で優位である。一方、SiOの含有量が75%以下であると熔解性及び成形性の点で優位である。
 Alは化学強化におけるイオン交換性能を向上させる作用があり、特に表面圧縮応力(CS)を向上する作用が大きい。ガラスの耐候性を向上する成分としても知られている。また、フロート成形時にボトム面からの錫の浸入を抑制する作用がある。Alの含有量は、1%以上であり、好ましくは3%以上、より好ましくは5%以上である。また、Alの含有量は、20%以下であり、好ましくは17%以下、より好ましくは12%以下、さらに好ましくは10%以下、特に好ましくは7%以下である。Alの含有量が1%以上であると、イオン交換により、所望のCSが得られ、また、錫の浸入を抑制する効果が得られる。一方、Alの含有量が20%以下であると、ガラスの粘性が高い場合でも失透温度が大きくは上昇しないため、ソーダライムガラス生産ラインでの熔解、成形の点で優位である。
 SiO及びAlの含有量の合計SiO+Alは80%以下であることが好ましい。80%超では高温でのガラスの粘性が増大し、溶融が困難となるおそれがあり、好ましくは79%以下、より好ましくは78%以下である。また、SiO+Alは70%以上であることが好ましい。70%未満では圧痕が付いた時のクラック耐性が低下し、より好ましくは72%以上である。
 NaOはイオン交換により圧縮応力を形成させる必須成分であり、圧縮応力層の深さ(DOL)を深くする作用がある。またガラスの高温粘性と失透温度を下げ、ガラスの熔解性、成形性を向上させる成分である。NaOの含有量は、8%以上であり、好ましくは12%以上、より好ましくは13%以上である。また、NaOの含有量は、22%以下であり、好ましくは20%以下、より好ましくは16%以下である。NaOの含有量が8%以上であると、イオン交換により所望の圧縮応力を形成することができる。一方、NaOの含有量が22%以下であると、充分な耐候性が得られる。
 KOは必須ではないが、イオン交換速度を増大しDOLを深くする効果があるため含有してもよい。一方、KOが多くなりすぎると十分なCSが得られなくなる。KOを含有する場合は10%以下が好ましく、好ましくは8%以下、より好ましくは6%以下である。KOの含有量が10%以下であると、充分なCSが得られる。
 MgOは必須ではないが、ガラスを安定化させる成分である。MgOの含有量は、2%以上、好ましくは3%以上、より好ましくは3.6%以上である。また、MgOの含有量は、14%以下であり、好ましくは8%以下、より好ましくは6%以下である。MgOの含有量が2%以上であると、ガラスの耐薬品性が良好になる。高温での熔解性が良好になり、失透が起こり難くなる。一方、MgOの含有量が14%以下であると、失透の起こりにくさが維持され、充分なイオン交換速度が得られる。
 ZrOは必須ではないが、一般に、化学強化での表面圧縮応力を大きくする作用があることが知られている。しかし、少量のZrOを含有してもコスト増加の割には、その効果は大きくない。したがって、コストが許す範囲で任意の割合のZrOを含有することができる。含有する場合は、5%以下であることが好ましい。
 CaOは必須ではないが、ガラスを安定化させる成分である。CaOはアルカリイオンの交換を阻害する傾向があるため、特にDOLを大きくしたい場合は含有量を減らす、もしくは含まないことが好ましい。一方、耐薬品性を向上させるためには、2%以上、好ましくは4%以上、より好ましくは6%以上含有することが好ましい。CaOを含有する場合の量は、10%以下であり、好ましくは9%以下、より好ましくは8.2%以下である。CaOの含有量が10%以下であると、充分なイオン交換速度が保たれ、所望のDOLが得られる。
 SrOは必須ではないが、ガラスの高温粘性を下げ、失透温度を下げる目的で含有してもよい。SrOはイオン交換効率を低下させる作用があるため、特にDOLを大きくしたい場合は含有しないことが好ましい。含有する場合のSrO量は3%以下、好ましくは2%以下、より好ましくは1%以下である。
 BaOは必須ではないが、ガラスの高温粘性を下げ、失透温度を下げる目的で含有してもよい。BaOはガラスの比重を重くする作用があるため、軽量化を意図する場合には含有しないことが好ましい。含有する場合のBaO量は3%以下、好ましくは2%以下、より好ましくは1%以下である。
 TiOは天然原料中に多く存在し、黄色の着色源となることが知られている。TiOの含有量は0.3%以下であり、好ましくは0.2%以下、より好ましくは0.1%以下である。TiOの含有量が0.3%を超えるとガラスが黄色味を帯びる。
 化学強化ガラス20は、その他の成分、例えば清澄剤に起因する成分を含有してもよい。清澄剤としては、塩化物、またはフッ化物などが用いられる。その他の成分の含有量の合計は5%以下であることが好ましく、より好ましくは3%以下、典型的には1%以下である。以下、上記その他成分について例示的に説明する。
 ZnOはガラスの高温での熔融性を向上するために、例えば2%まで含有してもよい。しかし、フロート法で製造する場合には、フロートバスで還元され製品欠点となるので含有しないことが好ましい。
 Bは高温での熔融性またはガラス強度の向上のために、1%未満の範囲で含有してもよい。一般的には、NaOまたはKOのアルカリ成分とBを同時に含有すると揮散が激しくなり、煉瓦を著しく浸食するので、Bは実質的に含有しないことが好ましい。
 LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した圧縮応力を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は1%未満であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。
 成膜工程S12では、化学強化ガラス20にLow-E膜30を成膜する。成膜工程S12は、強化工程S11の後に行われる。Low-E膜30がない状態で化学処理が行われるため、ガラス表面全体が化学処理できる。また、化学処理によるLow-E膜30の劣化が防止でき、Low-E膜30の選択性が改善できる。
 Low-E膜30は、放射伝熱を抑制することで、熱の通過を制限する。Low-E膜30は、一般的なものであってよく、透明誘電体膜、赤外線反射膜、透明誘電体膜の積層体である。透明誘電体膜としては、金属酸化物や金属窒化物が代表的である。金属酸化物としては、酸化亜鉛や酸化スズが代表的である。赤外線反射膜としては、金属膜が代表的である。金属膜としては、銀(Ag)が代表的である。ここで、2つの透明誘電体膜に挟まれた赤外線反射膜の数が1層でも良く、2層、3層若しくは4層以上であっても良い。
 切断工程S13では、化学強化ガラス20およびLow-E膜30の両方を同じ位置で切断する。切断には、例えばスクライブカッターまたはレーザが用いられる。
 例えば、切断工程S13では、Low-E膜30を上に向けて化学強化ガラス20をステージに固定し、Low-E膜30に対しスクライブカッターを押し付けて引くことにより、スクライブ線を形成する。Low-E膜30のステージとの接触傷の発生が防止できる。
 或いは、切断工程S13では、Low-E膜30を上に向けて化学強化ガラス20をステージに固定し、Low-E膜30に対しレーザを照射すると共にその照射位置を移動させることにより、スクライブ線を形成する。Low-E膜30のステージとの接触傷の発生が防止できる。
 スクライブ線は、Low-E膜30を貫通し、化学強化ガラス20の表面にも形成される。化学強化ガラス20に対し外力を加えることにより化学強化ガラス20がスクライブ線に沿って切断できる。
 化学強化ガラス20に加える外力は、機械的な応力、熱的な応力のいずれでもよい。尚、レーザを用いる場合、化学強化ガラス20にスクライブ線を形成する代わりに、化学強化ガラス20をフルカットすることも可能である。
 化学強化ガラス20の切断面21には未強化層が露出する。一方、化学強化ガラス20の両主面22、23は圧縮応力層で覆われている。圧縮応力層のCSやDOLは、切断の前後で略変化しない。
 図1に示す製造方法により、図2に示す積層板10が得られる。積層板10は、窓などの開口部に取り付けられる複層ガラスの一部として用いられる。窓としては、建物の窓、車両の窓などが挙げられる。尚、積層板10は、冷蔵庫のドアの開口部に取り付けられてもよい。
 積層板10は、切断後の化学強化ガラス20と、切断後のLow-E膜30とを有する。1枚の化学強化ガラス20のみで透明板が構成される。積層板10は、化学強化ガラス20の側面およびLow-E膜30の側面に連続的に形成される切断面11を有する。積層板10の切断面11は、化学強化ガラス20の切断面21と、Low-E膜30の切断面31とで構成される。化学強化ガラス20の切断面21と、Low-E膜30の切断面31とは面一とされる。化学強化ガラス20は、切断面21に未強化層を有する。未強化層の有無によって、積層板10の切断面11の有無が判定できる。
 図2に示すように、本実施形態の積層板10を構成する化学強化ガラス20の側面である切断面21にはLow-E膜30は形成されていない。本実施形態の積層板10を建築用のガラスとして使用する場合、側面にLow-E膜が形成されていると、つきあわせ構成とした際に側面のLow-E膜が設けられていることによる反射光に起因した外観不良や、IGU(Insulated Glass Units)構成とした際に、積層板10の側面と接触するセッティングブロックとの接触不良が懸念される。しかし、本実施形態の積層板10の側面にはLow-E膜30が形成されていないため、上記のような問題が解決された積層板10を提供できる。
 また、前記したように、本実施形態の積層板10を構成する化学強化ガラス20は、切断面21に未強化層を有する。すなわち、化学強化ガラス20の側面に引っ張り応力層が露出している状態である。引っ張り応力層が露出している面にLow-E膜30が形成されていると、Low-E膜にクラックが発生し易くなるおそれがある。クラックが発生したLow-E膜は膜質が悪化しているため、より外観不良や接触不良を引き起こす可能性が高い。従って、側面に引っ張り応力層が露出している化学強化ガラス20の場合は特に側面にLow-E膜が形成されていないことが好ましい。本実施形態の積層板10の側面にはLow-E膜30が形成されていないため、上記のような問題が解決された積層板10を提供できる。
 なお、前記した通り、本実施形態の積層板10の切断面11は化学強化ガラス20の切断面21とLow-E膜30の切断面31とで構成されており、化学強化ガラス20の側面とLow-E膜30の側面は連続的、すなわち段差が無い状態である。これは、切断工程S13において、Low-E膜30と化学強化ガラス20を同じ工程で切断していることによるものである。先に所定の寸法に切断した化学強化ガラス20にLow-E膜30を成膜した場合、化学強化ガラスの側面である切断面にもLow-E膜が成膜されてしまう。引っ張り応力層が露出している化学強化ガラスの側面にLow-E膜が成膜されると、化学強化ガラスが破損してしまうため側面のLow-E膜を削り取ることが出来ない。従って、切断工程S13に示したように、Low-E膜30と化学強化ガラス20を同じ工程で切断することが好ましい。
 さらに、本実施形態の化学強化ガラスの代わりに網入りガラスを用いても構わない。網入りガラスとは金網を封入したガラスで、火災時のガラスの飛散防止等を目的とするものである。網入りガラスを切断すると、ガラスの側面である切断面に網が露出することになるため、その網を保護するためにガラスの側面に防錆材がコートされる。
 しかし、防錆材とLow-E膜は相性が悪く、機能の低下や密着性の低下を引き起こす可能性があるため、ガラスの側面にはLow-E膜が成膜されていないことが好ましい。先に所定の寸法に切断した化学強化ガラスにLow-E膜を成膜した場合、防錆材とLow-E膜が接触することになってしまう。従って、Low-E膜と網入りガラスを同じ工程で切断することが好ましい。
 以上説明したように、本実施形態によれば、化学強化ガラス20とLow-E膜30とで構成される積層板10を切断することにより、積層板10をダウンサイジングする。積層板10を取り付ける開口部に応じて積層板10をダウンサイジングすることで、開口部に合う積層板10が得られる。開口部の大きさが決まる前に、強化工程S11や成膜工程S12が実施できるため、生産性が向上できる。
 [第1実施形態の第1変形例]
 上記第1実施形態において製造される積層板は複層ガラスの一部であるのに対し、本変形例において製造される積層板は複層ガラスである。以下、相違点について主に説明する。
 図3は、第1実施形態の第1変形例による積層板の製造方法を示すフローチャートである。図4は、図3の製造方法により得られる積層板を示す断面図である。図4において、切断前の化学強化ガラス20およびLow-E膜30の状態を破線で示す。
 積層板の製造方法は、図3に示すように、強化工程S11、成膜工程S12、切断工程S13、除去工程S14、および貼合工程S15を有する。除去工程S14は切断工程S13の後に行われ、貼合工程S15は除去工程S14の後に行われる。
 除去工程S14では、図1に示す切断後のLow-E膜30の外周部を除去し、化学強化ガラス20におけるLow-E膜30で覆われた面の外周部を露出させる。このとき、Low-E膜30の切断面31も除去される。除去方法としては、例えば研磨が用いられる。ここで言うLow-E膜30の外周部とは、主面22において側面から10mmまでの領域に成膜されたLow-E膜30のことである。
 貼合工程S15では、化学強化ガラス20とガラス板40とをスペーサ50を介して貼り合わせる。ガラス板40は、Low-E膜30を基準として化学強化ガラス20とは反対側に配設される。
 図3に示す製造方法により、図4に示す積層板110が得られる。積層板110は、切断後の化学強化ガラス20、切断後かつ外周部除去後のLow-E膜30(以下、Low-E膜30の残部ともいう)、ガラス板40、スペーサ50、1次シール51、2次シール52、および密閉空間53を有する。積層板110は、互いに対向する2枚のガラス板を含む複層ガラスであって、窓などの開口部に取り付けられる。積層板110が開口部に取り付けられるとき、化学強化ガラス20とガラス板40のどちらが外向きでもよい。
 ガラス板40は、平面視において切断後の化学強化ガラス20と同じ大きさを有する。ガラス板40は、化学強化ガラス、熱強化ガラス、または未強化ガラスなどである。ガラス板40は、図4では単板であるが、複層ガラスの一部、合わせガラスの一部でもよい。ガラス板40における化学強化ガラス20との対向面にLow-E膜が形成されてもよい。
 スペーサ50は、化学強化ガラス20とガラス板40との間の間隔を保つ。スペーサ50は、枠状に形成され、密閉空間53を取り囲む。密閉空間53の内部には、化学強化ガラス20とガラス板40との間の間隔を保つピラーが設けられてもよい。
 スペーサ50は、中空部55を有する。中空部55と密閉空間53とは連通されており、中空部55には乾燥剤56が充填される。密閉空間53が乾燥できる。
 1次シール51は、化学強化ガラス20とスペーサ50との間に形成され、化学強化ガラス20とスペーサ50とを接着する。また、1次シール51は、スペーサ50とガラス板40との間に形成され、スペーサ50とガラス板40とを接着する。
 2次シール52は、1次シール51を取り囲み、1次シール51と共に密閉空間53を封止する。
 密閉空間53は、Low-E膜30の残部を収容する。Low-E膜30の残部は密閉空間53からはみ出さない。密閉空間53は大気と隔離されているため、大気中の水分とLow-E膜30との接触が防止でき、Low-E膜30の劣化が制限できる。
 密閉空間53には、乾燥空気や不活性ガスが封入される。密閉空間53の気圧は、大気圧と同じでもよいし、大気圧よりも小さくてもよい。密閉空間53は、真空とされてもよい。
 本変形例によれば、上記第1実施形態と同様に切断工程S13において、化学強化ガラス20とLow-E膜30とで構成される積層板10を切断する。よって、積層板10を取り付ける開口部に応じて積層板10をダウンサイジングすることができ、開口部に合う積層板10が得られる。開口部の大きさが決まる前に、強化工程S11や成膜工程S12が実施できるため、生産性が向上できる。
 [第1実施形態の第2変形例]
 上記第1変形例では貼合工程S15の前に除去工程S14が行われるのに対し、本変形例では除去工程S14が行われない。以下、相違点について主に説明する。
 図5は、第1実施形態の第2変形例による積層板の製造方法を示すフローチャートである。図6は、図5の製造方法により得られる積層板を示す断面図である。図6において、切断前の化学強化ガラス20およびLow-E膜30の状態を破線で示す。
 積層板の製造方法は、図5に示すように、強化工程S11、成膜工程S12、切断工程S13、および貼合工程S15を有する。貼合工程S15の前に、図3に示す除去工程S14は行われない。そのため、Low-E膜30の切断面31が除去されず、Low-E膜30の切断面31と、化学強化ガラス20の切断面21とが面一の積層板210が得られる。
 積層板210は、切断後の化学強化ガラス20、切断後のLow-E膜30、ガラス板40、スペーサ50、1次シール51、2次シール52、および密閉空間53を有する。積層板210は、2枚のガラス板を含む複層ガラスであって、窓などの開口部に取り付けられる。積層板210が開口部に取り付けられるとき、化学強化ガラス20とガラス板40のどちらが外向きでもよい。
 本変形例によれば、上記第1実施形態と同様に切断工程S13において、化学強化ガラス20とLow-E膜30とで構成される積層板10を切断する。よって、積層板10を取り付ける開口部に応じて積層板10をダウンサイジングすることができ、開口部に合う積層板10が得られる。開口部の大きさが決まる前に、強化工程S11や成膜工程S12が実施できるため、生産性が向上できる。
 また、本変形例によれば、図3に示す除去工程S14が行われないので、製造コストが低減できる。
 [第1実施形態の第3変形例]
 上記第1変形例の複層ガラスは2枚のガラス板を含むのに対し、本変形例の複層ガラスは3枚のガラス板を含む。以下、相違点について主に説明する。
 図7は、第1実施形態の第3変形例による積層板の製造方法を示すフローチャートである。図8は、図7の製造方法により得られる積層板を示す断面図である。図8において、切断前の化学強化ガラス20およびLow-E膜30の状態を破線で示す。
 積層板の製造方法は、図7に示すように、強化工程S11、成膜工程S12、切断工程S13、除去工程S14、貼合工程S15、封止工程S16を有する。封止工程S16は、図7では貼合工程S15の後に行われるが、切断工程S13の後に行われる限り、貼合工程S15の前に行われてもよく、除去工程S14の前に行われてもよい。
 封止工程S16では、化学強化ガラス20とガラス板60とをスペーサ70を介して貼り合わせ、化学強化ガラス20を基準としてLow-E膜30とは反対側に密閉空間73を形成する。ガラス板60は、化学強化ガラス20を基準としてLow-E膜30とは反対側に配設される。
 図7に示す製造方法により、図8に示す積層板310が得られる。積層板310は、切断後の化学強化ガラス20、切断後かつ外周部除去後のLow-E膜30、ガラス板40、スペーサ50、1次シール51、2次シール52、密閉空間53、ガラス板60、スペーサ70、1次シール71、2次シール72、および密閉空間73を有する。積層板310が開口部に取り付けられるとき、ガラス板40とガラス板60のどちらが外向きでもよい。
 ガラス板60は、平面視において切断後の化学強化ガラス20と同じ大きさを有する。ガラス板60は、化学強化ガラス、熱強化ガラス、または未強化ガラスなどである。ガラス板60は、図8では単板であるが、複層ガラスの一部、合わせガラスの一部でもよい。ガラス板60における化学強化ガラス20との対向面にLow-E膜が形成されてもよい。
 スペーサ70は、化学強化ガラス20とガラス板60との間の間隔を保つ。スペーサ70は、枠状に形成され、密閉空間73を取り囲む。密閉空間73の内部には、化学強化ガラス20とガラス板60との間の間隔を保つピラーが設けられてもよい。
 スペーサ70は、中空部75を有する。中空部75と密閉空間73とは連通されており、中空部75には乾燥剤76が充填される。密閉空間73が乾燥できる。
 1次シール71は、化学強化ガラス20とスペーサ70との間に形成され、化学強化ガラス20とスペーサ70とを接着する。また、1次シール71は、スペーサ70とガラス板60との間に形成され、スペーサ70とガラス板60とを接着する。
 2次シール72は、1次シール71を取り囲み、1次シール71と共に密閉空間73を封止する。
 密閉空間73には、乾燥空気や不活性ガスが封入される。密閉空間73の気圧は、大気圧と同じでもよいし、大気圧よりも小さくてもよい。密閉空間73は、真空とされてもよい。
 本変形例によれば、上記第1実施形態と同様に切断工程S13において、化学強化ガラス20とLow-E膜30とで構成される積層板10を切断する。よって、積層板10を取り付ける開口部に応じて積層板10をダウンサイジングすることができ、開口部に合う積層板10が得られる。開口部の大きさが決まる前に、強化工程S11や成膜工程S12が実施できるため、生産性が向上できる。
 また、本変形例によれば、化学強化ガラス20の両側に密閉空間が形成されるため、断熱性が向上できる。
 [第2実施形態]
 上記第1実施形態およびその変形例では透明板が1枚の化学強化ガラス20のみからなるのに対し、本実施形態では透明板が合わせガラスである。以下、相違点について主に説明する。
 図9は、本発明の第2実施形態による積層板の製造方法を示すフローチャートである。図10は、図9の製造方法により得られる積層板を示す断面図である。図10において、切断前の合わせガラス80およびLow-E膜30の状態を破線で示す。
 積層板の製造方法は、図9に示すように、強化工程S11、圧着工程S21、成膜工程S12、および切断工程S13を有する。
 圧着工程S21では、互いに対向する複数のガラス板82、83およびその間に配設される中間膜84を熱圧着することにより、透明板としての合わせガラス80を作製する。尚、合わせガラス80を構成するガラス板の枚数は、本実施形態では2枚であるが、3枚以上でもよい。この場合、中間膜は2つ以上である。
 中間膜84は熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等で構成されており、ビニル系ポリマー、エチレン‐ビニル系モノマー共重合体、スチレン系共重合体、ポリウレタン樹脂、フッ素樹脂及びアクリル樹脂から選択される一種類以上で構成されていることが好ましい。例えば、ポリビニルブチラール樹脂(PVB)が典型的である。
 互いに対向する複数のガラス板82、83のうちの1枚は、強化工程S11において化学処理された化学強化ガラスである。強化工程S11は、圧着工程S21の前に行われる。中間膜84がない状態で化学処理が行われるため、ガラス表面全体が化学処理できる。また、化学処理による中間膜の劣化が防止できる。
 複数のガラス板82、83の残りは、本実施形態では強化工程S11において化学処理された化学強化ガラスであるが、熱強化ガラスまたは未強化ガラスなどでもよい。
 尚、本実施形態では、合わせガラス80を作製する工程として、圧着工程S21が行われるが、接着工程が行われてもよい。接着工程では、中間膜とガラス板との間に接着剤を配設してもよいし、接着剤で中間膜を形成してもよい。
 成膜工程S12では、合わせガラス80にLow-E膜30を成膜する。Low-E膜30は、合わせガラス80の両主面のいずれに成膜されてもよい。
 成膜工程S12は、圧着工程S21の後に行われる。圧着によるLow-E膜30の劣化が防止できる。
 なお、本実施形態では圧着工程S21後にLow-E膜30を成膜しているが、圧着工程S21時に予めLow-E膜30が成膜されたガラス板を使用しても構わない。
 切断工程S13では、合わせガラス80およびLow-E膜30の両方を同じ位置で切断する。切断には、例えばスクライブカッターまたはレーザが用いられる。
 例えば、切断工程S13では、合わせガラス80の両主面にそれぞれスクライブ線を形成する。一方のスクライブ線はLow-E膜30を貫通して形成される。そうして、合わせガラス80に対し外力を加えることにより合わせガラス80がスクライブ線に沿って切断できる。合わせガラス80に加える外力は、機械的な応力、熱的な応力のいずれでもよい。
 尚、レーザを用いる場合、合わせガラス80にスクライブ線を形成する代わりに、合わせガラス80をフルカットすることも可能である。この場合、Low-E膜30をレーザ光源側に向けて、合わせガラス80をステージに固定することが好ましい。Low-E膜30のステージとの接触傷の発生が防止できる。
 合わせガラス80に含まれる化学強化ガラスの切断面には未強化層が露出する。一方、化学強化ガラスの両主面は圧縮応力層で覆われている。圧縮応力層のCSやDOLは、切断の前後で略変化しない。
 図9に示す製造方法により、図10に示す積層板410が得られる。積層板410は、窓などの開口部に取り付けられる複層ガラスの一部として用いられる。尚、積層板410は、冷蔵庫のドアの開口部に取り付けられてもよい。
 積層板410は、切断後の合わせガラス80と、切断後のLow-E膜30とを有する。合わせガラス80は切断後の化学強化ガラスを含む。積層板410は、合わせガラス80とLow-E膜30の両方に連続的に形成される切断面411を外周に有する。積層板410の切断面411は、合わせガラス80の切断面81と、Low-E膜30の切断面31とで構成される。合わせガラス80の切断面81と、Low-E膜30の切断面31とは面一とされる。合わせガラス80に含まれる化学強化ガラスは、切断面81に未強化層を有する。未強化層の有無によって、積層板410の切断面411の有無が判定できる。
 以上説明したように、本実施形態によれば、化学強化ガラスを含む合わせガラス80とLow-E膜30とで構成される積層板410を切断することにより、積層板410をダウンサイジングする。積層板410を取り付ける開口部に応じて積層板410をダウンサイジングすることで、開口部に合う積層板410が得られる。開口部の大きさが決まる前に、強化工程S11や成膜工程S12が実施できるため、生産性が向上できる。
 [第2実施形態の第1変形例]
 上記第2実施形態で製造される積層板は複層ガラスの一部であるのに対し、本変形例で製造される積層板は複層ガラスである。以下、相違点について主に説明する。
 図11は、第2実施形態の第1変形例による積層板の製造方法を示すフローチャートである。図12は、図11の製造方法により得られる積層板を示す断面図である。図12において、切断前の合わせガラス80およびLow-E膜30の状態を破線で示す。
 積層板の製造方法は、図11に示すように、強化工程S11、圧着工程S21、成膜工程S12、切断工程S13、除去工程S14、および貼合工程S15を有する。除去工程S14は切断工程S13の後に行われ、貼合工程S15は除去工程S14の後に行われる。
 除去工程S14では、図9に示す切断後のLow-E膜30の外周部を除去し、合わせガラス80におけるLow-E膜30で覆われた面の外周部を露出させる。このとき、Low-E膜30の切断面31も除去される。除去方法としては、例えば研磨が用いられる。
 貼合工程S15では、合わせガラス80とガラス板40とをスペーサ50を介して貼り合わせる。ガラス板40は、Low-E膜30を基準として合わせガラス80とは反対側に配設される。
 図11に示す製造方法により、図12に示す積層板510が得られる。積層板510は、切断後の合わせガラス80、切断後かつ外周部除去後のLow-E膜30、ガラス板40、スペーサ50、1次シール51、2次シール52、および密閉空間53を有する。積層板510は、3枚のガラス板を含む複層ガラスであって、窓などの開口部に取り付けられる。積層板510が開口部に取り付けられるとき、合わせガラス80とガラス板40のどちらが外向きでもよい。
 本変形例によれば、上記第2実施形態と同様に切断工程S13において、合わせガラス80とLow-E膜30とで構成される積層板410を切断する。よって、積層板410を取り付ける開口部に応じて積層板410をダウンサイジングすることができ、開口部に合う積層板410が得られる。開口部の大きさが決まる前に、強化工程S11や成膜工程S12が実施できるため、生産性が向上できる。
 尚、本変形例において、上記第1実施形態の第2変形例と同様に、図11に示す除去工程S14がなくてもよい。また、上記第1実施形態の第3変形例と同様に、図7に示す封止工程S16があってもよい。
 以上、積層板の製造方法の実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 本出願は、2014年10月7日に日本国特許庁に出願された特願2014-206240号に基づく優先権を主張するものであり、特願2014-206240号の全内容を本出願に援用する。
10 積層板
11 切断面
20 化学強化ガラス
21 切断面
30 Low-E膜
31 切断面
40 ガラス板
50 スペーサ
53 密閉空間
60 ガラス板
70 スペーサ
73 密閉空間
80 合わせガラス
81 切断面
82 ガラス板
83 ガラス板

 

Claims (20)

  1.  化学強化ガラスを含む透明板と、該透明板に成膜されるLow-E膜とを有する積層板の製造方法であって、
     前記透明板および前記Low-E膜の両方を同じ位置で切断する切断工程を有する、積層板の製造方法。
  2.  前記透明板は、1枚の前記化学強化ガラスのみからなり、
     前記Low-E膜は、前記化学強化ガラスに成膜される、請求項1に記載の積層板の製造方法。
  3.  前記透明板は、少なくとも1枚の前記化学強化ガラスを含む合わせガラスであり、
     前記Low-E膜は、前記合わせガラスに成膜される、請求項1に記載の積層板の製造方法。
  4.  前記積層板は、前記Low-E膜を基準として前記透明板とは反対側に設けられるガラス板と、前記透明板と前記ガラス板との間に形成される密閉空間とをさらに有する複層ガラスである、請求項2または3に記載の積層板の製造方法。
  5.  前記Low-E膜の外周部が除去され、前記Low-E膜の残部が前記密閉空間に収容される、請求項4に記載の積層板の製造方法。
  6.  前記積層板は、前記透明板を基準として前記ガラス板とは反対側に設けられる別のガラス板と、前記透明板と前記別のガラス板との間に形成される密閉空間とをさらに有する複層ガラスである、請求項4または5に記載の積層板の製造方法。
  7.  前記化学強化ガラスの両主面に形成される圧縮応力層の深さは7~25μmであり、
     前記化学強化ガラスの両主面の圧縮応力は400~900MPaである、請求項1~6のいずれか1項に記載の積層板の製造方法。
  8.  厚さが2mm以下の化学強化ガラス板を用意する工程と、
     前記化学強化ガラス板上にLow-E膜を成膜する工程と、
     前記Low-E膜の成膜がされた前記化学強化ガラス板を所定の寸法に切断する工程と、
     を備える積層板の製造方法。
  9.  前記Low-E膜を成膜する工程の前に、前記化学強化ガラス板と透明板とを貼り合わせて合わせガラスにする工程をさらに備え、
     前記Low-E膜の成膜がされた前記化学強化ガラス板を所定の寸法に切断する工程は、前記合わせガラスを所定の寸法に切断する工程である請求項8に記載の積層板の製造方法。
  10.  前記Low-E膜の成膜がされた前記化学強化ガラス板を所定の寸法に切断する工程は、前記Low-E膜側から切断する請求項8に記載の積層板の製造方法。
  11.  前記Low-E膜は銀を含む請求項8に記載の積層板の製造方法。
  12.  前記化学強化ガラス板の表面に形成された圧縮応力層の深さは7~25μmであり、前記化学強化ガラス板の表面の圧縮応力は400~900MPaである請求項8に記載の積層板の製造方法。
  13.  厚さが2mm以下の化学強化ガラス板と、
     前記化学強化ガラス板上に設けられたLow-E膜とを備え、
     前記化学強化ガラス板の側面に引っ張り応力層が露出している領域を有し、前記領域上には前記Low-E膜が設けられていない積層板。
  14.  前記化学強化ガラス板の側面および前記Low-E膜の側面が連続的に形成されている請求項13に記載の積層板。
  15.  前記化学強化ガラス板は、酸化物基準のモル百分率表示でSiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有する、請求項13に記載の積層板。
  16.  前記化学強化ガラス板の両主面に形成された圧縮応力層の深さは7~25μmであり、前記化学強化ガラス板の両主面の圧縮応力は400~900MPaである請求項13に記載の積層板。
  17.  前記Low-E膜は銀を含む請求項13に記載の積層板。
  18.  前記化学強化ガラス板と対向するガラス板と、
     前記化学強化ガラス板と前記ガラス板との間に設けられた中間膜とをさらに備える請求項13に記載の積層板。
  19.  前記化学強化ガラス板と対向するガラス板と、
     前記化学強化ガラス板と前記ガラス板との間に設けられた密閉空間とをさらに備える請求項13に記載の積層板。
  20.  前記化学強化ガラス板と対向する第一のガラス板と、
     前記化学強化ガラス板を基準として前記第一のガラス板とは反対側に設けられる第二のガラス板と、
     前記化学強化ガラス板と前記第一のガラス板との間に設けられた中間膜と、
     前記化学強化ガラス板と前記第二のガラス板との間に設けられた密閉空間とをさらに備える請求項13に記載の積層板。

     
PCT/JP2015/077937 2014-10-07 2015-10-01 積層板および積層板の製造方法 WO2016056460A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014206240A JP2017210375A (ja) 2014-10-07 2014-10-07 積層板および積層板の製造方法
JP2014-206240 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016056460A1 true WO2016056460A1 (ja) 2016-04-14

Family

ID=55653075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077937 WO2016056460A1 (ja) 2014-10-07 2015-10-01 積層板および積層板の製造方法

Country Status (2)

Country Link
JP (1) JP2017210375A (ja)
WO (1) WO2016056460A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534233A (ja) * 2017-09-18 2020-11-26 ガーディアン・グラス・エルエルシーGuardian Glass, Llc 鳥類の衝突を防止するための積層基材を含むig窓ユニット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145310A (ja) * 1998-11-06 2000-05-26 Central Glass Co Ltd 複層ガラス
JP2004083378A (ja) * 2002-08-29 2004-03-18 Central Glass Co Ltd 化学強化ガラス
JP2010006684A (ja) * 2008-05-28 2010-01-14 Central Glass Co Ltd 複層ガラス
JP2010138026A (ja) * 2008-12-11 2010-06-24 Central Glass Co Ltd 複層ガラス
JP2010138027A (ja) * 2008-12-11 2010-06-24 Central Glass Co Ltd 複層ガラス
JP2011510904A (ja) * 2008-02-05 2011-04-07 コーニング インコーポレイテッド 電子装置のカバープレートとして使用するための耐損傷性ガラス物品
WO2013031855A1 (ja) * 2011-08-31 2013-03-07 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2014010599A1 (ja) * 2012-07-11 2014-01-16 旭硝子株式会社 積層板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145310A (ja) * 1998-11-06 2000-05-26 Central Glass Co Ltd 複層ガラス
JP2004083378A (ja) * 2002-08-29 2004-03-18 Central Glass Co Ltd 化学強化ガラス
JP2011510904A (ja) * 2008-02-05 2011-04-07 コーニング インコーポレイテッド 電子装置のカバープレートとして使用するための耐損傷性ガラス物品
JP2010006684A (ja) * 2008-05-28 2010-01-14 Central Glass Co Ltd 複層ガラス
JP2010138026A (ja) * 2008-12-11 2010-06-24 Central Glass Co Ltd 複層ガラス
JP2010138027A (ja) * 2008-12-11 2010-06-24 Central Glass Co Ltd 複層ガラス
WO2013031855A1 (ja) * 2011-08-31 2013-03-07 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2014010599A1 (ja) * 2012-07-11 2014-01-16 旭硝子株式会社 積層板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534233A (ja) * 2017-09-18 2020-11-26 ガーディアン・グラス・エルエルシーGuardian Glass, Llc 鳥類の衝突を防止するための積層基材を含むig窓ユニット
JP7150829B2 (ja) 2017-09-18 2022-10-11 ガーディアン・グラス・エルエルシー 鳥類の衝突を防止するための積層基材を含むig窓ユニット

Also Published As

Publication number Publication date
JP2017210375A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
US20140186557A1 (en) Light-weight strengthened, low-emittance vacuum-insulated glass (vig) windows
US20160017654A1 (en) Multiple glazing for building window
CN105980148A (zh) 不发黄玻璃层叠结构
TW201434770A (zh) 化學鋼化的柔性超薄玻璃
KR20140002683A (ko) 압축하의 표면 및 중앙 영역을 갖는 유리
GB2104838A (en) Fire-screening panel
EP3328638B1 (en) Laminate including panels and a fill material between the panels and a process of forming the laminate
JP2015143182A (ja) 可動ホーム柵用のガラス基板および合わせガラス
WO2019008912A1 (ja) 複層ガラス及びサッシ窓
JP6310935B2 (ja) 耐火板ガラスおよび耐火グレージングアセンブリ
JP6517839B2 (ja) 防火ガラスおよび防火ガラス構造体
CA3098098A1 (en) Asymmetrical safe vacuum-insulated glazing unit
WO2016056460A1 (ja) 積層板および積層板の製造方法
JP2016075122A (ja) 遮音壁
RU2602849C2 (ru) Огнестойкий элемент с защитным покрытием и способ его изготовления
KR20200130682A (ko) 비대칭적 진공-단열 게이징 유닛
EP3807487A1 (en) Vacuum insulated glazing unit with a laser engraved code
JP2022513155A (ja) 低cte中央板ガラスを有する断熱ガラスユニット
EP3942143B1 (en) Asymmetrical vacuum-insulated glazing unit
US20220178195A1 (en) Asymmetrical vacuum-insulated glazing unit
Maiti Structural and Functional Properties of Architectural Glass
US20220333433A1 (en) Laminated vacuum-insulated glazing assembly
TW202237546A (zh) 用於車輛擋風玻璃具有獨特斷裂行為的玻璃
KR20210137429A (ko) 비대칭적인 진공-절연 글레이징 유닛
JP2023083205A (ja) 複層ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15848449

Country of ref document: EP

Kind code of ref document: A1