WO2014163137A1 - 移動通信システム及びユーザ端末 - Google Patents

移動通信システム及びユーザ端末 Download PDF

Info

Publication number
WO2014163137A1
WO2014163137A1 PCT/JP2014/059828 JP2014059828W WO2014163137A1 WO 2014163137 A1 WO2014163137 A1 WO 2014163137A1 JP 2014059828 W JP2014059828 W JP 2014059828W WO 2014163137 A1 WO2014163137 A1 WO 2014163137A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
enb
feedback information
user terminal
Prior art date
Application number
PCT/JP2014/059828
Other languages
English (en)
French (fr)
Inventor
憲由 福田
空悟 守田
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/782,253 priority Critical patent/US20160029401A1/en
Priority to EP14778845.9A priority patent/EP2983402A4/en
Publication of WO2014163137A1 publication Critical patent/WO2014163137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a mobile communication system that supports a double connection method.
  • Non-Patent Document 1 In 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, the introduction of a dual connection method is being studied (see Non-Patent Document 1).
  • a second connection for uplink to be transmitted is established.
  • the user terminal transmits downlink feedback information, which is feedback information about downlink data from the first radio base station to the user terminal, via the second radio base station. 1 to the radio base station. For this reason, there is a problem that a delay time occurs until the first radio base station receives downlink feedback information, and it takes time until the downlink feedback information is reflected in downlink data communication.
  • the second radio base station sends uplink feedback information, which is feedback information about uplink data from the user terminal to the second radio base station, via the first radio base station. To the user terminal. For this reason, there is a problem that a delay time occurs until the user terminal receives the uplink feedback information, and it takes time until the uplink feedback information is reflected in the uplink data communication.
  • the present invention provides a mobile communication system and a user terminal that can shorten the time until feedback information is received while utilizing the double connection method.
  • the mobile communication system includes a user terminal, a first radio base station, and a second radio base station adjacent to the first radio base station, and the first radio A first connection for downlink in which downlink data is transmitted from the base station to the user terminal, and a second connection for uplink in which uplink data is transmitted from the user terminal to the second radio base station.
  • the user terminal transmits downlink feedback information, which is feedback information about the downlink data from the first radio base station to the user terminal, to the first radio base station.
  • the user terminal receives uplink feedback information, which is feedback information about the uplink data from the user terminal to the second radio base station, from the second radio base station.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a frame configuration diagram showing the configuration of the downlink subframe.
  • FIG. 7 is a frame configuration diagram showing the configuration of the uplink subframe.
  • FIG. 8 is a diagram for explaining the operating environment of the LTE system according to the present embodiment.
  • FIG. 9 is a sequence diagram of an operation sequence regarding uplink feedback information.
  • FIG. 10 is a sequence diagram of an operation sequence related to downlink feedback information.
  • the mobile communication system includes a user terminal, a first radio base station, and a second radio base station adjacent to the first radio base station, from the first radio base station A first connection for downlink in which downlink data is transmitted to the user terminal; a second connection for uplink in which uplink data is transmitted from the user terminal to the second radio base station; A mobile communication system supporting a dual connection scheme in which the user terminal receives downlink feedback information that is feedback information about the downlink data from the first radio base station to the user terminal. , Transmitted to the first radio base station, wherein the user terminal is feedback information about the uplink data from the user terminal to the second radio base station. The feedback information is received from the second radio base station.
  • the second radio base station uses the radio used for transmitting the uplink feedback information.
  • Scheduling information including information indicating resources is transmitted to the first radio base station, and the first radio base station allocates radio resources in the downlink based on the scheduling information.
  • the second radio base station in a downlink frame including a control region for transmitting downlink control information including the uplink feedback information and a data region for transmitting the downlink data,
  • the uplink feedback information is transmitted in the data area instead of the control area.
  • the first radio base station includes a plurality of user terminals that establish a connection with radio resources corresponding to the radio resources used for transmission of the uplink feedback information with the first radio base station.
  • the radio resources are allocated so as not to be allocated to the user terminals.
  • the first radio base station uses the radio resource corresponding to the radio resource allocated to the user terminal to transmit the uplink feedback information, and transmits the downlink data to a predetermined value. Transmit with the following transmission power.
  • the first radio base station is configured such that the null point of the directional beam from the first radio base station is the user while the second radio base station transmits the uplink feedback information.
  • the radio resource is allocated so as to be suitable for the terminal.
  • the second radio base station transmits setting information indicating settings for transmitting the uplink feedback information in the data area to the user terminal.
  • the second radio base station transmits the setting information to the user terminal via the first radio base station.
  • the uplink feedback information is acknowledgment information of the uplink data transmitted from the user terminal, and the second radio base station receives the uplink feedback information via a physical HARQ indicator channel. Send.
  • the first radio base station uses the radio used for transmitting the downlink feedback information.
  • Scheduling information including information indicating resources is transmitted to the second radio base station, and the second radio base station allocates radio resources in the uplink based on the scheduling information.
  • the first radio base station in an uplink frame including a control region for transmitting uplink control information including the downlink feedback information and a data region for transmitting the uplink data,
  • the downlink feedback information is transmitted to the user terminal in the data area instead of the control area.
  • the second radio base station includes a plurality of the user terminals that establish a connection with the second radio base station for radio resources corresponding to the radio resources used for transmission of the downlink feedback information.
  • the radio resources are allocated so as not to be allocated to the user terminals.
  • the user terminal transmits the downlink feedback information with transmission power equal to or less than a predetermined value.
  • the mobile communication system includes a network including the first radio base station, and the user terminal receives information indicating whether the user terminal supports the dual connection scheme or not.
  • the network determines whether to apply the dual connection scheme to the user terminal based on the information.
  • the user terminal includes a user terminal, a first radio base station, and a second radio base station adjacent to the first radio base station, and the first radio base station A first connection for downlink in which downlink data is transmitted to the user terminal, and a second connection for uplink in which uplink data is transmitted from the user terminal to the second radio base station.
  • a user terminal in a mobile communication system that supports an established double connection scheme wherein downlink feedback information that is feedback information about the downlink data from the first radio base station to the user terminal is A transmission unit that transmits to one radio base station, and the user terminal is feedback information about the uplink data from the user terminal to the second radio base station.
  • the uplink feedback information that has a reception unit that receives from the second radio base station.
  • LTE system cellular mobile communication system
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a connection with the cell.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM (Operation and Maintenance) 400.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • OAM Operaation and Maintenance
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 '.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a MAC scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and an allocated resource block.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connected state When there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • the LTE system uses OFDMA (Orthogonal Frequency Division Multiplexing Access) for the downlink and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit composed of one subcarrier and one symbol is called a resource element (RE).
  • RE resource element
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region (PDCCH) mainly composed of radio resources (time / frequency resources) used as a physical downlink control channel (PDCCH). Area).
  • the remaining section of each subframe is a region (PDSCH region) mainly composed of radio resources (time / frequency resources) that can be used as a physical downlink shared channel (PDSCH).
  • the PDCCH carries a control signal.
  • the control signal is, for example, an uplink SI (Scheduling Information), a downlink SI, and a TPC bit.
  • Uplink SI indicates allocation of uplink radio resources
  • downlink SI indicates allocation of downlink radio resources.
  • the TPC bit is a signal instructing increase / decrease in uplink transmission power.
  • DCI downlink control information
  • downlink control information for example, uplink SI and TPC bits
  • uplink control information (downlink SI) regarding a downlink is downlink feedback information.
  • the PDSCH carries user data and / or control signals.
  • the downlink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • a timing advance value is mentioned as a control signal transmitted via PDSCH.
  • the timing advance value is a transmission timing correction value of the UE 100, and is determined by the eNB 200 based on an uplink signal transmitted from the UE 100.
  • downlink reference signals such as a cell-specific reference signal (CRS) and / or a channel state information reference signal (CSI-RS) are distributed and arranged.
  • the downlink reference signal is configured by a predetermined orthogonal signal sequence and is arranged in a predetermined resource element.
  • an acknowledgment (ACK) / negative acknowledgment (NACK) is carried via a physical HARQ indicator channel (PHICH; Physical HARQ Indicator Channel).
  • ACK / NACK indicates whether or not the signal transmitted via the uplink physical channel (for example, PUSCH) has been successfully decoded.
  • the physical HARQ indicator channel is a channel for notifying a retransmission request signal for PUSCH.
  • both ends in the frequency direction in each subframe are control regions (PUCCH) composed of radio resources (time / frequency resources) mainly used as physical uplink control channels (PUCCH). Area). Further, the central portion in the frequency direction in each subframe is a region (PUSCH region) composed of radio resources (time / frequency resources) that can be used mainly as a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channels
  • the PUCCH carries a control signal.
  • the control signal includes, for example, channel quality information (CQI; Channel Quality Indicator), normal precoder matrix information (PMI; Precoder Matrix Indicator), and special precoder matrix information (BC-PMI; Best Companion Precoder Indicate Matrix Information).
  • CQI Channel Quality Indicator
  • PMI normal precoder matrix information
  • BC-PMI special precoder matrix information
  • RI Rank Indicator
  • scheduling request SR
  • ACK acknowledgment
  • NACK negative acknowledgment
  • UCI uplink control information
  • the uplink control information is downlink feedback information.
  • CQI is an index indicating a modulation / coding scheme (MCS) recommended in the downlink.
  • the PMI is an index indicating a precoder matrix recommended in the downlink (a precoder matrix in which a beam is directed toward the UE 100).
  • BC-PMI is an index indicating a precoder matrix recommended in the downlink in UEs (not shown) other than UE100, and an index indicating a precoder matrix preferable for UE100 (a precoder matrix in which null is directed to UE100).
  • the RI is an index indicating a rank (number of layers) recommended in the downlink.
  • SR is a signal for requesting allocation of uplink radio resources (resource blocks).
  • ACK / NACK indicates whether or not the signal transmitted via the downlink physical channel (for example, PDSCH) has been successfully decoded.
  • PUSCH is a physical channel that carries user data and / or control signals.
  • the uplink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the eNB 200 normally transmits DCI in the control region via the PDCCH. However, as illustrated in FIG. 7, in the present embodiment, when the eNB 200 transmits DCI to the UE 100 to which a dual connection method described later is applied, the eNB 200 transmits DCI in the data area instead of the control area. To do.
  • ePDCCH E-PDCCH; Enhanced-PDCCH.
  • the eNB 200 usually transmits an acknowledgment (ACK) / negative acknowledgment (NACK), which is uplink data delivery confirmation information, in the control area via the PHICH.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • the eNB 200 replaces the control area with the data area. Then, an acknowledgment (ACK) / negative acknowledgment (NACK) is transmitted.
  • ePHICH Enhanced-PHICH
  • eNB200 transmits DCI using the specific resource block in a data area
  • the specific resource block in the data area is used for DCI transmission in the same manner as the specific resource block in the control area.
  • a specific resource block in the data area is used for transmission of an acknowledgment (ACK) / negative acknowledgment (NACK).
  • ACK acknowledgment
  • NACK negative acknowledgment
  • FIG. 8 is a diagram for explaining the operating environment of the LTE system according to the present embodiment.
  • the LTE system includes a UE 100, an eNB 200-1, and an eNB 200-2.
  • the eNB 200-1 manages a large cell.
  • the large cell is a general cell in the LTE system and is referred to as a macro cell. Note that the eNB 200-1 manages the mobility of the UE 100.
  • the eNB 200-2 manages small cells.
  • a small cell is a cell with a narrower coverage than a large cell, and is called a pico cell or a femto cell.
  • the eNB 200-2 may be a home base station (HeNB). Note that the eNB 200-2 does not manage the mobility of the UE 100 for the UE 100 to which the double connection scheme is applied.
  • the small cell is provided within the coverage of the large cell.
  • the eNB 200-1 and the eNB 200-2 use the same frequency band. That is, the large cell and the small cell belong to the same frequency band.
  • the dual connection scheme supported by the LTE system includes a first connection for downlink in which downlink data is transmitted from the eNB 200-1 to the UE 100, and uplink data is transmitted from the UE 100 to the eNB 200-2. And the second connection for uplink to be established.
  • the first connection established between the UE 100 and the eNB 200-1 is an RRC connection
  • the second connection established between the UE 100 and the eNB 200-2 is an RRC connection or an RRC connection. It is a connection in a lower layer than the connection (for example, RLC connection). Therefore, in the dual connection scheme, the UE 100 in the RRC connection uses radio resources provided from (eNB 200-1 and eNB 200-2) at at least two different network points connected to the backhaul.
  • the UE 100 may establish a communication bearer with the eNB 200-2 as the second connection without establishing an RRC connection with the eNB 200-2.
  • UE 100 transmits uplink data to eNB 200-2. Also, the UE 100 receives downlink data from the eNB 200-1. Thereby, the power received by the UE 100 from the eNB 200-1 is greater than the power received by the UE 100 from the eNB 200-2, and the power received by the eNB 200-2 from the UE 100 is greater than the power received by the eNB 200-1 from the UE 100. Is larger, the UE 100 can receive downlink data with good reception strength, and the eNB 200-2 can receive uplink data with good reception strength.
  • the UE 100 transmits uplink data to the eNB 200-2, while exceptionally being downlink information that is feedback information about downlink data that is classified as uplink data.
  • Feedback information (DL feedback) is transmitted to the eNB 200-1. That is, the downlink feedback information is uplink data, but the UE 100 transmits the downlink feedback information to the eNB 200-1 without transmitting the downlink feedback information to the eNB 200-2. Therefore, the eNB 200-1 directly receives downlink feedback information from the UE 100.
  • the UE 100 receives the downlink data from the eNB 200-1, but exceptionally, the UE 100 receives uplink feedback information (UL feedback) that is feedback information about the uplink data classified into the downlink data.
  • UL feedback uplink feedback information
  • FIG. 9 is a sequence diagram of an operation sequence regarding uplink feedback information.
  • the description will be made assuming that the UE 100 establishes a connection with the eNB 200-1 and does not establish a connection with the eNB 200-2 using the large cell as a serving cell.
  • step S101 the UE 100 transmits an uplink request (UL request) to the eNB 200-1.
  • the eNB 200-1 receives the uplink request.
  • the uplink request is information requesting the UE 100 to transmit uplink data.
  • the UE 100 transmits capability information (Capability Information) indicating whether or not the UE 100 supports the double connection method to the eNB 200-1.
  • the eNB 200-1 receives the capability information.
  • the capability information is information indicating that the UE 100 supports the double connection method.
  • the UE 100 transmits a measurement report (Measurement report) to the eNB 200-1.
  • the eNB 200-1 receives the measurement report.
  • the measurement report includes measurement information (such as the received power of the reference signal) of the large cell managed by the eNB 200-1 and the small cell (adjacent cell) managed by the eNB 200-2.
  • the UE 100 may transmit the location information of the UE 100.
  • step S102 the eNB 200-1 determines whether or not to apply the double connection method to the UE 100.
  • the eNB 200-1 determines whether or not to apply the double connection method to the UE 100 based on the capability information.
  • the eNB 200-1 determines whether or not the UE 100 can be connected to another eNB 200 different from the eNB 200-1.
  • the eNB 200-1 determines that the double connection method is not applied to the UE 100.
  • the eNB 200-1 determines whether or not the UE 100 can be connected to another eNB 200 based on the measurement report. The eNB 200-1 determines that the UE 100 can be connected to another eNB 200 when the measurement information about the small cell managed by the eNB 200-2 is good. In this case, the eNB 200-1 determines to apply the dual connection scheme to the UE 100.
  • the eNB 200-1 determines that the UE 100 is not in a state where it can connect to another eNB 200. In this case, the eNB 200-1 determines that the double connection scheme is not applied to the UE 100.
  • the eNB 200-1 may determine whether or not the UE 100 can be connected to another eNB 200 based on the location information of the UE 100. For example, when the distance between the UE 100 and the eNB 200-1 is larger than a value obtained by adding a predetermined value to the distance between the UE 100 and the eNB 200-1, the eNB 200-1 determines to apply the dual connection scheme to the UE 100.
  • the eNB 200-1 will be described on the assumption that the eNB 200-1 determines to apply the dual connection scheme to the UE 100.
  • step S103 the eNB 200-1 transmits a double connection request (Dual Connection request) to the eNB 200-2.
  • the eNB 200-2 receives the double connection request.
  • the double connection request is information indicating that it is required to establish a connection with the UE 100 to which the double connection method is applied.
  • the double connection request includes information indicating that the UE 100, in principle, transmits uplink data to the eNB 200-2 and receives downlink data from the eNB 200-1.
  • the eNB 200-2 determines whether or not to establish a connection with the UE 100. For example, the eNB 200-2 determines whether or not to establish a connection with the UE 100 based on the load status of the eNB 200-2. Specifically, it may be determined that the connection with the UE 100 is established when the traffic volume of the eNB 200-2 does not exceed a predetermined value.
  • step S104 the eNB 200-2 transmits a double connection response (Dual Connection response) to the eNB 200-1.
  • the eNB 200-1 receives a response to the double connection request.
  • the double connection response is a response to the double connection request.
  • the eNB 200-2 transmits a positive response (Dual Connection request Ack) or a negative response (Dual Connection request Nack) to the double connection request as a response to the double connection request.
  • the eNB 200-2 may transmit the configuration information (Configuration Information) indicating the configuration (Configuration) of information transmitted from the eNB 200-2 to the UE 100 together with the double connection response to the eNB 200-1 over the X2 interface. Good.
  • the setting information of the eNB 200-2 is transmitted to the UE 100 via the eNB 200-1.
  • the eNB 200-2 sets, for example, CSI-RS configuration information (CSI-RS Configuration Information), ePDCCH configuration information (ePDCCH Configuration Information), and ePHICH configuration information (ePHICH Configuration Information) on the X2 interface on the eNB 2 as configuration information. Send.
  • CSI-RS Configuration Information CSI-RS Configuration Information
  • ePDCCH Configuration Information ePDCCH Configuration Information
  • ePHICH configuration information ePHICH Configuration Information
  • the CSI-RS setting information is information indicating the setting of CSI-RS transmitted by the eNB 200 (eNB 200-2).
  • the ePDCCH setting information is information indicating the setting of ePDCCH transmitted by the eNB 200 (eNB 200-2).
  • the ePHICH setting information is information indicating the ePHICH setting transmitted by the eNB 200 (eNB 200-2).
  • the eNB 200-2 may transmit the setting information separately from the double connection request.
  • step S105 the eNB 200-1 transmits a double connection instruction (dual connection instruction) to the UE 100.
  • the UE 100 receives the double connection instruction.
  • the double connection instruction is information for instructing the UE 100 to make a double connection.
  • the double connection request includes information indicating that the UE 100 transmits uplink data to the eNB 200-2 and receives downlink data from the eNB 200-1 in principle.
  • the UE 100 establishes a connection with the eNB 200-2 based on the double connection instruction. Thereby, a double connection system is applied to UE100.
  • the eNB 200-1 transmits setting information (Configuration Information) to the UE 100.
  • the setting information in step S105 includes the setting information received from the eNB 200-2 in step S104.
  • the setting information in step S105 may include setting information of information transmitted from the eNB 200-1 to the UE 100.
  • UE 100 receives the setting information from eNB 200-1. Note that the UE 100 receives the setting information of the eNB 200-2 via the eNB 200-1.
  • the eNB 200-1 adds the CSI-RS transmitted from the eNB 200-1 to the UE 100 in addition to the CSI-RS configuration information, ePDCCH configuration information, and ePHICH configuration information received from the eNB 200-2 as the configuration information.
  • Setting information is transmitted to UE100.
  • the UE 100 receives the setting information from eNB 200-1.
  • the UE 100 includes various setting information included in the setting information (CSI-RS setting information of the eNB 200-2, ePDCCH setting information of the eNB 200-2, ePHICH setting information of the eNB 200-2, and CSI-RS setting information of the eNB 200-1). Based on the above, the reception process is performed.
  • each of the eNB 200-1 and the eNB 200-2 transmits a channel state information reference signal (CSI-RS).
  • the UE 100 receives the CSI-RS from each of the eNB 200-1 and the eNB 200-2.
  • CSI-RS channel state information reference signal
  • the UE 100 performs channel characteristic estimation (channel estimation) with the eNB 200-1 based on the CSI-RS received from the eNB 200-1.
  • the UE 100 generates channel state information (CSI) with the eNB 200-1 based on the channel estimation result.
  • the UE 100 generates channel state information with the eNB 200-2 based on the CSI-RS received from the eNB 200-2.
  • the channel state information is at least one of CQI, PMI, BC-PMI, and RI.
  • the UE 100 generates BC-PMI based on the CSI-RS received from the eNB 200-1, and generates PMI based on the CSI-RS received from the eNB 200-2.
  • step S107 the UE 100 transmits channel state information (CSI) to the eNB 200-1 and the eNB 200-2.
  • CSI channel state information
  • Each of the eNB 200-1 and the eNB 200-2 receives the channel state information.
  • the UE 100 transmits BC-PMI as channel state information to the eNB 200-1. Moreover, UE100 transmits PMI as channel state information to eNB200-2.
  • the channel state information transmitted in step S107 is downlink feedback information.
  • the eNB 200-2 performs scheduling. Specifically, the eNB 200-2 allocates radio resources to the UE 100 for transmission of uplink feedback information transmitted from the eNB 200-2 to the UE 100 based on the PMI received from the UE 100. The eNB 200-2 allocates radio resources in the data area or radio resources in the control area to the UE 100.
  • the eNB 200-2 allocates uplink radio resources to the UE 100 in order to transmit uplink data transmitted from the UE 100 to the eNB 200-2.
  • step S109 the eNB 200-2 transmits scheduling information (Scheduling information) to the eNB 200-1.
  • the eNB 200-1 receives the scheduling information.
  • the scheduling information includes information indicating downlink radio resources used for transmission of uplink feedback information.
  • the scheduling information may include not only information indicating the downlink radio resource but also information indicating an uplink radio resource allocated to the UE 100. Further, the scheduling information may include information indicating radio resources to be allocated to other UEs that establish a connection with the eNB 200-2.
  • step S110 the eNB 200-1 performs interference control based on the scheduling information.
  • the eNB 200-1 suppresses the interference given to the UE 100 by the eNB 200-1 when the eNB 200-2 transmits the downlink scheduling information of the UE 100 to the UE 100 in step S111. At least one of 1 to 3 can be performed.
  • Operation pattern 1 The eNB 200-1 does not allocate, to the UE 100 and other UEs, radio resources corresponding to radio resources used for transmission of uplink feedback information (that is, downlink scheduling information of the UE 100 transmitted in step S111). As described above, radio resources are allocated.
  • the radio resource corresponding to the radio resource used for transmitting uplink feedback information is a radio resource whose frequency band and time overlap with those used for transmitting uplink feedback information.
  • step S108 when the eNB 200-2 allocates radio resources in the data area to the UE 100 in order to transmit uplink feedback information, the eNB 200-1 determines that the UE 100 and other UEs On the other hand, the same radio resource in the data area is not allocated. With quasi-static resource partitioning, the same radio resource in the data area may not be allocated.
  • the eNB 200-1 performs control to reduce the control channel allocation amount (Lightly loaded PDCCH).
  • Operation pattern 2 The eNB 200-1 uses the radio resource corresponding to the radio resource allocated to the UE 100 to transmit the uplink feedback information, and transmits the downlink data to be transmitted to the UE 100 or another UE to a transmission power equal to or lower than a predetermined value. Send with.
  • step S108 when the eNB 200-2 allocates radio resources in the data area to the UE 100 in order to transmit uplink feedback information, the eNB 200-1 determines that the UE 100 and other UEs On the other hand, downlink data transmitted using the same radio resource in the data area is transmitted with a transmission power equal to or less than a predetermined value. That is, eNB 200-1 transmits downlink data with a value smaller than normal transmission power.
  • the transmission power may be 0.
  • step S108 when the eNB 200-2 allocates radio resources in the control area to the UE 100, the eNB 200-1 transmits to the UE 100 and other UEs in the control area.
  • the downlink data is transmitted with a transmission power equal to or less than a predetermined value.
  • Operation pattern 3 While the eNB 200-2 transmits uplink feedback information, the eNB 200-1 performs radio resource allocation so that the null point of the directional beam from the eNB 200-1 faces the UE 100.
  • the eNB 200-1 uses the null point of the directional beam based on the BC-PMI received from the UE 100 in step S107. Assigns downlink data radio resources so that the UE faces the UE 100.
  • the eNB 200-1 can perform the above operation patterns 1 to 3.
  • step S111 the eNB 200-2 transmits the scheduling information of the UE 100.
  • UE100 receives the scheduling information of UE100.
  • the scheduling information of the UE 100 is the uplink scheduling information and the downlink scheduling information of the UE 100 scheduled in step S108 described above.
  • the UE 100 can receive scheduling information from the eNB 200-2 without receiving interference from the eNB 200-1.
  • step S112 the UE 100 transmits uplink data (UL data) based on the scheduling information received in step S111.
  • the eNB 200-2 receives the uplink data.
  • UE 100 does not transmit uplink data to eNB 200-1, except for downlink feedback information.
  • step S113 the eNB 200-1 performs interference control based on the scheduling information.
  • the eNB 200-2 transmits the uplink feedback information of the UE 100 to the UE 100 in Step S114, the eNB 200-1 suppresses the interference of the eNB 200-1 to the UE 100 in the same way as in Step S110. I do.
  • step S114 the eNB 200-2 transmits uplink feedback information for the uplink data in step S112 to the UE 100.
  • Uplink feedback information is, for example, DCI related to uplink (for example, uplink SI, TPC bit) and confirmation response (ACK) / negative confirmation response (NACK) transmitted via PHICH.
  • DCI related to uplink for example, uplink SI, TPC bit
  • ACK confirmation response
  • NACK negative confirmation response
  • the eNB 200-2 may transmit DCI in the data area. Further, the eNB 200-2 may transmit an acknowledgment (ACK) / negative acknowledgment (NACK) in the data area via ePHICH.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • the UE 100 can receive uplink feedback information from the eNB 200-2 without receiving interference from the eNB 200-1.
  • the UE 100 transmits uplink data based on the uplink feedback information. For example, the UE 100 reflects uplink feedback information and transmits new uplink data or retransmits already transmitted uplink data.
  • FIG. 10 is a sequence diagram of an operation sequence related to downlink feedback information.
  • the eNB 200-1 performs scheduling. Specifically, the eNB 200-1 allocates uplink radio resources to the UE 100 in order to transmit downlink feedback information transmitted from the UE 100. The eNB 200-1 allocates radio resources in the data area or radio resources in the control area to the UE 100.
  • the eNB 200-1 may allocate radio resources to the UE 100 so that the UE 100 transmits downlink feedback information in the data area.
  • the eNB 200-1 allocates downlink radio resources to the UE 100 in order to transmit downlink data transmitted from the eNB 200-1 to the UE 100.
  • step S202 the eNB 200-1 transmits scheduling information to the eNB 200-2.
  • the eNB 200-2 receives the scheduling information.
  • the scheduling information includes information indicating uplink radio resources to which downlink feedback information is allocated.
  • the scheduling information may include not only information indicating the uplink radio resource but also information indicating a downlink radio resource assigned to the UE 100. Further, the scheduling information may include information indicating radio resources allocated to other UEs that establish a connection with the eNB 200-1.
  • step S203 the eNB 200-1 transmits the scheduling information of the UE 100 to the UE 100.
  • UE100 receives the scheduling information of UE100.
  • the scheduling information of the UE 100 is the uplink and downlink scheduling information of the UE 100 scheduled in step S202 described above.
  • step S204 the eNB 200-1 transmits downlink data (DL data) based on the scheduling information transmitted in step S203.
  • the UE 100 receives downlink data.
  • step S205 the eNB 200-2 performs interference control based on the scheduling information.
  • the eNB 200-2 performs the following operation pattern in order to suppress interference that the UE 100 gives to the eNB 200-2 when the UE 100 transmits downlink feedback information to the eNB 200-1 in step S206.
  • the eNB 200-2 does not allocate radio resources corresponding to radio resources used for transmission of downlink feedback information (that is, feedback information transmitted in step S206) to the UE 100 and other UEs. Make assignments.
  • step S201 when the eNB 200-1 allocates the radio resource in the data area to the UE 100 in order to transmit the downlink feedback information, the eNB 200-2 determines that the UE 100 and other UEs On the other hand, the same radio resource in the data area is not allocated. With quasi-static resource partitioning, the same radio resource in the data area may not be allocated.
  • step S206 the UE 100 transmits downlink feedback information regarding the downlink data in step S204 to the eNB 200-1.
  • the eNB 200-1 receives downlink feedback information.
  • the UE 100 transmits downlink feedback information to the eNB 200-1 based on the scheduling information.
  • the scheduling information includes information instructing to transmit downlink feedback information in the data area
  • the UE 100 transmits downlink feedback information to the eNB 200-1 in the data area.
  • Downlink feedback information is, for example, UCI related to downlink (for example, CQI, PMI, BC-PMI, RI, ACK / NaCK).
  • the eNB 200-2 can receive uplink data from the UE 100 or another UE without receiving interference from the UE 100.
  • the UE 100 may transmit downlink feedback information with a transmission power equal to or less than a predetermined value. That is, the UE 100 transmits downlink feedback information with a value smaller than normal transmission power.
  • the eNB 200-1 executes processing for improving downlink data communication based on the downlink feedback information. For example, the eNB 200-1 reflects downlink feedback information, transmits new downlink data, or retransmits already transmitted downlink data. Further, the eNB 200-1 may perform the above-described interference control so that the UE 100 does not receive interference.
  • the UE 100 transmits downlink feedback information to the eNB 200-1, and the UE 100 receives uplink feedback information from the eNB 200-2.
  • the downlink feedback information is directly transmitted from the UE 100 to the eNB 200-1 that transmits the downlink data
  • the time until the downlink feedback information is received can be shortened.
  • the uplink feedback information is directly transmitted from the eNB 200-2 to the UE 100 that transmits the uplink data, the time until the uplink feedback information is received can be shortened.
  • the eNB 200-2 sets scheduling information including information indicating radio resources used for transmission of uplink feedback information to the eNB 200-2. ⁇ 1, the eNB 200-1 allocates downlink radio resources based on the scheduling information. Accordingly, the eNB 200-1 can perform radio resource allocation in the downlink in consideration of radio resources used for transmission of uplink feedback information of the eNB 200-2. Therefore, the eNB 200-1 whose transmission power is larger than the eNB 200-2 can perform radio resource allocation in the downlink so that interference does not occur when the UE 100 receives the uplink feedback information.
  • the eNB 200-2 transmits uplink feedback information in the data area instead of the control area in the downlink frame including the control area and the data area. Since the data area has a higher degree of freedom in radio resource allocation than the control area, the eNB 200-1 allocates radio resources in the downlink so that interference does not occur when the UE 100 receives uplink feedback information. Can be performed.
  • the eNB 200-1 allocates downlink radio resources so that radio resources corresponding to radio resources used for transmission of uplink feedback information are not allocated to the UE 100 and other UEs. Accordingly, since downlink transmission is not performed from eNB 200-1 using the same radio resource as that used for transmission of uplink feedback information, UE 100 can receive uplink feedback information satisfactorily. it can.
  • the eNB 200-1 transmits downlink data with a transmission power equal to or less than a predetermined value using a radio resource corresponding to a radio resource allocated to the UE 100 in order to transmit uplink feedback information. .
  • production of the interference which eNB200-2 gives can be suppressed.
  • the eNB 200-1 allocates radio resources in the downlink so that the null point of the directional beam from the eNB 200-1 faces the UE 100 while the eNB 200-2 transmits the uplink feedback information. I do. Thereby, when UE100 receives uplink feedback information, generation
  • the eNB 200-2 transmits ePDCCH setting information indicating a setting for transmitting uplink feedback information in the data area to the UE 100.
  • the UE 100 can receive the uplink feedback information.
  • the eNB 200-2 transmits the ePDCCH setting information to the UE 100 via the eNB 200-1. Thereby, even before the UE 100 and the eNB 200-2 establish a connection, the UE 100 can shorten the time until the ePDCCH setting information is received, and thus the time until the feedback information is received can be shortened.
  • the uplink feedback information is uplink data delivery confirmation information transmitted from the UE 100, and the eNB 200-2 transmits the uplink feedback information in the data region via the physical HARQ indicator channel.
  • the eNB 200-1 allows the radio resource in the downlink to avoid interference when the UE 100 performs uplink feedback information. Allocation can be performed.
  • the eNB 200-1 and the eNB 200-2 use the same frequency band
  • the eNB 200-1 transmits scheduling information including information indicating radio resources used for transmission of downlink feedback information to the eNB 200- 2
  • the eNB 200-2 performs radio resource allocation in the uplink based on the scheduling information. Accordingly, the eNB 200-2 considers radio resources used for transmission of downlink feedback information of the UE 100, and allocates radio resources in the uplink to the UE 100 and other UEs that establish a connection with the eNB 200-2. It can be carried out. Therefore, when the UE 100 transmits downlink feedback information, radio resources can be allocated in the uplink so that interference with the eNB 200-2 does not occur.
  • the eNB 200-1 causes the UE 100 to transmit downlink feedback information in the data area instead of the control area in the uplink frame including the control area and the data area. Since the data area has a higher degree of freedom of radio resource allocation than the control area, the eNB 200-2 is configured so that when the UE 100 transmits downlink feedback information, the eNB 200-2 does not interfere with the eNB 200-2. It is possible to allocate radio resources in the link.
  • the eNB 200-2 does not allocate radio resources corresponding to radio resources used for transmission of downlink feedback information to the UE 100 and other UEs that establish a connection with the eNB 200-2. Assign uplink radio resources. Thereby, since uplink transmission from other UEs using the same radio resource as that used for transmission of downlink feedback information is not performed, interference given to eNB 200-2 can be suppressed.
  • the UE 100 transmits downlink feedback information with a transmission power equal to or less than a predetermined value. Therefore, when UE100 transmits downlink feedback information, generation
  • the UE 100 transmits capability information indicating whether or not the UE 100 supports the double connection scheme to the eNB 200-1, and the eNB 200-1 transmits the duplex information to the UE 100 based on the capability information. It is determined whether to apply the connection method. Thereby, it is not necessary to determine whether to apply the double connection method to the UE 100 that does not support the double connection method.
  • the eNB 200-1 determines whether to apply the double connection method to the UE 100, but is not limited thereto.
  • the network (for example, MME) may determine whether or not to apply the double connection method to the UE 100.
  • the network may control the allocation of radio resources.
  • the eNB 200-1 and the eNB 200-2 use the same frequency band, but the present invention is not limited to this.
  • the eNB 200-1 and the eNB 200-2 may use different frequency bands.
  • the small cell is provided in the coverage of the large cell, but the present invention is not limited to this.
  • the cell managed by the eNB 200-1 and the cell managed by the eNB 200-2 may be adjacent to each other.
  • the eNB 200-2 transmits the setting information of the eNB 200-2 to be transmitted to the UE 100 to the UE 100 via the eNB 200-1 in Step S104 and Step S105. Not limited.
  • the eNB 200-2 may directly transmit the setting information of the eNB 200-2 to the UE 100-1 by broadcast or unicast without passing through the eNB 200-1.
  • each of the eNB 200-1 and the eNB 200-2 shares the uplink scheduling information of the UE 100 and the downlink scheduling information of the UE 100, so that transmission of data and uplink data from UE 100 to eNB 200-2 and transmission of uplink feedback information from eNB 200-2 to UE 100 and transmission of downlink feedback information from UE 100 to eNB 200-1 are staggered.
  • the eNB 200-1 and the eNB 200-2 may be controlled. That is, the eNB 200-1 transmits downlink data, and the UE 100 transmits uplink data.
  • the eNB 200-2 transmits the uplink feedback information of the uplink data to the UE 100, and the UE 100 transmits the downlink feedback information of the downlink data to the eNB 200-2.
  • the eNB 200-1 transmits downlink data based on the downlink feedback information, and the UE 100 transmits uplink data based on the uplink feedback information. This series of processing may be repeated. Thereby, transmission / reception of uplink feedback information, downlink feedback information, downlink data, and uplink data is performed efficiently.
  • the eNB 200-2 when the eNB 200-2 receives the scheduling information of the downlink of the UE 100 from the eNB 200-1, the eNB 200-1 and the eNB 200-2 cooperate to communicate with the UE 100 (so-called CoMP). Communication). That is, each of the eNB 200-1 and the eNB 200-2 may perform transmission to the UE 100 simultaneously using the same radio resource. Or each of eNB200-1 and eNB200-2 may ensure the same radio
  • CoMP CoMP
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the mobile communication system and the user terminal according to the present invention are useful in the mobile communication field because the time until feedback information is received can be shortened while utilizing the dual connection method.

Abstract

 eNB200-1からUE100へ下りリンクデータが送信される下りリンク用の第1の接続と、UE100からeNB200-2への上りリンクデータが送信される上りリンク用の第2の接続とが確立されている場合において、UE100は、下りフィードバック情報を、eNB200-1に送信し、UE100は、上りフィードバック情報を、eNB200-2から受信する。

Description

移動通信システム及びユーザ端末
 本発明は、二重接続方式をサポートする移動通信システムに関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、二重接続(Dual Connection)方式の導入が検討されている(非特許文献1参照)。
 二重接続方式の一つとして、第1の無線基地局からユーザ端末へ下りリンクデータが送信される下りリンク用の第1の接続と、ユーザ端末から第2の無線基地局へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される方式がある。
3GPP寄書 RP-122033
 しかしながら、上記二重接続方式では、ユーザ端末は、第1の無線基地局からユーザ端末への下りリンクデータについてのフィードバック情報である下りフィードバック情報を、第2の無線基地局を経由して、第1の無線基地局へ送信する。このため、第1の無線基地局が、下りフィードバック情報を受信するまでに遅延時間が発生し、下りフィードバック情報が下りリンクのデータ通信に反映されるまでに時間がかかるという問題がある。
 また、上記二重接続方式では、第2の無線基地局は、ユーザ端末から第2の無線基地局への上りリンクデータについてのフィードバック情報である上りフィードバック情報を、第1の無線基地局を経由して、ユーザ端末へ送信する。このため、ユーザ端末が、上りフィードバック情報を受信するまでに遅延時間が発生し、上りフィードバック情報が上りリンクのデータ通信に反映されるまでに時間がかかるという問題がある。
 そこで、本発明は、二重接続方式を活用しつつ、フィードバック情報が受信されるまでの時間を短縮できる移動通信システム及びユーザ端末を提供する。
 一実施形態によれば、移動通信システムは、ユーザ端末と、第1の無線基地局と、前記第1の無線基地局に隣接する第2の無線基地局とを有し、前記第1の無線基地局から前記ユーザ端末へ下りリンクデータが送信される下りリンク用の第1の接続と、前記ユーザ端末から前記第2の無線基地局へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される二重接続方式をサポートする。前記ユーザ端末は、前記第1の無線基地局から前記ユーザ端末への前記下りリンクデータについてのフィードバック情報である下りフィードバック情報を、前記第1の無線基地局に送信する。前記ユーザ端末は、前記ユーザ端末から前記第2の無線基地局への前記上りリンクデータについてのフィードバック情報である上りフィードバック情報を、前記第2の無線基地局から受信する。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、下りサブフレームの構成を示すフレーム構成図である。 図7は、上りサブフレームの構成を示すフレーム構成図である。 図8は、本実施形態に係るLTEシステムの動作環境を説明するための図である。 図9は、上りフィードバック情報に関する動作シーケンスのシーケンス図である。 図10は、下りフィードバック情報に関する動作シーケンスのシーケンス図である。
 [実施形態の概要]
 実施形態に係る移動通信システムは、ユーザ端末と、第1の無線基地局と、前記第1の無線基地局に隣接する第2の無線基地局とを有し、前記第1の無線基地局から前記ユーザ端末へ下りリンクデータが送信される下りリンク用の第1の接続と、前記ユーザ端末から前記第2の無線基地局へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される二重接続方式をサポートする移動通信システムであって、前記ユーザ端末は、前記第1の無線基地局から前記ユーザ端末への前記下りリンクデータについてのフィードバック情報である下りフィードバック情報を、前記第1の無線基地局に送信し、前記ユーザ端末は、前記ユーザ端末から前記第2の無線基地局への前記上りリンクデータについてのフィードバック情報である上りフィードバック情報を、前記第2の無線基地局から受信する。
 実施形態において、前記第1の無線基地局と前記第2の無線基地局とが同一の周波数帯を使用する場合に、前記第2の無線基地局は、前記上りフィードバック情報の送信に用いられる無線リソースを示す情報を含むスケジューリング情報を前記第1の無線基地局に送信し、前記第1の無線基地局は、前記スケジューリング情報に基づいて、下りリンクにおける無線リソースの割り当てを行う。
 実施形態において、前記第2の無線基地局は、前記上りフィードバック情報を含む下りリンク制御情報を送信するための制御領域と前記下りリンクデータを送信するためのデータ領域とを含む下りリンクフレームにおいて、前記上りフィードバック情報を、前記制御領域に代えて前記データ領域で送信する。
 実施形態において、前記第1の無線基地局は、前記上りフィードバック情報の送信に用いられる前記無線リソースに対応する無線リソースを、前記第1の無線基地局と接続を確立する前記ユーザ端末を含む複数のユーザ端末に対して、割り当てないように、前記無線リソースの割り当てを行う。
 実施形態において、前記第1の無線基地局は、前記上りフィードバック情報を送信するために前記ユーザ端末に対して割り当てられた前記無線リソースに対応する無線リソースを用いて、前記下りリンクデータを所定値以下の送信電力で送信する。
 実施形態において、前記第1の無線基地局は、前記第2の無線基地局が前記上りフィードバック情報を送信している間、前記第1の無線基地局からの指向性ビームのヌル点が前記ユーザ端末に向くように、前記無線リソースの割り当てを行う。
 実施形態において、前記第2の無線基地局は、前記データ領域で前記上りフィードバック情報を送信するための設定を示す設定情報を、前記ユーザ端末に送信する。
 実施形態において、前記第2の無線基地局は、前記設定情報を、前記第1の無線基地局を経由して、前記ユーザ端末に送信する。
 実施形態において、前記上りフィードバック情報は、前記ユーザ端末から送信された前記上りリンクデータの送達確認情報であり、前記第2の無線基地局は、物理HARQインジケータチャネルを介して、前記上りフィードバック情報を送信する。
 実施形態において、前記第1の無線基地局と前記第2の無線基地局とが同一の周波数帯を使用する場合に、前記第1の無線基地局は、前記下りフィードバック情報の送信に用いられる無線リソースを示す情報を含むスケジューリング情報を前記第2の無線基地局に送信し、前記第2の無線基地局は、前記スケジューリング情報に基づいて、上りリンクにおける無線リソースの割り当てを行う。
 実施形態において、前記第1の無線基地局は、前記下りフィードバック情報を含む上りリンク制御情報を送信するための制御領域と前記上りリンクデータを送信するためのデータ領域とを含む上りリンクフレームにおいて、前記下りフィードバック情報を、前記前記制御領域に代えて前記データ領域で、前記ユーザ端末に送信させる。
 実施形態において、前記第2の無線基地局は、前記下りフィードバック情報の送信に用いられる前記無線リソースに対応する無線リソースを、前記第2の無線基地局と接続を確立する前記ユーザ端末を含む複数のユーザ端末に対して、割り当てないように、前記無線リソースの割り当てを行う。
 実施形態において、前記ユーザ端末は、前記下りフィードバック情報を所定値以下の送信電力で送信する。
 実施形態において、前記移動通信システムは、前記第1の無線基地局を含むネットワークを有し、前記ユーザ端末は、前記ユーザ端末が前記二重接続方式をサポートするか否かを示す情報を前記第1の無線基地局に送信し、前記ネットワークは、前記情報に基づいて、前記ユーザ端末に前記二重接続方式を適用するか否かを判定する。
 実施形態に係るユーザ端末は、ユーザ端末と、第1の無線基地局と、前記第1の無線基地局に隣接する第2の無線基地局とを有し、前記第1の無線基地局から前記ユーザ端末へ下りリンクデータが送信される下りリンク用の第1の接続と、前記ユーザ端末から前記第2の無線基地局へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される二重接続方式をサポートする移動通信システムにおけるユーザ端末であって、前記第1の無線基地局から前記ユーザ端末への前記下りリンクデータについてのフィードバック情報である下りフィードバック情報を、前記第1の無線基地局に送信する送信部と、前記ユーザ端末は、前記ユーザ端末から前記第2の無線基地局への前記上りリンクデータについてのフィードバック情報である上りフィードバック情報を、前記第2の無線基地局から受信する受信部と、を有する。
 以下、図面を参照して、3GPP規格に準拠して構成されるセルラ移動通信システム(以下、「LTEシステム」)にD2D通信を導入する場合の各実施形態を説明する。
 [第1実施形態]
 以下、第1実施形態について、説明する。
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの接続を確立したUE100との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM(Operation and Maintenance)400とを含む。また、EPC20は、コアネットワークに相当する。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサ240’としてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割り当てリソースブロックを決定するMACスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態(RRC connected state)であり、そうでない場合、UE100はアイドル状態(RRC idle state)である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ使用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルにより構成される無線リソース単位はリソースエレメント(RE)と称される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 図6に示すように、下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される無線リソース(時間・周波数リソース)からなる制御領域(PDCCH領域)である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる無線リソース(時間・周波数リソース)からなる領域(PDSCH領域)である。
 PDCCHは、制御信号を搬送する。制御信号は、例えば、上りリンクSI(Scheduling Information)、下りリンクSI、及び、TPCビットである。上りリンクSIは上りリンク無線リソースの割り当てを示し、下りリンクSIは、下りリンク無線リソースの割り当てを示す。TPCビットは、上りリンクの送信電力の増減を指示する信号である。これらの制御信号は、下りリンク制御情報(DCI)と称される。本実施形態において、上りリンクに関する下りリンク制御情報(例えば、上りリンクSI、TPCビット)は、上りフィードバック情報である。また、下りリンクに関する下りリンク制御情報(下りリンクSI)は、下りリンクフィードバック情報である。
 PDSCHは、ユーザデータ及び/又は制御信号を搬送する。例えば、下りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割り当てられてもよい。
 なお、PDSCHを介して送信される制御信号としては、タイミングアドバンス値が挙げられる。タイミングアドバンス値は、UE100の送信タイミング補正値であり、UE100から送信される上りリンク信号に基づいてeNB200によって決定される。
 また、各サブフレームには、セル固有参照信号(CRS)及び/又はチャネル状態情報用参照信号(CSI-RS)等の下りリンク参照信号が分散して配置される。下りリンク参照信号は、所定の直交信号系列により構成され、かつ、所定のリソースエレメントに配置される。
 また、物理HARQインジケータチャネル(PHICH;Physical HARQ Indicator Cannel)を介して、確認応答(ACK)/否定確認応答(NACK)が搬送される。ACK/NACKは、上りリンクの物理チャネル(例えば、PUSCH)を介して送信される信号の復号に成功したか否かを示す。なお、物理HARQインジケータチャネルは、PUSCHに対する再送要求信号を通知するチャネルである。
 図7に示すように、上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される無線リソース(時間・周波数リソース)からなる制御領域(PUCCH領域)である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる無線リソース(時間・周波数リソース)からなる領域(PUSCH領域)である。
 PUCCHは、制御信号を搬送する。制御信号は、例えば、チャネル品質情報(CQI;Channel Quality Indicator)、通常のプリコーダ行列情報(PMI;Precoder Matrix Indicator)、特殊なプリコーダ行列情報(BC-PMI;Best Companion Precoder Matrix Indicator)、ランク情報(RI;Rank Indicator)、スケジューリング要求(SR;Scheduling Request)、及び、確認応答(ACK)/否定確認応答(NACK)である。これらの制御信号は、上りリンク制御情報(UCI)と称される。本実施形態において、上りリンク制御情報は、下りリンクフィードバック情報である。
 CQIは、下りリンクにおいて推奨される変調・符号化方式(MCS)を示すインデックスである。PMIは、下りリンクにおいて推奨されるプリコーダ行列(UE100にビームが向くプリコーダ行列)を示すインデックスである。BC-PMIは、UE100以外のUE(不図示)において、下りリンクにおいて推奨されるプリコーダ行列を示すインデックスであり、かつ、UE100にとって好ましいプリコーダ行列(UE100にヌルが向くプリコーダ行列)を示すインデックスである。RIは、下りリンクにおいて推奨されるランク(レイヤ数)を示すインデックスである。SRは、上りリンク無線リソース(リソースブロック)の割当てを要求する信号である。ACK/NACKは、下りリンクの物理チャネル(例えば、PDSCH)を介して送信される信号の復号に成功したか否かを示す。
 PUSCHは、ユーザデータ及び/又は制御信号を搬送する物理チャネルである。例えば、上りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 また、各サブフレームには、復調参照信号(DMRS)及びサウンディング参照信号(SRS)が配置される。
 (ePDCCH及びePHICH)
 eNB200は、通常、PDCCHを介して、制御領域でDCIを送信する。しかしながら、図7に示すように、本実施形態において、eNB200は、後述する二重接続方式が適用されているUE100に対して、DCIを送信する場合、制御領域に代えてデータ領域でDCIを送信する。このような制御チャネルをePDCCH(E-PDCCH;Enhanced-PDCCH)と称する。
 また、eNB200は、通常、PHICHを介して、上りリンクデータの送達確認情報である確認応答(ACK)/否定確認応答(NACK)を制御領域で送信する。しかしながら、本実施形態において、eNB200は、後述する二重接続方式が適用されているUE100に対して、確認応答(ACK)/否定確認応答(NACK)を送信する場合、制御領域に代えてデータ領域で、確認応答(ACK)/否定確認応答(NACK)を送信する。このような制御チャネルをePHICH(E-PHICH;Enhanced-PHICH)と称する。
 なお、eNB200は、DCIをデータ領域で送信する場合に、データ領域における特定のリソースブロックを用いてDCIを送信する。このように、データ領域における特定のリソースブロックは、制御領域における特定のリソースブロックと同様に、DCIの伝送に使用される。また、同様に、データ領域における特定のリソースブロックは、確認応答(ACK)/否定確認応答(NACK)の伝送に用いられる。
 (二重接続方式の概要)
 次に、本実施形態に係るLTEシステムがサポートする二重接続方式の概要を、図8を用いて説明する。図8は、本実施形態に係るLTEシステムの動作環境を説明するための図である。
 図8に示すように、本実施形態に係るLTEシステムは、UE100、eNB200-1及びeNB200-2を有する。
 eNB200-1は、大セルを管理する。大セルは、LTEシステムにおける一般的なセルであり、マクロセルと称される。なお、eNB200-1は、UE100のモビリティの管理を行う。
 eNB200-2は、小セルを管理する。小セルは、大セルよりもカバレッジの狭いセルであり、ピコセル又はフェムトセルと称される。eNB200-2は、ホーム基地局(HeNB)であってもよい。なお、eNB200-2は、二重接続方式が適用されているUE100に対しては、UE100のモビリティの管理を行わない。
 本実施形態において、小セルは、大セルのカバレッジ内に設けられている。本実施形態において、eNB200-1とeNB200-2とは、同一の周波数帯を使用する。すなわち、大セルと小セルとは、同一の周波数帯に属する。
 本実施形態に係るLTEシステムがサポートする二重接続方式は、eNB200-1からUE100へ下りリンクデータが送信される下りリンク用の第1の接続と、UE100からeNB200-2へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される方式である。
 本実施形態において、UE100とeNB200-1との間に確立される第1の接続は、RRC接続であり、UE100とeNB200-2との間に確立される第2の接続は、RRC接続又はRRC接続よりも下位レイヤでの接続(例えば、RLC接続)である。従って、二重接続方式では、RRC接続中のUE100が、バックホールに接続される少なくとも2つの異なるネットワークポイントで(eNB200-1及びeNB200-2)から与えられる無線リソースを使用する。UE100は、eNB200-2とRRC接続を確立せずに、第2の接続としてeNB200-2と通信用のベアラを確立していてもよい。
 図8に示すように、UE100は、上りリンクデータをeNB200-2に送信する。また、UE100は、下りリンクデータをeNB200-1から受信する。これにより、UE100がeNB200-1から受信する電力が、UE100がeNB200-2から受信する電力よりも大きく、かつ、eNB200-2がUE100から受信する電力が、eNB200-1がUE100から受信する電力よりも大きい場合、UE100は、受信強度が良好な下りリンクデータを受信できるとともに、eNB200-2は、受信強度が良好な上りリンクデータを受信できる。
 また、図8に示すように、UE100は、原則として、上りリンクデータをeNB200-2に送信する一方で、例外的に、上りリンクデータに分類される、下りリンクデータについてのフィードバック情報である下りフィードバック情報(DL feedback)を、eNB200-1に送信する。すなわち、下りフィードバック情報は、上りリンクデータであるが、UE100は、下りフィードバック情報をeNB200-2に送信せずに、eNB200-1に送信する。したがって、eNB200-1は、下りフィードバック情報をUE100から直接受信する。
 また、UE100は、原則として、下りリンクデータをeNB200-1から受信する一方で、例外的に、下りリンクデータに分類される、上りリンクデータについてのフィードバック情報である上りフィードバック情報(UL feedback)をeNB200-2から受信する。すなわち、上りフィードバック情報は、下りリンクデータであるが、UE100は、上りフィードバック情報を、eNB200-1から受信せずに、eNB200-2から直接受信する。
 (第1実施形態に係る移動通信システムの動作)
 次に、第1実施形態に係る移動通信システムの動作について、説明する。具体的には、(1)上りフィードバック情報に関する動作シーケンスと、(2)下りフィードバック情報に関する動作シーケンスと、を説明する。なお、(1)上りフィードバック情報に関する動作シーケンスにおいて、UE100に二重接続方式を適用する処理も合わせて説明する。
 (1)上りフィードバック情報に関する動作シーケンス
 上りフィードバック情報に関する動作シーケンスについて、図9を用いて説明する。図9は、上りフィードバック情報に関する動作シーケンスのシーケンス図である。
 UE100は、大セルをサービングセルとして、eNB200-1との接続を確立し、eNB200-2との接続を確立していないと仮定して、説明する。
 図9に示すように、ステップS101において、UE100は、上りリンク要求(UL request)をeNB200-1に送信する。eNB200-1は、上りリンク要求を受信する。
 上りリンク要求は、UE100が上りリンクデータを送信することを要求する情報である。
 本実施形態において、UE100は、UE100が二重接続方式をサポートするか否かを示すケーパビリティ情報(Capability Information)をeNB200-1に送信する。eNB200-1は、ケーパビリティ情報を受信する。本実施形態において、ケーパビリティ情報は、UE100が二重接続方式をサポートすることを示す情報であると仮定して、説明を進める。
 また、本実施形態において、UE100は、測定報告(Measurement report)をeNB200-1に送信する。eNB200-1は、測定報告を受信する。測定報告は、eNB200-1が管理する大セル及びeNB200-2が管理する小セル(隣接セル)のそれぞれの測定情報(参照信号の受信電力など)を含む。
 また、UE100は、UE100の位置情報を送信してもよい。
 ステップS102において、eNB200-1は、UE100に二重接続方式を適用するか否かを判定する。
 具体的には、まず、eNB200-1は、ケーパビリティ情報に基づいて、UE100に二重接続方式を適用するか否かを判定する。
 eNB200-1は、UE100が二重接続方式をサポートすることをケーパビリティ情報が示す場合、UE100がeNB200-1と異なる他のeNB200に接続し得る状態であるか否かを判定する。
 一方、eNB200-1は、UE100が二重接続方式をサポートしないことをケーパビリティ情報が示す場合、UE100に二重接続方式を適用しないと判定する。
 eNB200-1は、測定報告に基づいて、UE100が他のeNB200に接続し得る状態であるか否かを判定する。eNB200-1は、eNB200-2が管理する小セルについての測定情報が良好である場合に、UE100が他のeNB200に接続し得る状態であると判定する。この場合、eNB200-1は、UE100に二重接続方式を適用すると判定する。
 一方、eNB200-1は、eNB200-2が管理する小セルについての測定情報が良好でない場合には、UE100が他のeNB200に接続し得る状態でないと判定する。この場合、eNB200-1は、UE100に二重接続方式を適用しないと判定する。
 なお、eNB200-1は、UE100の位置情報に基づいて、UE100が他のeNB200に接続し得る状態であるか否かを判定してもよい。例えば、eNB200-1は、UE100とeNB200-1との距離が、UE100とeNB200-2との距離に所定値を加えた値よりも大きい場合、UE100に二重接続方式を適用すると判定する。
 本実施形態において、eNB200-1は、UE100に二重接続方式を適用すると判定したと仮定して、説明を進める。
 ステップS103において、eNB200-1は、二重接続要求(Dual Connection request)をeNB200-2に送信する。eNB200-2は、二重接続要求を受信する。
 二重接続要求は、二重接続方式を適用するUE100との接続を確立することを要求することを示す情報である。
 本実施形態において、二重接続要求は、UE100が、原則として、上りリンクデータをeNB200-2に送信し、かつ、下りリンクデータをeNB200-1から受信することを示す情報を含む。
 eNB200-2は、二重接続要求を受信した場合、UE100との接続を確立するか否かを判定する。例えば、eNB200-2は、eNB200-2の負荷状況に基づいて、UE100との接続を確立するか否かを判定する。具体的には、eNB200-2のトラフィック量が、所定値を超えない場合にUE100との接続を確立すると判定してもよい。
 本実施形態において、eNB200-2は、UE100との接続を確立すると判定したと仮定して説明する。
 ステップS104において、eNB200-2は、二重接続応答(Dual Connection response)をeNB200-1に送信する。eNB200-1は、二重接続要求に対する応答を受信する。
 二重接続応答は、二重接続要求に対する応答である。例えば、eNB200-2は、二重接続要求に対する応答として、二重接続要求に対する肯定応答(Dual Connection request Ack)又は否定応答(Dual Connection request Nack)を送信する。
 また、eNB200-2は、二重接続応答と共に、eNB200-2からUE100に送信される情報の設定(Configuration)を示す設定情報(Configuration Information)を、X2インターフェイス上でeNB200-1に送信してもよい。この場合、eNB200-2の設定情報は、eNB200-1を経由して、UE100に送信される。
 eNB200-2は、設定情報として、例えば、CSI-RS設定情報(CSI-RS Configuration Information)、ePDCCH設定情報(ePDCCH Configuration Information)及びePHICH設定情報(ePHICH Configuration Information)をX2インターフェイス上でeNB200-1に送信する。
 CSI-RS設定情報は、eNB200(eNB200-2)が送信するCSI-RSの設定を示す情報である。ePDCCH設定情報は、eNB200(eNB200-2)が送信するePDCCHの設定を示す情報である。ePHICH設定情報は、eNB200(eNB200-2)が送信するePHICHの設定を示す情報である。
 なお、eNB200-2は、二重接続要求とは別に、設定情報を送信してもよい。
 ステップS105において、eNB200-1は、二重接続指示(Dual Connection 指示)をUE100に送信する。UE100は、二重接続指示を受信する。
 二重接続指示は、UE100に二重接続を指示する情報である。本実施形態において、二重接続要求は、UE100が、原則として、上りリンクデータをeNB200-2に送信し、かつ、下りリンクデータをeNB200-1から受信することを示す情報を含む。
 UE100は、二重接続指示に基づいて、eNB200-2との接続を確立する。これにより、UE100には、二重接続方式が適用される。
 また、本実施形態において、eNB200-1は、設定情報(Configuration Information)をUE100に送信する。ステップS105における設定情報は、ステップS104において、eNB200-2から受信した設定情報を含む。また、ステップS105における設定情報は、eNB200-1からUE100に送信される情報の設定情報を含んでもよい。
 UE100は、設定情報をeNB200-1から受信する。なお、UE100は、eNB200-2の設定情報を、eNB200-1を経由して受信する。
 本実施形態において、eNB200-1は、設定情報として、eNB200-2から受信したCSI-RS設定情報、ePDCCH設定情報及びePHICH設定情報に加えて、eNB200-1からUE100に送信されるCSI-RSの設定情報をUE100に送信する。
 UE100は、eNB200-1から設定情報を受信する。UE100は、設定情報に含まれる各種の設定情報(eNB200-2のCSI-RS設定情報、eNB200-2のePDCCH設定情報、eNB200-2のePHICH設定情報、及びeNB200-1のCSI-RS設定情報)に基づいて、受信処理を行う。
 ステップS106において、eNB200-1及びeNB200-2のそれぞれは、チャネル状態情報用参照信号(CSI-RS)を送信する。UE100は、eNB200-1及びeNB200-2のそれぞれからCSI-RSを受信する。
 UE100は、eNB200-1から受信したCSI-RSに基づいて、eNB200-1との間のチャネル特性の推定(チャネル推定)を行う。UE100は、チャネル推定の結果に基づいて、eNB200-1との間のチャネル状態情報(CSI)を生成する。また、UE100は、同様にして、eNB200-2から受信したCSI-RSに基づいて、eNB200-2との間のチャネル状態情報を生成する。チャネル状態情報は、CQI、PMI、BC-PMI及びRIのうち、少なくとも1つである。
 本実施形態において、UE100は、eNB200-1から受信したCSI-RSに基づいて、BC-PMIを生成し、eNB200-2から受信したCSI-RSに基づいて、PMIを生成する。
 ステップS107において、UE100は、チャネル状態情報(CSI)をeNB200-1及びeNB200-2に送信する。eNB200-1及びeNB200-2のそれぞれは、チャネル状態情報を受信する。
 本実施形態において、UE100は、eNB200-1に、チャネル状態情報としてBC-PMIを送信する。また、UE100は、eNB200-2に、チャネル状態情報として、PMIを送信する。
 なお、ステップS107において送信するチャネル状態情報は、下りフィードバック情報である。
 ステップS108において、eNB200-2は、スケジューリング(Scheduling)を行う。具体的には、eNB200-2は、UE100から受信したPMIに基づいて、eNB200-2からUE100に送信される上りフィードバック情報の送信のために、UE100に無線リソースを割り当てる。eNB200-2は、データ領域における無線リソース又は制御領域における無線リソースを、UE100に対して割り当てる。
 また、eNB200-2は、UE100からeNB200-2に送信される上りリンクデータの送信のために、UE100に対して、上りリンクの無線リソースを割り当てる。
 ステップS109において、eNB200-2は、スケジューリング情報(Scheduling information)をeNB200-1に送信する。eNB200-1は、スケジューリング情報を受信する。
 スケジューリング情報は、上りフィードバック情報の送信に用いられる下りリンクの無線リソースを示す情報を含む。また、スケジューリング情報は、前記下りリンクの無線リソースを示す情報だけでなく、UE100に割り当てる上りリンクの無線リソースを示す情報を含んでいてもよい。さらに、スケジューリング情報は、eNB200-2と接続を確立するその他のUEに割り当てる無線リソースを示す情報を含んでいてもよい。
 ステップS110において、eNB200-1は、スケジューリング情報に基づいて、干渉制御を行う。
 本実施形態において、eNB200-1は、ステップS111において、eNB200-2がUE100の下りリンクのスケジューリング情報をUE100に送信する場合に、eNB200-1がUE100に与える干渉を抑制するため、以下の動作パターン1から3の少なくともいずれかを行うことができる。
 (1.1)動作パターン1
 eNB200-1は、上りフィードバック情報(すなわち、ステップS111において送信されるUE100の下りリンクのスケジューリング情報)の送信に用いられる無線リソースに対応する無線リソースを、UE100及び他のUEに対して、割り当てないように、無線リソースの割り当てを行う。
 なお、上りフィードバック情報の送信に用いられる無線リソース対応する無線リソースとは、上りフィードバック情報の送信に用いられる無線リソースと周波数帯及び時間が重複する無線リソースである。
 具体的には、ステップS108において、eNB200-2が、上りフィードバック情報を送信するために、データ領域における無線リソースを、UE100に対して割り当てた場合には、eNB200-1は、UE100及び他のUEに対して、データ領域における同一の無線リソースを割り当てないようにする。準静的なリソースパーティショニングにより、データ領域における同一の無線リソースが割り当てられなくてもよい。
 また、同様に、eNB200-2が、制御領域における無線リソースを、UE100に対して割り当てた場合には、eNB200-1は、制御チャネルの割当量を減らす制御を行う(Lightly loaded PDCCH)。
 (1.2)動作パターン2
 eNB200-1は、上りフィードバック情報を送信するために、UE100に対して割り当てられた無線リソースに対応する無線リソースを用いて、UE100又は他のUEに送信する下りリンクデータを所定値以下の送信電力で送信する。
 具体的には、ステップS108において、eNB200-2が、上りフィードバック情報を送信させるために、データ領域における無線リソースを、UE100に対して割り当てた場合には、eNB200-1は、UE100及び他のUEに対して、データ領域における同一の無線リソースを用いて送信する下りリンクデータを所定値以下の送信電力で送信する。すなわち、eNB200-1は、通常の送信電力よりも小さい値で、下りリンクデータを送信する。なお、送信電力は、0であってもよい。
 また、同様に、ステップS108において、eNB200-2が、制御領域における無線リソースを、UE100に対して割り当てた場合には、eNB200-1は、UE100及び他のUEに対して、制御領域において送信する下りリンクデータを所定値以下の送信電力で送信する。
 (1.3)動作パターン3
 eNB200-1は、eNB200-2が上りフィードバック情報を送信している間、eNB200-1からの指向性ビームのヌル点がUE100を向くように、無線リソースの割り当てを行う。
 eNB200-1は、eNB200-2が、上りフィードバック情報の送信のために、データ領域における無線リソースを用いる場合には、ステップS107においてUE100から受信したBC-PMIに基づいて、指向性ビームのヌル点がUE100を向くように、下りリンクデータの無線リソースの割り当てを行う。
 eNB200-1は、以上の動作パターン1から3を行うことができる。
 次に、ステップS111において、eNB200-2は、UE100のスケジューリング情報を送信する。UE100は、UE100のスケジューリング情報を受信する。
 UE100のスケジューリング情報は、上述したステップS108においてスケジュールしたUE100の上りリンクのスケジューリング情報及び下りリンクのスケジューリング情報である。
 eNB200-1が、上述したステップS110における干渉制御を行うことによって、UE100は、eNB200-1からの干渉を受けずに、eNB200-2からスケジューリング情報を受信できる。
 ステップS112において、UE100は、ステップS111において受信したスケジューリング情報に基づいて、上りリンクデータ(UL data)を送信する。eNB200-2は、上りリンクデータを受信する。
 UE100は、下りフィードバック情報を除いて、上りリンクデータをeNB200-1に送信しない。
 ステップS113において、eNB200-1は、スケジューリング情報に基づいて、干渉制御を行う。
 eNB200-1は、ステップS114において、eNB200-2がUE100の上りリンクフィードバック情報をUE100に送信する場合に、eNB200-1がUE100に干渉を与えることを抑制するため、ステップS110と同様に、干渉制御を行う。
 ステップS114において、eNB200-2は、ステップS112における上りリンクデータについての上りフィードバック情報をUE100に送信する。
 上りフィードバック情報は、例えば、上りリンクに関するDCI(例えば、上りリンクSI、TPCビット)や、PHICHを介して送信される確認応答(ACK)/否定確認応答(NACK)である。
 eNB200-2は、データ領域でDCIを送信してもよい。また、eNB200-2は、ePHICHを介して、データ領域で確認応答(ACK)/否定確認応答(NACK)を送信してもよい。
 eNB200-1が、上述したステップS113における干渉制御を行うことによって、UE100は、eNB200-1からの干渉を受けずに、eNB200-2から上りフィードバック情報を受信できる。
 なお、UE100は、上りフィードバック情報に基づいて、上りリンクデータを送信する。例えば、UE100は、上りフィードバック情報を反映させて、新たな上りリンクデータを送信したり、すでに送信した上りリンクデータを再送信したりする。
 (2)下りフィードバック情報に関する動作シーケンス
 次に、下りフィードバック情報に関する動作シーケンスについて、図10を用いて説明する。図10は、下りフィードバック情報に関する動作シーケンスのシーケンス図である。
 図10に示すように、ステップ201において、eNB200-1は、スケジューリング(Scheduling)を行う。具体的には、eNB200-1は、UE100から送信される下りフィードバック情報の送信のために、UE100に対して、上りリンクの無線リソースを割り当てる。eNB200-1は、データ領域における無線リソース又は制御領域における無線リソースを、UE100に対して割り当てる。
 なお、eNB200-1は、データ領域で、UE100に下りフィードバック情報を送信させるように、UE100に無線リソースを割り当ててもよい。
 また、eNB200-1は、eNB200-1からUE100に送信される下りリンクデータの送信ために、UE100に対して、下りリンクの無線リソースを割り当てる。
 ステップS202において、eNB200-1は、スケジューリング情報をeNB200-2に送信する。eNB200-2は、スケジューリング情報を受信する。
 スケジューリング情報は、下りフィードバック情報を割り当てる上りリンクの無線リソースを示す情報を含む。また、スケジューリング情報は、前記上りリンクの無線リソースを示す情報だけでなく、UE100に割り当てる下りリンクの無線リソースを示す情報を含んでいてもよい。また、スケジューリング情報は、eNB200-1と接続を確立するその他のUEに割り当てる無線リソースを示す情報を含んでいてもよい。
 ステップS203において、eNB200-1は、UE100のスケジューリング情報をUE100に送信する。UE100は、UE100のスケジューリング情報を受信する。
 UE100のスケジューリング情報は、上述したステップS202においてスケジュールしたUE100の上りリンク及び下りリンクのスケジューリング情報である。
 ステップS204において、eNB200-1は、ステップS203において送信したスケジューリング情報に基づいて、下りリンクデータ(DL data)を送信する。UE100は、下りリンクデータを受信する。
 ステップS205において、eNB200-2は、スケジューリング情報に基づいて、干渉制御を行う。
 本実施形態において、eNB200-2は、ステップS206において、UE100が下りフィードバック情報をeNB200-1に送信する場合に、UE100がeNB200-2に与える干渉を抑制するため、以下の動作パターンを行う。
 eNB200-2は、下りフィードバック情報(すなわち、ステップS206において送信されるフィードバック情報)の送信に用いられる無線リソースに対応する無線リソースを、UE100及び他のUEに対して、割り当てないように、無線リソースの割り当てを行う。
 具体的には、ステップS201において、eNB200-1が、下りフィードバック情報を送信させるために、データ領域における無線リソースを、UE100に対して割り当てた場合には、eNB200-2は、UE100及び他のUEに対して、データ領域における同一の無線リソースを割り当てないようにする。準静的なリソースパーティショニングにより、データ領域における同一の無線リソースが割り当てられなくてもよい。
 ステップS206において、UE100は、ステップS204における下りリンクデータについての下りフィードバック情報をeNB200-1に送信する。eNB200-1は、下りフィードバック情報を受信する。
 UE100は、スケジューリング情報に基づいて、下りフィードバック情報をeNB200-1に送信する。スケジューリング情報が、データ領域で下りフィードバック情報を送信することを指示する情報を含んでいる場合には、UE100は、データ領域で、下りフィードバック情報をeNB200-1に送信する。
 下りフィードバック情報は、例えば、下りリンクに関するUCI(例えば、CQI、PMI、BC-PMI、RI、ACK/NaCK)である。
 eNB200-2が、上述したステップS205における干渉制御を行うことによって、eNB200-2は、UE100からの干渉を受けずに、UE100又は他のUEから上りリンクデータを受信できる。
 また、ステップS205における干渉制御の代わりに、UE100が、下りフィードバック情報を所定値以下の送信電力で送信してもよい。すなわち、UE100は、通常の送信電力よりも小さい値で、下りフィードバック情報を送信する。
 なお、eNB200-1は、下りフィードバック情報に基づいて、下りリンクのデータ通信を改善するための処理を実行する。例えば、eNB200-1は、下りフィードバック情報を反映させて、新たな下りリンクデータを送信したり、すでに送信した下りリンクデータを再送信したりする。また、eNB200-1は、UE100が干渉を受けないように、上述した干渉制御を行ってもよい。
 (第1実施形態のまとめ)
 本実施形態において、eNB200-1からUE100へ下りリンクデータが送信される下りリンク用の第1の接続と、UE100からeNB200-2への上りリンクデータが送信される上りリンク用の第2の接続とが確立されている場合において、UE100は、下りフィードバック情報を、eNB200-1に送信し、UE100は、上りフィードバック情報を、eNB200-2から受信する。これにより、下りリンクデータを送信するeNB200-1にUE100から下りフィードバック情報が直接送信されるため、下りフィードバック情報が受信されるまでの時間を短縮できる。また、上りリンクデータを送信するUE100にeNB200-2から上りフィードバック情報が直接送信されるため、上りフィードバック情報が受信されるまでの時間を短縮できる。
 また、本実施形態において、eNB200-1とeNB200-2とが同一の周波数帯を使用する場合に、eNB200-2は、上りフィードバック情報の送信に用いられる無線リソースを示す情報を含むスケジューリング情報をeNB200-1に送信し、eNB200-1は、前記スケジューリング情報に基づいて、下りリンクにおける無線リソースの割り当てを行う。これにより、eNB200-1は、eNB200-2の上りフィードバック情報の送信に用いられる無線リソースを考慮して、下りリンクにおける無線リソースの割り当てを行うことができる。したがって、送信電力がeNB200-2よりも大きいeNB200-1は、UE100が上りフィードバック情報を受信する際に干渉が発生しないように、下りリンクにおける無線リソースの割り当てを行うことが可能となる。
 また、本実施形態において、eNB200-2は、制御領域とデータ領域とを含む下りリンクフレームにおいて、上りフィードバック情報を、制御領域に代えてデータ領域で送信する。データ領域は、制御領域に比べて、無線リソースの割り当ての自由度が高いため、eNB200-1は、UE100が上りフィードバック情報を受信する際に干渉が発生しないように、下りリンクにおける無線リソースの割り当てを行うことが可能となる。
 また、本実施形態において、eNB200-1は、上りフィードバック情報の送信に用いられる無線リソースに対応する無線リソースを、UE100及び他のUEに割り当てないように、下りリンクの無線リソースの割り当てを行う。これにより、上りフィードバック情報の送信に用いられる無線リソースと同一の無線リソースが用いられたeNB200-1からの下りリンクの送信が行われないため、UE100は、上りフィードバック情報を良好に受信することができる。
 また、実施形態において、eNB200-1は、上りフィードバック情報を送信するためにUE100に対して割り当てられた無線リソースに対応する無線リソースを用いて、下りリンクデータを所定値以下の送信電力で送信する。これにより、UE100が上りフィードバック情報を受信する際に、eNB200-2が与える干渉の発生を抑制できる。
 また、実施形態において、eNB200-1は、eNB200-2が上りフィードバック情報を送信している間、eNB200-1からの指向性ビームのヌル点がUE100に向くように、下りリンクにおける無線リソースの割り当てを行う。これにより、UE100が上りフィードバック情報を受信する際に、eNB200-2が与える干渉の発生を抑制できる。
 また、実施形態において、eNB200-2は、データ領域で上りフィードバック情報を送信するための設定を示すePDCCH設定情報を、UE100に送信する。これにより、eNB200-2が、データ領域で上りフィードバック情報を送信しても、UE100は、上りフィードバック情報を受信できる。
 また、実施形態において、eNB200-2は、ePDCCH設定情報を、eNB200-1を経由して、UE100に送信する。これにより、UE100とeNB200-2とが接続を確立する前であっても、UE100は、ePDCCH設定情報を受信するまでの時間を短縮できるため、フィードバック情報が受信されるまでの時間を短縮できる。
 また、実施形態において、上りフィードバック情報は、UE100から送信された上りリンクデータの送達確認情報であり、eNB200-2は、物理HARQインジケータチャネルを介して、データ領域で、上りフィードバック情報を送信する。これにより、データ領域は、制御領域に比べて、無線リソースの割り当ての自由度が高いため、eNB200-1は、UE100が上りフィードバック情報する際に干渉が発生しないように、下りリンクにおける無線リソースの割り当てを行うことが可能となる。
 また、実施形態において、eNB200-1とeNB200-2とが同一の周波数帯を使用する場合に、eNB200-1は、下りフィードバック情報の送信に用いられる無線リソースを示す情報を含むスケジューリング情報をeNB200-2に送信し、eNB200-2は、前記スケジューリング情報に基づいて、上りリンクにおける無線リソースの割り当てを行う。これにより、eNB200-2は、UE100の下りフィードバック情報の送信に用いられる無線リソースを考慮して、eNB200-2と接続を確立するUE100及び他のUEに対して、上りリンクにおける無線リソースの割り当てを行うことができる。したがって、UE100が下りフィードバック情報を送信する際に、eNB200-2への干渉が発生しないように、上りリンクにおける無線リソースの割り当てを行うことが可能となる。
 また、実施形態において、eNB200-1は、制御領域とデータ領域とを含む上りリンクフレームにおいて、下りフィードバック情報を、制御領域に代えてデータ領域で、UE100に送信させる。データ領域は、制御領域に比べて、無線リソースの割り当ての自由度が高いため、eNB200-2は、UE100が下りフィードバック情報を送信する際に、eNB200-2への干渉が発生しないように、上りリンクにおける無線リソースの割り当てを行うことが可能となる。
 また、実施形態において、eNB200-2は、下りフィードバック情報の送信に用いられる無線リソースに対応する無線リソースを、eNB200-2と接続を確立するUE100及び他のUEに対して、割り当てないように、上りリンクの無線リソースの割り当てを行う。これにより、下りフィードバック情報の送信に用いられる無線リソースと同一の無線リソースが用いられた他のUEからの上りリンクの送信が行われないため、eNB200-2に与える干渉を抑制できる。
 また、実施形態において、UE100は、下りフィードバック情報を所定値以下の送信電力で送信する。これにより、UE100が下りフィードバック情報を送信する際に、eNB200-2へ与える干渉の発生を抑制できる。
 また、実施形態において、UE100は、UE100が二重接続方式をサポートするか否かを示すケーパビリティ情報をeNB200-1に送信し、eNB200-1は、ケーパビリティ情報に基づいて、UE100に二重接続方式を適用するか否かを判定する。これにより、二重接続方式をサポートしないUE100に対して、二重接続方式を適用するか否かを判定しなくて済む。
 [その他の実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、eNB200-1が、UE100に二重接続方式を適用するか否かを判定したが、これに限られない。ネットワーク(例えば、MME)が、UE100に二重接続方式を適用するか否かを判定してもよい。
 また、eNB200-1及びeNB200-2が、無線リソースを割り当てていたが、ネットワークが無線リソースの割り当てを制御してもよい。
 また、上述した実施形態では、eNB200-1とeNB200-2とは、同一の周波数帯を使用していたが、これに限られない。eNB200-1とeNB200-2とは、互いに異なる周波数帯を使用してもよい。
 また、上述した実施形態では、小セルは、大セルのカバレッジ内に設けられていたが、これに限られない。eNB200-1が管理するセルと、eNB200-2が管理するセルとが隣接していてもよい。
 また、上述した実施形態では、ステップS104及びステップS105において、eNB200-2は、UE100に送信するeNB200-2の設定情報を、eNB200-1を経由して、UE100に送信していたが、これに限られない。eNB200-2は、eNB200-2の設定情報を、eNB200-1を経由せずに、ブロードキャスト又はユニキャストでUE100-1に直接送信してもよい。
 また、上述した実施形態において、eNB200-1及びeNB200-2のそれぞれが、UE100の上りスケジューリング情報と、UE100の下りのスケジューリング情報とを共有している場合に、eNB200-1からUE100への下りリンクデータ及びUE100からeNB200-2への上りリンクデータの送信と、eNB200-2からUE100への上りフィードバック情報及びUE100からeNB200-1への下りフィードバック情報の送信とが、互い違いになるように、UE100、eNB200-1及びeNB200-2が制御されてもよい。すなわち、eNB200-1が下りリンクデータを送信するとともに、UE100が上りリンクデータを送信する。その後のタイミングで、eNB200-2が前記上りリンクデータの上りフィードバック情報をUE100に送信するとともに、UE100が前記下りリンクデータの下りフィードバック情報をeNB200-2に送信する。その後のタイミングで、eNB200-1が、前記下りフィードバック情報に基づいて、下りリンクデータを送信するとともに、UE100が、前記上りフィードバック情報に基づいて、上りリンクデータを送信する。この一連の処理が繰り返されてもよい。これにより、上りフィードバック情報、下りフィードバック情報、下りリンクデータ及び上りリンクデータの送受信が効率よく行われる。
 また、上述した実施形態において、eNB200-2は、eNB200-1からUE100の下りのスケジューリング情報を受信している場合、eNB200-1とeNB200-2とが協調して、UE100との通信(いわゆるCoMP通信)を行ってもよい。すなわち、eNB200-1及びeNB200-2のそれぞれが、同一の無線リソースを使用して、UE100に対して、一斉に送信を行ってもよい。または、eNB200-1及びeNB200-2のそれぞれが、同一の無線リソースを確保して、UE100に対して、選択的に送信を行ってもよい。
 上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、日本国特許出願第2013-080003号(2013年4月5日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る移動通信システム及びユーザ端末は、二重接続方式を活用しつつ、フィードバック情報が受信されるまでの時間を短縮できるため、移動通信分野において有用である。

Claims (15)

  1.  ユーザ端末と、第1の無線基地局と、前記第1の無線基地局に隣接する第2の無線基地局とを有し、前記第1の無線基地局から前記ユーザ端末へ下りリンクデータが送信される下りリンク用の第1の接続と、前記ユーザ端末から前記第2の無線基地局へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される二重接続方式をサポートする移動通信システムであって、
     前記ユーザ端末は、前記第1の無線基地局から前記ユーザ端末への前記下りリンクデータについてのフィードバック情報である下りフィードバック情報を、前記第1の無線基地局に送信し、
     前記ユーザ端末は、前記ユーザ端末から前記第2の無線基地局への前記上りリンクデータについてのフィードバック情報である上りフィードバック情報を、前記第2の無線基地局から受信することを特徴とする移動通信システム。
  2.  前記第1の無線基地局と前記第2の無線基地局とが同一の周波数帯を使用する場合に、前記第2の無線基地局は、前記上りフィードバック情報の送信に用いられる無線リソースを示す情報を含むスケジューリング情報を前記第1の無線基地局に送信し、
     前記第1の無線基地局は、前記スケジューリング情報に基づいて、下りリンクにおける無線リソースの割り当てを行うことを特徴とする請求項1に記載の移動通信システム。
  3.  前記第2の無線基地局は、前記上りフィードバック情報を含む下りリンク制御情報を送信するための制御領域と前記下りリンクデータを送信するためのデータ領域とを含む下りリンクフレームにおいて、前記上りフィードバック情報を、前記制御領域に代えて前記データ領域で送信することを特徴とする請求項2に記載の移動通信システム。
  4.  前記第1の無線基地局は、前記上りフィードバック情報の送信に用いられる前記無線リソースに対応する無線リソースを、前記第1の無線基地局と接続を確立する前記ユーザ端末を含む複数のユーザ端末に対して、割り当てないように、前記無線リソースの割り当てを行うことを特徴とする請求項2又は3に記載の移動通信システム。
  5.  前記第1の無線基地局は、前記上りフィードバック情報を送信するために前記ユーザ端末に対して割り当てられた前記無線リソースに対応する無線リソースを用いて、前記下りリンクデータを所定値以下の送信電力で送信することを特徴とする請求項2又は3に記載の移動通信システム。
  6.  前記第1の無線基地局は、前記第2の無線基地局が前記上りフィードバック情報を送信している間、前記第1の無線基地局からの指向性ビームのヌル点が前記ユーザ端末に向くように、前記無線リソースの割り当てを行うことを特徴とする請求項3に記載の移動通信システム。
  7.  前記第2の無線基地局は、前記データ領域で前記上りフィードバック情報を送信するための設定を示す設定情報を、前記ユーザ端末に送信することを特徴とする請求項3に記載の移動通信システム。
  8.  前記第2の無線基地局は、前記設定情報を、前記第1の無線基地局を経由して、前記ユーザ端末に送信することを特徴とする請求項7に記載の移動通信システム。
  9.  前記上りフィードバック情報は、前記ユーザ端末から送信された前記上りリンクデータの送達確認情報であり、
     前記第2の無線基地局は、物理HARQインジケータチャネルを介して、前記上りフィードバック情報を送信することを特徴とする請求項3に記載の移動通信システム。
  10.  前記第1の無線基地局と前記第2の無線基地局とが同一の周波数帯を使用する場合に、前記第1の無線基地局は、前記下りフィードバック情報の送信に用いられる無線リソースを示す情報を含むスケジューリング情報を前記第2の無線基地局に送信し、
     前記第2の無線基地局は、前記スケジューリング情報に基づいて、上りリンクにおける無線リソースの割り当てを行うことを特徴とする請求項1に記載の移動通信システム。
  11.  前記第1の無線基地局は、前記下りフィードバック情報を含む上りリンク制御情報を送信するための制御領域と前記上りリンクデータを送信するためのデータ領域とを含む上りリンクフレームにおいて、前記下りフィードバック情報を、前記制御領域に代えて前記データ領域で、前記ユーザ端末に送信させることを特徴とする請求項10に記載の移動通信システム。
  12.  前記第2の無線基地局は、前記下りフィードバック情報の送信に用いられる前記無線リソースに対応する無線リソースを、前記第2の無線基地局と接続を確立する前記ユーザ端末を含む複数のユーザ端末に対して、割り当てないように、前記無線リソースの割り当てを行うことを特徴とする請求項10又は11に記載の移動通信システム。
  13.  前記ユーザ端末は、前記下りフィードバック情報を所定値以下の送信電力で送信することを特徴とする請求項10又は11に記載の移動通信システム。
  14.  前記移動通信システムは、前記第1の無線基地局を含むネットワークを有し、
     前記ユーザ端末は、前記ユーザ端末が前記二重接続方式をサポートするか否かを示す情報を前記第1の無線基地局に送信し、
     前記ネットワークは、前記情報に基づいて、前記ユーザ端末に前記二重接続方式を適用するか否かを判定することを特徴とする請求項1に記載の移動通信システム。
  15.  ユーザ端末と、第1の無線基地局と、前記第1の無線基地局に隣接する第2の無線基地局とを有し、前記第1の無線基地局から前記ユーザ端末へ下りリンクデータが送信される下りリンク用の第1の接続と、前記ユーザ端末から前記第2の無線基地局へ上りリンクデータが送信される上りリンク用の第2の接続と、が確立される二重接続方式をサポートする移動通信システムにおけるユーザ端末であって、
     前記第1の無線基地局から前記ユーザ端末への前記下りリンクデータについてのフィードバック情報である下りフィードバック情報を、前記第1の無線基地局に送信する送信部と、
     前記ユーザ端末は、前記ユーザ端末から前記第2の無線基地局への前記上りリンクデータについてのフィードバック情報である上りフィードバック情報を、前記第2の無線基地局から受信する受信部と、を有することを特徴とするユーザ端末。
PCT/JP2014/059828 2013-04-05 2014-04-03 移動通信システム及びユーザ端末 WO2014163137A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/782,253 US20160029401A1 (en) 2013-04-05 2014-04-03 Mobile communication system and user terminal
EP14778845.9A EP2983402A4 (en) 2013-04-05 2014-04-03 MOBILE COMMUNICATION SYSTEM AND USER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-080003 2013-04-05
JP2013080003A JP6143524B2 (ja) 2013-04-05 2013-04-05 移動通信システム、無線基地局及びユーザ端末

Publications (1)

Publication Number Publication Date
WO2014163137A1 true WO2014163137A1 (ja) 2014-10-09

Family

ID=51658428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059828 WO2014163137A1 (ja) 2013-04-05 2014-04-03 移動通信システム及びユーザ端末

Country Status (4)

Country Link
US (1) US20160029401A1 (ja)
EP (1) EP2983402A4 (ja)
JP (1) JP6143524B2 (ja)
WO (1) WO2014163137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180077614A1 (en) * 2015-02-13 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Establishment of Dual Connectivity

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244349B (zh) * 2013-06-18 2021-06-15 索尼公司 通信装置和通信方法
US10141983B2 (en) * 2014-05-08 2018-11-27 Samsung Electronics Co., Ltd. Method for activating pSCell and SCell in mobile communication system supporting dual connectivity
US10666338B2 (en) * 2014-05-30 2020-05-26 Lg Electronics Inc. Channel quality measurement method in multiple antenna wireless communication system and device for same
JP2018506244A (ja) * 2014-12-29 2018-03-01 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンク伝送制御方法及び装置
EP3267757B1 (en) * 2015-03-04 2019-12-25 Lg Electronics Inc. Method for performing initial access in wireless communication system and device for same
US10129855B1 (en) * 2015-05-07 2018-11-13 Sprint Spectrum L.P. Systems and methods for efficient transmissions of multicast content to wireless devices
US20200205180A1 (en) * 2017-08-10 2020-06-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless Communication Method and Network Node

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179958A (ja) * 2001-09-18 2003-06-27 Denso Corp 高速セルサイト選択のためのアップリンクダウンリンクダイバシティ
JP2011055194A (ja) * 2009-09-01 2011-03-17 Fujitsu Ltd 基地局、移動局、通信システムおよび通信方法
JP2011193466A (ja) * 2010-03-12 2011-09-29 Research In Motion Ltd ワイヤレス通信ネットワークの補助ノード伝送援助
US20120213189A1 (en) * 2009-11-04 2012-08-23 Lg Electronics Inc. method for uplink transmission control and an apparatus for the same in a wireless communications system
JP2013080003A (ja) 2011-09-30 2013-05-02 Fujifilm Corp 平版印刷版原版及び平版印刷版の作製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651569B1 (ko) * 2004-06-01 2006-11-29 삼성전자주식회사 셀룰러 통신 시스템의 자원 할당 스케줄링 방법
US20130051265A1 (en) * 2011-08-25 2013-02-28 Qualcomm Incorporated Base station enhancements for cooperative multi-point communication
US9628242B2 (en) * 2011-09-26 2017-04-18 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
KR102040883B1 (ko) * 2012-08-23 2019-11-05 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 다중 스케줄러들을 이용한 동작

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179958A (ja) * 2001-09-18 2003-06-27 Denso Corp 高速セルサイト選択のためのアップリンクダウンリンクダイバシティ
JP2011055194A (ja) * 2009-09-01 2011-03-17 Fujitsu Ltd 基地局、移動局、通信システムおよび通信方法
US20120213189A1 (en) * 2009-11-04 2012-08-23 Lg Electronics Inc. method for uplink transmission control and an apparatus for the same in a wireless communications system
JP2011193466A (ja) * 2010-03-12 2011-09-29 Research In Motion Ltd ワイヤレス通信ネットワークの補助ノード伝送援助
JP2013080003A (ja) 2011-09-30 2013-05-02 Fujifilm Corp 平版印刷版原版及び平版印刷版の作製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "Discussion on dual connectivity", 3GPP TSG RAN WG1 MEETING #72BIS R1-131138, 15 April 2013 (2013-04-15), pages 1 - 4, XP050696767 *
ERICSSON ET AL.: "Physical layer aspects of dual connectivity", 3GPP TSG RAN WG1 MEETING #72 R1-130566, 28 January 2013 (2013-01-28), pages 1 - 8, XP050663823 *
See also references of EP2983402A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180077614A1 (en) * 2015-02-13 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Establishment of Dual Connectivity

Also Published As

Publication number Publication date
JP2014204346A (ja) 2014-10-27
JP6143524B2 (ja) 2017-06-07
EP2983402A4 (en) 2016-11-16
EP2983402A1 (en) 2016-02-10
US20160029401A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6143524B2 (ja) 移動通信システム、無線基地局及びユーザ端末
WO2014017476A1 (ja) 移動通信システム、基地局、ユーザ端末、及びプロセッサ
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
JP6147843B2 (ja) 基地局及び通信制御方法
JP6010341B2 (ja) 基地局装置、移動局装置、測定方法、および集積回路
WO2016148243A1 (ja) ユーザ端末及び基地局
WO2014129465A1 (ja) 通信制御方法、ユーザ端末及び基地局
US9923689B2 (en) Mobile communication system, user terminal, and processor for assigning radio resources for transmission of sounding reference signals and device to device communication resources
JP6674890B2 (ja) 通信制御方法、無線通信装置、及びリソース管理装置
WO2018030228A1 (ja) 移動通信方法、基地局及びユーザ端末
WO2015046270A1 (ja) ユーザ端末、基地局、及びプロセッサ
JP6158309B2 (ja) 基地局、プロセッサ、及び通信制御方法
JP6028038B2 (ja) 移動通信システム、基地局、プロセッサ
JPWO2020145241A1 (ja) 通信制御方法
JPWO2015060191A1 (ja) 基地局及びプロセッサ
JP6134220B2 (ja) 基地局及びプロセッサ
WO2014192629A1 (ja) ユーザ端末、基地局及びプロセッサ
US9888447B2 (en) Base station
JP6034956B2 (ja) 移動通信システム、基地局及びユーザ端末
JP6398032B2 (ja) 移動通信システム、ユーザ端末、基地局、及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14782253

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014778845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014778845

Country of ref document: EP