WO2014162839A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2014162839A1
WO2014162839A1 PCT/JP2014/056755 JP2014056755W WO2014162839A1 WO 2014162839 A1 WO2014162839 A1 WO 2014162839A1 JP 2014056755 W JP2014056755 W JP 2014056755W WO 2014162839 A1 WO2014162839 A1 WO 2014162839A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
motor
engine start
speed
rotation speed
Prior art date
Application number
PCT/JP2014/056755
Other languages
English (en)
French (fr)
Inventor
弘毅 松井
史博 山中
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP20169615.0A priority Critical patent/EP3705366A1/en
Priority to RU2015146987A priority patent/RU2668448C2/ru
Priority to MYPI2015703508A priority patent/MY185610A/en
Priority to JP2015509975A priority patent/JP6032351B2/ja
Priority to CN201480019779.XA priority patent/CN105102285B/zh
Priority to MX2015013960A priority patent/MX347640B/es
Priority to EP14779917.5A priority patent/EP2982558A4/en
Priority to US14/781,420 priority patent/US9573586B2/en
Publication of WO2014162839A1 publication Critical patent/WO2014162839A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/919Stepped shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid vehicle control device that starts an engine by a motor that drives drive wheels when an engine start is requested.
  • a hybrid vehicle having an engine driven by fuel as a driving source and a motor driven by electric power stored in a battery has a first clutch that divides power transmission between the engine and the motor.
  • the first clutch is engaged when the engine start request is made when the first clutch is released and the motor is driven using only the motor as a drive source.
  • a control device for a hybrid vehicle that starts the engine see, for example, Patent Document 1.
  • cranking is completed when the motor rotation speed matches the engine rotation speed and the differential rotation of the first clutch disappears.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a hybrid vehicle control device capable of preventing deterioration of fuel consumption due to engine start.
  • a control apparatus for a hybrid vehicle of the present invention includes an engine, a motor that is provided in a drive system from the engine to drive wheels, and that starts the engine and drives the drive wheels, and the engine And a mode switching mechanism for transmitting the torque of the motor to the engine and starting the engine when there is an engine start request during traveling using only the motor as a drive source. It is mounted on a hybrid vehicle equipped with When the output rotation speed of the motor exceeds a preset motor rotation speed threshold, the engine start control unit is provided, compared to the case where the output rotation speed of the motor falls below the motor rotation speed threshold. Make starting difficult.
  • the engine start control unit makes it difficult to start the engine when the motor rotational speed exceeds the motor rotational speed threshold, as compared with the case where the motor rotational speed falls below the motor rotational speed threshold. Thereby, it is possible to suppress the occurrence of an engine start request when the motor speed is relatively high, and to reduce the occurrence of a scene in which the engine speed becomes high when the engine is started. As a result, deterioration of fuel consumption due to engine start can be prevented.
  • FIG. 3 is a flowchart illustrating a flow of an engine start determination process executed by the integrated controller according to the first embodiment. It is a figure which shows the EV-HEV selection map applied in the engine starting determination process of Example 1.
  • FIG. 6 is a time chart showing characteristics of an accelerator opening, a motor rotation speed, an engine rotation speed, an engine start determination flag, a target shift speed, and an applied engine start map applied to the control device according to the first embodiment.
  • it is explanatory drawing explaining the motor rotation speed threshold value based on an accelerator opening.
  • the control apparatus of Example 1 it is explanatory drawing explaining the motor rotation speed threshold value based on battery SOC.
  • Example 1 the form for implementing the control apparatus of the hybrid vehicle of this invention is demonstrated based on Example 1 shown in drawing.
  • Example 1 First, the configuration will be described.
  • the configuration of the control apparatus for the electric vehicle according to the first embodiment will be described by being divided into “overall system configuration”, “schematic configuration of automatic transmission”, and “engine start determination processing configuration”.
  • FIG. 1 shows a rear-wheel drive FR hybrid vehicle (an example of a hybrid vehicle) to which the control device according to the first embodiment is applied.
  • FIG. 2 shows an EV-HEV selection map set in the mode selection unit of the integrated controller. An example is shown. The overall system configuration will be described below with reference to FIGS.
  • the drive system of the FR hybrid vehicle includes an engine Eng, a first clutch CL1 (mode switching mechanism), a motor / generator MG (motor), a second clutch CL2, an automatic transmission (shift).
  • Machine AT, transmission input shaft IN, propeller shaft PS, differential DF, left drive shaft DSL, right drive shaft DSR, left rear wheel RL (drive wheel), right rear wheel RR (drive wheel) And).
  • M-O / P is a mechanical oil pump
  • S-O / P is an electric oil pump
  • FL is a left front wheel
  • FR is a right front wheel
  • FW is a flywheel.
  • the engine Eng is a gasoline engine or a diesel engine as a driving source, and engine start control, engine stop control, and valve opening control of the throttle valve are performed based on an engine control command from the engine controller 1.
  • the engine output shaft is provided with a flywheel FW.
  • the motor / generator MG is a synchronous motor / generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and serves as a driving source.
  • the motor / generator MG is controlled by applying a three-phase alternating current generated by the inverter 3 based on a control command from the motor controller 2.
  • the motor / generator MG can operate as an electric motor that is driven to rotate by receiving electric power from the battery 4 (hereinafter, this state is referred to as “powering”), and the rotor is rotated from the engine Eng or the driving wheel.
  • the battery 4 When receiving energy, the battery 4 can be charged by functioning as a generator that generates electromotive force at both ends of the stator coil (this operation state is hereinafter referred to as “regeneration”). Further, when the first clutch CL1 is engaged, the starter motor is started to start the engine Eng. Note that the rotor of the motor / generator MG is coupled to the transmission input shaft IN of the automatic transmission AT via a damper.
  • the first clutch CL1 is a fastening element provided between the engine Eng and the motor / generator MG.
  • the first clutch CL1 is a so-called normally closed type clutch that is engaged by an urging force of a diaphragm spring or the like when the CL1 oil pressure is not applied and is released by applying a CL1 oil pressure that opposes the urging force.
  • the first clutch CL1 is engaged when an engine start request is made, and transmits the torque of the motor / generator MG to the engine Eng to start the engine.
  • the automatic transmission AT is a stepped transmission that automatically switches the shift speed between the seventh forward speed and the first reverse speed according to the vehicle speed, the accelerator opening, and the like.
  • the output shaft of the automatic transmission AT is connected to the left and right rear wheels RL and RR via a propeller shaft PS, a differential DF, a left drive shaft DSL, and a right drive shaft DSR.
  • the second clutch CL2 is a frictional engagement element interposed in the power transmission path from the motor / generator MG to the left and right rear wheels RL, RR.
  • the second clutch CL2 is not newly added as a dedicated clutch independent of the automatic transmission AT, but uses a frictional engagement element (clutch or brake) for shifting the automatic transmission AT. That is, the second clutch CL2 is a frictional engagement element selected as an element suitable for the engagement condition among a plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission AT.
  • the first clutch hydraulic unit 6 and the second clutch hydraulic unit 8 are built in an AT hydraulic control valve unit CVU attached to the automatic transmission AT.
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • EV mode drive torque control mode
  • WSC mode drive torque control mode
  • the “EV mode” is a mode in which the first clutch CL1 is disengaged and the drive source is only the motor / generator MG, and includes a motor drive mode (motor power running) and a generator power generation mode (generator regeneration). This “EV mode” is selected, for example, when the required driving force is low and the battery SOC is secured.
  • the “HEV mode” is a mode in which the first clutch CL1 is engaged and the drive source is the engine Eng and the motor / generator MG.
  • the motor assist mode (motor power running), engine power generation mode (generator regeneration), and deceleration regeneration It has a power generation mode (generator regeneration).
  • This “HEV mode” is selected, for example, when the required driving force is high or when the battery SOC is insufficient.
  • the “WSC mode” is driven in the “HEV mode”, but the torque transmission of the second clutch CL2 is maintained while maintaining the second clutch CL2 in the slip engagement state by controlling the rotation speed of the motor / generator MG. This mode controls the capacity.
  • the torque transmission capacity of the second clutch CL2 is controlled so that the driving force transmitted after passing through the second clutch CL2 becomes the required driving force that appears in the accelerator operation amount of the driver.
  • the “WSC mode” is selected in a region where the engine speed is lower than the idle speed, such as when starting in the “HEV mode” selection state.
  • the control system of the FR hybrid vehicle includes an engine controller 1, a motor controller 2, an inverter 3, a battery 4, a first clutch controller 5, a first clutch hydraulic unit 6, and an AT controller. 7, a second clutch hydraulic unit 8, a brake controller 9, and an integrated controller 10.
  • the controllers 1, 2, 5, 7, 9 and the integrated controller 10 are connected via a CAN communication line 11 that can exchange information with each other.
  • 12 is an engine speed sensor
  • 13 is a resolver
  • 15 is a first clutch stroke sensor that detects the stroke position of the piston 14a of the hydraulic actuator 14
  • 19 is a wheel speed sensor
  • 20 is a brake stroke sensor.
  • the AT controller 7 inputs information from an accelerator opening sensor 16, a vehicle speed sensor 17, an inhibitor switch 18 for detecting a selected range position (N range, D range, R range, P range, etc.), and the like. . Then, when driving with the D range selected, the optimum shift stage is searched based on the position where the driving point determined by the accelerator opening APO and the vehicle speed VSP exists on the shift map (see FIG. 5), and the searched shift The control command to obtain the gear is output to the AT hydraulic control valve unit CVU. In addition to this shift control, based on a command from the integrated controller 10, control of complete engagement (HEV mode) / slip engagement (engine start) / release (EV mode) of the first clutch CL1 is performed. The second clutch CL2 is fully engaged (HEV mode) / ⁇ slip engagement (EV mode) / rotational difference absorption slip engagement (WSC mode) / variable torque cutoff slip engagement (engine start / stop mode).
  • ⁇ slip control the control that maintains the minute slip rotation ( ⁇ slip rotation) of the second clutch CL2 while the automatic transmission AT is traveling in the EV mode in the non-shift state.
  • This “ ⁇ slip control” is carried out by motor rotation speed control that controls the actual motor rotation speed of the motor / generator MG to match the target motor rotation speed at which the second clutch CL2 performs minute slip rotation. Since the motor torque during the motor rotation speed control depends on the load received by the motor / generator MG by the second clutch CL2, the CL2 actual torque can be estimated from the detected motor torque value during the motor rotation speed control.
  • ⁇ slip control is performed in the EV non-shifting state and the target drive torque is greater than the specified value (set with concern about the region where slip is impossible due to friction or the region where accuracy cannot be secured due to low hydraulic pressure).
  • the target drive torque is less than the specified value, a capacity safety factor is secured so that the second clutch CL2 does not slip. Therefore, immediately after the EV shift, immediately after the mode transition from the HEV mode to the EV mode, when the target drive torque is depressed from the low torque, the second clutch CL2 is slipped in and the ⁇ slip control is activated.
  • the integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency.
  • the integrated controller 10 includes a mode selection unit 10a, an engine start control unit 10b, an engine stop control unit 10c, and an operating point command unit 10d.
  • the mode selection unit 10a uses the EV-HEV selection map shown in FIG. 2 to select, as a target travel mode, the travel mode searched based on the position of the operating point determined by the accelerator opening APO and the vehicle speed VSP.
  • HEV ⁇ WSC switching line are set.
  • the mode selection unit 10a switches the target travel mode from “EV mode” to “HEV mode”, and the engine start control unit 10b. An engine start request is output.
  • the mode selection unit 10a switches the target driving mode from “HEV mode” to “EV mode” and controls engine stop.
  • An engine stop request is output to the unit 10c.
  • the HEV ⁇ EV switching line and the EV ⁇ HEV switching line are set with a hysteresis amount as a line dividing the EV region and the HEV region.
  • the EV-HEV selection map may be set based on the accelerator opening APO and the battery SOC.
  • the EV ⁇ HEV switching line that sets the “HEV mode” as the target travel mode is set, and the battery SOC is determined while the “HEV mode” is selected.
  • the HEV ⁇ EV switching line is set with the “EV mode” as the target travel mode.
  • the driving point APO, VSP
  • the mode selection unit 10a changes the target driving mode from “HEV mode” to “WSC mode”. Switch to.
  • the HEV ⁇ WSC switching line is set along the first set vehicle speed VSP1 at which the engine Eng maintains the idling speed when the automatic transmission AT is in a predetermined low gear ratio region.
  • the engine start control unit 10b performs engine start control for starting the engine Eng using the motor generator MG as a starter motor by slip-engaging the second clutch CL2 and fastening the first clutch CL1 in response to the input of the engine start request. .
  • an engine start determination process described later is executed.
  • the engine stop control unit 10c performs engine stop control in which the second clutch CL2 is slip-engaged and the first clutch CL1 is released and the engine Eng is stopped in response to an input of an engine stop request.
  • the operating point command unit 10d calculates the operating point arrival target of the FR hybrid vehicle based on input information such as the accelerator opening APO, the vehicle speed VSP, and the target mode. It should be noted that the target engine torque, the target MG torque, the target MG rotation speed, the target CL1 torque, the target CL2 torque, and the target shift speed are calculated as the operating point reaching target. Then, the operating point command unit 10d sends a target engine torque command, a target MG torque command, a target MG rotation speed command, a target CL1 torque command, a target CL2 torque command, and a target gear speed command via the CAN communication line 11. Output to controllers 1, 2, 5 and 7.
  • the automatic transmission AT is a stepped automatic transmission with 7 forward speeds and 1 reverse speed. As shown in FIG. 3, the driving force from at least one of the engine Eng and the motor / generator MG is input to the transmission. The rotational speed is changed by a transmission gear mechanism having four planetary gears and seven frictional engagement elements, which is input from the shaft Input, and is output from the transmission output shaft Output.
  • the first planetary gear set GS1 by the first planetary gear G1 and the second planetary gear G2 and the second planetary gearset GS2 by the third planetary gear G3 and the fourth planetary gear G4 are coaxially arranged.
  • the first clutch C1 (I / C), the second clutch C2 (D / C), the third clutch C3 (H & LR / C), and the first brake B1 (Fr / B), the second brake B2 (Low / B), the third brake B3 (2346 / B), and the fourth brake B4 (R / B) are arranged.
  • a first one-way clutch F1 (1stOWC) and a second one-way clutch F2 (1 & 2OWC) are arranged as engagement elements for machine operation.
  • the transmission input shaft Input is connected to the second ring gear R2 and inputs rotational driving force from at least one of the engine Eng and the motor / generator MG.
  • the transmission output shaft Output is connected to the third carrier PC3 and transmits the output rotational driving force to the driving wheels (left and right rear wheels RL, RR) via a final gear or the like.
  • the first ring gear R1, the second carrier PC2, and the fourth ring gear R4 are integrally connected by the first connecting member M1.
  • the third ring gear R3 and the fourth carrier PC4 are integrally connected by the second connecting member M2.
  • the first sun gear S1 and the second sun gear S2 are integrally connected by a third connecting member M3.
  • FIG. 4 is a fastening operation table.
  • indicates that the friction engagement element is hydraulically engaged in the drive state
  • ( ⁇ ) indicates that the friction engagement element is hydraulically engaged (drive state) in the coast state.
  • no mark indicates that the frictional engagement element is in an open state.
  • the frictional engagement element in the engaged state indicated by hatching indicates an element used as the second clutch CL2 at each shift stage.
  • the second brake B2 (Low / B) is set as the second clutch CL2.
  • the second clutch C2 (D / C) is the second clutch CL2.
  • the third clutch C3 (H & LR / C) is the second clutch CL2.
  • the first clutch C1 (I / C) is the second clutch CL2.
  • the fourth brake B4 (R / B) is the second clutch CL2.
  • FIG. 6 is a flowchart illustrating a flow of an engine start determination process executed by the engine start control unit according to the first embodiment.
  • FIG. 7 is a diagram illustrating an EV-HEV selection map applied in the engine start determination process according to the first embodiment.
  • the engine start determination process is executed when the travel mode is the “EV mode”.
  • step S1 the EV-HEV selection map used when the target mode is selected by the mode selection unit 10a of the integrated controller 10 is set as the first engine start map.
  • the “engine start map” is a characteristic diagram showing only the EV ⁇ HEV switching line as the engine start line in the EV-HEV selection map, and the “first engine start map” is shown in FIG.
  • This “first engine start map” is set by the accelerator opening APO and the battery SOC.
  • the accelerator opening APO is a value that varies proportionally with respect to the driver required driving force, and is a value corresponding to the driver required driving force.
  • the battery SOC represents the remaining battery charge and indicates the battery charge state. That is, the battery SOC is a value corresponding to the battery charge state.
  • step S2 following the setting of the first engine start map in step S1, the output rotational speed of the motor / generator MG (hereinafter referred to as motor rotational speed) is equal to or greater than a first threshold value (motor rotational speed threshold value) set in advance. Judge whether there is. If YES (motor rotation speed ⁇ first threshold), the process proceeds to step S4. If NO (motor rotation speed ⁇ first threshold), the process proceeds to step S3.
  • the motor rotation speed is detected by the motor rotation speed sensor 12.
  • the “first threshold value” is set to a value obtained by integrating the number of rotations of the transmission output shaft Output of the automatic transmission AT and the speed ratio at the target gear stage of the automatic transmission AT.
  • a value obtained by adding a predetermined margin to the integrated value of the transmission output shaft rotation speed and the gear ratio is set as the first threshold value.
  • step S3 following the determination that motor rotation speed ⁇ first threshold value in step S2, it is determined whether the motor rotation speed is equal to or greater than a preset second threshold value (motor rotation speed threshold value). If YES (motor rotational speed ⁇ second threshold), the process proceeds to step S4. If NO (motor rotation speed ⁇ second threshold value), the process proceeds to step S5.
  • the “second threshold value” is a value arbitrarily set for each target gear position of the automatic transmission AT. Here, it is set to a value obtained by integrating an arbitrary constant and the reciprocal of the gear ratio at the target gear stage of the automatic transmission AT, and is set to a smaller value as the gear stage is lower (the gear ratio is larger).
  • step S4 following the determination that the motor rotational speed ⁇ first threshold value in step S2 or the motor rotational speed ⁇ second threshold value in step S3, the output rotational speed of the motor / generator MG is relatively high.
  • the EV-HEV selection map set in step S1 is switched to the second engine start map.
  • the “second engine start map” is a characteristic diagram set by the accelerator opening APO and the battery SOC, and is indicated by a broken line in FIG. 7.
  • a part of the accelerator opening region is set to a larger value than the first engine start map.
  • a part of the battery SOC region is set to a smaller value compared to the first engine start map. That is, when the engine is started using this “second engine start map”, the engine start conditions are stricter than when the engine is started using the “first engine start map”.
  • step S5 following the determination that motor rotation speed ⁇ second threshold value in step S3, it is determined that the output rotation speed of the motor / generator MG is relatively low, and engine start determination using the first engine start map is performed. Do. That is, it is determined whether or not the operating point (SOC, APO) determined by the battery SOC and the accelerator opening APO has crossed the first engine start map set in step S1 toward the HEV region. If YES (crossed), the process proceeds to step S7. If NO (not crossing), the process returns to step S1.
  • SOC operating point
  • APO accelerator opening APO
  • step S6 following the setting for switching the second engine start map in step S4, engine start determination using the second engine start map is performed. That is, it is determined whether or not the operating point (APO, SOC) determined by the accelerator opening APO and the battery SOC has crossed the second engine start map set in step S4 toward the HEV region. If YES (crossed), the process proceeds to step S7. If NO (not crossing), the process returns to step S1.
  • APO operating point
  • step S7 it is determined that the operating point (APO, SOC) in step S5 has crossed the first engine start map, or the operating point (APO, SOC) in step S6 has crossed the second engine start map.
  • an engine start request is output and the process proceeds to step S8.
  • the engine start flag is changed from OFF to ON by outputting the engine start request.
  • step S8 following the output of the engine start request in step S7, engine start control is started and the process proceeds to the end.
  • the engine start control refers to the second clutch CL2 being slip-engaged by controlling the rotation speed of the motor / generator MG while controlling the torque transmission capacity of the second clutch CL2 to be the driver's required driving force. Then, the first clutch CL1 is engaged, the torque of the motor / generator MG is transmitted to the engine Eng, and the engine Eng is cranked.
  • FIG. 8 is a time chart showing the characteristics of the accelerator opening, the motor rotation speed, the engine rotation speed, the engine start determination flag, the target gear position, and the applied engine start map in the control device of the first embodiment. It is.
  • the characteristics of the hybrid control device of the comparative example are indicated by broken lines.
  • the engine starting operation in the hybrid vehicle control apparatus of the comparative example will be described.
  • the operating point determined by the vehicle speed VSP and the accelerator opening APO is a 1 ⁇ 2 upshift line on the shift map shown in FIG. 5 A crossing 1 ⁇ 2 upshift command is output.
  • the target gear position of the automatic transmission AT is changed from the first speed (1st) to the second speed (2nd), and the shift control is started.
  • the accelerator opening APO continues to increase at time t 4, the operating point determined by the battery SOC and the accelerator opening APO (SOC, APO) is, HEV region across the first engine start map shown in FIG. 7 Move to. Therefore, an engine start request is generated, the engine start flag is changed from OFF to ON, and engine start control is started. As a result, the motor speed increases to slip-engage the second clutch CL2. Further, the first clutch CL1 is engaged, the motor torque is transmitted to the engine Eng, and the output speed of the engine Eng (hereinafter referred to as “engine speed”) starts to increase.
  • the motor / generator MG has a characteristic that the motor torque decreases in a high rotation range. For this reason, if the motor rotation speed is high, the motor torque that can be used for starting the engine is limited. As a result, the upper limit value of the torque transmission capacity of the second clutch CL2 is reduced. As a result, in a traveling scene where acceleration is accompanied by engine start, the required driving force cannot be met, and driving force is lost or torque is applied to the driving wheels. There may be a time lag before transmission.
  • step S1 when performing the accelerator depression operation, the accelerator opening APO begins to increase, motor speed continues a gradual increase.
  • the flowchart shown in FIG. 6 is executed, and the first engine start map shown by the solid line in FIG. 7 is set as the engine start map in step S1. Then, the process proceeds to step S2, and it is determined whether or not the motor rotation speed is equal to or higher than the first threshold value.
  • the first threshold value is a value obtained by adding a predetermined margin to a value obtained by integrating the rotation speed of the transmission output shaft Output of the automatic transmission AT and the gear ratio at the target gear stage of the automatic transmission AT. Is set. Since at time t 1 when a target shift speed first speed (1ST), a characteristic diagram shown by thin broken lines in FIG. 8. And in this time t 1 point, the motor speed is below a first threshold value, the process proceeds to step S3, whether or not the motor speed is not smaller than the second threshold value is determined.
  • the second threshold value is set to a value obtained by integrating an arbitrary constant and the reciprocal of the gear ratio at the target gear position of the automatic transmission AT. Since at time t 1 when the target gear position is the first speed (1ST), a characteristic diagram showing by a thin one-dot chain line in FIG. 8. And in this time t 1 point, the motor speed is below a second threshold value, the process proceeds to step S5, a determination engine start by applying the first engine start map. At this time, since the accelerator opening APO is low, the operating point determined by the battery SOC and the accelerator opening APO (SOC, APO) remains in the EV area becomes P 1 position shown in FIG. That is, this operating point (SOC, APO) does not cross the first engine start map. Thereby, it returns to step S1 and an engine starting request
  • step S6 the process proceeds from step S3 to step S4, and the EV-HEV selection map is switched to the second engine start map indicated by the broken line in FIG. Then, the process proceeds to step S6, and the engine start determination is performed by applying the second engine start map.
  • the accelerator opening APO is increased, the operating point (SOC, APO) is moved to P 2 position, operating point at time t 1 time (SOC, APO) position of (P 1 position) Rather closer to the second engine start map.
  • the process returns to step S1 and no engine start request is generated.
  • the operating point determined by the vehicle speed VSP and the accelerator opening APO is a 1 ⁇ 2 upshift line on the shift map shown in FIG. 5 A crossing 1 ⁇ 2 upshift command is output.
  • the target gear position of the automatic transmission AT is changed from the first speed (1st) to the second speed (2nd), and the shift control is started.
  • the first threshold value and the second threshold value are changed by changing the target shift speed from the first speed (1st) to the second speed (2nd). That is, the first threshold value is a value obtained by adding a predetermined margin to a value obtained by integrating the rotation speed of the transmission output shaft Output of the automatic transmission AT and the speed ratio at the target gear stage of the automatic transmission AT. Therefore, the characteristic diagram is shown by a thick broken line in FIG. Further, the second threshold value is a value obtained by integrating an arbitrary constant and the reciprocal of the speed ratio at the target gear position of the automatic transmission AT, and thus is a characteristic diagram indicated by a thick dashed line in FIG.
  • step S2 When at time t 3 is the first threshold value and second threshold value is changed, the motor rotation speed is to exceed the first threshold value at this time t 3. Therefore, in the flowchart shown in FIG. 6, the process proceeds from step S2 to step S4, and the engine start map is switched to the second engine start map indicated by the broken line in FIG.
  • accelerator depression operation is continued, at time t 4, the operating point (SOC, APO) moves to P 3 position, crosses the first engine start map. However, at this time, since the EV-HEV selection map is set to the second engine start map indicated by the broken line, NO is determined in step S6, and the engine start request is not output. Thereafter, the accelerator depression operation is continued, the operating point (SOC, APO) is moved to the P 4 position. Again, since the operating point (SOC, APO) does not cross the second engine start map, NO is determined in step S6, and no engine start request is output.
  • step S1 when the motor speed falls below a first threshold value, the process proceeds to step S1 ⁇ step S2 ⁇ step S3 in the flowchart shown in FIG. 6, whether or not the motor speed is not smaller than the second threshold value is determined.
  • step S5 since the second threshold value is larger than the first threshold value, the motor rotation number naturally falls below the second threshold value, and the process proceeds to step S5.
  • step S1 since step S1 has elapsed, the EV-HEV selection map is set to the first engine start map. Then, by proceeding to step S5, it is determined whether or not the operating point (SOC, APO) determined by the battery SOC and the accelerator opening APO has crossed the first engine start map.
  • step S5 the time t 8 when the accelerator opening APO has not changed, the operating point remains in P 4 position. Therefore, the operating point (SOC, APO) exists in the HEV region across the first engine start map.
  • step S5 the process proceeds from step S7 to step S8, an engine start request is generated, and the engine start flag is changed from OFF to ON. Then, engine start control is started.
  • the engine speed is increased, at time t 10, match the motor speed and the engine rotational speed, the engine cranking is completed.
  • the motor speed and the engine speed are further increased to bring the engine to a complete explosion state.
  • shift control is in progress based on 1 ⁇ 2 upshift command output at time t 3 time points. Therefore, the time t 11 to the peak, the motor speed and the engine rotational speed is reduced.
  • the motor speed and the engine speed if it matches the target rotational speed after shifting, 1 ⁇ 2 upshift is completed.
  • the fuel efficiency of the engine Eng can be improved. That is, in the control device of the comparative example, the engine speed becomes a peak at time t 6, the control apparatus of the first embodiment, the engine speed reaches its peak at time t 11. At this time, the engine speed peak value in the control device of the first embodiment is lower by ⁇ x than the engine speed peak value in the control device of the comparative example. Thus, since the engine can be started with the peak value of the engine speed lowered, the fuel injection amount can be reduced and the fuel efficiency can be improved.
  • the engine start control is executed after the motor speed is relatively low, the engine can be started with the motor / generator MG having a sufficient motor torque. This makes it difficult to limit the motor torque that can be used to start the engine, and it is possible to start the engine while responding to the required driving force even in a driving scene that accelerates with the engine starting. It is possible to prevent a time lag from occurring until torque is transmitted to the drive wheels.
  • both the 1st threshold value and the 2nd threshold value are set for every gear stage of automatic transmission AT with respect to the motor rotation speed. That is, the first threshold value and the second threshold value, which are motor rotation speed threshold values, are set according to the target gear ratio of the automatic transmission AT, respectively.
  • the engine speed is high at the low gear where the gear ratio difference is relatively large.
  • the function of the present invention can be provided only at an arbitrary shift stage.
  • the motor rotational speed is set by setting the output shaft rotational speed of the automatic transmission AT and the speed ratio at the target gear stage of the automatic transmission AT to be integrated.
  • the threshold value can be set to a value higher than the number of revolutions expected to increase when the engine is started.
  • the integrated controller 10 in order to make it difficult to start the engine when the motor speed is relatively high, includes a first engine start map set by the accelerator opening APO and the battery SOC. And a second engine start map in which at least the accelerator opening APO is set to a larger value than the first engine start map, and at least a part of the battery SOC is set to a smaller value.
  • the engine engine start determination is performed using the first engine start map, and the motor rotational speed is either the first threshold value or the second threshold value. In the case of exceeding the engine start determination of the engine Eng is performed using the second engine start map.
  • the engine is started when the battery SOC falls below the third engine start threshold th3 on the first engine start map.
  • the motor speed exceeds the first threshold value or the second threshold value the engine is started when the battery SOC falls below the fourth engine start threshold value th4 on the second engine start map that is smaller than the third engine start threshold value th3.
  • the engine start threshold set by the accelerator opening APO which is the driver-required driving force equivalent value
  • the engine set by the battery SOC which is the battery charge state equivalent value
  • the start threshold value is varied according to the motor speed.
  • the EV-HEV selection map set by the accelerator opening APO and the battery SOC is made different according to the motor speed. For this reason, the engine start determination can be performed based on the conditions of both the driver requested driving force and the battery charge state, and the engine start determination can be performed more appropriately.
  • the speed of the motor is reduced by the shift control, and the EV-HEV selection map is switched from the second engine start map to the first engine start map, so that the accelerator opening APO is constant.
  • the scene where the engine start request is output is not limited to this.
  • the accelerator depression operation is performed and the accelerator opening APO increases, operating point (SOC, APO) if the move to P 5 position shown in FIG. 7, the operating point (SOC, APO) is moved to the HEV region across the second engine starting map.
  • the motor rotation speed is relatively high, the engine start request is output and the engine start control is executed, so that it is possible to meet the driver requested driving force.
  • Engine Eng A motor (motor / generator) MG provided in a drive system from the engine Eng to the drive wheels (left and right rear wheels) RL, RR for starting the engine Eng and driving the drive wheels RL, RR; Provided at the connection between the engine Eng and the motor MG, when there is an engine start request during traveling using only the motor MG as a drive source, the torque of the motor MG is transmitted to the engine Eng to Mounted on a hybrid vehicle equipped with a mode switching mechanism (first clutch) CL1, When the rotational speed of the motor MG exceeds a preset motor rotational speed threshold (first threshold, second threshold), the rotational speed of the motor MG is the motor rotational speed threshold (first threshold, second threshold).
  • the engine start control unit 10b is configured to make it difficult to start the engine Eng than the case where the engine Eng is below. Thereby, the engine speed increase at the time of engine start can be suppressed, and fuel consumption can be prevented from deteriorating due to engine start.
  • the engine start control unit 10b When the rotational speed of the motor MG is below the motor rotational speed threshold value (first threshold value, second threshold value), if the battery charge state equivalent value (battery SOC) falls below the third engine start threshold value th3, Start, When the rotation speed of the motor MG exceeds the motor rotation speed threshold value (first threshold value, second threshold value), the fourth engine having the battery charge equivalent value (battery SOC) smaller than the third engine start threshold value th3.
  • the engine Eng is started when it falls below the start threshold th4. This makes it difficult to start the engine when the motor speed is high with a simple configuration.
  • the engine start control unit 10b A first engine start map (solid line) set by a driver required driving force equivalent value (accelerator opening APO) and a battery charge state equivalent value (battery SOC), and at least a part of the first engine start map (solid line)
  • the engine Eng is determined to start using the first engine start map (solid line);
  • the engine Eng is determined to start using the second engine start map (broken line).
  • the engine start determination can be performed based on both conditions of the driver requested driving force and the battery charge state, and the engine start
  • the transmission is a stepped automatic transmission (automatic transmission) AT having a plurality of shift stages
  • the engine start control unit 10b sets the motor rotation speed threshold (first threshold), the output shaft rotation speed of the stepped automatic transmission AT, and the gear ratio at the target shift stage of the stepped transmission AT.
  • the integrated value is set.
  • Example 1 As mentioned above, although the control apparatus of the hybrid vehicle of this invention was demonstrated based on Example 1, it is not restricted to this Example about concrete structure, The summary of the invention which concerns on each claim of a claim As long as they do not deviate, design changes and additions are permitted.
  • the example in which the first engine start map and the second engine start map are switched and set according to the magnitude of the motor rotation speed is shown.
  • the configuration that makes it difficult to start the engine is not limited to this.
  • a time lag may be provided between the generation of an engine start request and the start of engine start control. That is, even if the operating point (SOC, APO) determined by the battery SOC and the accelerator opening APO crosses the engine start map, when the motor speed is relatively high, the engine start control is not started immediately but is set in advance. The engine start start time is delayed by the time.
  • the time (time lag) until the engine start control is started may be made different for each gear stage of the automatic transmission AT, for example, a longer time may be set for a lower gear stage.
  • the motor rotation speed threshold value may be set according to the magnitude of the accelerator opening APO that is a value corresponding to the driver required driving force. That is, for example, when the accelerator is depressed greatly and the accelerator opening APO is relatively large, the motor rotation speed threshold is set to a relatively high value. In this way, when the accelerator opening APO is large and the driver-requested driving force is considered high, the engine can be started quickly even if the motor speed is high, and the driver-requested driving force is met. be able to. That is, by setting the motor rotation speed threshold according to the magnitude of the driver request driving force equivalent value, it is possible to prevent deterioration in fuel consumption while responding promptly to the driver request driving force.
  • a time (time lag) from when an engine start request is generated until engine start control is started may be set according to the magnitude of the accelerator opening APO that is a value corresponding to the driver required drive force. That is, when it is considered that the accelerator opening APO is large and the driver required driving force is high, the time from the generation of the engine start request to the start of the engine start control is set to be relatively short. Thus, when the accelerator opening APO is large and the driver-requested driving force is considered to be high, the engine can be started quickly and the driver-requested driving force can be met.
  • the present invention is not limited to this.
  • it may have a large number of motor rotation speed threshold values and a large number of engine start maps according to the motor rotation speed threshold values.
  • the present invention is not limited to this, and a differential device or a power split device that exhibits a clutch function without using a clutch, such as a planetary gear, may be used.
  • the second clutch CL2 an example in which a shift element in the automatic transmission AT is diverted and an element selected from three engagement elements that are engaged at each shift speed is used as the second clutch CL2.
  • the second clutch CL2 is independent of the automatic transmission, such as a clutch interposed between the motor and the input shaft of the automatic transmission, or a clutch interposed between the output shaft of the automatic transmission and the drive wheel. It is good also as a clutch provided.
  • the automatic transmission AT is not limited to a stepped automatic transmission, but may be a continuously variable transmission, a stepped manual (manual) transmission, or a speed reducer.
  • the accelerator opening APO is used as the “driver required driving force equivalent value”.
  • the present invention is not limited to this.
  • the required driving torque command value or other driver's request Any value that changes can be applied.
  • the example using the battery SOC has been shown as the “battery charge state equivalent value”, the present invention is not limited to this, and for example, any value that changes according to the battery charge / discharge time difference or the charge state of the battery 4 is applicable. be able to.
  • the engine start map used for the engine start determination is set based on the battery SOC and the accelerator opening APO.
  • the engine start map may be set based on the vehicle speed VSP and the accelerator opening APO, or the engine start map may be set based on one value such as only the accelerator opening APO or only the battery SOC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

エンジン始動時のエンジン回転数上昇を抑制し、エンジン始動によって燃費が悪化することを防止できるハイブリッド車両の制御装置を提供すること。 エンジン(Eng)と、モータ/ジェネレータ(MG)と、エンジン(Eng)とモータ/ジェネレータ(MG)の連結部に設けられた第1クラッチ(CL1)と、を備えたハイブリッド車両に搭載され、モータ/ジェネレータ(MG)の回転数が予め設定した第1閾値,第2閾値を上回る場合には、モータ/ジェネレータ(MG)の回転数がこの第1閾値,第2閾値を下回る場合よりも、エンジン(Eng)の始動を行いにくくするエンジン始動制御部(10b)を備える。

Description

ハイブリッド車両の制御装置
 本発明は、エンジン始動要求時、駆動輪の駆動を行うモータによってエンジン始動を行うハイブリッド車両の制御装置に関する発明である。
 従来、走行駆動源として、燃料によって駆動するエンジンと、バッテリに蓄えられた電力によって駆動するモータを有するハイブリッド車両は、エンジンとモータの間の動力伝達を分割する第1クラッチを有している。
 そして、このようなハイブリッド車両に搭載され、第1クラッチを開放し、モータのみを駆動源として走行しているときにエンジン始動要求があったときに、第1クラッチを締結し、モータをスタータモータとしてエンジン始動を行うハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。なお、モータをスタータモータとしてエンジン始動する場合には、モータ回転数とエンジン回転数が一致し、第1クラッチの差回転がなくなったらクランキングが完了する。
特開2008-179242号公報
 ところで、ハイブリッド車両の制御装置では、例えばドライバー要求駆動力とバッテリSOCに応じたエンジン始動マップを予め設定し、このエンジン始動マップ上における要求駆動力とバッテリSOCで決まる値の位置によってエンジン始動要求を出力している。ここで、従来のハイブリッド車両の制御装置では、スタータモータとなるモータの回転数に拘らず、エンジン始動マップと要求駆動力とバッテリSOCに基づいてエンジン始動要求を出力していた。
 そのため、エンジン始動要求が出力された時のモータ回転数が比較的高いときには、エンジン回転数も高回転にしなければクランキングができなくなってしまう。これにより、エンジン燃費が悪化するという問題が生じていた。
 本発明は、上記問題に着目してなされたもので、エンジン始動によって燃費が悪化することを防止できるハイブリッド車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明のハイブリッド車両の制御装置は、エンジンと、前記エンジンから駆動輪への駆動系に設けられ、前記エンジンの始動と前記駆動輪の駆動を行うモータと、前記エンジンと前記モータの連結部に設けられ、前記モータのみを駆動源とした走行中にエンジン始動要求があったとき、前記モータのトルクを前記エンジンに伝達させて前記エンジンを始動するモード切替機構と、を備えたハイブリッド車両に搭載されている。そして、エンジン始動制御部を備え、前記モータの出力回転数が予め設定したモータ回転数閾値を上回る場合には、前記モータの出力回転数が前記モータ回転数閾値を下回る場合よりも、前記エンジンの始動を行いにくくする。
 本願発明では、エンジン始動制御部により、モータ回転数がモータ回転数閾値を上回る場合に、このモータ回転数がモータ回転数閾値を下回る場合と比べて、エンジン始動が行いにくくされる。
 これにより、モータ回転数が比較的高いときにエンジン始動要求が発生することが抑制され、エンジン始動時にエンジン回転数が高くなるシーンの発生を低減できる。この結果、エンジン始動による燃費の悪化を防止することができる。
実施例1における制御装置が適用された後輪駆動によるFRハイブリッド車両(ハイブリッド車両の一例)を示す全体システム図である。 実施例1の統合コントローラのモード選択部に設定されているEV-HEV選択マップの一例を示す図である。 実施例1における第2クラッチを内蔵した自動変速機の一例を示すスケルトン図である。 実施例1における自動変速機での変速段ごとの各摩擦締結要素の締結状態を示す締結作動表である。 実施例1におけるATコントローラに設定されている自動変速機のシフトマップの一例を示す図である。 実施例1の統合コントローラにて実行されるエンジン始動判定処理の流れを示すフローチャートである。 実施例1のエンジン始動判定処理にて適用するEV-HEV選択マップを示す図である。 実施例1の制御装置において、エンジン始動時のアクセル開度・モータ回転数・エンジン回転数・エンジン始動判定フラグ・目標変速段・適用されるエンジン始動マップの各特性を示すタイムチャートである。 実施例1の制御装置において、アクセル開度に基づくモータ回転数閾値を説明する説明図である。 実施例1の制御装置において、バッテリSOCに基づくモータ回転数閾値を説明する説明図である。
 以下、本発明のハイブリッド車両の制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 (実施例1)
 まず、構成を説明する。
 実施例1における電動車両の制御装置の構成を、「全体システム構成」、「自動変速機の概略構成」、「エンジン始動判定処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1における制御装置が適用された後輪駆動によるFRハイブリッド車両(ハイブリッド車両の一例)を示し、図2は、統合コントローラのモード選択部に設定されているEV-HEV選択マップの一例を示す。以下、図1及び図2に基づいて、全体システム構成を説明する。
 FRハイブリッド車両の駆動系は、図1に示すように、エンジンEngと、第1クラッチCL1(モード切替機構)と、モータ/ジェネレータMG(モータ)と、第2クラッチCL2と、自動変速機(変速機)ATと、変速機入力軸INと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。なお、M-O/Pはメカオイルポンプ、S-O/Pは電動オイルポンプ、FLは左前輪、FRは右前輪、FWはフライホイールである。
 前記エンジンEngは、走行駆動源となるガソリンエンジンやディーゼルエンジンであり、エンジンコントローラ1からのエンジン制御指令に基づいて、エンジン始動制御やエンジン停止制御やスロットルバルブのバルブ開度制御が行われる。なお、エンジン出力軸には、フライホイールFWが設けられている。
 前記モータ/ジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータ/ジェネレータであり、走行駆動源となる。このモータ/ジェネレータMGは、モータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータ/ジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータがエンジンEngや駆動輪から回転エネルギーを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。さらに、第1クラッチCL1が締結したときには、エンジンEngを始動させるスタータモータになる。なお、このモータ/ジェネレータMGのロータは、ダンパーを介して自動変速機ATの変速機入力軸INに連結されている。
 前記第1クラッチCL1は、エンジンEngとモータ/ジェネレータMGとの間に設けられた締結要素である。この第1クラッチCL1は、CL1油圧を加えないときにダイアフラムスプリング等による付勢力にて締結状態となり、この付勢力に対抗するCL1油圧を加えることで開放する、いわゆるノーマルクローズタイプのクラッチである。この第1クラッチCL1は、エンジン始動要求があったときに締結し、モータ/ジェネレータMGのトルクをエンジンEngに伝達させてエンジン始動する。
 前記自動変速機ATは、ここでは、前進7速/後退1速の変速段を車速やアクセル開度等に応じて自動的に切り替える有段変速機である。そして、前記自動変速機ATの出力軸は、プロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。
 前記第2クラッチCL2は、モータ/ジェネレータMGから左右後輪RL,RRまでの動力伝達経路に介装される摩擦締結要素である。ここでは、第2クラッチCL2として、自動変速機ATから独立した専用のクラッチとして新たに追加したものではなく、自動変速機ATを変速させるための摩擦締結要素(クラッチやブレーキ)を用いている。すなわち、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、締結条件等に適合する要素として選択した摩擦締結要素を第2クラッチCL2としている。なお、第1クラッチ油圧ユニット6と第2クラッチ油圧ユニット8は、自動変速機ATに付設されるAT油圧コントロールバルブユニットCVUに内蔵している。
 このFRハイブリッド車両は、駆動形態の違いによるモードとして、電気自動車モード(以下、「EVモード」という。)と、ハイブリッド車モード(以下、「HEVモード」という。)と、駆動トルクコントロールモード(以下、「WSCモード」という。)と、を有する。
 前記「EVモード」は、第1クラッチCL1を開放状態とし、駆動源をモータ/ジェネレータMGのみとするモードであり、モータ駆動モード(モータ力行)・ジェネレータ発電モード(ジェネレータ回生)を有する。この「EVモード」は、例えば、要求駆動力が低く、バッテリSOCが確保されているときに選択される。
 前記「HEVモード」は、第1クラッチCL1を締結状態とし、駆動源をエンジンEngとモータ/ジェネレータMGとするモードであり、モータアシストモード(モータ力行)・エンジン発電モード(ジェネレータ回生)・減速回生発電モード(ジェネレータ回生)を有する。この「HEVモード」は、例えば、要求駆動力が高いとき、あるいは、バッテリSOCが不足するようなときに選択される。
 前記「WSCモード」は、駆動形態は「HEVモード」であるが、モータ/ジェネレータMGを回転数制御することにより、第2クラッチCL2をスリップ締結状態に維持しつつ、第2クラッチCL2のトルク伝達容量をコントロールするモードである。第2クラッチCL2のトルク伝達容量は、第2クラッチCL2を経過して伝達される駆動力が、ドライバーのアクセル操作量にあらわれる要求駆動力となるようにコントロールされる。この「WSCモード」は、「HEVモード」選択状態での発進時等のように、エンジン回転数がアイドル回転数を下回る領域において選択される。
 FRハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。
 前記各コントローラ1,2,5,7,9と、統合コントローラ10とは、情報交換が互いに可能なCAN通信線11を介して接続されている。なお、12はエンジン回転数センサ、13はレゾルバ、15は油圧アクチュエータ14のピストン14aのストローク位置を検出する第1クラッチストロークセンサ、19は車輪速センサ、20はブレーキストロークセンサである。
 前記ATコントローラ7は、アクセル開度センサ16、車速センサ17、選択されているレンジ位置(Nレンジ,Dレンジ,Rレンジ,Pレンジ等)を検出するインヒビタスイッチ18、等からの情報を入力する。そして、Dレンジを選択しての走行時、アクセル開度APOと車速VSPにより決まる運転点が、シフトマップ(図5参照)上で存在する位置により最適な変速段を検索し、検索された変速段を得る制御指令をAT油圧コントロールバルブユニットCVUに出力する。この変速制御に加えて、統合コントローラ10からの指令に基づき、第1クラッチCL1の完全締結(HEVモード)/スリップ締結(エンジン始動)/開放(EVモード)の制御を行う。また、第2クラッチCL2の完全締結(HEVモード)/μスリップ締結(EVモード)/回転差吸収スリップ締結(WSCモード)/変動トルク遮断スリップ締結(エンジン始動・停止モード)の制御を行う。
 ここで、自動変速機ATが非変速状態でのEVモードによる走行中、第2クラッチCL2の微小スリップ回転(μスリップ回転)を維持する制御を「μスリップ制御」という。この「μスリップ制御」は、モータ/ジェネレータMGの実モータ回転数を、第2クラッチCL2が微小スリップ回転となる目標モータ回転数に一致させるように制御するモータ回転数制御により実施される。このモータ回転数制御中のモータトルクは、第2クラッチCL2によりモータ/ジェネレータMGが受ける負荷に応じたものとなるため、モータ回転数制御中のモータトルク検出値によりCL2実トルクを推定できる。また、「μスリップ制御」は、EV非変速状態、且つ、目標駆動トルクが規定値以上(フリクション等によるスリップ不可領域や低油圧により精度が確保できない領域を懸念して設定)の領域で実施する。目標駆動トルクが規定値以下は、第2クラッチCL2が滑らないような容量安全率を確保している。よって、EV変速直後、HEVモード⇒EVモードへのモード遷移直後、目標駆動トルクが低トルクからのアクセル踏み込みで、第2クラッチCL2をスリップインさせ、μスリップ制御が働く。
 前記統合コントローラ10は、車両全体の消費エネルギーを管理し、最高効率で車両を走らせるための機能を担うもので、エンジン回転数センサ12、アクセル開度センサ16、車速センサ17、モータ回転数センサ21、他のセンサ・スイッチ類22からの必要情報が直接、あるいは、CAN通信線11を介して入力される。
また、この統合コントローラ10には、モード選択部10a、エンジン始動制御部10b、エンジン停止制御部10cと、動作点指令部10dと、を有している。
 前記モード選択部10aは、図2に示すEV-HEV選択マップを用いて、アクセル開度APOと車速VSPにより決まる運転点の位置により検索した走行モードを、目標走行モードとして選択する。
このEV-HEV選択マップには、EV⇒HEV切替線(=エンジン始動線)と、HEV⇒EV切替線(=エンジン停止線)と、HEV⇒WSC切替線と、が設定されている。EV領域に存在する運転点(APO,VSP)が前記EV⇒HEV切替線を横切ると、モード選択部10aでは目標走行モードを「EVモード」から「HEVモード」へと切り替え、エンジン始動制御部10bへエンジン始動要求が出力される。また、HEV領域に存在する運転点(APO,VSP)が前記HEV⇒EV切替線を横切ると、モード選択部10aでは目標走行モードを「HEVモード」から「EVモード」へと切り替え、エンジン停止制御部10cへエンジン停止要求が出力される。ここで、前記HEV⇒EV切替線と前記EV⇒HEV切替線は、EV領域とHEV領域を分ける線としてヒステリシス量を持たせて設定されている。
なお、EV-HEV選択マップは、アクセル開度APOとバッテリSOCに基づいて設定してもよい。このときには、「EVモード」の選択中、バッテリSOCが所定値以下になると「HEVモード」を目標走行モードとするEV⇒HEV切替線が設定され、「HEVモード」の選択中、バッテリSOCが所定値以上になると「EVモード」を目標走行モードとするHEV⇒EV切替線が設定される。
さらに、「HEVモード」の選択時に運転点(APO,VSP)が前記HEV⇒WSC切替線を横切ってWSC領域に入ると、モード選択部10aでは目標走行モードを「HEVモード」から「WSCモード」へと切り替える。前記HEV⇒WSC切替線は、自動変速機ATが所定の低変速比領域のときに、エンジンEngがアイドル回転数を維持する第1設定車速VSP1に沿って設定されている。
 前記エンジン始動制御部10bは、エンジン始動要求の入力に伴い、第2クラッチCL2をスリップ締結すると共に第1クラッチCL1を締結し、モータジェネレータMGをスタータモータとしてエンジンEngを始動するエンジン始動制御を行う。なお、このとき後述するエンジン始動判定処理を実行する。
 前記エンジン停止制御部10cは、エンジン停止要求の入力に伴い、第2クラッチCL2をスリップ締結すると共に第1クラッチCL1を開放し、エンジンEngを停止するエンジン停止制御を行う。
 前記動作点指令部10dは、アクセル開度APOと、車速VSPと、目標モード等の入力情報に基づき、FRハイブリッド車両の動作点到達目標を演算する。なお、動作点到達目標として、目標エンジントルクと目標MGトルクと目標MG回転数と目標CL1トルクと目標CL2トルクと目標変速段が演算される。そして、この動作点指令部10dは、目標エンジントルク指令と目標MGトルク指令と目標MG回転数指令と目標CL1トルク指令と目標CL2トルク指令と目標変速段指令を、CAN通信線11を介して各コントローラ1,2,5,7に出力する。
 [自動変速機の概略構成]
 図3は、実施例1における第2クラッチを内蔵した自動変速機の一例を示すスケルトン図であり、図4は、自動変速機での変速段ごとの各摩擦締結要素の締結状態を示す締結作動表であり、図5は、ATコントローラに設定されている自動変速機のシフトマップの一例を示す図である。以下、図3~図5に基づいて、自動変速機ATの概略構成を説明する。
 前記自動変速機ATは、前進7速後退1速の有段式自動変速機であり、図3に示すように、エンジンEngとモータ/ジェネレータMGのうち、少なくとも一方からの駆動力が変速機入力軸Inputから入力され、4つの遊星ギアと7つの摩擦締結要素を有する変速ギア機構によって、回転速度が変速されて変速機出力軸Outputから出力される。
 前記変速ギア機構としては、同軸上に、第1遊星ギアG1及び第2遊星ギアG2による第1遊星ギアセットGS1と、第3遊星ギアG3及び第4遊星ギアG4による第2遊星ギアセットGS2と、が順に配置されている。また、油圧作動の摩擦締結要素として、第1クラッチC1(I/C)と、第2クラッチC2(D/C)と、第3クラッチC3(H&LR/C)と、第1ブレーキB1(Fr/B)と、第2ブレーキB2(Low/B)と、第3ブレーキB3(2346/B)と、第4ブレーキB4(R/B)と、が配置されている。また、機械作動の係合要素として、第1ワンウェイクラッチF1(1stOWC)と、第2ワンウェイクラッチF2(1&2OWC)と、が配置されている。
 前記第1遊星ギアG1、第2遊星ギアG2、第3遊星ギアG3、第4遊星ギアG4は、サンギア(S1~S4)と、リングギア(R1~R4)と、両ギア(S1~S4),(R1~R4)に噛み合うピニオン(P1~P4)を支持するキャリア(PC1~PC4)と、を有するシングルピニオン型遊星ギアである。
 前記変速機入力軸Inputは、第2リングギアR2に連結され、エンジンEngとモータ/ジェネレータMGの少なくとも一方からの回転駆動力を入力する。前記変速機出力軸Outputは、第3キャリアPC3に連結され、出力回転駆動力を、ファイナルギア等を介して駆動輪(左右後輪RL,RR)に伝達する。
 第1リングギアR1と第2キャリアPC2と第4リングギアR4とは、第1連結メンバM1により一体的に連結される。第3リングギアR3と第4キャリアPC4とは、第2連結メンバM2により一体的に連結される。第1サンギアS1と第2サンギアS2とは、第3連結メンバM3により一体的に連結される。
 図4は締結作動表であり、図4において、○印はドライブ状態で当該摩擦締結要素が油圧締結であることを示し、(○)印はコースト状態で当該摩擦締結要素が油圧締結(ドライブ状態ではワンウェイクラッチ作動)であることを示し、無印は当該摩擦締結要素が開放状態であることを示す。また、ハッチングにて示される締結状態の摩擦締結要素は、各変速段にて第2クラッチCL2として用いる要素を示す。
 隣接する変速段への変速については、上記各摩擦締結要素のうち、締結していた1つの摩擦締結要素を開放し、開放していた1つの摩擦締結要素を締結するという架け替え変速により、図4に示すように、前進7速で後退1速の変速段を実現することができる。さらに、変速段が1速段及び2速段のときには、第2ブレーキB2(Low/B)が第2クラッチCL2とされる。変速段が3速段のときには、第2クラッチC2(D/C)が第2クラッチCL2とされる。変速段が4速段及び5速段のときには、第3クラッチC3(H&LR/C)が第2クラッチCL2とされる。変速段が6速段及び7速段のときには、第1クラッチC1(I/C)が第2クラッチCL2とされる。変速段が後退段のときには、第4ブレーキB4(R/B)が第2クラッチCL2とされる。
 図5はシフトマップであり、車速VSPとアクセル開度APOで特定されるマップ上での運転点が、アップ変速線を横切ると、アップ変速指令が出力される。例えば、変速段が1速段のとき、車速VSPの上昇により運転点(VSP,APO)が1→2アップ変速線を横切ると、1→2アップ変速指令が出力される。なお、図5はアップ変速線のみを記載しているが、勿論、アップ変速線に対してヒステリシスを持たせてダウン変速線も設定されている。
 [エンジン始動判定処理構成]
 図6は、実施例1のエンジン始動制御部にて実行されるエンジン始動判定処理の流れを示すフローチャートである。図7は、実施例1のエンジン始動判定処理にて適用するEV-HEV選択マップを示す図である。以下、エンジン始動判定処理構成をあらわす図6のフローチャートの各ステップについて説明する。なお、このエンジン始動判定処理は、走行モードが「EVモード」であるときに実行する。
 ステップS1では、統合コントローラ10のモード選択部10aにおいて目標モードを選択する際に用いるEV-HEV選択マップを、第1エンジン始動マップに設定する。
ここで、「エンジン始動マップ」とは、EV-HEV選択マップの中でエンジン始動線であるEV⇒HEV切替線のみを示した特性線図であり、「第1エンジン始動マップ」は、図7において実線で示す。この「第1エンジン始動マップ」は、アクセル開度APOとバッテリSOCによって設定される。なお、アクセル開度APOは、ドライバー要求駆動力に対して比例的に変動する値であり、ドライバー要求駆動力相当値である。また、バッテリSOCは、バッテリ充電残量を表し、バッテリ充電状態を示す。つまり、このバッテリSOCは、バッテリ充電状態相当値となる。
 ステップS2では、ステップS1での第1エンジン始動マップの設定に続き、モータ/ジェネレータMGの出力回転数(以下、モータ回転数という)が、予め設定した第1閾値(モータ回転数閾値)以上であるか否かを判断する。YES(モータ回転数≧第1閾値)の場合はステップS4へ進む。NO(モータ回転数<第1閾値)の場合はステップS3へ進む。
ここで、モータ回転数は、モータ回転数センサ12によって検出する。また、「第1閾値」は、自動変速機ATの変速機出力軸Outputの回転数と、自動変速機ATの目標変速段での変速比とを積算した値に設定される。なお、ここでは、変速機出力軸回転数と変速比との積算値に所定の余裕代を加算した値を第1閾値に設定する。
 ステップS3では、ステップS2でのモータ回転数<第1閾値との判断に続き、モータ回転数が、予め設定した第2閾値(モータ回転数閾値)以上であるか否かを判断する。YES(モータ回転数≧第2閾値)の場合はステップS4へ進む。NO(モータ回転数<第2閾値)の場合はステップS5へ進む。
ここで、「第2閾値」は、自動変速機ATの目標変速段ごとに任意に設定される値である。ここでは、任意の定数と、自動変速機ATの目標変速段での変速比の逆数とを積算した値に設定され、変速段が低い(変速比が大きい)ほど小さい値に設定される。
 ステップS4では、ステップS2でのモータ回転数≧第1閾値との判断、又は、ステップS3でのモータ回転数≧第2閾値との判断に続き、モータ/ジェネレータMGの出力回転数が比較的高い状態であるとして、ステップS1にて設定したEV-HEV選択マップを、第2エンジン始動マップに切替設定する。
ここで、「第2エンジン始動マップ」は、アクセル開度APOとバッテリSOCによって設定された特性線図であり、図7において破線で示す。この「第2エンジン始動マップ」では、一部のアクセル開度領域が、第1エンジン始動マップと比べてより大きい値に設定されている。また、一部のバッテリSOC領域が、第1エンジン始動マップと比べてより小さい値に設定されている。つまり、この「第2エンジン始動マップ」を用いてエンジン始動を行う場合、「第1エンジン始動マップ」を用いてエンジン始動を行う場合よりもエンジン始動条件が厳しくなる。
 ステップS5では、ステップS3でのモータ回転数<第2閾値との判断に続き、モータ/ジェネレータMGの出力回転数が比較的低い状態であるとして、第1エンジン始動マップを適用したエンジン始動判定を行う。つまり、バッテリSOCとアクセル開度APOにて決まる運転点(SOC,APO)が、ステップS1において設定した第1エンジン始動マップをHEV領域側へ横切ったか否かを判断する。YES(横切った)場合にはステップS7に進む。NO(横切っていない)場合にはステップS1に戻る。
 ステップS6では、ステップS4での第2エンジン始動マップの切替設定に続き、第2エンジン始動マップを適用したエンジン始動判定を行う。つまり、アクセル開度APOとバッテリSOCにて決まる運転点(APO,SOC)が、ステップS4において設定した第2エンジン始動マップをHEV領域側へ横切ったか否かを判断する。YES(横切った)場合にはステップS7に進む。NO(横切っていない)場合にはステップS1に戻る。
 ステップS7では、ステップS5での運転点(APO,SOC)が第1エンジン始動マップを横切ったとの判断、又は、ステップS6での運転点(APO,SOC)が第2エンジン始動マップを横切ったとの判断に続き、エンジン始動要求を出力し、ステップS8へ進む。なお、このエンジン始動要求が出力されることで、エンジン始動フラグがOFFからONへと変更される。
 ステップS8では、ステップS7でのエンジン始動要求の出力に続き、エンジン始動制御を開始し、エンドへ進む。
ここで、エンジン始動制御とは、第2クラッチCL2のトルク伝達容量がドライバーの要求駆動力となるようにコントロールしつつ、モータ/ジェネレータMGを回転数制御して第2クラッチCL2をスリップ締結させる。そして、第1クラッチCL1を締結し、モータ/ジェネレータMGのトルクをエンジンEngに伝達して、エンジンEngのクランキングを行うことである。
 次に、作用を説明する。
 まず、「比較例のハイブリッド車両の制御装置でのエンジン始動作用」を説明し、続いて、実施例1のハイブリッド車両の制御装置における「エンジン始動制御作用」を説明する。
 [比較例のハイブリッド車両の制御装置でのエンジン始動作用]
 図8は、実施例1の制御装置において、エンジン始動時のアクセル開度・モータ回転数・エンジン回転数・エンジン始動判定フラグ・目標変速段・適用されるエンジン始動マップの各特性を示すタイムチャートである。なお、図8中、破線により比較例のハイブリッド制御装置の特性を示す。以下、図8に基づき、比較例のハイブリッド車両の制御装置でのエンジン始動作用を説明する。
 比較例の制御装置が適用されたハイブリッド車両が、自動変速機ATを1速段(1st)とし、「EVモード」で走行中であるときを考える。ここで、比較例の制御装置は、常時図7にて実線示す第1エンジン始動マップを用いてエンジン始動判定を行うものである。
 時刻tにおいてアクセル踏み込み操作を行うと、アクセル開度APOが増大を開始する。一方、このアクセル踏み増し操作に伴ってモータ/ジェネレータMGの出力回転数(以下、「モータ回転数」という)は、緩やかな上昇を継続する。
 時刻tにおいて、車速(ここでは図示せず)の上昇により、車速VSPとアクセル開度APOで決まる運転点(VSP,APO)が、図5に示すシフトマップ上で1→2アップ変速線を横切り、1→2アップ変速指令が出力される。これにより、自動変速機ATの目標変速段が1速段(1st)から2速段(2nd)へと変更し、変速制御が開始される。
 一方、アクセル開度APOは増大を継続し、時刻tにおいて、バッテリSOCとアクセル開度APOにて決まる運転点(SOC,APO)が、図7に示す第1エンジン始動マップを横切ってHEV領域へ移動する。このため、エンジン始動要求が発生してエンジン始動フラグがOFFからONへと変更され、エンジン始動制御を開始する。
これにより、モータ回転数は第2クラッチCL2をスリップ締結するために上昇する。また、第1クラッチCL1の締結が行われ、モータトルクがエンジンEngへと伝達されて、エンジンEngの出力回転数(以下、「エンジン回転数」という)が上昇し始める。
 時刻tにおいて、モータ回転数とエンジン回転数が一致すると、エンジンクランキングが完了したとして、さらにモータ回転数及びエンジン回転数を上昇させ、エンジン完爆状態とする。一方、このとき、時刻t時点で出力された1→2アップ変速指令に基づく変速制御が進行している。そのため、時刻tをピークに、モータ回転数及びエンジン回転数は急落する。そして、時刻tにおいて、モータ回転数及びエンジン回転数が変速後目標回転数に一致し、1→2アップ変速が終了する。
 このように、比較例の制御装置では、モータ回転数の大きさに拘らず第1エンジン始動マップを用いてエンジン始動判定を行っている。そのため、上述のように1→2アップ変速が完了しておらず、比較モータ回転数が高い状態であっても、バッテリSOCとアクセル開度APOにて決まる運転点(SOC,APO)の状態に応じてエンジン始動要求が出力されてしまう。これにより、エンジン始動時に、エンジン回転数をモータ回転数に合わせて高くする必要があり、燃費が悪化するという問題が生じる。
また、エンジン回転数が急上昇するため、エンジン回転数を表示するメータ(タコメータ)の指針が大きく振れてしまい、見かけ上のエンジン吹け上がり状態となってしまう。そのため、ドライバーが感じる走行感覚に大きな変化がないのに、指針が大きく振れることでドライバーに違和感を与えてしまうという問題も発生する。
 そして、上述のように、エンジン始動後に1→2アップ変速が完了するような場合であると、エンジン回転数がエンジン始動時に高回転になったのち、変速後回転数に合わせるために急落する。そのため、いわゆるエンジン音の周波数変動が大きくなり、エンジン始動音が増大してしまう。
 さらに、モータ/ジェネレータMGは、高回転領域ではモータトルクが低下するという特性を有している。このため、モータ回転数が高回転であると、エンジン始動に利用可能なモータトルクが制限されてしまう。これにより、第2クラッチCL2のトルク伝達容量の上限値が低下し、この結果、エンジン始動を伴って加速するような走行シーンでは、要求駆動力に応えきれず、駆動力抜けや駆動輪へのトルク伝達までにタイムラグが生じたりするおそれがあった。
 [エンジン始動制御作用]
 次に、実施例1の制御装置が適用されたハイブリッド車両において、自動変速機ATを1速段(1st)とし、「EVモード」で走行中であるときを考える。以下、図8に基づき、実施例1のハイブリッド車両の制御装置におけるエンジン始動制御作用を説明する。
 時刻tにおいて、アクセル踏み込み操作を行うと、アクセル開度APOが増加を開始すると共に、モータ回転数は緩やかな上昇を継続する。このとき、「EVモード」で走行しているので、図6に示すフローチャートが実行され、ステップS1においてエンジン始動マップとして、図7に実線で示す第1エンジン始動マップが設定される。そして、ステップS2へと進み、モータ回転数が第1閾値以上であるか否かが判断される。
 ここで、第1閾値は、自動変速機ATの変速機出力軸Outputの回転数と、自動変速機ATの目標変速段での変速比とを積算した値に所定の余裕代を加算した値に設定される。時刻t時点では目標変速段が1速段(1ST)であるので、図8において細破線で示す特性線図となる。そして、この時刻t時点では、モータ回転数が第1閾値を下回っているので、ステップS3へと進み、モータ回転数が第2閾値以上であるか否かが判断される。
 ここで、第2閾値は、任意の定数と、自動変速機ATの目標変速段での変速比の逆数とを積算した値に設定される。時刻t時点では目標変速段が1速段(1ST)であるので、図8において細一点鎖線で示す特性線図となる。そして、この時刻t時点では、モータ回転数は第2閾値を下回っているので、ステップS5へ進み、第1エンジン始動マップを適用してエンジン始動判定を行う。
このとき、アクセル開度APOが低いため、バッテリSOCとアクセル開度APOにて決まる運転点(SOC,APO)は、図7に示すP位置になりEV領域に留まる。すなわち、この運転点 (SOC,APO)が第1エンジン始動マップを横切ることはない。これにより、ステップS1へ戻り、エンジン始動要求が発生することはない。
 その後、モータ回転数が上昇し、時刻tにおいてモータ回転数が第2閾値を上回る。これにより、図6に示すフローチャートにおいて、ステップS3→ステップS4へと進み、EV-HEV選択マップが図7において破線で示した第2エンジン始動マップに切替設定される。そして、ステップS6へと進み、この第2エンジン始動マップを適用してエンジン始動判定を行う。
このとき、アクセル開度APOが増大しているので、運転点 (SOC,APO)はP位置へと移動し、時刻t時点での運転点(SOC,APO)の位置(P位置)よりも第2エンジン始動マップに近接している。しかしながら、この第2エンジン始動マップを横切ってはいないため、ステップS1へ戻り、エンジン始動要求が発生することはない。
 時刻tにおいて、車速(ここでは図示せず)の上昇により、車速VSPとアクセル開度APOで決まる運転点(VSP,APO)が、図5に示すシフトマップ上で1→2アップ変速線を横切り、1→2アップ変速指令が出力される。これにより、自動変速機ATの目標変速段が1速段(1st)から2速段(2nd)へと変更し、変速制御が開始される。
 一方、目標変速段が1速段(1st)から2速段(2nd)へと変更したことで、第1閾値及び第2閾値が変更される。つまり、第1閾値は、自動変速機ATの変速機出力軸Outputの回転数と、自動変速機ATの目標変速段での変速比とを積算した値に所定の余裕代を加算した値であるため、図8において太破線で示す特性線図となる。また、第2閾値は、任意の定数と、自動変速機ATの目標変速段での変速比の逆数とを積算した値であるため、図8において太一点鎖線で示す特性線図となる。
 時刻tにおいて第1閾値及び第2閾値が変更されると、この時刻t時点でモータ回転数が第1閾値を上回ることとなる。そのため、図6に示すフローチャートにおいて、ステップS2→ステップS4へと進み、エンジン始動マップが図7において破線で示した第2エンジン始動マップに切替設定される。
 そして、アクセル踏み込み操作が継続し、時刻tにおいて、運転点(SOC,APO)がP位置へと移動し、第1エンジン始動マップを横切る。しかし、このとき、EV-HEV選択マップは、破線で示した第2エンジン始動マップに設定されているので、ステップS6においてNOと判断され、エンジン始動要求は出力されることはない。
その後、アクセル踏み込み操作が継続され、運転点(SOC,APO)は、P位置へと移動する。ここでも、運転点(SOC,APO)が第2エンジン始動マップを横切らないため、ステップS6においてNOと判断され、エンジン始動要求は出力されない。
 そして、変速制御が進行し、時刻tからモータ回転数が低下し始める。時刻tにおいて、モータ回転数が第1閾値以下になると、図6に示すフローチャートにおいてステップS1→ステップS2→ステップS3へと進み、モータ回転数が第2閾値以上であるか否かが判断される。2速段では、第1閾値よりも第2閾値の方が大きい値であるため、当然ながらモータ回転数は第2閾値を下回り、ステップS5に進む。
このとき、ステップS1を経過したことで、EV-HEV選択マップは第1エンジン始動マップに設定されている。そして、ステップS5に進んだことで、バッテリSOCとアクセル開度APOにて決まる運転点(SOC,APO)が第1エンジン始動マップを横切ったか否かを判断される。
 これに対し、時刻t時点では、アクセル開度APOは変化しておらず、運転点はP位置に留まっている。そのため、運転点(SOC,APO)は、第1エンジン始動マップを横切って、HEV領域に存在することになる。これにより、ステップS5においてYESと判断され、ステップS7→ステップS8へと進んでエンジン始動要求が発生し、エンジン始動フラグがOFFからONへと変更される。そして、エンジン始動制御を開始する。
 その後、エンジン回転数が上昇し、時刻t10において、モータ回転数とエンジン回転数が一致し、エンジンクランキングが完了する。これにより、さらにモータ回転数及びエンジン回転数を上昇させ、エンジン完爆状態とする。またこのとき、時刻t時点で出力された1→2アップ変速指令に基づく変速制御が進行している。そのため、時刻t11をピークに、モータ回転数及びエンジン回転数は低下する。そして、時刻t12において、モータ回転数及びエンジン回転数が変速後目標回転数に一致すれば、1→2アップ変速が終了する。
 以上説明したように、実施例1のハイブリッド車両の制御装置では、モータ回転数が比較的高いときには、このエンジン回転数が比較的低い場合よりも、エンジン始動を行いにくくしている。そのため、エンジン回転数が高い状態でエンジン始動を行うシーンの発生を抑制でき、エンジン始動中のエンジン回転数の上昇を抑えることができる。この結果、エンジンEngの燃費向上を図ることができる。
すなわち、比較例の制御装置では、時刻tにおいてエンジン回転数はピークになり、実施例1の制御装置では、エンジン回転数は時刻t11においてピークになる。このとき、実施例1の制御装置におけるエンジン回転数ピーク値の方が、比較例の制御装置におけるエンジン回転数ピーク値より、Δxだけ低い値となる。このように、エンジン回転数のピーク値を下げてエンジン始動を行うことができるので、燃料噴射量を低減でき、燃費向上を図ることができる。
 また、エンジンピーク値を下げることで、エンジン回転数を表示するメータ(タコメータ)の指針の振れ幅を小さく抑制することができる。このため、見かけ上のエンジン吹け上がり状態の発生を防止し、ドライバーが感じる走行感覚とメータ表示が一致して、ドライバーに違和感を与えることが防止できる。
 さらに、モータ回転数が低下し、1→2アップ変速がほぼ完了したタイミングでエンジン始動制御が開始されるので、エンジン始動時にエンジン回転数が上昇しても、その後、変速後回転数に合わせるために急落することはない。そのため、いわゆるエンジン音の周波数変動の大きな変化も抑制され、エンジン始動音の増大を防止することができる。
 そして、モータ回転数が比較的低くなってからエンジン始動制御が実行されることから、モータ/ジェネレータMGがモータトルクを十分に有する状態でエンジン始動を行うことができる。これにより、エンジン始動に利用可能なモータトルクが制限されにくく、エンジン始動を伴って加速するような走行シーンであっても、要求駆動力に応えながらエンジン始動を行うことが可能となり、駆動力抜けや駆動輪へのトルク伝達までにタイムラグが生じることを防止できる。
 そして、実施例1の制御装置では、モータ回転数に対し、第1閾値及び第2閾値共に、自動変速機ATの変速段ごとに設定している。つまり、モータ回転数閾値である第1閾値及び第2閾値は、それぞれ自動変速機ATの目標変速比に応じて設定されている。
 これにより、実施例1の第2閾値のように、低変速段の方がより小さい値になるように設定すると、ギア比の段間差が比較的大きい低変速段において、エンジン回転数が高いときにエンジン始動させにくくできる。すなわち、任意の変速段に限って本発明の機能を持たせることができる。
また、実施例1の第1閾値のように、自動変速機ATの出力軸回転数と、自動変速機ATの目標変速段での変速比とを積算した値に設定することで、モータ回転数閾値を、エンジン始動時に上昇すると予測される回転数よりも高い値に設定することができる。これにより、変速中及びモータ回転数が高い領域において、本発明の機能を持たせることができる。
 さらに、実施例1の制御装置では、モータ回転数が比較的高いときにエンジン始動を行いにくくするために、統合コントローラ10は、アクセル開度APOとバッテリSOCによって設定される第1エンジン始動マップと、この第1エンジン始動マップよりも少なくともアクセル開度APOが大きい値に設定されると共に、少なくとも一部のバッテリSOCが小さい値に設定される第2エンジン始動マップと、を有している。
そして、モータ回転数が第1閾値及び第2閾値を下回る場合には、第1エンジン始動マップを用いてエンジンEngの始動判定を行い、モータ回転数が第1閾値又は第2閾値のいずれか一方を上回る場合には、第2エンジン始動マップを用いてエンジンEngの始動判定を行う。
 すなわち、例えば図9に示すように、バッテリSOCが一定の場合を想定すると、第1エンジン始動マップ上の第1エンジン始動閾値th1と、この第1エンジン始動閾値th1よりも大きい第2エンジン始動マップ上の第2エンジン始動閾値th2が存在することとなる。
そして、モータ回転数が第1閾値及び第2閾値を下回る場合には、アクセル開度APOが第1エンジン始動マップ上の第1エンジン始動閾値th1を超えたらエンジン始動を行う。また、モータ回転数が第1閾値又は第2閾値を上回る場合には、アクセル開度APOが第1エンジン始動閾値th1よりも大きい第2エンジン始動マップ上の第2エンジン始動閾値th2を超えたらエンジン始動を行う。
 また、図10に示すように、アクセル開度APOが一定の場合を想定すると、第1エンジン始動マップ上の第3エンジン始動閾値th3と、この第3エンジン始動閾値th3よりも小さい第2エンジン始動マップ上の第4エンジン始動閾値th4が存在することとなる。
そして、モータ回転数が第1閾値及び第2閾値を下回る場合には、バッテリSOCが第1エンジン始動マップ上の第3エンジン始動閾値th3を下回ったらエンジン始動を行う。また、モータ回転数が第1閾値又は第2閾値を上回る場合には、バッテリSOCが第3エンジン始動閾値th3よりも小さい第2エンジン始動マップ上の第4エンジン始動閾値th4を下回ったらエンジン始動を行う。
 このように、モータ回転数の大きさに応じて、ドライバー要求駆動力相当値であるアクセル開度APOによって設定したエンジン始動閾値を異ならせたり、バッテリ充電状態相当値であるバッテリSOCによって設定したエンジン始動閾値を異ならせたりすることで、簡易な構成でモータ回転数が高いときにエンジン始動を行わせにくくすることができる。
特に、実施例1では、アクセル開度APOとバッテリSOCによって設定されたEV-HEV選択マップを、モータ回転数の大きさに応じて異ならせている。このため、ドライバー要求駆動力とバッテリ充電状態の双方の条件に基づいてエンジン始動判定を行うことができ、エンジン始動判定をより適切に行うことができる。
 なお、図8に示した場合では、変速制御によってモータ回転数が低下し、EV-HEV選択マップが第2エンジン始動マップから第1エンジン始動マップへと切り替わることで、アクセル開度APOが一定であっても、エンジン始動要求が出力される例を示した。
しかしながら、エンジン始動要求が出力されるシーンはこれに限らない。例えばモータ回転数が第2閾値を上回っており、EV-HEV選択マップが第2エンジン始動マップに設定されている場合であっても、アクセル踏み込み操作が行われてアクセル開度APOが上昇し、運転点(SOC,APO)が図7に示すP位置に移動すれば、この運転点(SOC,APO)が第2エンジン始動マップを横切ってHEV領域に移動する。
この場合では、モータ回転数が比較的高いが、エンジン始動要求が出力されてエンジン始動制御が実行されるので、ドライバー要求駆動力に応えることができる。
 次に、効果を説明する。
 実施例1のハイブリッド車両の制御装置にあっては、下記に挙げる効果を得ることができる。
 (1) エンジンEngと、
 前記エンジンEngから駆動輪(左右後輪)RL,RRへの駆動系に設けられ、前記エンジンEngの始動と前記駆動輪RL,RRの駆動を行うモータ(モータ/ジェネレータ)MGと、
 前記エンジンEngと前記モータMGの連結部に設けられ、前記モータMGのみを駆動源とした走行中にエンジン始動要求があったとき、前記モータMGのトルクを前記エンジンEngに伝達させて前記エンジンEngを始動するモード切替機構(第1クラッチ)CL1と、を備えたハイブリッド車両に搭載され、
 前記モータMGの回転数が予め設定したモータ回転数閾値(第1閾値,第2閾値)を上回る場合には、前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を下回る場合よりも、前記エンジンEngの始動を行いにくくするエンジン始動制御部10bを備える構成とした。
 これにより、エンジン始動時のエンジン回転数上昇を抑制し、エンジン始動によって燃費が悪化することを防止できる。
 (2) 前記エンジン始動制御部10bは、
 前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を下回る場合には、ドライバー要求駆動力相当値(アクセル開度APO)が第1エンジン始動閾値th1を超えたら前記エンジンEngの始動を行い、
 前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を上回る場合には、前記ドライバー要求駆動力相当値(アクセル開度APO)が前記第1エンジン始動閾値th1よりも大きい第2エンジン始動閾値th2を超えたら前記エンジンEngの始動を行う構成とした。
 これにより、簡易な構成でモータ回転数が高いときにエンジン始動を行わせにくくすることができる。
 (3) 前記エンジン始動制御部10bは、
 前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を下回る場合には、バッテリ充電状態相当値(バッテリSOC)が第3エンジン始動閾値th3を下回ったら前記エンジンEngの始動を行い、
 前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を上回る場合には、前記バッテリ充電相当値(バッテリSOC)が前記第3エンジン始動閾値th3よりも小さい第4エンジン始動閾値th4を下回ったら前記エンジンEngの始動を行う構成とした。
 これにより、簡易な構成でモータ回転数が高いときにエンジン始動を行わせにくくすることができる。
 (4) 前記エンジン始動制御部10bは、
 ドライバー要求駆動力相当値(アクセル開度APO)とバッテリ充電状態相当値(バッテリSOC)によって設定される第1エンジン始動マップ(実線)と、前記第1エンジン始動マップ(実線)よりも少なくとも一部の前記ドライバー要求駆動力相当値(アクセル開度APO)が大きい値に設定されると共に、少なくとも一部の前記バッテリ充電相当値(バッテリSOC)が小さい値に設定される第2エンジン始動マップ(破線)と、を有し、
 前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を下回る場合には、前記第1エンジン始動マップ(実線)を用いて前記エンジンEngの始動判定を行い、
 前記モータMGの回転数が前記モータ回転数閾値(第1閾値,第2閾値)を上回る場合には、前記第2エンジン始動マップ(破線)を用いて前記エンジンEngの始動判定を行う構成とした。
 これにより、ドライバー要求駆動力とバッテリ充電状態の双方の条件に基づいてエンジン始動判定を行うことができ、エンジン始動判定をより適切に行うことができる。
 (5) 前記ハイブリッド車両は、前記モータMGから前記駆動輪RL,RRへの駆動系に設けられた変速機(自動変速機)ATを備え、
 前記エンジン始動制御部10bは、前記変速機ATの目標変速比に応じて前記モータ回転数閾値(第2閾値)を設定する構成とした。
 これにより、任意の変速段(変速比)での走行中に限って、エンジン回転数が高いときにエンジン始動させにくくすることができ、燃費悪化を効率的に抑制することができる。
 (6) 前記変速機を、複数の変速段を有する有段自動変速機(自動変速機)ATとし、
 前記エンジン始動制御部10bは、前記モータ回転数閾値(第1閾値)を、前記有段自動変速機ATの出力軸回転数と、前記有段変速機ATの目標変速段での変速比とを積算した値に設定する構成とした。
 これにより、変速中及びモータ回転数が高い領域において、エンジン回転数が高いときにエンジン始動させにくくすることができ、燃費悪化をさらに効率的に抑制すると共に、エンジン始動音の増大を防止することができる。
 以上、本発明のハイブリッド車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 上記実施例1では、モータ回転数の大きさに応じて、第1エンジン始動マップと第2エンジン始動マップとを切替設定する例を示した。しかしながら、エンジン始動しにくくする構成としては、これに限らない。例えば、モータ回転数が比較的高い場合には、エンジン始動要求が発生してからエンジン始動制御を開始するまでにタイムラグを設けてもよい。つまり、バッテリSOC及びアクセル開度APOによって決まる運転点(SOC,APO)が、エンジン始動マップを横切ったとしても、モータ回転数が比較的高いときには、直ちにエンジン始動制御を開始せず、予め設定した時間だけエンジン始動開始時間を遅らせる。
これにより、モータ回転数が高いときには、エンジン始動が行われにくくなり、エンジン回転数の上昇を抑えて、燃費悪化を防止することができる。
 しかも、このエンジン始動制御を開始するまでの時間(タイムラグ)を、自動変速機ATの変速段ごとに異ならせ、例えば、低変速段の場合ほど長い時間を設定する等してもよい。これにより、任意の変速段(変速比)での走行中に限って、エンジン回転数が高いときにエンジン始動させにくくすることができ、燃費悪化を効率的に抑制することができる。
 また、上記実施例1では、モータ回転数閾値を自動変速機ATの変速段ごとに設定する例を示したが、これに限らない。例えば、ドライバー要求駆動力相当値であるアクセル開度APOの大きさに応じてモータ回転数閾値を設定してもよい。つまり、例えばアクセルが大きく踏み込まれ、アクセル開度APOが比較的大きいときには、モータ回転数閾値を比較的高い値に設定する。このようにすることで、アクセル開度APOが大きく、ドライバー要求駆動力が高いと考えられる場合には、モータ回転数が高くてもエンジン始動を速やかに行うことができ、ドライバー要求駆動力に応えることができる。
すなわち、ドライバー要求駆動力相当値の大きさに応じてモータ回転数閾値を設定することで、ドライバー要求駆動力に速やかに応えつつ、燃費悪化を防止することができる。
 さらに、ドライバー要求駆動力相当値であるアクセル開度APOの大きさに応じて、エンジン始動要求が発生してからエンジン始動制御を開始するまでの時間(タイムラグ)を設定してもよい。つまり、アクセル開度APOが大きく、ドライバー要求駆動力が高いと考えられる場合には、エンジン始動要求の発生からエンジン始動制御の開始までの時間を比較的短くなるように設定する。これにより、アクセル開度APOが大きく、ドライバー要求駆動力が高いと考えられる場合には、エンジン始動を速やかに行うことができ、ドライバー要求駆動力に応えることができる。
 さらに、実施例1では、第1エンジン始動マップと第2エンジン始動マップの2つを、モータ回転数の大きさによって切替設定する例を示したが、これに限らない。例えば、多数のモータ回転数閾値を有し、そのモータ回転数閾値に合わせて、多数のエンジン始動マップを有するものであってもよい。
 また、実施例1では、HEVモードとEVモードを切り替えるモード切替機構として、第1クラッチCL1を用いる例を示した。しかしながら、これに限らず、例えばプラネタリギア等のように、クラッチを用いることなくクラッチ機能を発揮するような差動装置や動力分割装置を用いる例としてもよい。
 また、実施例1では、第2クラッチCL2として、自動変速機AT内の変速要素を流用し、各変速段にて締結される3つの締結要素から選択した要素を第2クラッチCL2とする例を示した。しかし、第2クラッチCL2としては、モータと自動変速機の入力軸間に介装したクラッチや自動変速機の出力軸と駆動輪との間に介装したクラッチのように、自動変速機から独立して設けられたクラッチとしてもよい。
また、自動変速機ATとしても、有段自動変速機に限らず、無段変速機や有段のマニュアル(手動)変速機、減速機であってもよい。
 また、実施例1では、「ドライバー要求駆動力相当値」として、アクセル開度APOを用いる例を示したが、これに限らず、例えば要求駆動トルク指令値や、その他運転者の要求に応じて変化する値であれば適用することができる。さらに、「バッテリ充電状態相当値」として、バッテリSOCを用いる例を示したが、これに限らず、例えばバッテリ充放電時間差や、その他バッテリ4の充電状態に応じて変化する値であれば適用することができる。
 そして、実施例1では、エンジン始動判定に用いるエンジン始動マップを、バッテリSOCとアクセル開度APOに基づいて設定した例を示したが、これに限らない。車速VSPとアクセル開度APOに基づいてエンジン始動マップを設定してもよいし、アクセル開度APOのみ、バッテリSOCのみ等、一つの値に基づいてエンジン始動マップを設定してもよい。
関連出願の相互参照
 本出願は、2013年4月4日に日本国特許庁に出願された特願2013-78696に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (6)

  1.  エンジンと、
     前記エンジンから駆動輪への駆動系に設けられ、前記エンジンの始動と前記駆動輪の駆動を行うモータと、
     前記エンジンと前記モータの連結部に設けられ、前記モータのみを駆動源とした走行中にエンジン始動要求があったとき、前記モータのトルクを前記エンジンに伝達させて前記エンジンを始動するモード切替機構と、を備えたハイブリッド車両に搭載され、
     前記モータの回転数が予め設定したモータ回転数閾値を上回る場合には、前記モータの回転数が前記モータ回転数閾値を下回る場合よりも、前記エンジンの始動を行いにくくするエンジン始動制御部を備える
     ことを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記エンジン始動制御部は、
     前記モータの回転数が前記モータ回転数閾値を下回る場合には、ドライバー要求駆動力相当値が第1エンジン始動閾値を超えたら前記エンジンの始動を行い、
     前記モータの回転数が前記モータ回転数閾値を上回る場合には、前記ドライバー要求駆動力相当値が前記第1エンジン始動閾値よりも大きい第2エンジン始動閾値を超えたら前記エンジンの始動を行う
     ことを特徴とするハイブリッド車両の制御装置。
  3.  請求項1又は請求項2に記載されたハイブリッド車両の制御装置において、
     前記エンジン始動制御部は、
     前記モータの回転数が前記モータ回転数閾値を下回る場合には、バッテリ充電状態相当値が第3エンジン始動閾値を下回ったら前記エンジンの始動を行い、
     前記モータの回転数が前記モータ回転数閾値を上回る場合には、前記バッテリ充電相当値が前記第3エンジン始動閾値よりも小さい第4エンジン始動閾値を下回ったら前記エンジンの始動を行う
     ことを特徴とするハイブリッド車両の制御装置。
  4.  請求項1から請求項3のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記エンジン始動制御部は、ドライバー要求駆動力相当値とバッテリ充電状態相当値によって設定される第1エンジン始動マップと、前記第1エンジン始動マップよりも少なくとも一部の前記ドライバー要求駆動力相当値が大きい値に設定されると共に、少なくとも一部の前記バッテリ充電相当値が小さい値に設定される第2エンジン始動マップと、を有し、
     前記モータの回転数が前記モータ回転数閾値を下回る場合には、前記第1エンジン始動マップを用いて前記エンジンの始動判定を行い、
     前記モータの回転数が前記モータ回転数閾値を上回る場合には、前記第2エンジン始動マップを用いて前記エンジンの始動判定を行う
     ことを特徴とするハイブリッド車両の制御装置。
  5.  請求項1から請求項4のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記ハイブリッド車両は、前記モータから前記駆動輪への駆動系に設けられた変速機を備え、
     前記エンジン始動制御部は、前記変速機の目標変速比に応じて前記モータ回転数閾値を設定する
     ことを特徴とするハイブリッド車両の制御装置。
  6.  請求項5に記載されたハイブリッド車両の制御装置において、
     前記変速機を、複数の変速段を有する有段自動変速機とし、
     前記エンジン始動制御部は、前記モータ回転数閾値を、前記有段自動変速機の出力軸回転数と、前記有段変速機の目標変速段での変速比とを積算した値に設定する
     ことを特徴とするハイブリッド車両の制御装置。
PCT/JP2014/056755 2013-04-04 2014-03-13 ハイブリッド車両の制御装置 WO2014162839A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20169615.0A EP3705366A1 (en) 2013-04-04 2014-03-13 Hybrid vehicle control device
RU2015146987A RU2668448C2 (ru) 2013-04-04 2014-03-13 Устройство управления гибридного транспортного средства
MYPI2015703508A MY185610A (en) 2013-04-04 2014-03-13 Hybrid vehicle control device
JP2015509975A JP6032351B2 (ja) 2013-04-04 2014-03-13 ハイブリッド車両の制御装置
CN201480019779.XA CN105102285B (zh) 2013-04-04 2014-03-13 混合动力车辆的控制装置
MX2015013960A MX347640B (es) 2013-04-04 2014-03-13 Dispositivo de control de vehiculo hibrido.
EP14779917.5A EP2982558A4 (en) 2013-04-04 2014-03-13 HYBRID VEHICLE CONTROL DEVICE
US14/781,420 US9573586B2 (en) 2013-04-04 2014-03-13 Hybrid vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013078696 2013-04-04
JP2013-078696 2013-04-04

Publications (1)

Publication Number Publication Date
WO2014162839A1 true WO2014162839A1 (ja) 2014-10-09

Family

ID=51658141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056755 WO2014162839A1 (ja) 2013-04-04 2014-03-13 ハイブリッド車両の制御装置

Country Status (7)

Country Link
US (1) US9573586B2 (ja)
EP (2) EP3705366A1 (ja)
JP (1) JP6032351B2 (ja)
CN (1) CN105102285B (ja)
MX (1) MX347640B (ja)
RU (1) RU2668448C2 (ja)
WO (1) WO2014162839A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032351B2 (ja) * 2013-04-04 2016-11-24 日産自動車株式会社 ハイブリッド車両の制御装置
EP3274227A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274230A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274231A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274228A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274226A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274229A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
JP7484948B2 (ja) 2022-01-28 2024-05-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827969B2 (en) * 2013-12-12 2017-11-28 Ford Global Technologies, Llc Controlling powertrain torque in a hybrid vehicle
US10703215B2 (en) 2014-10-20 2020-07-07 Ford Global Technologies, Llc Hybrid powertrain speed control
US10315505B2 (en) * 2015-06-11 2019-06-11 Honda Motor Co., Ltd. Internal-combustion engine starting device, vehicle, and internal-combustion engine starting method
KR101714521B1 (ko) * 2015-11-06 2017-03-22 현대자동차주식회사 하이브리드 자동차 및 그를 위한 효율적인 변속 제어 방법
DE102015223588A1 (de) * 2015-11-27 2017-06-01 Bayerische Motoren Werke Aktiengesellschaft Steuersystem mit mindestens einer elektronischen Steuereinheit zur Steuerung eines Verbrennungsmotors in einem Hybridfahrzeug
US10591025B2 (en) 2016-02-29 2020-03-17 Deere & Company Integrated starter-generator device with power transmission
US10487918B2 (en) 2016-02-29 2019-11-26 Deere & Company Integrated starter-generator device with power transmission
SE540141C2 (sv) * 2016-03-23 2018-04-10 Scania Cv Ab Förfarande för att styra en hybriddrivlina, en hybriddrivlina och ett fordon, innefattande en sådan hybriddrivlina
CN105946844B (zh) * 2016-04-28 2018-09-14 广州汽车集团股份有限公司 混合动力车辆离合器接合的控制方法和系统
JP6681785B2 (ja) * 2016-05-20 2020-04-15 本田技研工業株式会社 車両
SE541413C2 (en) * 2016-06-15 2019-09-24 Scania Cv Ab Starting an Internal Combustion Engine in a Parallel Hybrid Powertrain
SE541273C2 (en) * 2016-06-15 2019-06-04 Scania Cv Ab Starting an Internal Combustion Engine in a Parallel Hybrid Powertrain
US10479187B2 (en) 2017-11-29 2019-11-19 Deere & Company Integrated hybrid power system for work vehicle
US11731607B2 (en) * 2017-12-15 2023-08-22 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control apparatus for hybrid vehicle
MX2020006231A (es) * 2017-12-15 2020-09-03 Nissan Motor Metodo de control y dispositivo de control para vehiculo hibrido.
US11584353B2 (en) * 2017-12-15 2023-02-21 Nissan Motor Co., Ltd. Hybrid vehicle control method and hybrid vehicle control device
US10519920B2 (en) 2018-01-17 2019-12-31 Deere & Company Automatic two-mode high reduction power transmission system
JP6965799B2 (ja) 2018-03-12 2021-11-10 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US10948054B2 (en) 2019-04-16 2021-03-16 Deere & Company Multi-mode integrated starter-generator device with solenoid cam actuation apparatus
US10975937B2 (en) 2019-04-16 2021-04-13 Deere & Company Multi-mode integrated starter-generator device with cam arrangement
US10821820B1 (en) 2019-04-16 2020-11-03 Deere & Company Multi-mode starter-generator device transmission with single valve control
US11060496B2 (en) 2019-04-16 2021-07-13 Deere & Company Multi-mode integrated starter-generator device
US10968985B2 (en) 2019-04-16 2021-04-06 Deere & Company Bi-directional integrated starter-generator device
US10920730B2 (en) 2019-04-16 2021-02-16 Deere & Company Multi-mode integrated starter-generator device with dog clutch arrangement
US10920733B2 (en) 2019-04-16 2021-02-16 Deere & Company Multi-mode integrated starter-generator device with preloaded clutch
US10933731B2 (en) 2019-04-16 2021-03-02 Deere & Company Multi-mode integrated starter-generator device with magnetic cam assembly
US11156270B2 (en) 2019-04-16 2021-10-26 Deere & Company Multi-mode integrated starter-generator device with transmission assembly mounting arrangement
US10975938B2 (en) 2019-04-16 2021-04-13 Deere & Company Multi-mode integrated starter-generator device with electromagnetic actuation assembly
US10900454B1 (en) 2020-04-03 2021-01-26 Deere & Company Integrated starter-generator device with unidirectional clutch actuation utilizing a biased lever assembly
US11415199B2 (en) 2020-05-29 2022-08-16 Deere & Company Bi-directional multi-speed drive
US11193560B1 (en) 2020-05-29 2021-12-07 Deere & Company Work vehicle multi-speed drive assembly with bifurcated clutches
US12043981B2 (en) 2020-09-25 2024-07-23 Deere & Company Work vehicle drive with multiple electric machines and torque combining assembly
US11326570B1 (en) 2020-10-26 2022-05-10 Deere & Company Multi-mode integrated starter-generator device with unidirectional input
US11624170B2 (en) 2021-02-25 2023-04-11 Deere & Company Work vehicle multi-speed drive assembly with clutch retention mechanism
US11866910B2 (en) 2021-02-25 2024-01-09 Deere & Company Work vehicle multi-speed drive assembly with output control clutch
US11719209B2 (en) 2021-03-29 2023-08-08 Deere & Company Integrated starter-generator device with unidirectional clutch actuation utilizing biased lever assembly
US11761515B2 (en) 2021-05-20 2023-09-19 Deere & Company Work vehicle multi-speed drive assembly with guided dog clutch
US11686374B2 (en) 2021-07-23 2023-06-27 Deere & Company Work vehicle multi-speed drive assembly providing multiple gear ratios at same step ratio
US11754634B2 (en) * 2021-09-29 2023-09-12 Texas Instruments Incorporated Device to device measurement synchronization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261442A (ja) * 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の運転モード遷移制御装置
JP2008179242A (ja) 2007-01-24 2008-08-07 Nissan Motor Co Ltd ハイブリッド車両の変速時モード切り替え制御装置
JP2010023660A (ja) * 2008-07-18 2010-02-04 Mazda Motor Corp ハイブリッド自動車の制御方法及びその装置
JP2010201962A (ja) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011084137A (ja) * 2009-10-14 2011-04-28 Toyota Motor Corp ハイブリッド自動車
JP2012086652A (ja) * 2010-10-19 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013035336A (ja) * 2011-08-04 2013-02-21 Toyota Motor Corp 車両および車両の制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715158B2 (ja) * 1999-11-19 2005-11-09 トヨタ自動車株式会社 エンジンの停止・始動制御装置
EP2025904B1 (en) * 2006-06-07 2016-06-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP5200983B2 (ja) * 2009-02-16 2013-06-05 日産自動車株式会社 車両の駆動力制御装置及び駆動力制御方法
JP2010228672A (ja) 2009-03-27 2010-10-14 Aisin Seiki Co Ltd 車両システム
JP4860741B2 (ja) * 2009-09-30 2012-01-25 ジヤトコ株式会社 電動駆動ユニット
CN103370246B (zh) * 2010-10-22 2015-12-16 日产自动车株式会社 混合动力车辆的控制装置
KR101505349B1 (ko) * 2011-01-28 2015-03-23 쟈트코 가부시키가이샤 하이브리드 차량의 제어 장치
JP5501269B2 (ja) 2011-02-28 2014-05-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
JP5721149B2 (ja) 2013-02-07 2015-05-20 サミー株式会社 遊技機
JP6032351B2 (ja) * 2013-04-04 2016-11-24 日産自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261442A (ja) * 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の運転モード遷移制御装置
JP2008179242A (ja) 2007-01-24 2008-08-07 Nissan Motor Co Ltd ハイブリッド車両の変速時モード切り替え制御装置
JP2010023660A (ja) * 2008-07-18 2010-02-04 Mazda Motor Corp ハイブリッド自動車の制御方法及びその装置
JP2010201962A (ja) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011084137A (ja) * 2009-10-14 2011-04-28 Toyota Motor Corp ハイブリッド自動車
JP2012086652A (ja) * 2010-10-19 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013035336A (ja) * 2011-08-04 2013-02-21 Toyota Motor Corp 車両および車両の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982558A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032351B2 (ja) * 2013-04-04 2016-11-24 日産自動車株式会社 ハイブリッド車両の制御装置
EP3274227A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274230A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274231A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274228A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274226A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
EP3274229A4 (en) * 2015-03-25 2018-04-11 BYD Company Limited Hybrid electric vehicle, drive control method and device of the same
JP7484948B2 (ja) 2022-01-28 2024-05-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
EP2982558A1 (en) 2016-02-10
MX347640B (es) 2017-05-05
JPWO2014162839A1 (ja) 2017-02-16
CN105102285B (zh) 2017-10-24
MX2015013960A (es) 2015-12-08
EP3705366A1 (en) 2020-09-09
CN105102285A (zh) 2015-11-25
EP2982558A4 (en) 2016-07-20
RU2668448C2 (ru) 2018-10-01
US20160031438A1 (en) 2016-02-04
RU2015146987A (ru) 2017-05-16
JP6032351B2 (ja) 2016-11-24
US9573586B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
JP6032351B2 (ja) ハイブリッド車両の制御装置
JP5382223B2 (ja) ハイブリッド車両の制御装置
JP3915698B2 (ja) ハイブリッド車輌の制御装置
JP5730912B2 (ja) ハイブリッド車両の制御装置
JP5861891B2 (ja) ハイブリッド車両の制御装置
JP4341611B2 (ja) ハイブリッド車両のエンジン再始動制御装置
KR101763791B1 (ko) 하이브리드 차량, 및 하이브리드 차량의 제어방법
JP5353276B2 (ja) 電動車両の制御装置
JP2007237775A (ja) ハイブリッド電気自動車の制御装置
JP5975115B2 (ja) ハイブリッド車両の制御装置
JP5488712B2 (ja) ハイブリッド車両の制御装置
JP2006315488A (ja) ハイブリッド車両の発進制御装置
JP2012061898A (ja) 車両の制御システム
JP6172266B2 (ja) ハイブリッド車両の制御装置
JP2019166936A (ja) 電動車両のトルク制御方法及びトルク制御装置
JP5971407B2 (ja) ハイブリッド車両の制御装置
JP2011020540A (ja) ハイブリッド車両の制御装置
JP2010143364A (ja) 電動車両の制御装置
JP5338332B2 (ja) ハイブリッド車両の制御装置
JP2010115980A (ja) 車両用動力伝達装置の制御装置
JP5636872B2 (ja) ハイブリッド車両の制御装置
JP4434129B2 (ja) 変速機の制御装置
JP2011020660A (ja) 電動車両の制御装置
JP2010117018A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019779.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015509975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14781420

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013960

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201507012

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2014779917

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015146987

Country of ref document: RU

Kind code of ref document: A