WO2015046270A1 - ユーザ端末、基地局、及びプロセッサ - Google Patents

ユーザ端末、基地局、及びプロセッサ Download PDF

Info

Publication number
WO2015046270A1
WO2015046270A1 PCT/JP2014/075321 JP2014075321W WO2015046270A1 WO 2015046270 A1 WO2015046270 A1 WO 2015046270A1 JP 2014075321 W JP2014075321 W JP 2014075321W WO 2015046270 A1 WO2015046270 A1 WO 2015046270A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
downlink
period
uplink
base station
Prior art date
Application number
PCT/JP2014/075321
Other languages
English (en)
French (fr)
Inventor
智春 山▲崎▼
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/024,241 priority Critical patent/US20160249359A1/en
Publication of WO2015046270A1 publication Critical patent/WO2015046270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a user terminal, a base station, and a processor used in a mobile communication system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • FDD frequency division duplex
  • a user terminal is a channel that indicates a channel state in a downlink frequency based on a downlink reference signal transmitted from the base station using the downlink frequency.
  • Status information is fed back to the base station (see Non-Patent Document 1, for example).
  • the base station performs downlink transmission control based on CSI fed back from the user terminal.
  • the downlink transmission control is, for example, downlink multi-antenna transmission control and / or downlink scheduling.
  • NCT New Carrier Type
  • CSI feedback is essential to perform downlink transmission control, and overhead due to CSI feedback becomes a problem.
  • LTE-Advanced introduces carrier aggregation (CA) that bundles a plurality of carriers (frequencies) and uses them for communication.
  • CA carrier aggregation
  • the LTE-A specification has another problem that the maximum frequency width that can be used when CA is used in TDD is limited to half that in FDD.
  • the first object of the present invention is to reduce overhead due to CSI feedback.
  • the second object of the present invention is to increase the maximum frequency width that can be used when CA is used in a TDD carrier.
  • the user terminal performs downlink communication and uplink communication with the base station using a pair of the first frequency and the second frequency.
  • Each of the first frequency and the second frequency has a TDD configuration having a downlink period and an uplink period alternately.
  • the downlink period of the first frequency and the uplink period of the second frequency coincide on the time axis, and the uplink period of the first frequency and the downlink of the second frequency
  • the link period is set to match on the time axis.
  • the user terminal performs the downlink communication in the downlink period of each of the first frequency and the second frequency, and the uplink period of each of the first frequency and the second frequency.
  • a control unit for performing the uplink communication is
  • the base station performs downlink communication and uplink communication with the user terminal using a pair of the first frequency and the second frequency.
  • Each of the first frequency and the second frequency has a TDD configuration having a downlink period and an uplink period alternately.
  • the downlink period of the first frequency and the uplink period of the second frequency coincide on the time axis, and the uplink period of the first frequency and the downlink of the second frequency
  • the link period is set to match on the time axis.
  • the base station performs the downlink communication in the downlink period of each of the first frequency and the second frequency, and the uplink period of each of the first frequency and the second frequency And a control unit for performing the uplink communication.
  • the processor according to the third feature is provided in a user terminal that performs downlink communication and uplink communication with a base station using a pair of a first frequency and a second frequency.
  • Each of the first frequency and the second frequency has a TDD configuration having a downlink period and an uplink period alternately.
  • the downlink period of the first frequency and the uplink period of the second frequency coincide on the time axis, and the uplink period of the first frequency and the downlink of the second frequency
  • the link period is set to match on the time axis.
  • the processor performs the downlink communication in the downlink period of each of the first frequency and the second frequency, and in the uplink period of each of the first frequency and the second frequency.
  • the uplink communication is performed.
  • the user terminal performs downlink communication and uplink communication with a base station using a pair of a first frequency and a second frequency.
  • Each of the first frequency and the second frequency has a TDD configuration having a downlink period and an uplink period alternately.
  • the downlink period of the first frequency and the uplink period of the second frequency coincide on the time axis, and the uplink period of the first frequency and the downlink of the second frequency
  • the link period is set to match on the time axis.
  • the user terminal performs the downlink communication in the downlink period of each of the first frequency and the second frequency, and the uplink period of each of the first frequency and the second frequency.
  • a control unit for performing the uplink communication is
  • the user terminal further includes a transmission unit that transmits an uplink reference signal used for channel estimation to the base station in each uplink period of the first frequency and the second frequency. Prepare.
  • a single cell identifier is assigned to the pair of the first frequency and the second frequency to be regarded as a frequency of a single FDD configuration in the MAC layer or higher.
  • the user terminal receives a downlink reference signal from the base station in the downlink period of each of the first frequency and the second frequency, and receives the downlink reference signal And a transmitter that transmits a measurement report including power and / or reception quality to the base station.
  • the transmission unit transmits the measurement report common to the pair of the first frequency and the second frequency to the base station.
  • the user terminal includes a receiving unit that receives downlink user data from the base station in the downlink period of each of the first frequency and the second frequency, and the downlink user data And a transmitter that transmits Ack / Nack to the base station.
  • the transmission unit transmits the Ack / Nack common to the pair of the first frequency and the second frequency to the base station.
  • the base station performs downlink communication and uplink communication with the user terminal using a pair of the first frequency and the second frequency.
  • Each of the first frequency and the second frequency has a TDD configuration having a downlink period and an uplink period alternately.
  • the downlink period of the first frequency and the uplink period of the second frequency coincide on the time axis, and the uplink period of the first frequency and the downlink of the second frequency
  • the link period is set to match on the time axis.
  • the base station performs the downlink communication in the downlink period of each of the first frequency and the second frequency, and the uplink period of each of the first frequency and the second frequency And a control unit for performing the uplink communication.
  • the base station further includes a reception unit that receives an uplink reference signal used for channel estimation from the user terminal in each uplink period of the first frequency and the second frequency. Prepare.
  • a single cell identifier is assigned to the pair of the first frequency and the second frequency to be regarded as a frequency of a single FDD configuration in the MAC layer or higher.
  • the base station transmits a downlink reference signal in each downlink period of the first frequency and the second frequency, and received power of the downlink reference signal and / or
  • a reception unit that receives a measurement report including reception quality from the user terminal.
  • the receiving unit receives the measurement report common to the pair of the first frequency and the second frequency from the user terminal.
  • the base station transmits a downlink user data to the user terminal in the downlink period of each of the first frequency and the second frequency, and the downlink user data And a receiving unit that receives Ack / Nack from the user terminal.
  • the receiving unit receives the Ack / Nack common to the pair of the first frequency and the second frequency from the user terminal.
  • the processor according to the embodiment is provided in a user terminal that performs downlink communication and uplink communication with a base station using a pair of a first frequency and a second frequency.
  • Each of the first frequency and the second frequency has a TDD configuration having a downlink period and an uplink period alternately.
  • the downlink period of the first frequency and the uplink period of the second frequency coincide on the time axis, and the uplink period of the first frequency and the downlink of the second frequency
  • the link period is set to match on the time axis.
  • the processor performs the downlink communication in the downlink period of each of the first frequency and the second frequency, and in the uplink period of each of the first frequency and the second frequency.
  • the uplink communication is performed.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the LTE system network is configured by the E-UTRAN 10 and the EPC 20.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the SGW performs user data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the plurality of antennas 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the plurality of antennas 101. Further, the radio transceiver 110 converts radio signals received by the plurality of antennas 101 into baseband signals (received signals) and outputs the baseband signals to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the plurality of antennas 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts a baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits the radio signal from the plurality of antennas 201.
  • the radio transceiver 210 converts radio signals received by the plurality of antennas 201 into baseband signals (reception signals) and outputs the baseband signals to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme) and an allocation resource block to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connection state (RRC connection state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a control signal.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting user data.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as a physical uplink control channel (PUCCH) for transmitting a control signal.
  • the remaining part of each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting user data.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • FIG. 6 is a diagram for explaining an operating environment according to the embodiment.
  • the LTE system performs downlink communication and uplink communication using a pair of frequency f1 and frequency f2.
  • a set of frequencies is used.
  • the channel state at the frequency f1 is different from the channel state at the frequency f2.
  • the UE 100 performs channel estimation based on a downlink reference signal transmitted from the eNB 200 using the downlink frequency f1, and feeds back CSI indicating the channel state at the downlink frequency f1 to the eNB 200.
  • Downlink reference signals include CRS (Cell-Specific Reference Signal) and CSI-RS (Channel State Information-Reference Signal).
  • CRS is a cell-specific downlink reference signal.
  • CRS and CSI-RS are mainly used for channel estimation (ie, CSI measurement) to obtain CSI.
  • CRS is used for received power (RSRP: Reference Signal Received Power) measurement for mobility control.
  • RSRP Reference Signal Received Power
  • CSI includes channel quality information (CQI; Channel Quality Indicator), precoder matrix information (PMI; Precoder Matrix Indicator), rank information (RI; Rank Indicator), and the like.
  • CQI is an index indicating a modulation / coding scheme (MCS) recommended in the downlink.
  • PMI is an index indicating a precoder matrix recommended in the downlink.
  • the RI is an index indicating a recommended rank in the downlink.
  • ENB200 performs downlink transmission control based on CSI fed back from UE100.
  • the downlink transmission control is, for example, downlink multi-antenna transmission control and / or downlink scheduling.
  • the eNB 200 controls downlink multi-antenna transmission based on PMI and RI. Also, the eNB 200 performs downlink scheduling based on the CQI.
  • CSI feedback is essential to perform downlink transmission control, and overhead due to CSI feedback becomes a problem. Furthermore, when the downlink transmission control is advanced, more accurate CSI is required, so the amount of CSI information to be fed back increases, and the overhead due to CSI feedback becomes a serious problem. In addition, with the current accuracy of CSI, it is difficult to introduce advanced multi-antenna transmission such as MU-MIMO (Multi User Multiple-Input Multiple-Output).
  • MU-MIMO Multi User Multiple-Input Multiple-Output
  • NCT new carrier structure
  • FIG. 7 is a diagram for explaining the NCT according to the embodiment.
  • the UE 100 performs downlink communication and uplink communication with the eNB 200 using a pair of the frequency f1 and the frequency f2.
  • the eNB 200 performs downlink communication and uplink communication with the UE 100 using a pair of the frequency f1 and the frequency f2.
  • Each of the frequency f1 and the frequency f2 is a TDD configuration (that is, a TDD carrier) having a downlink period and an uplink period alternately.
  • one downlink period is composed of one or a plurality of subframes.
  • One uplink period consists of one or a plurality of subframes.
  • the downlink period of frequency f1 and the uplink period of frequency f2 are set to coincide on the time axis, and the uplink period of frequency f1 and the downlink period of frequency f2 are set to match on the time axis.
  • UE100 and eNB200 perform downlink communication in each downlink period of frequency f1 and frequency f2, and perform uplink communication in each uplink period of frequency f1 and frequency f2.
  • UE100 transmits the uplink reference signal used for channel estimation to eNB200 in each uplink period of frequency f1 and frequency f2.
  • eNB200 receives the uplink reference signal used for channel estimation from UE100 in each uplink period of frequency f1 and frequency f2.
  • eNB200 can perform channel estimation about each of frequency f1 and frequency f2 based on the uplink reference signal received from UE100. Therefore, the eNB 200 can obtain the CSI of the frequency f1 and the frequency f2 by the eNB 200 itself without depending on the CSI feedback from the UE 100. Therefore, overhead due to CSI feedback can be reduced. Moreover, advanced multi-antenna transmission such as MU-MIMO can be introduced.
  • the uplink reference signal is a known signal sequence in the eNB 200, and is defined by a cyclic shift amount and a basic sequence. For example, for the basic sequence, a Zadoff-Chu sequence having a fixed amplitude in both time and frequency regions and in which cyclically shifted sequences are orthogonal to each other is applied.
  • the uplink reference signal may be a sounding reference signal (SRS). Frequency hopping is applied to SRS transmission. That is, the SRS transmission resource block is switched for each SRS transmission cycle.
  • SRS sounding reference signal
  • a single cell identifier to be regarded as a frequency of a single FDD configuration (that is, a set of FDD carriers) above the MAC layer is assigned to the pair of the frequency f1 and the frequency f2.
  • the cell identifier is a logical cell identifier.
  • the UE 100 and the eNB 200 perform the TDD communication while switching the frequency in the physical layer, and perform the communication assuming that the FDD communication is performed in the MAC layer and higher.
  • TDD and FDD are switched with a boundary between the physical layer and the MAC layer.
  • CA carrier aggregation
  • operation is performed as if normal FDD communication is performed in the MAC layer or higher. Therefore, the processing to be performed for each carrier in CA can be shared by a pair of carriers. Further, by regarding two TDD carriers as a set of FDD carriers (corresponding to one component carrier), when the maximum number of component carriers in CA of FDD is n, CA using 2 ⁇ n carriers is realizable. That is, the communication capacity can be increased by using twice as many carriers.
  • a UE (legacy UE) that does not support NCT is required to be able to perform normal TDD communication using either one of the frequency f1 and the frequency f2. Therefore, it should be noted that a different PCI is assigned to each of the frequency f1 and the frequency f2.
  • FIG. 8 is a diagram illustrating a variation of the TDD frame configuration in LTE. As shown in FIG. 8, in LTE, six TDD frame configurations (Config.) Having different balances between the downlink period and the uplink period are defined.
  • a “D” subframe is a subframe constituting a downlink period
  • a “U” subframe is a subframe constituting an uplink period
  • an “S” subframe is used as a gart time. It is a special subframe.
  • FIG. 9 is a diagram for explaining an example of a combination of TDD frame configurations.
  • a TDD frame configuration “0” is set for one carrier (for example, frequency f1)
  • a TDD frame configuration “1” is set for the other carrier (for example, frequency f2).
  • the carrier of “1” is cyclically shifted after 3 subframes. That is, an offset of 3 subframes is added.
  • the TDD-FDD carrier structure can be realized by using the “S” subframe as a “D” subframe.
  • FIG. 10 is a sequence diagram according to the embodiment.
  • the eNB 200 transmits setting information indicating the settings of the frequency f1 and the frequency f2 to the UE 100.
  • the setting information is transmitted by a system information block type (SIB) 2 that is a kind of broadcast system information.
  • SIB system information block type
  • the TDD-FDD carrier structure may be indicated by “TDD-Config” included in the SIB1.
  • “FreqBandIndicator” included in SIB1 may indicate the frequency (frequency f1, frequency f2) to which the TDD-FDD carrier structure is applied.
  • the frequency may be identified by applying a special primary synchronization signal (PSS) / secondary synchronization signal (SSS) arrangement at a frequency to which the TDD-FDD carrier structure is applied.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a TDD- The UE 100 may be notified of the FDD carrier structure.
  • the UE 100 establishes a connection with the eNB 200.
  • the UE 100 and the eNB 200 assign a single cell identifier to be regarded as a frequency of a single FDD configuration (that is, a set of pair bands) in the MAC layer and higher for the pair of the frequency f1 and the frequency f2.
  • the eNB 200 assigns and notifies the identifier to the UE 100, and stores the identifier assigned to the UE 100.
  • the notification may be performed according to the capability of the UE, or may be notified later along with the eNB 200 load or MU-MIMO application.
  • the UE 100 and the eNB 200 notify the MAC layer to the physical layer that the TDD-FDD carrier structure is applied and the setting for the TDD-FDD carrier structure. Further, common items (measurement report, HARQ process, Ack / Nack, etc.) may be notified from the upper layer side (for example, RRC layer) to the lower layer side (for example, MAC layer). Thereafter, while performing TDD communication while switching the frequency in the physical layer, communication is performed assuming that FDD communication is performed in the MAC layer and higher.
  • RRC layer for example, RRC layer
  • the lower layer side for example, MAC layer
  • step S13 the UE 100 transmits an uplink reference signal to the eNB 200 using the frequency f1.
  • step S14 the eNB 200 performs channel estimation for the frequency f1 based on the uplink reference signal received from the UE 100. In this way, the eNB 200 can obtain the CSI of the frequency f1 by the eNB 200 itself without depending on the CSI feedback from the UE 100.
  • step S15 the UE 100 transmits an uplink reference signal to the eNB 200 using the frequency f2.
  • step S16 the eNB 200 performs channel estimation for the frequency f2 based on the uplink reference signal received from the UE 100. In this way, the eNB 200 can obtain the CSI of the frequency f2 by the eNB 200 itself without depending on the CSI feedback from the UE 100.
  • FIG. 11 is a sequence diagram showing a measurement report procedure according to the embodiment.
  • step S101 the eNB 200 transmits a downlink reference signal in each downlink period of the frequency f1 and the frequency f2.
  • UE100 receives a downlink reference signal from eNB200 in each downlink period of frequency f1 and frequency f2.
  • the UE 100 receives downlink reference signals from the serving cell and the neighboring cell.
  • step S102 the UE 100 measures the received power (RSRP) and / or the received quality (RSRQ) of the downlink reference signal for either the frequency f1 or the frequency f2.
  • RSRP received power
  • RSRQ received quality
  • step S103 the UE 100 transmits a measurement report including RSRP and / or RSRQ to the eNB 200.
  • the UE 100 transmits a measurement report common to the pair of the frequency f1 and the frequency f2 to the eNB 200.
  • eNB200 receives a measurement report from UE100.
  • FIG. 12 is a sequence diagram showing an Ack / Nack reporting procedure according to the embodiment.
  • step S201 the eNB 200 transmits downlink user data to the UE 100 in each downlink period of the frequency f1 and the frequency f2.
  • UE100 receives downlink user data from eNB200 in each downlink period of frequency f1 and frequency f2.
  • step S202 the UE 100 decodes the downlink user data, generates Ack when decoding is successful, and generates Nack when decoding fails.
  • step S203 the UE 100 transmits Ack / Nack for downlink user data to the eNB 200.
  • the UE 100 transmits an Ack / Nack common to the pair of the frequency f1 and the frequency f2 to the eNB 200.
  • eNB200 receives Ack / Nack from UE100.
  • Ack / Nack for downlink communication at the frequency f1 may be returned by uplink communication at the frequency f1, or may be returned by uplink communication at the frequency f2.
  • the specification is such that Ack / Nack is returned after 4 subframes from data reception.
  • the first frequency is uplink communication. If it is a subframe for use, it may be returned at frequency f1, and if frequency f2 is a subframe for uplink communication, it may be returned at frequency f2.
  • each of the frequency f1 and the frequency f2 has a TDD configuration having a downlink period and an uplink period alternately. Also, the downlink period of frequency f1 and the uplink period of frequency f2 are set to coincide on the time axis, and the uplink period of frequency f1 and the downlink period of frequency f2 are set to match on the time axis. . UE100 and eNB200 perform downlink communication in each downlink period of frequency f1 and frequency f2, and perform uplink communication in each uplink period of frequency f1 and frequency f2.
  • UE100 transmits the uplink reference signal used for channel estimation to eNB200 in each uplink period of frequency f1 and frequency f2.
  • eNB200 receives the uplink reference signal used for channel estimation from UE100 in each uplink period of frequency f1 and frequency f2.
  • eNB200 can perform channel estimation about each of frequency f1 and frequency f2 based on the uplink reference signal received from UE100. Therefore, the eNB 200 can obtain the CSI of the frequency f1 and the frequency f2 by the eNB 200 itself without depending on the CSI feedback from the UE 100. Therefore, overhead due to CSI feedback can be reduced. Moreover, advanced multi-antenna transmission such as MU-MIMO can be introduced.
  • a single cell identifier (logical cell identifier) to be regarded as a single FDD configuration frequency (a set of frequencies) in the MAC layer and higher is assigned to the pair of the frequency f1 and the frequency f2.
  • the MAC layer and above operate as if performing normal FDD communication. Therefore, the processing to be performed for each carrier in CA can be shared by a pair of carriers. Further, by regarding two TDD carriers as a pair of FDD carriers (one component carrier), when the maximum number of component carriers in CA of FDD is n, CA using 2 ⁇ n carriers can be realized. For example, in the LTE-Advanced system, CA with a maximum width of 200 MHz is possible even in TDD.
  • the TDD and the FDD are switched with the boundary between the physical layer and the MAC layer.
  • the boundary may be between the MAC layer and the RLC layer, the boundary may be between the MAC layer and the RLC layer, the boundary may be between the RLC layer and the PDCP layer, the PDCP layer and the RRC layer, It is good also as a boundary.
  • the LTE system has been described as an example of a cellular communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.
  • the present invention it is possible to increase the maximum frequency width that can be used when CA is used in the TDD carrier.
  • CA with a maximum width of 200 MHz is possible even in TDD.

Abstract

周波数f1及び周波数f2のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。周波数f1の下りリンク期間及び周波数f2の上りリンク期間が時間軸上で一致し、かつ、周波数f1の上りリンク期間及び周波数f2の下りリンク期間が時間軸上で一致するように設定される。UE及びeNBは、周波数f1及び周波数f2のそれぞれの下りリンク期間において下りリンク通信を行うとともに、周波数f1及び周波数f2のそれぞれの上りリンク期間において上りリンク通信を行う。

Description

ユーザ端末、基地局、及びプロセッサ
 本発明は、移動通信システムにおいて用いられるユーザ端末、基地局、及びプロセッサに関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)で仕様が策定されているLTE(Long Term Evolution)は、下りリンク周波数及び上りリンク周波数のペアを使用して通信を行う周波数分割複信(FDD)をサポートする。
 FDDを採用する移動通信システム(すなわち、FDD通信システム)では、ユーザ端末は、基地局から下りリンク周波数を使用して送信される下りリンク参照信号に基づいて、下りリンク周波数におけるチャネル状態を示すチャネル状態情報(CSI)を基地局にフィードバックする(例えば非特許文献1参照)。
 基地局は、ユーザ端末からフィードバックされるCSIに基づいて、下りリンク伝送制御を行う。下りリンク伝送制御とは、例えば下りリンクのマルチアンテナ伝送制御及び/又は下りリンクのスケジューリングなどである。
 また、3GPPでは、リリース8乃至11で規定される従来型のキャリア構造とは異なる新たなキャリア構造(NCT:New Carrier Type)を導入することが検討されている。
3GPP技術仕様書 「TS36.211 V11.3.0」 2013年6月
 FDD通信システムでは、下りリンク伝送制御を行うためにCSIフィードバックが必須であり、CSIフィードバックによるオーバーヘッドが問題となる。
 さらに、下りリンク伝送制御の高度化を図る場合には、より高精度のCSIが必要となるため、フィードバックすべきCSIの情報量が増大し、CSIフィードバックによるオーバーヘッドが深刻な問題となる。
 また、LTE-Advanced(LTE-A)では、複数のキャリア(周波数)を束ねて通信に使用するキャリアアグリゲーション(CA)が導入されている。しかしながら、LTE-Aの仕様では、TDDにおいてCAを用いた際に利用できる最大周波数幅がFDDの場合の半分に制限されているという別の問題もある。
 そこで、本発明は、CSIフィードバックによるオーバーヘッドを削減することを第1の目的とする。
 また、本発明は、TDDキャリアでCAを用いた際に利用できる最大周波数幅を増加可能とすることを第2の目的とする。
 第1の特徴に係るユーザ端末は、第1の周波数及び第2の周波数のペアを使用して基地局との下りリンク通信及び上りリンク通信を行う。前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定される。前記ユーザ端末は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う制御部を備える。
 第2の特徴に係る基地局は、第1の周波数及び第2の周波数のペアを使用してユーザ端末との下りリンク通信及び上りリンク通信を行う。前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定される。前記基地局は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う制御部を備える。
 第3の特徴に係るプロセッサは、第1の周波数及び第2の周波数のペアを使用して基地局との下りリンク通信及び上りリンク通信を行うユーザ端末に備えられる。前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定される。前記プロセッサは、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う。
実施形態に係るLTEシステムの構成図である。 実施形態に係るUEのブロック図である。 実施形態に係るeNBのブロック図である。 実施形態に係る無線インターフェイスのプロトコルスタック図である。 実施形態に係る無線フレームの構成図である。 実施形態に係る動作環境を説明するための図である。 実施形態に係るNCTを説明するための図である。 LTEにおけるTDDフレーム構成のバリエーションを示す図である。 実施形態に係るTDDフレーム構成の組み合わせの一例を説明するための図である。 実施形態に係るシーケンス図である。 実施形態に係る測定報告手順を示すシーケンス図である。 実施形態に係るAck/Nack報告手順を示すシーケンス図である。
[実施形態の概要]
 実施形態に係るユーザ端末は、第1の周波数及び第2の周波数のペアを使用して基地局との下りリンク通信及び上りリンク通信を行う。前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定される。前記ユーザ端末は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う制御部を備える。
 実施形態では、前記ユーザ端末は、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において、チャネル推定に利用される上りリンク参照信号を前記基地局に送信する送信部をさらに備える。
 実施形態では、前記第1の周波数及び前記第2の周波数のペアには、MAC層以上において単一のFDD構成の周波数と見なすための単一のセル識別子が割り当てられている。
 実施形態では、前記ユーザ端末は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記基地局から下りリンク参照信号を受信する受信部と、前記下りリンク参照信号の受信電力及び/又は受信品質を含む測定報告を前記基地局に送信する送信部と、をさらに備える。前記送信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記測定報告を前記基地局に送信する。
 実施形態では、前記ユーザ端末は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記基地局から下りリンクユーザデータを受信する受信部と、前記下りリンクユーザデータについてのAck/Nackを前記基地局に送信する送信部と、をさらに備える。前記送信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記Ack/Nackを前記基地局に送信する。
 実施形態に係る基地局は、第1の周波数及び第2の周波数のペアを使用してユーザ端末との下りリンク通信及び上りリンク通信を行う。前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定される。前記基地局は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う制御部を備える。
 実施形態では、前記基地局は、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において、チャネル推定に利用される上りリンク参照信号を前記ユーザ端末から受信する受信部をさらに備える。
 実施形態では、前記第1の周波数及び前記第2の周波数のペアには、MAC層以上において単一のFDD構成の周波数と見なすための単一のセル識別子が割り当てられている。
 実施形態では、前記基地局は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において下りリンク参照信号を送信する送信部と、前記下りリンク参照信号の受信電力及び/又は受信品質を含む測定報告を前記ユーザ端末から受信する受信部と、をさらに備える。前記受信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記測定報告を前記ユーザ端末から受信する。
 実施形態では、前記基地局は、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において下りリンクユーザデータを前記ユーザ端末に送信する送信部と、前記下りリンクユーザデータについてのAck/Nackを前記ユーザ端末から受信する受信部と、をさらに備える。前記受信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記Ack/Nackを前記ユーザ端末から受信する。
 実施形態に係るプロセッサは、第1の周波数及び第2の周波数のペアを使用して基地局との下りリンク通信及び上りリンク通信を行うユーザ端末に備えられる。前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定される。前記プロセッサは、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う。
 [実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成図である。図1に示すように、実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワークが構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。SGWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 複数のアンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ101から送信する。また、無線送受信機110は、複数のアンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、複数のアンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230及びプロセッサ240は、制御部を構成する。
 複数のアンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ201から送信する。また、無線送受信機210は、複数のアンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Media Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100は接続状態(RRC接続状態)であり、そうでない場合、UE100はアイドル状態(RRCアイドル状態)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。また、各サブフレームの残りの部分は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける残りの部分は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (実施形態に係る動作)
 (1)動作概要
 図6は、実施形態に係る動作環境を説明するための図である。
 図6に示すように、実施形態に係るLTEシステムは、周波数f1及び周波数f2のペアを使用して下りリンク通信及び上りリンク通信を行う。一組の周波数を使用する点においては、一般的なFDD通信システムと共通する。また、周波数f1におけるチャネル状態と周波数f2におけるチャネル状態とは異なる。
 一般的なFDD通信システムでは、UE100は、eNB200から下りリンク周波数f1を使用して送信される下りリンク参照信号に基づいてチャネル推定を行い、下りリンク周波数f1におけるチャネル状態を示すCSIをeNB200にフィードバックする。下りリンク参照信号とは、CRS(Cell-specific Reference Signal)及びCSI-RS(Channel State Information-Reference Signal)などである。
 CRSは、セル固有の下りリンク参照信号である。CRS及びCSI-RSは、主にCSIを得るためのチャネル推定(すなわち、CSI測定)に利用される。CRSは、チャネル推定以外にも、モビリティ制御のための受信電力(RSRP:Reference Signal Received Power)測定に利用される。
 CSIとは、チャネル品質情報(CQI;Channel Quality Indicator)、プリコーダ行列情報(PMI;Precoder Matrix Indicator)、及びランク情報(RI;Rank Indicator)などである。CQIは、下りリンクにおいて推奨される変調・符号化方式(MCS)を示すインデックスである。PMIは、下りリンクにおいて推奨されるプリコーダ行列を示すインデックスである。RIは、下りリンクにおいて推奨されるランクを示すインデックスである。
 eNB200は、UE100からフィードバックされるCSIに基づいて、下りリンク伝送制御を行う。下りリンク伝送制御とは、例えば下りリンクのマルチアンテナ伝送制御及び/又は下りリンクのスケジューリングなどである。例えば、eNB200は、PMI及びRIに基づいて、下りリンクのマルチアンテナ伝送を制御する。また、eNB200は、CQIに基づいて、下りリンクのスケジューリングを行う。
 このように、一般的なFDD通信システムでは、下りリンク伝送制御を行うためにCSIフィードバックが必須であり、CSIフィードバックによるオーバーヘッドが問題となる。さらに、下りリンク伝送制御の高度化を図る場合には、より高精度のCSIが必要となるため、フィードバックすべきCSIの情報量が増大し、CSIフィードバックによるオーバーヘッドが深刻な問題となる。また、現状のCSIの精度では、MU-MIMO(Multi User Multiple-Input Multiple-Output)などの高度なマルチアンテナ伝送を導入困難である。
 そこで、実施形態では、このような問題を解決するために、リリース8乃至11で規定される従来型のキャリア構造とは異なる新たなキャリア構造(NCT)を導入する。
 図7は、実施形態に係るNCTを説明するための図である。
 図6及び図7に示すように、UE100は、周波数f1及び周波数f2のペアを使用してeNB200との下りリンク通信及び上りリンク通信を行う。eNB200は、周波数f1及び周波数f2のペアを使用してUE100との下りリンク通信及び上りリンク通信を行う。周波数f1及び周波数f2のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成(すなわち、TDDキャリア)である。
 図7に示すように、1つの下りリンク期間は、1又は複数のサブフレームからなる。1つの上りリンク期間は、1又は複数のサブフレームからなる。また、周波数f1の下りリンク期間及び周波数f2の上りリンク期間が時間軸上で一致し、かつ、周波数f1の上りリンク期間及び周波数f2の下りリンク期間が時間軸上で一致するように設定される。UE100及びeNB200は、周波数f1及び周波数f2のそれぞれの下りリンク期間において下りリンク通信を行うとともに、周波数f1及び周波数f2のそれぞれの上りリンク期間において上りリンク通信を行う。
 UE100は、周波数f1及び周波数f2のそれぞれの上りリンク期間において、チャネル推定に利用される上りリンク参照信号をeNB200に送信する。eNB200は、周波数f1及び周波数f2のそれぞれの上りリンク期間において、チャネル推定に利用される上りリンク参照信号をUE100から受信する。
 これにより、eNB200は、UE100から受信した上りリンク参照信号に基づいて、周波数f1及び周波数f2のそれぞれについてのチャネル推定を行うことができる。よって、eNB200は、UE100からのCSIフィードバックに依存することなく、周波数f1及び周波数f2のそれぞれのCSIをeNB200自身で得ることができる。従って、CSIフィードバックによるオーバーヘッドを削減することができる。また、MU-MIMOなどの高度なマルチアンテナ伝送を導入可能とすることができる。
 上りリンク参照信号は、eNB200において既知の信号系列であり、サイクリックシフト量と基本系列とによって定義される。例えば基本系列では、時間、周波数両方の領域において固定の振幅を持ち、サイクリックシフトさせた系列が互いに直交するZadoff-Chu系列が適用される。上りリンク参照信号は、サウンディング参照信号(SRS)であってもよい。SRSの送信には、周波数ホッピングが適用される。すなわち、SRSの送信周期毎に、SRSの送信リソースブロックが切り替えられる。
 実施形態では、周波数f1及び周波数f2のペアには、MAC層以上において単一のFDD構成の周波数(すなわち、一組のFDDキャリア)と見なすための単一のセル識別子が割り当てられている。当該セル識別子は、物理層のセル識別子である物理セル識別子(PCI)とは異なり、論理的なセル識別子である。
 UE100及びeNB200は、物理層において周波数を切り替えながらTDD通信を行いつつ、MAC層以上においてはFDD通信を行っていると見なして通信を行う。実施形態では、物理層とMAC層との間を境界として、TDDとFDDとが切り替わる。
 これにより、TDDキャリアを2つ束ねたキャリアアグリゲーション(CA)とは異なり、MAC層以上において通常のFDD通信を行っているように動作する。よって、CAにおいてキャリアごとに行うべき処理を、キャリアのペアで共通化できる。また、2つのTDDキャリアを一組のFDDキャリア(1コンポーネントキャリアに相当)と見なすことで、FDDのCAにおける最大コンポーネントキャリア数がnである場合に、2×n個のキャリアを使用したCAが実現できる。すなわち、2倍のキャリアを使用して、通信容量を増大することができる。
 ただし、NCTをサポートしないUE(レガシーUE)については、周波数f1及び周波数f2の何れか一方を使用した通常のTDD通信が可能であることが求められる。よって、周波数f1及び周波数f2のそれぞれに異なるPCIが割り当てられていることに留意すべきである。
 (2)キャリア構造の具体例
 次に、図7に示すキャリア構造(以下、「TDD-FDDキャリア構造」という)の具体例について説明する。図8は、LTEにおけるTDDフレーム構成のバリエーションを示す図である。図8に示すように、LTEでは、下りリンク期間及び上りリンク期間のバランスの異なる6つのTDDフレーム構成(Config.)が規定されている。
 図8において、「D」サブフレームは下りリンク期間を構成するサブフレームであり、「U」サブフレームは上りリンク期間を構成するサブフレームであり、「S」サブフレームはガートタイムとして利用される特別なサブフレームである。
 図9は、TDDフレーム構成の組み合わせの一例を説明するための図である。図9に示すように、一方のキャリア(例えば周波数f1)にTDDフレーム構成「0」を設定し、他方のキャリア(例えば周波数f2)にTDDフレーム構成「1」を設定した上で、TDDフレーム構成「1」のキャリアを3サブフレーム後にサイクリックシフトする。すなわち、3サブフレームのオフセットを付加する。
 そうすると、全ての「D」サブフレームが時間軸上で「U」サブフレームと一致する。「S」サブフレーム及び「U」サブフレームが時間軸上で一致する部分については、「S」サブフレームを「D」サブフレームと見なして使用することにより、TDD-FDDキャリア構造を実現できる。
 (3)動作シーケンス
 次に、実施形態に係る動作シーケンスについて説明する。図10は、実施形態に係るシーケンス図である。
 図10に示すように、ステップS11において、eNB200は、周波数f1及び周波数f2のそれぞれの設定を示す設定情報をUE100に送信する。設定情報は、ブロードキャストされるシステム情報の一種であるシステム情報ブロック・タイプ(SIB)2により送信される。或いは、SIB1に含まれる「TDD-Config」により、TDD-FDDキャリア構造を示してもよい。また、SIB1に含まれる「FreqBandIndicator」により、TDD-FDDキャリア構造が適用される周波数(周波数f1、周波数f2)を示してもよい。或いは、TDD-FDDキャリア構造が適用される周波数において、特別なプライマリ同期信号(PSS)・セカンダリ同期信号(SSS)の配置を適用することにより、当該周波数を識別可能としてもよい。
 或いは、UE100が初期アクセス時は通常のTDDキャリアとして認識させて、後からTDD-FDDキャリア構造を通知する方法とする場合には、ステップS11に代えて、UE100の接続後に例えばRRCメッセージによりTDD-FDDキャリア構造についてUE100に通知してもよい。
 ステップS12において、UE100は、eNB200との接続を確立する。ここで、UE100及びeNB200は、周波数f1及び周波数f2のペアに対して、MAC層以上において単一のFDD構成の周波数(すなわち、一組のペアバンド)と見なすための単一のセル識別子を割り当てる。具体的には、eNB200が、当該識別子をUE100に対して割り当て及び通知するとともに、UE100に割り当てた当該識別子を記憶する。なお、当該通知は、UEのCapabilityに応じて実施してもよく、eNB200負荷やMU-MIMO適用に伴って後から通知してもよい。
 また、UE100及びeNB200は、MAC層から物理層に対して、TDD-FDDキャリア構造が適用される旨、及びTDD-FDDキャリア構造のための設定を通知する。さらに、上位層側(例えばRRC層)から下位層側(例えばMAC層)に対して、共通化可能な事項(測定報告、HARQプロセス、Ack/Nackなど)を通知してもよい。以降、物理層において周波数を切り替えながらTDD通信を行いつつ、MAC層以上においてはFDD通信を行っていると見なして通信を行う。
 ステップS13において、UE100は、周波数f1を使用して上りリンク参照信号をeNB200に送信する。
 ステップS14において、eNB200は、UE100から受信した上りリンク参照信号に基づいて、周波数f1についてのチャネル推定を行う。このようにして、eNB200は、UE100からのCSIフィードバックに依存することなく、周波数f1のCSIをeNB200自身で得ることができる。
 ステップS15において、UE100は、周波数f2を使用して上りリンク参照信号をeNB200に送信する。
 ステップS16において、eNB200は、UE100から受信した上りリンク参照信号に基づいて、周波数f2についてのチャネル推定を行う。このようにして、eNB200は、UE100からのCSIフィードバックに依存することなく、周波数f2のCSIをeNB200自身で得ることができる。
 図11は、実施形態に係る測定報告手順を示すシーケンス図である。
 図11に示すように、ステップS101において、eNB200は、周波数f1及び周波数f2のそれぞれの下りリンク期間において下りリンク参照信号を送信する。UE100は、周波数f1及び周波数f2のそれぞれの下りリンク期間においてeNB200から下りリンク参照信号を受信する。具体的には、UE100は、サービングセル及び隣接セルからの下りリンク参照信号を受信する。
 ステップS102において、UE100は、周波数f1及び周波数f2の何れかについて、下りリンク参照信号の受信電力(RSRP)及び/又は受信品質(RSRQ)を測定する。
 ステップS103において、UE100は、RSRP及び/又はRSRQを含む測定報告をeNB200に送信する。ここで、UE100は、周波数f1及び周波数f2のペアで共通の測定報告をeNB200に送信する。eNB200は、測定報告をUE100から受信する。
 図12は、実施形態に係るAck/Nack報告手順を示すシーケンス図である。
 図12に示すように、ステップS201において、eNB200は、周波数f1及び周波数f2のそれぞれの下りリンク期間において下りリンクユーザデータをUE100に送信する。UE100は、周波数f1及び周波数f2のそれぞれの下りリンク期間においてeNB200から下りリンクユーザデータを受信する。
 ステップS202において、UE100は、下りリンクユーザデータを復号し、復号成功の場合はAckを生成し、復号失敗の場合はNackを生成する。
 ステップS203において、UE100は、下りリンクユーザデータについてのAck/NackをeNB200に送信する。ここで、UE100は、周波数f1及び周波数f2のペアで共通のAck/NackをeNB200に送信する。eNB200は、Ack/NackをUE100から受信する。
 具体的には、周波数f1での下り通信に対するAck/Nackを、周波数f1での上り通信で返しても良いし、周波数f2での上り通信で返しても良い。LTEシステムの場合においてはデータ受信から4サブフレーム後にAck/Nackを返す仕様であるため、例えば、ある周波数f1での下り通信サブフレームの4サブフレーム後のサブフレームにおいて第1の周波数が上り通信用サブフレームとなっていれば周波数f1で、周波数f2が上り通信用サブフレームとなっていれば周波数f2で返してもよい。
 (実施形態のまとめ)
 上述したように、周波数f1及び周波数f2のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成である。また、周波数f1の下りリンク期間及び周波数f2の上りリンク期間が時間軸上で一致し、かつ、周波数f1の上りリンク期間及び周波数f2の下りリンク期間が時間軸上で一致するように設定される。UE100及びeNB200は、周波数f1及び周波数f2のそれぞれの下りリンク期間において下りリンク通信を行うとともに、周波数f1及び周波数f2のそれぞれの上りリンク期間において上りリンク通信を行う。
 UE100は、周波数f1及び周波数f2のそれぞれの上りリンク期間において、チャネル推定に利用される上りリンク参照信号をeNB200に送信する。eNB200は、周波数f1及び周波数f2のそれぞれの上りリンク期間において、チャネル推定に利用される上りリンク参照信号をUE100から受信する。
 これにより、eNB200は、UE100から受信した上りリンク参照信号に基づいて、周波数f1及び周波数f2のそれぞれについてのチャネル推定を行うことができる。よって、eNB200は、UE100からのCSIフィードバックに依存することなく、周波数f1及び周波数f2のそれぞれのCSIをeNB200自身で得ることができる。従って、CSIフィードバックによるオーバーヘッドを削減することができる。また、MU-MIMOなどの高度なマルチアンテナ伝送を導入可能とすることができる。
 また、周波数f1及び周波数f2のペアには、MAC層以上において単一のFDD構成の周波数(一組の周波数)と見なすための単一のセル識別子(論理セル識別子)が割り当てられている。
 これにより、TDDキャリアを2つ束ねたキャリアアグリゲーション(CA)とは異なり、MAC層以上においては通常のFDD通信を行っているように動作する。よって、CAにおいてキャリアごとに行うべき処理を、キャリアのペアで共通化できる。また、2つのTDDキャリアを一対のFDDキャリア(1コンポーネントキャリア)と見なすことで、FDDのCAにおける最大コンポーネントキャリア数がnである場合に、2×n個のキャリアを使用したCAが実現できる。例えば、LTE-AdvancedシステムにおいてTDDにおいても上下合わせて最大200MHz幅のCAが可能となる。
 [その他の実施形態]
 上述した実施形態では、物理層とMAC層との間を境界として、TDDとFDDとが切り替わっていた。しかしながら、MAC層とRLC層との間を境界としてもよく、MAC層とRLC層との間を境界としてもよく、RLC層とPDCP層との間を境界としてもよく、PDCP層とRRC層との間を境界としてもよい。
 上述した各実施形態では、セルラ通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、日本国特許出願第2013-202764号(2013年9月27日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、CSIフィードバックによるオーバーヘッドを削減することができる。
 また、本発明によれば、TDDキャリアでCAを用いた際に利用できる最大周波数幅を増加可能とすることができる。例えば、LTE-AdvancedシステムにおいてTDDにおいても上下合わせて最大200MHz幅のCAが可能となる。

Claims (11)

  1.  第1の周波数及び第2の周波数のペアを使用して基地局との下りリンク通信及び上りリンク通信を行うユーザ端末であって、
     前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成であり、
     前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定され、
     前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記
    下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う制御部を備えることを特徴とするユーザ端末。
  2.  前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において、チャネル推定に利用される上りリンク参照信号を前記基地局に送信する送信部をさらに備えることを特徴とする請求項1に記載のユーザ端末。
  3.  前記第1の周波数及び前記第2の周波数のペアには、MAC層以上において単一のFDD構成の周波数と見なすための単一のセル識別子が割り当てられていることを特徴とする請求項1に記載のユーザ端末。
  4.  前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記基地局から下りリンク参照信号を受信する受信部と、
     前記下りリンク参照信号の受信電力及び/又は受信品質を含む測定報告を前記基地局に送信する送信部と、をさらに備え、
     前記送信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記測定報告を前記基地局に送信することを特徴とする請求項1に記載のユーザ端末。
  5.  前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記基地局から下りリンクユーザデータを受信する受信部と、
     前記下りリンクユーザデータについてのAck/Nackを前記基地局に送信する送信部と、をさらに備え、
     前記送信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記Ack/Nackを前記基地局に送信することを特徴とする請求項1に記載のユーザ端末。
  6.  第1の周波数及び第2の周波数のペアを使用してユーザ端末との下りリンク通信及び上りリンク通信を行う基地局であって、
     前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成であり、
     前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定され、
     前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記
    下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行う制御部を備えることを特徴とする基地局。
  7.  前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において、チャネル推定に利用される上りリンク参照信号を前記ユーザ端末から受信する受信部をさら
    に備えることを特徴とする請求項6に記載の基地局。
  8.  前記第1の周波数及び前記第2の周波数のペアには、MAC層以上において単一のFDD構成の周波数と見なすための単一のセル識別子が割り当てられていることを特徴とする請求項6に記載の基地局。
  9.  前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において下りリンク参照信号を送信する送信部と、
     前記下りリンク参照信号の受信電力及び/又は受信品質を含む測定報告を前記ユーザ端末から受信する受信部と、をさらに備え、
     前記受信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記測定報告を前記ユーザ端末から受信することを特徴とする請求項6に記載の基地局。
  10.  前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において下りリンクユーザデータを前記ユーザ端末に送信する送信部と、
     前記下りリンクユーザデータについてのAck/Nackを前記ユーザ端末から受信する受信部と、をさらに備え、
     前記受信部は、前記第1の周波数及び前記第2の周波数のペアで共通の前記Ack/Nackを前記ユーザ端末から受信することを特徴とする請求項6に記載の基地局。
  11.  第1の周波数及び第2の周波数のペアを使用して基地局との下りリンク通信及び上りリンク通信を行うユーザ端末に備えられるプロセッサであって、
     前記第1の周波数及び前記第2の周波数のそれぞれは、下りリンク期間と上りリンク期間とを交互に有するTDD構成であり、
     前記第1の周波数の前記下りリンク期間及び前記第2の周波数の前記上りリンク期間が時間軸上で一致し、かつ、前記第1の周波数の前記上りリンク期間及び前記第2の周波数の前記下りリンク期間が時間軸上で一致するように設定され、
     前記プロセッサは、前記第1の周波数及び前記第2の周波数のそれぞれの前記下りリンク期間において前記下りリンク通信を行うとともに、前記第1の周波数及び前記第2の周波数のそれぞれの前記上りリンク期間において前記上りリンク通信を行うことを特徴とするプロセッサ。
PCT/JP2014/075321 2013-09-27 2014-09-24 ユーザ端末、基地局、及びプロセッサ WO2015046270A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/024,241 US20160249359A1 (en) 2013-09-27 2014-09-24 User terminal, base station, and processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-202764 2013-09-27
JP2013202764A JP2015070442A (ja) 2013-09-27 2013-09-27 ユーザ端末、基地局、及びプロセッサ

Publications (1)

Publication Number Publication Date
WO2015046270A1 true WO2015046270A1 (ja) 2015-04-02

Family

ID=52743405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075321 WO2015046270A1 (ja) 2013-09-27 2014-09-24 ユーザ端末、基地局、及びプロセッサ

Country Status (3)

Country Link
US (1) US20160249359A1 (ja)
JP (1) JP2015070442A (ja)
WO (1) WO2015046270A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301730B (zh) * 2015-06-11 2019-09-20 华为技术有限公司 基于子帧偏移的载波聚合方法和基站
KR102400493B1 (ko) 2015-11-04 2022-05-24 인터디지탈 패튼 홀딩스, 인크 협대역 lte 동작을 위한 방법 및 프로시저
WO2018083861A1 (ja) * 2016-11-02 2018-05-11 株式会社Nttドコモ ユーザ装置、基地局及び参照信号送信方法
US10218424B2 (en) * 2017-01-13 2019-02-26 Nokia Technologies Oy Reference signal indications for massive MIMO networks
JP2020520147A (ja) 2017-05-03 2020-07-02 アイディーエーシー ホールディングス インコーポレイテッド アップリンク制御情報を送信するための方法、システム、および装置
CN116528370A (zh) 2017-06-16 2023-08-01 华为技术有限公司 一种通信方法及装置
US10645228B2 (en) * 2017-06-26 2020-05-05 Apple Inc. Adaptability in EVS codec to improve power efficiency
EP3905544A4 (en) * 2019-01-28 2021-12-29 Huawei Technologies Co., Ltd. Communication method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230272A1 (en) * 2011-03-11 2012-09-13 Samsung Electronics Co., Ltd. Harq method and apparatus for communication system
US20120257552A1 (en) * 2011-04-11 2012-10-11 Qualcomm Incorporated Transmission of control information for fdd-tdd carrier aggregation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905428B (zh) * 2005-07-25 2010-08-18 上海原动力通信科技有限公司 一种具有低时延特性的时分双工移动通信系统的传输方法
US7808934B2 (en) * 2008-02-29 2010-10-05 Nokia Siemens Networks Oy TDD frame format in wireless mesh network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230272A1 (en) * 2011-03-11 2012-09-13 Samsung Electronics Co., Ltd. Harq method and apparatus for communication system
US20120257552A1 (en) * 2011-04-11 2012-10-11 Qualcomm Incorporated Transmission of control information for fdd-tdd carrier aggregation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "DL throughput comparison of ACK/NACK transmission in LTE-A TDD", 3GPP R1-104315, 23 August 2010 (2010-08-23) *
HUAWEI: "Periodic CQI/PMI/RI reporting using PUCCH for CA", 3GPP R1-104500, 23 August 2010 (2010-08-23) *
LG ELECTRONICS: "Overall structure of TDD CA with different UL-DL configurations based on half-duplex operation", 3GPP RL-113973, 3GPP, 14 November 2011 (2011-11-14) *
LG ELECTRONICS: "Remaining issues on HARQ-ACK for CA with different TDD UL-DL configurations", 3GPP RL-124968, 12 November 2012 (2012-11-12) *

Also Published As

Publication number Publication date
US20160249359A1 (en) 2016-08-25
JP2015070442A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
WO2015046270A1 (ja) ユーザ端末、基地局、及びプロセッサ
JP6140043B2 (ja) ユーザ端末、基地局、及びプロセッサ
US9923689B2 (en) Mobile communication system, user terminal, and processor for assigning radio resources for transmission of sounding reference signals and device to device communication resources
WO2014050557A1 (ja) 移動通信システム、基地局及びユーザ端末
JP6559355B2 (ja) 移動通信方法、基地局、プロセッサ及びユーザ装置
CN110710252B (zh) 无线通信系统中终端的d2d操作方法和使用所述方法的终端
US9698886B2 (en) Base station, communication control method, and processor
CN111742582A (zh) 非活动模式用户设备与无线网络之间的数据传递
US20160029401A1 (en) Mobile communication system and user terminal
WO2015005315A1 (ja) ネットワーク装置及びユーザ端末
JP6174141B2 (ja) 通信制御方法及び基地局
JP6158309B2 (ja) 基地局、プロセッサ、及び通信制御方法
JPWO2015064524A1 (ja) 通信制御方法及び基地局
JP6101580B2 (ja) 移動通信システム、ユーザ端末、及び通信制御方法
JPWO2018062371A1 (ja) 移動通信方法
JP6134220B2 (ja) 基地局及びプロセッサ
EP3065458B1 (en) Base station
JPWO2014157393A1 (ja) 移動通信システム、基地局及びユーザ端末
JPWO2014073488A1 (ja) 移動通信システム、ユーザ端末、及びプロセッサ
JP2018139430A (ja) 移動通信システム、ユーザ端末、基地局、及びプロセッサ
JP2024514068A (ja) 統一されたtci指示を使用したdciにおけるダミー指示
WO2015046101A1 (ja) ユーザ端末、プロセッサ、及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847162

Country of ref document: EP

Kind code of ref document: A1