WO2014162830A1 - 左右モータ駆動車輪の駆動力制御装置 - Google Patents

左右モータ駆動車輪の駆動力制御装置 Download PDF

Info

Publication number
WO2014162830A1
WO2014162830A1 PCT/JP2014/056333 JP2014056333W WO2014162830A1 WO 2014162830 A1 WO2014162830 A1 WO 2014162830A1 JP 2014056333 W JP2014056333 W JP 2014056333W WO 2014162830 A1 WO2014162830 A1 WO 2014162830A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
driving force
wheels
force difference
torque
Prior art date
Application number
PCT/JP2014/056333
Other languages
English (en)
French (fr)
Inventor
伊藤 健介
中島 祐樹
靖 冨田
雅土 近藤
恭幸 園田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015509970A priority Critical patent/JPWO2014162830A1/ja
Publication of WO2014162830A1 publication Critical patent/WO2014162830A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle having left and right motor drive wheels driven by individual electric motors.
  • a drive force difference for vehicle state control is controlled between the left and right motor drive wheels by controlling the corresponding electric motor.
  • the present invention relates to a driving force control device for left and right motor-driven wheels useful for setting.
  • an allowable upper limit torque is set for the motor torque of the electric motor so that the output torque of the electric motor does not become larger than, for example, the motor rated torque when controlling the driving force difference between the left and right motor driving wheels. Proposals have also been made.
  • the drive force difference control of the left and right motor drive wheels contributes to transient vehicle behavior control, etc., so it is only a momentary control, and even if the output torque of the electric motor exceeds the motor rated torque in such a moment, There is no problem with the durability of the motor.
  • the output torque of the electric motor is limited so as not to exceed the fixed allowable upper limit torque (motor rated torque).
  • the motor output torque is limited even though there is no problem with the durability of the electric motor, and the drive force difference control between the left and right motor drive wheels cannot be performed as planned. It is difficult to expect the vehicle state control aimed at.
  • the present invention does not cause a problem even if the allowable upper limit torque of the electric motor is changed in the case of the control of the driving force difference between the left and right motor-driven wheels without affecting the durability of the electric motor. From the standpoint that the change in the allowable upper limit torque enables the control of the driving force difference between the left and right motor drive wheels as planned, the left and right motor drive improved to realize the above solution by embodying this idea. It aims at proposing the driving force control device of a wheel.
  • the driving force control device for left and right motor-driven wheels is configured as follows. First, to explain the electric vehicle that is the premise of the present invention, Driven by individual electric motors, with motor-driven wheels paired on the left and right, Left and right wheel driving force difference setting means for setting a driving force difference for vehicle state control is provided between the left and right motor driving wheels by the control of the corresponding electric motor.
  • the present invention is characterized by a configuration in which the motor upper limit torque changing means as described below is provided for such an electric vehicle.
  • the motor upper limit torque changing means is configured such that the left and right wheel driving force difference setting means sets a permissible upper limit of the corresponding electric motor according to a request response or setting time of the driving force difference set between the left and right motor driving wheels, or both. The torque is changed.
  • the electric motor for controlling the setting of the driving force difference according to the request response and setting time of the driving force difference set between the left and right motor driving wheels.
  • the control of the driving force difference between the left and right motor-driven wheels is only momentarily, and even if the output torque of the electric motor exceeds the power performance limit torque during steady driving, Although there is no problem in the durability of the motor, it is possible to avoid unnecessarily restricting the output torque of the electric motor.
  • the allowable upper limit torque of the electric motor is changed according to the request response of the driving force difference and the set time, so that the output torque of the electric motor is not unnecessarily limited. Therefore, according to the present invention, it is possible to ensure that the driving force difference control between the left and right motor-driven wheels is completed as scheduled, and the vehicle state control targeted by this control can be reliably achieved. The above problem can be solved.
  • FIG. 1 is a schematic system diagram showing an overall control system related to a braking / driving system of an electric vehicle provided with a driving force control device according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of a portion related to transient yaw rate control of the vehicle controller in FIG. 3 is a flowchart showing a control program for transient yaw rate control in FIG.
  • FIG. 4 is a characteristic diagram of a motor torque allowable upper limit value when the transient yaw rate control of FIGS. 2 and 3 is executed. It is explanatory drawing which shows the combination of the request
  • FIG. 1 is a schematic system diagram showing an overall control system related to a braking / driving system of an electric vehicle provided with a driving force control device according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of a
  • FIG. 6 is a functional block diagram showing a case where the vehicle controller in FIG. 1 executes the transient acceleration / deceleration turning yaw rate control of the driving force control apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a flowchart showing a control program for transient acceleration / deceleration turning yaw rate control in FIG. 6.
  • FIG. 8 is a characteristic diagram of a motor torque allowable upper limit value when the transient acceleration / deceleration turning yaw rate control of FIGS. 6 and 7 is executed.
  • FIG. 6 is a functional block diagram showing a case where the vehicle controller in FIG.
  • FIG. 1 executes yaw rate control at the time of occurrence of steady lateral acceleration of the driving force control apparatus according to the third embodiment of the present invention.
  • 10 is a flowchart showing a control program for yaw rate control at the time of occurrence of steady lateral acceleration in FIG.
  • FIG. 11 is a characteristic diagram of a motor torque allowable upper limit value when the yaw rate control at the time of occurrence of steady lateral acceleration of FIGS. 9 and 10 is executed.
  • FIG. 7 is a functional block diagram showing a case where the vehicle controller in FIG. 1 executes the transient crosswind disturbance suppression yaw rate control of the driving force control apparatus according to the fourth embodiment of the present invention.
  • FIG. 13 is a flowchart showing a control program of transient side wind disturbance suppression yaw rate control in FIG.
  • FIG. 14 is a characteristic diagram of the motor torque allowable upper limit value when the yaw rate control for suppressing the transient cross wind disturbance of FIGS. 12 and 13 is executed.
  • FIG. 10 is a functional block diagram illustrating a case where the vehicle controller in FIG. 1 executes left and right independent traction control of the driving force control apparatus according to the fifth embodiment of the present invention.
  • 16 is a flowchart showing a control program for left and right independent traction control in FIG.
  • FIG. 17 is a characteristic diagram of a motor torque allowable upper limit value when the left and right independent traction control of FIGS. 15 and 16 is executed.
  • FIG. 1 is a schematic system diagram showing an overall control system related to a braking / driving system of an electric vehicle including a driving force control apparatus according to a first embodiment of the present invention.
  • This electric vehicle has left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR, and the left and right rear wheels 1RL and 1RR are driven by individual electric motors 3RL and 3RR (in-wheel motor IWM) built in the respective wheels.
  • the vehicle can be driven and steered by the left and right front wheels 1FL and 1FR.
  • Each of the electric motors 3RL and 3RR is a motor / generator that can also function as a generator, and the left and right rear wheels 1RL and 1RR that are motor-driven as described above can be regeneratively braked in response to a predetermined power generation load. .
  • the vehicle controller 11 includes a vehicle controller 11 for performing drive control and regenerative control of the electric motors 3RL and 3RR (in-wheel motor IWM).
  • the vehicle controller 11 further includes the electric motors 3RL and 3RR (in-wheel motor IWM).
  • the behavior control of the vehicle is also performed by controlling the driving force difference between the left and right motor-driven wheels via).
  • the vehicle controller 11 includes a signal from the accelerator opening sensor 12 that detects the accelerator opening APO that is the accelerator pedal depression amount, a signal from the steering angle sensor 13 that detects the steering angle ⁇ of the steering wheel, From the signal from the yaw rate sensor 14 that detects the yaw rate ⁇ that is the behavior around the vertical axis, the signal from the longitudinal acceleration sensor 15 that detects the longitudinal acceleration Gx of the vehicle, and the lateral acceleration sensor 16 that detects the lateral acceleration Gy of the vehicle And the signals from the wheel speed sensors 17RL and 17RR for detecting the wheel speeds Vw_L and Vw_R of the left and right rear wheels 1RL and 1RR driven by the motor.
  • the vehicle controller 11 calculates the target motor torques Tm_L and Tm_R of the electric motors 3RL and 3RR related to the left and right rear wheels 1RL and 1RR based on these input information (a positive value is a driving torque and a negative value is a regenerative braking torque). Ask for.
  • These target motor torques Tm_L and Tm_R are commanded to the inverter 18 that controls the drive and regenerative control of the electric motors 3RL and 3RR, and the inverter 18 responds to the target motor torques Tm_L and Tm_R to generate an electric motor from a battery (not shown).
  • This transient yaw rate control is as shown in the functional block diagram of FIG. 2 and is performed as shown in the flowchart of FIG.
  • the target acceleration calculation unit 21 step S21
  • the target acceleration ⁇ of the vehicle requested by the driver is retrieved and obtained from the accelerator opening APO and the vehicle speed VSP based on a planned map.
  • a power performance limit line (for example, a motor rated torque line) that represents the power performance limit torque during steady driving of the motor shown by a solid line in FIG. )
  • the power performance limit value for example, motor rated torque
  • limit the motor torque command value tTm so as not to exceed this value, and set the acceleration torque command value tTm_Lim (left acceleration torque command value tTm_Lim_L, (Right acceleration torque command value tTm_Lim_R).
  • the target yaw rate calculation unit 24 (step S24), the target yaw rate t ⁇ of the vehicle is searched from the steering angle ⁇ and the vehicle speed VSP based on the planned map.
  • the yaw moment calculation unit 25 (step S25), the yaw moment My necessary for realizing the target yaw rate t ⁇ is calculated.
  • the left and right wheel motor torque difference calculation unit 26 corresponds to the left and right wheel driving force difference setting means in the present invention.
  • the acceleration torque command value tTm_Lim (left acceleration torque command value) obtained by the left wheel power performance limiting unit 23L and the right wheel power performance limiting unit 23R (step S23)
  • Motor torque for transient yaw rate control by adding / subtracting tTm_Lim_L, right acceleration torque command value tTm_Lim_R) by half value ( ⁇ tTm / 2) of left / right wheel motor torque difference ⁇ tTm obtained by left / right wheel motor torque difference calculation unit 26 (step S26)
  • Command values tTm_Y (left wheel transient yaw rate control motor torque command value tTm_Y_L, right wheel transient yaw rate control motor torque command value tTm_Y_R) are obtained.
  • the transient yaw rate control motor torque command value calculation unit 27 (step S27), together with the left and right wheel motor torque difference calculation unit 26 (step S26), constitutes the left and right wheel driving force difference setting means in the present invention.
  • the transient yaw rate control motor torque command value tTm_Y (left wheel transient yaw rate control motor torque command value tTm_Y_L, right wheel transient yaw rate, obtained as described above) Limit these tTm_Y (tTm_Y_L, tTm_Y_R) so that the control motor torque command value tTm_Y_R does not exceed the motor torque allowable upper limit value Tm_Lim_Y at the time of transient yaw rate control illustrated by the one-dot chain line in Fig. 4.
  • Yaw rate control motor torque command values Tm_L and Tm_R are output as shown in FIG. 1 and used for drive control of the electric motors 3Rl and 3RR. Therefore, the transient yaw rate control motor torque limiters 28L and 28R (step S28) correspond to the motor upper limit torque changing means in the present invention.
  • the allowable upper limit value Tm_Lim_Y of the motor torque during transient yaw rate control illustrated by the one-dot chain line in FIG. 4 is larger than the power performance limit value (for example, motor rated torque) indicated by the solid line in the same figure in all wheel rotation speed ⁇ regions. Torque value.
  • the motor torque allowable upper limit value Tm_Lim_Y during transient yaw rate control is the difference torque between the left and right motor torque command values required to achieve the target yaw rate obtained from the steering angle ⁇ and the vehicle speed VSP (the difference in driving force between the left and right motor drive wheels)
  • VSP vehicle speed
  • the reason for this is that the higher the required response of the driving force difference between the left and right motor driving wheels, and the shorter the set time of the driving force difference between the left and right motor driving wheels, the greater the driving force in the left and right wheel driving force difference control. This is because even if the motor torque exceeds the motor rated torque, the application time of the excess torque is short and there is no possibility of impairing the durability of the electric motor.
  • the left and right wheel driving force difference control may be performed for the following purposes in addition to the above-described transient yaw rate control, and as a result of the control, a driving force difference may be generated between the left and right wheels.
  • Yaw rate feedback type transient yaw rate control in which a driving force difference is set between the left and right motor drive wheels so as to reduce the difference between the vehicle yaw rate detection value ⁇ and the target yaw rate t ⁇ according to the driving state.
  • Transient acceleration / deceleration yaw rate control in which a driving force difference is set between the left and right motor drive wheels so as to reduce the yaw rate change during acceleration / deceleration operation in which vehicle longitudinal load movement occurs.
  • the motor torque allowable upper limit value can be maximized in the left and right independent TCS compared to other controls.
  • the motor torque allowable upper limit can be increased at the time of yaw rate control for transient side wind disturbance suppression,
  • the motor torque allowable upper limit value can be increased during the transient yaw rate control described in the above embodiment.
  • the margin for allowing the motor torque allowable upper limit value to be larger than the motor rated torque is the smallest.
  • the yaw rate ⁇ of the vehicle is obtained from the steering angle ⁇ and the vehicle speed VSP every moment.
  • the motor torque allowable upper limit value Tm_Lim_Y of the left and right in-wheel motors 3RL, 3RR is larger than the power performance limit value (for example, motor rated torque) shown in the solid line as shown in FIG.
  • the upper limit value Tm_Lim_Y for motor torque at the time of transient yaw rate control is set to the higher the required response of the differential torque between the left and right motor torque command values for achieving the target yaw rate (the difference in driving force between the left and right motor drive wheels), In order to change the torque difference between the motor torque command values (the difference in driving force between the left and right motor drive wheels) as the time for setting becomes shorter, It is possible to obtain an effect.
  • the above-described left-right motor drive wheel driving force difference control is only a moment, and the output torque of the left and right in-wheel motors 3RL, 3RR is the power performance limit value (for example, motor rated torque) indicated by the solid line in FIG. Even if it exceeds, it is possible to avoid unnecessarily restricting the output torque of the left and right in-wheel motors 3RL and 3RR even though the durability of the left and right in-wheel motors 3RL and 3RR is not affected.
  • the power performance limit value for example, motor rated torque
  • the motor torque allowable upper limit value Tm_Lim_Y during the transient yaw rate control of the left and right in-wheel motors 3RL and 3RR is set to the difference torque between the left and right motor torque command values for realizing the target yaw rate (the difference in driving force between the left and right motor drive wheels).
  • the function / effect is a yaw rate feedback type transient yaw rate control that sets a driving force difference between the left and right motor drive wheels so as to reduce the difference between the detected yaw rate value ⁇ of the vehicle and the target yaw rate t ⁇ according to the driving state. Needless to say, the same can be achieved in the case of.
  • the left and right motor drive wheel driving force difference control of the second embodiment which is executed by the vehicle controller 11 via the electric motors 3RL and 3RR, is the transient acceleration / deceleration turning yaw rate control, that is, acceleration / deceleration turning.
  • the case where the driving force difference is set between the left and right motor drive wheels 1RL and 1RR so as to suppress the yaw rate change at the time will be described below.
  • This transient acceleration / deceleration turning yaw rate control is as shown in the functional block diagram of FIG. 6 and is performed as shown in the flowchart of FIG.
  • the target acceleration ⁇ of the vehicle requested by the driver is retrieved from the accelerator opening APO and the vehicle speed VSP based on the planned map.
  • the target acceleration ⁇ of the vehicle requested by the driver is retrieved from the accelerator opening APO and the vehicle speed VSP based on the planned map. Ask.
  • the left wheel power performance limiting unit 23L and the right wheel power performance limiting unit 23R are based on the power performance limiting line (for example, the motor rated torque line) shown by the solid line in FIG.
  • a power performance limit value for example, motor rated torque
  • tTm is obtained from the wheel rotational speed ⁇ , and the motor torque command value tTm is limited so as not to exceed this value, and the acceleration torque command value tTm_Lim (left acceleration torque command value tTm_Lim_L, right acceleration torque Command value tTm_Lim_R).
  • the target yaw rate calculation unit 24 (step S24), the target yaw rate t ⁇ of the vehicle is searched from the steering angle ⁇ and the vehicle speed VSP based on the planned map, as described above with reference to FIGS.
  • the acceleration / deceleration turning yaw rate change suppression target yaw rate calculation unit 31 (step S31), the acceleration / deceleration turning yaw rate change suppression yaw rate change target yaw rate t ⁇ _Gx_ ⁇ Y is calculated from the accelerator opening APO, the brake pedal depression amount BPO, and the target yaw rate t ⁇ . Obtained as follows.
  • the longitudinal acceleration of the vehicle is calculated from the accelerator opening APO and the brake pedal depression amount BPO (may be detected by a longitudinal acceleration sensor), and the longitudinal load movement of the vehicle is obtained from the longitudinal acceleration.
  • the yaw rate change during acceleration / deceleration turning accompanying the forward / backward load movement is calculated, and the target yaw rate for suppressing acceleration / deceleration turning yaw rate change necessary to suppress this as intended.
  • t ⁇ _Gx_ ⁇ Y is determined.
  • the yaw moment necessary for realizing the target yaw rate t ⁇ and the yaw moment required for realizing the target yaw rate t ⁇ _Gx_ ⁇ Y for suppressing the yaw rate change during acceleration / deceleration turning are added.
  • the yaw moment My that can achieve these target yaw rates is calculated.
  • the left and right wheel motor torque difference calculation unit 33 step S33
  • the left and right wheel motor torque difference ⁇ tTm necessary to generate the yaw moment My is calculated by calculating the yaw moment My, the tread width Lw, and the transmission gear ratio i.
  • step S34 the acceleration torque command value tTm_Lim (left) obtained by the left wheel power performance limiting unit 23L and the right wheel power performance limiting unit 23R (step S23)
  • the acceleration torque command value tTm_Lim_L and the right acceleration torque command value tTm_Lim_R) are added / subtracted by the half value ( ⁇ tTm / 2) of the left / right wheel motor torque difference ⁇ tTm obtained by the left / right wheel motor torque difference calculation unit 33 (step S33).
  • the motor torque command value tTm_Y_Gx for suppressing the yaw rate change during turning (the left wheel motor torque command value tTm_Y_Gx_L for suppressing the yaw rate change during acceleration / deceleration turning, and the right wheel motor torque command value tTm_Y_Gx_R for suppressing the yaw rate change during acceleration / deceleration turning) are obtained.
  • the acceleration torque command value tTm_Lim on the outer wheel side depends on the direction It goes without saying that the half value ( ⁇ tTm / 2) of the wheel motor torque difference ⁇ tTm is added and the half value ( ⁇ tTm / 2) of the left and right wheel motor torque difference ⁇ tTm is subtracted from the acceleration torque command value tTm_Lim on the inner wheel side.
  • the acceleration / deceleration turning yaw rate change suppression motor torque command value calculation unit 34 (step S34), together with the left and right wheel motor torque difference calculation unit 33 (step S33), constitutes left and right wheel driving force difference setting means in the present invention.
  • the transient acceleration / deceleration turning yaw rate change suppression motor torque command value tTm_Y_Gx (acceleration / deceleration turning yaw rate change suppression) determined as described above is used.
  • the left wheel motor torque command value tTm_Y_Gx_L and the right wheel motor torque command value tTm_Y_Gx_R for suppressing acceleration / deceleration turning yaw rate change do not exceed the allowable upper limit value Tm_Lim_Y_Gx for transient acceleration / deceleration turning control torque illustrated by the one-dot chain line in FIG.
  • tTm_Y_Gx (tTm_Y_Gx_L, tTm_Y_Gx_R) are respectively limited to obtain the final transient acceleration / deceleration turning control motor torque command values Tm_L, Tm_R, which are output as shown in FIG. 1 and output to the electric motors 3Rl, 3RR. Used for drive control. Therefore, the transient acceleration / deceleration turning control motor torque limiters 35L and 35R (step S35) correspond to the motor upper limit torque changing means in the present invention.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gx for the transient acceleration / deceleration turning control exemplified in FIG. 8 by the alternate long and short dash line is the power performance limit value (for example, motor rated torque) indicated by the solid line in FIG. Larger torque value.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gx for the transient acceleration / deceleration turning control is the difference torque between the left and right motor torque command values necessary to realize the target yaw rate t ⁇ and the target yaw rate t ⁇ _Gx_ ⁇ Y for suppressing the yaw rate change during acceleration / deceleration turning (the left and right motors). The higher the request response of the driving wheel driving force difference), the shorter the time for setting the difference torque between the left and right motor torque command values (the driving force difference between the left and right motor driving wheels).
  • the reason for this is that the higher the required response of the driving force difference between the left and right motor driving wheels, and the shorter the set time of the driving force difference between the left and right motor driving wheels, the greater the driving force in the left and right wheel driving force difference control. This is because even if the motor torque exceeds the motor rated torque, the application time of the excess torque is short and there is no possibility of impairing the durability of the electric motor.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gx of the left and right in-wheel motors 3RL and 3RR is set to a torque value larger than the power performance limit value (for example, motor rated torque) shown in the solid line as shown in FIG.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gx for turning yaw rate change suppression control is the difference torque between the left and right motor torque command values required to realize the target yaw rate t ⁇ and the target yaw rate t ⁇ _Gx_ ⁇ Y for turning acceleration / deceleration turning yaw rate change
  • the higher the required response of the driving force difference the difference torque between the left and right motor torque command values (left and right motor driving wheels)
  • the output torque of the left and right in-wheel motors 3RL and 3RR can be prevented from being unnecessarily large and the drive power difference between the left and right motor drive wheels as planned due to the restriction. It is possible to avoid the problem that the control is not performed and the effect of suppressing the yaw rate change during the aimed transient acceleration / deceleration turning cannot be obtained.
  • the left and right motor drive wheel driving force difference control of the third embodiment which is executed by the vehicle controller 11 via the electric motors 3RL and 3RR, is related to the yaw rate control at the time of steady lateral acceleration occurrence, that is, the vehicle vehicle.
  • the case where the driving force difference is set between the left and right motor drive wheels 1RL and 1RR so as to suppress the change in the yaw rate during cornering that causes the load movement in the width direction will be described below.
  • Target acceleration calculator 21 (step S21), single wheel motor torque calculator 22 (step S22), left wheel power performance limiter 23L and right wheel power performance limiter 23R (step S23), and target yaw rate calculator 24 (step S24) )
  • step S21 single wheel motor torque calculator 22
  • step S22 left wheel power performance limiter 23L and right wheel power performance limiter 23R
  • step S24 target yaw rate calculator 24
  • the motor torque command value tTm is limited so as not to exceed a limit value (for example, motor rated torque), and is determined as an acceleration torque command value tTm_Lim (left acceleration torque command value tTm_Lim_L, right acceleration torque command value tTm_Lim_R).
  • the target yaw rate calculation unit 24 the target yaw rate t ⁇ of the vehicle is searched from the steering angle ⁇ and the vehicle speed VSP based on the planned map.
  • the target yaw rate calculation unit 41 for suppressing the yaw rate change when steady lateral acceleration occurs, from the lateral acceleration Gy detected by the sensor 16 of FIG. 1 and the target yaw rate t ⁇ obtained by the target yaw rate calculation unit 24 (step S24). Then, the target yaw rate t ⁇ _Gy_ ⁇ Y for suppressing the yaw rate change when the steady lateral acceleration is generated is obtained as follows.
  • the vehicle width direction load movement from the detected lateral acceleration Gy
  • the target yaw rate t ⁇ from this vehicle width direction load movement and the target yaw rate t ⁇ , the yaw rate change accompanying the vehicle width direction load movement is calculated, and the yaw rate change suppression when the vehicle width direction load movement occurs is necessary to suppress this as intended.
  • the target yaw rate t ⁇ _Gy_ ⁇ Y is determined.
  • the yaw moment necessary for realizing the target yaw rate t ⁇ and the yaw moment required for realizing the target yaw rate t ⁇ _Gy_ ⁇ Y for suppressing the yaw rate change when steady lateral acceleration occurs are added.
  • yaw moment My that can realize these target yaw rates is calculated.
  • the left and right wheel motor torque difference calculation unit 43 step S43
  • the left and right wheel motor torque difference ⁇ tTm necessary to generate the yaw moment My is calculated as the yaw moment My, the tread width Lw, and the transmission gear ratio i.
  • the motor torque command value calculation unit 44 for suppressing the yaw rate change during the occurrence of steady lateral acceleration generates the acceleration torque command value tTm_Lim (obtained by the left wheel power performance limiting unit 23L and the right wheel power performance limiting unit 23R (step S23)).
  • the left acceleration torque command value tTm_Lim_L and the right acceleration torque command value tTm_Lim_R) are added and subtracted by the half value ( ⁇ tTm / 2) of the left and right wheel motor torque difference ⁇ tTm calculated by the left and right wheel motor torque difference calculation unit 43 (step S43).
  • the motor torque command value tTm_Y_Gy for suppressing the yaw rate change when lateral acceleration is generated (the left wheel motor torque command value tTm_Y_Gy_L for suppressing the yaw rate change during acceleration / deceleration turning, the right wheel motor torque command value tTm_Y_Gy_R for suppressing the yaw rate change during acceleration / deceleration turning) is obtained.
  • the wheel side acceleration torque command value tTm_Lim is It goes without saying that the half value ( ⁇ tTm / 2) of the wheel motor torque difference ⁇ tTm is added and the half value ( ⁇ tTm / 2) of the left and right wheel motor torque difference ⁇ tTm is subtracted from the acceleration torque command value tTm_Lim on the inner wheel side.
  • the motor torque command value calculation unit 44 for suppressing the yaw rate change during the occurrence of steady lateral acceleration constitutes the left and right wheel driving force difference setting means in the present invention together with the left and right wheel motor torque difference calculation unit 43 (step S43). .
  • the motor torque limiter 45L, 45R for control at the time of occurrence of steady lateral acceleration calculates the motor torque command value tTm_Y_Gy for suppressing the yaw rate change at the time of occurrence of steady lateral acceleration (as described above)
  • Left wheel motor torque command value tTm_Y_Gy_L and right wheel motor torque command value tTm_Y_Gy_R for suppressing acceleration / deceleration turning yaw rate change do not exceed the motor torque allowable upper limit value Tm_Lim_Y_Gy for steady lateral acceleration generation illustrated in FIG.
  • tTm_Y_Gy (tTm_Y_Gy_L, tTm_Y_Gy_R) are respectively limited to obtain final steady-state lateral acceleration generation control motor torque command values Tm_L and Tm_R, which are output as shown in FIG. 1 and output to the electric motors 3Rl and 3RR. Used for drive control. Therefore, the motor torque limiters 45L and 45R for controlling the occurrence of steady lateral acceleration (step S45) correspond to the motor upper limit torque changing means in the present invention.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gy for steady lateral acceleration occurrence exemplified in FIG. 11 is a power performance limit value (for example, motor rated torque) indicated by a solid line in all wheel rotation speed ⁇ regions. Larger torque value.
  • the allowable upper limit value Tm_Lim_Y_Gy of the control torque at the time of occurrence of steady lateral acceleration is the difference torque between the left and right motor torque command values necessary to realize the target yaw rate t ⁇ and the target yaw rate t ⁇ _Gy_ ⁇ Y for suppressing the yaw rate change at the time of steady lateral acceleration occurrence (right and left).
  • the higher the request response of the motor driving wheel driving force difference) the shorter the time for setting the differential torque between the left and right motor torque command values (the driving force difference between the left and right motor driving wheels).
  • the reason for this is that the higher the required response of the driving force difference between the left and right motor driving wheels, and the shorter the set time of the driving force difference between the left and right motor driving wheels, the greater the driving force in the left and right wheel driving force difference control. This is because even if the motor torque exceeds the motor rated torque, the application time of the excess torque is short and there is no possibility of impairing the durability of the electric motor.
  • the left and right motor driving wheels for suppressing the yaw rate change when the steady lateral acceleration occurs
  • the motor torque allowable upper limit value Tm_Lim_Y_Gy is set to a torque value larger than the power performance limit value (for example, motor rated torque) shown in the solid line as shown in FIG.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gy for controlling the yaw rate change at the time of acceleration occurrence is set to the difference torque between the left and right motor torque command values necessary for realizing the target yaw rate t ⁇ and the motor torque command value tTm_Y_Gy for suppressing the yaw rate change at the time of steady lateral acceleration.
  • the difference torque between the left and right motor torque command values (left In order to change so that the shorter the time to set the right motor drive wheel driving force difference)
  • the output torque of the left and right in-wheel motors 3RL and 3RR can be prevented from being unnecessarily large and the drive power difference between the left and right motor drive wheels as planned due to the restriction. It is possible to avoid the problem that the control is not performed and the effect of suppressing the yaw rate change at the time of occurrence of the target steady lateral acceleration cannot be obtained.
  • the vehicle controller 11 performs the drive force difference control between the left and right motor-driven wheels performed by the vehicle controller 11 via the electric motors 3RL and 3RR.
  • a driving force difference is set between the left and right motor drive wheels 1RL and 1RR so as to suppress disturbance will be described below.
  • Target acceleration calculator 21 (step S21), single wheel motor torque calculator 22 (step S22), left wheel power performance limiter 23L and right wheel power performance limiter 23R (step S23), and target yaw rate calculator 24 (step S24) )
  • step S21 single wheel motor torque calculator 22
  • step S22 left wheel power performance limiter 23L and right wheel power performance limiter 23R
  • step S24 target yaw rate calculator 24
  • the motor torque command value tTm is limited so as not to exceed a limit value (for example, motor rated torque), and is determined as an acceleration torque command value tTm_Lim (left acceleration torque command value tTm_Lim_L, right acceleration torque command value tTm_Lim_R).
  • the target yaw rate calculation unit 24 the target yaw rate t ⁇ of the vehicle is searched from the steering angle ⁇ and the vehicle speed VSP based on the planned map.
  • the target yaw rate calculation unit 51 for suppressing the transient cross wind disturbance, the deviation between the yaw ⁇ detected by the sensor 14 of FIG. 1 and the target yaw rate t ⁇ obtained by the target yaw rate calculation unit 24 (step S24) is detected. (Yaw rate change, which is a disturbance due to a transient crosswind) is obtained, and a transient crosswind disturbance suppression target yaw rate t ⁇ _Gyw_ ⁇ Y necessary to suppress this as intended is determined.
  • the yaw moment necessary for realizing the target yaw rate t ⁇ and the yaw moment required for realizing the transient side wind disturbance suppression target yaw rate t ⁇ _Gyw_ ⁇ Y are added together.
  • the yaw moment My that can achieve the target yaw rate is calculated.
  • the left and right wheel motor torque difference calculation unit 53 step S53
  • the left and right wheel motor torque difference ⁇ tTm necessary to generate the yaw moment My is calculated by calculating the yaw moment My, the tread width Lw, and the transmission gear ratio i.
  • the acceleration torque command value tTm_Lim left acceleration torque obtained by the left wheel power performance limiting unit 23L and the right wheel power performance limiting unit 23R (step S23)
  • Motor torque command value tTm_Y_Gyw transient side wind disturbance suppression left wheel motor torque command value tTm_Y_Gyw_L, transient side wind disturbance suppression right wheel motor torque command value tTm_Y_Gyw_R.
  • the left and right wheel motor torque difference is added to the acceleration torque command value tTm_Lim on the outer wheel side.
  • the half value of ⁇ tTm ( ⁇ tTm / 2) is added, and the half value ( ⁇ tTm / 2) of the left and right wheel motor torque difference ⁇ tTm is subtracted from the inner wheel side acceleration torque command value tTm_Lim.
  • the transient side wind disturbance suppression control motor torque command value calculation unit 54 step S54
  • the left and right wheel motor torque difference calculation unit 53 step S53
  • the transient side wind disturbance suppression control motor torque command value tTm_Y_Gyw (transient side wind disturbance suppression control left wheel motor torque command value determined as described above)
  • tTm_Y_Gyw_L right side motor torque command value for transient side wind disturbance suppression control tTm_Y_Gyw (tTm_Y_G)
  • Tm_L and Tm_R for transient cross wind disturbance suppression control
  • the allowable upper limit value Tm_Lim_Y_Gyw for transient side wind disturbance suppression control illustrated by the one-dot chain line in FIG. 14 is the power performance limit value (for example, motor rated torque) indicated by the solid line in the same figure in all wheel rotation speed ⁇ regions. Is also set to a large torque value.
  • the allowable upper limit Tm_Lim_Y_Gyw for transient side wind disturbance suppression control is the difference torque between the left and right motor torque command values required to realize the target yaw rate t ⁇ and the target yaw rate t ⁇ _Gyw_ ⁇ Y for transient side wind disturbance suppression (drive between the left and right motor drive wheels) It is assumed that the higher the request response of (force difference), the greater the shorter the time for setting the difference torque between the left and right motor torque command values (the difference in driving force between the left and right motor drive wheels).
  • the reason for this is that the higher the required response of the driving force difference between the left and right motor driving wheels, and the shorter the set time of the driving force difference between the left and right motor driving wheels, the greater the driving force in the left and right wheel driving force difference control. This is because even if the motor torque exceeds the motor rated torque, the application time of the excess torque is short and there is no possibility of impairing the durability of the electric motor.
  • the left and right motor drive wheel drive force control device (left and right motor drive wheel drive force difference control) according to the fourth embodiment described above is a left and right motor for suppressing a yaw rate change (disturbance) when a transient cross wind occurs.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gyw of the left and right in-wheel motors 3RL and 3RR is set to a torque value larger than the power performance limit value (for example, motor rated torque) shown in the solid line as shown in FIG.
  • the motor torque allowable upper limit value Tm_Lim_Y_Gyw for transient side wind disturbance (yaw rate change) suppression control is set to the difference torque between the left and right motor torque command values required to achieve the target yaw rate t ⁇ and the transient side wind disturbance suppression motor torque command value tTm_Y_Gyw (left and right motor drive).
  • the difference torque between the left and right motor torque command values (left and right motor driving wheels)
  • the output torque of the left and right in-wheel motors 3RL and 3RR can be prevented from being unnecessarily large and the drive power difference between the left and right motor drive wheels as planned due to the restriction. It is possible to avoid the problem that control is not performed and the effect of suppressing the targeted transient cross wind disturbance (yaw rate change) cannot be obtained.
  • the vehicle controller 11 performs the driving force difference control between the left and right motor-driven wheels of the fifth embodiment, which is executed via the electric motors 3RL and 3RR, for each left and right wheel independent traction control (left and right independent TCS). That is, torque control is performed on the corresponding electric motors 3RL and 3RR so that the slip ratios of the left and right motor drive wheels 1RL and 1RR individually approach the target, and a drive force difference is set between the left and right motor drive wheels 1RL and 1RR as a result of the torque control. This will be explained below.
  • the left and right motor-driven wheel driving force difference control by the left and right independent TCS is as shown by the functional block diagram of FIG. 15, and is performed as shown in the flowchart of FIG.
  • the target acceleration calculating unit 21 (step S21), the single wheel motor torque calculating unit 22 (step S22), the left wheel power performance limiting unit 23L, and the right wheel power performance limiting unit 23R (step S23) are respectively the first and second described above. This is the same as in the examples (FIGS. 2, 3 and FIGS. 6, 7).
  • the motor torque command value tTm is limited so as not to exceed a limit value (for example, motor rated torque), and is determined as an acceleration torque command value tTm_Lim (left acceleration torque command value tTm_Lim_L, right acceleration torque command value tTm_Lim_R).
  • the target slip ratio So (So_L, So_R) of the left and right motor drive wheels 1RL and 1RR is obtained from the vehicle speed VSP by map search.
  • the actual slip ratio S (S_L, S_R) is determined from the wheel speed Vw (Vw_L, Vw_R) and the vehicle speed VSP of the left and right motor drive wheels 1RL, 1RR. )
  • Tm_TCS Tm_TCS_L, Tm_TCS_R
  • So_L, So_R target slip ratio So
  • the left and right independent TCS left wheel motor torque Tm_TCS (Tm_TCS_L, Tm_TCS_R) obtained as described above is shown by the left and right independent lines illustrated in FIG.
  • Tm_TCS (Tm_TCS_L, Tm_TCS_R) are limited respectively so as not to exceed the TCS motor torque allowable upper limit value Tm_Lim_TCS, and the final motor torque command values Tm_L, Tm_R for left and right independent TCS are obtained, as shown in FIG.
  • the output is used for drive control of the electric motors 3Rl and 3RR. Accordingly, the left and right independent TCS motor torque limiters 63L and 63R (step S63) correspond to the motor upper limit torque changing means in the present invention.
  • the motor torque allowable upper limit value Tm_Lim_TCS for left and right independent TCS illustrated by the one-dot chain line in FIG. 17 is greater than the power performance limit value (for example, the motor rated torque) indicated by the solid line in FIG. Use a large torque value.
  • the motor torque allowable upper limit value Tm_Lim_TCS for left and right independent TCS is the difference torque between left and right motor torques Tm_TCS_L and Tm_TCS_R set by left and right independent TCS motor torque calculation units 62L and 62R (step S62). It is assumed that the higher the request response of (force difference), the greater the shorter the time for setting the difference torque between the left and right motor torques (the difference in driving force between the left and right motor drive wheels).
  • the reason for this is that the higher the required response of the driving force difference between the left and right motor driving wheels, and the shorter the set time of the driving force difference between the left and right motor driving wheels, the greater the driving force in the left and right wheel driving force difference control. This is because even if the motor torque exceeds the motor rated torque, the application time of the excess torque is short and there is no possibility of impairing the durability of the electric motor.
  • the left and right motor drive wheel driving force control device (right and left motor drive wheel driving force difference control) according to the fifth embodiment described above, the left and right motor driving wheel driving force difference control by the left and right independent TCS is performed.
  • the motor torque allowable upper limit value Tm_Lim_TCS of the wheel motors 3RL and 3RR is set to a torque value larger than the power performance limit value (for example, motor rated torque) shown in the solid line as shown in FIG.
  • the motor torque allowable upper limit value Tm_Lim_TCS for the left and right independent TCS Is changed so that the higher the request response of the driving force difference between the left and right motor drive wheels necessary for the execution of the left and right independent TCS, and the shorter the setting time of the driving force difference between the left and right motor drive wheels,
  • the output torques of the left and right in-wheel motors 3RL and 3RR can be avoided from being unnecessarily large.
  • the problem that the anti-slip effect by the independent TCS is not as intended can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 S21で目標加速度αを求め、S22で、α実現用のモータトルク指令値tTmを求め、S23で、tTmがモータ定格トルクを超えないよう制限して加速トルク指令値tTm_Limと定める。S24で、目標ヨーレートtφを検索し、S25で、tφを実現するヨーモーメントMyを演算する。S26で、Myを生じさせる左右輪モータトルク差ΔtTmを演算し、S27で、左右輪の加速トルク指令値tTm_Limをトルク差ΔtTmの半値(ΔtTm/2)だけ加減算して、過渡ヨーレート制御用モータトルク指令値tTm_Yを求める。S28でtTm_Yが、制御応答の高いほどモータ定格トルクよりも大きく定めた過渡ヨーレート制御時モータトルク許容上限値Tm_Lim_Yを超えることのないよう制限して、モータの駆動制御に資する。

Description

左右モータ駆動車輪の駆動力制御装置
 本発明は、個々の電動モータにより駆動される左右モータ駆動車輪を具えた電動車両に関し、特に、これら左右モータ駆動車輪間に、対応する電動モータの制御によって、車両状態制御用の駆動力差を設定する際に有用な左右モータ駆動車輪の駆動力制御装置に関するものである。
 上記のごとく、個々の電動モータにより駆動される左右モータ駆動車輪を具えた電動車両において、これら左右モータ駆動車輪間に、個々のモータトルク制御により駆動力差を設定することで、例えば車両のヨーレート挙動を過渡制御する装置としては従来、例えば特許文献1に示されているようなものが知られている。
 この特許文献1においては更に、左右モータ駆動車輪の駆動力差制御に際して、電動モータの出力トルクが、例えばモータ定格トルクよりも大きくなることのないよう、電動モータのモータトルクに許容上限トルクを設定する提案もなされている。
特開2005-073457号公報
 しかし、上記した提案技術のごとくモータトルクに固定の許容上限トルクを設定する場合、左右モータ駆動車輪の駆動力差制御に際し、電動モータの出力トルクが上記固定の許容上限トルクを超えて発生することはなく、以下の問題を生ずる。
 つまり左右モータ駆動車輪の駆動力差制御は、過渡的な車両挙動制御などに資することから、ほんの一瞬の制御であり、かかる一瞬に電動モータの出力トルクがモータ定格トルクを超えたとしても、電動モータの耐久性に何ら支障はない。
 しかるに従来のように、このような一瞬の左右モータ駆動車輪間駆動力差制御に際しても、電動モータの出力トルクが上記固定の許容上限トルク(モータ定格トルク)を超えて発生することのないよう制限したのでは、電動モータの耐久性に何ら支障がないにもかかわらず、モータ出力トルクの上記制限がなされることとなり、予定通りの左右モータ駆動車輪間駆動力差制御を行い得ず、この制御が狙いとする車両状態制御を期し難い。
 本発明は、電動モータの耐久性に支障が及ぶことのない左右モータ駆動車輪間駆動力差制御である場合、電動モータの許容上限トルクを変化させても問題になることがないとの観点から、そして当該許容上限トルクの変化は、予定通りの左右モータ駆動車輪間駆動力差制御を可能にするとの観点から、この着想を具体化して上記の問題解決を実現し得るよう改良した左右モータ駆動車輪の駆動力制御装置を提案することを目的とする。
 この目的のため、本発明による左右モータ駆動車輪の駆動力制御装置は、これを以下のごとくに構成する。
 先ず本発明の前提となる電動車両を説明するに、これは、
 個々の電動モータにより駆動され、左右で対をなすモータ駆動車輪を具え、
 これら左右モータ駆動車輪間に、対応する前記電動モータの制御によって、車両状態制御用の駆動力差を設定する左右輪駆動力差設定手段を設けたものである。
 本発明はかかる電動車両に対し、以下のようなモータ上限トルク変更手段を設けた構成に特徴づけられる。
 このモータ上限トルク変更手段は、前記左右輪駆動力差設定手段が前記左右モータ駆動車輪間に設定する駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるものである。
 かかる本発明による左右モータ駆動車輪の駆動力制御装置にあっては、左右モータ駆動車輪間に設定する駆動力差の要求応答や設定時間に応じ、当該駆動力差の設定に際して制御する電動モータの許容上限トルクを変化させるため、
 上記駆動力差の要求応答や設定時間次第では、左右モータ駆動車輪間駆動力差制御がほんの一瞬であり、かかる一瞬に電動モータの出力トルクが定常駆動時動力性能制限トルクを超えても、電動モータの耐久性に支障がないにもかかわらず、電動モータの出力トルクを不必要に大きく制限してしまうのを回避することができる。
 そして、かように電動モータの出力トルクを不必要に大きく制限すると、予定通りの左右モータ駆動車輪間駆動力差制御が行われず、この制御が狙いとする車両状態制御を期し難いが、
 本発明によれば電動モータの許容上限トルクを駆動力差の要求応答や設定時間に応じて変化させるため、電動モータの出力トルクを不必要に大きく制限してしまうことがなくなる。
 よって本発明によれば、予定通りに左右モータ駆動車輪間駆動力差制御が完遂されるのを保証することができ、この制御が狙いとする車両状態制御を確実に達成し得ることとなって、上記の問題解決を実現することができる。
本発明の第1実施例になる駆動力制御装置を具えた電気自動車の制駆動系に係わる全体制御システムを示す概略系統図である。 図1における車両コントローラの、過渡ヨーレート制御に係わる部分の機能別ブロック線図である。 図2における過渡ヨーレート制御の制御プログラムを示すフローチャートである。 図2,3の過渡ヨーレート制御が実行される場合におけるモータトルク許容上限値の特性線図である。 車両の状態制御ごとにおける左右輪駆動力差の要求応答と、左右輪駆動力差設定時間との組み合わせを示す説明図である。 本発明の第2実施例になる駆動力制御装置の過渡加減速旋回時ヨーレート制御を、図1における車両コントローラが実行する場合につき示す機能別ブロック線図である。 図6における過渡加減速旋回時ヨーレート制御の制御プログラムを示すフローチャートである。 図6,7の過渡加減速旋回時ヨーレート制御が実行される場合におけるモータトルク許容上限値の特性線図である。 本発明の第3実施例になる駆動力制御装置の定常横加速度発生時ヨーレート制御を、図1における車両コントローラが実行する場合につき示す機能別ブロック線図である。 図9における定常横加速度発生時ヨーレート制御の制御プログラムを示すフローチャートである。 図9,10の定常横加速度発生時ヨーレート制御が実行される場合におけるモータトルク許容上限値の特性線図である。 本発明の第4実施例になる駆動力制御装置の過渡横風外乱抑制用ヨーレート制御を、図1における車両コントローラが実行する場合につき示す機能別ブロック線図である。 図12における過渡横風外乱抑制用ヨーレート制御の制御プログラムを示すフローチャートである。 図12,13の過渡横風外乱抑制用ヨーレート制御が実行される場合におけるモータトルク許容上限値の特性線図である。 本発明の第5実施例になる駆動力制御装置の左右独立トラクションコントロールを、図1における車両コントローラが実行する場合につき示す機能別ブロック線図である。 図15における左右独立トラクションコントロールの制御プログラムを示すフローチャートである。 図15,16の左右独立トラクションコントロールが実行される場合におけるモータトルク許容上限値の特性線図である。
 1FL,1FR 左右前輪
 1RL,1RR 左右後輪(左右モータ駆動車輪)
 3RL,3RR インホイールモータ(電動モータ)
 11 車両コントローラ
 12 アクセル開度センサ
 13 操舵角センサ
 14 ヨーレートセンサ
 15 前後加速度センサ
 16 横加速度センサ
 17RL,17RR 車輪速センサ
 21 目標加速度演算部
 22 片輪モータトルク演算部
 23L 左輪動力性能制限部
 23R 右輪動力性能制限部
 24 目標ヨーレート演算部
 25 ヨーモーメント演算部
 26 左右輪モータトルク差演算部(左右輪駆動力差設定手段)
 27 過渡ヨーレート制御用モータトルク指令値演算部(左右輪駆動力差設定手段)
 28L,28R 過渡ヨーレート制御用モータトルク制限部(モータ上限トルク変更手段)
 31 加減速旋回時ヨーレート変化抑制用目標ヨーレート演算部
 32 ヨーモーメント演算部
 33 左右輪モータトルク差演算部(左右輪駆動力差設定手段)
 34 加減速旋回時ヨーレート変化抑制用モータトルク指令値演算部
 35L,35R 過渡加減速旋回時制御用モータトルク制限部(モータ上限トルク変更手段)
 41 定常横加速度発生時ヨーレート変化抑制用目標ヨーレート演算部
 42 ヨーモーメント演算部
 43 左右輪モータトルク差演算部(左右輪駆動力差設定手段)
 44 定常横加速度発生時ヨーレート変化抑制用モータトルク指令値演算部
 45L,45R 定常横加速度発生時制御用モータトルク制限部(モータ上限トルク変更手段)
 51 過渡横風外乱抑制用目標ヨーレート演算部
 52 ヨーモーメント演算部
 53 左右輪モータトルク差演算部(左右輪駆動力差設定手段)
 54 過渡横風外乱抑制制御用モータトルク指令値演算部(左右輪駆動力差設定手段)
 55L,55R 過渡横風外乱抑制制御用モータトルク制限部(モータ上限トルク変更手段)
 以下、この発明の実施例を添付の図面に基づいて説明する。
<構成>
 図1は、本発明の第1実施例になる駆動力制御装置を具えた電気自動車の制駆動系に係わる全体制御システムを示す概略系統図である。
 この電気自動車は、左右前輪1FL,1FRおよび左右後輪1RL,1RRを具え、左右後輪1RL,1RRを、それぞれのホイールに内蔵させた個々の電動モータ3RL,3RR(インホイールモータIWM)により駆動して走行可能であり、また左右前輪1FL,1FRの転舵により操向可能である。
 電動モータ3RL,3RRはそれぞれ、発電機としても機能し得るモータ/ジェネレータで、上記の通りモータ駆動される左右後輪1RL,1RRを、所定の発電負荷に応動して回生制動し得るものとする。
 図1の電気自動車は、電動モータ3RL,3RR(インホイールモータIWM)の駆動制御および回生制御を行うために車両コントローラ11を具え、車両コントローラ11は更に、電動モータ3RL,3RR(インホイールモータIWM)を介した左右モータ駆動車輪間駆動力差制御により車両の挙動制御をも行うものとする。
 そのため車両コントローラ11には、アクセルペダル踏み込み量であるアクセル開度APOを検出するアクセル開度センサ12からの信号と、ステアリングホイールの操舵角θを検出する操舵角センサ13からの信号と、車両の鉛直軸線周りの挙動であるヨーレートφを検出するヨーレートセンサ14からの信号と、車両の前後加速度Gxを検出する前後加速度センサ15からの信号と、車両の横加速度Gyを検出する横加速度センサ16からの信号と、モータ駆動される左右後輪1RL,1RRの車輪速Vw_L,Vw_Rを検出する車輪速センサ17RL,17RRからの信号とを入力する。
 車両コントローラ11は、これら入力情報を基に後述の演算によって、左右後輪1RL,1RRに係わる電動モータ3RL,3RRの目標モータトルクTm_L,Tm_R(正値が駆動トルク、負値が回生制動トルク)を求める。
 これら目標モータトルクTm_L,Tm_Rは、電動モータ3RL,3RRの駆動・回生制御を司るインバータ18に指令され、インバータ18は目標モータトルクTm_L,Tm_Rに応動して、バッテリ(図示せず)から電動モータ3RL,3RRへ対応するDC→AC変換電力を供給したり、逆に電動モータ3RL,3RRの回生電力をAC→DC変換してバッテリ(図示せず)へ充電することにより、左右後輪1RL,1RRを駆動したり、回生制動する。
<左右モータ駆動車輪間駆動力差制御>
 以下、上記電気自動車において車両コントローラ11が電動モータ3RL,3RRを介し実行する、左右モータ駆動車輪1RL,1RR間の駆動力差制御を、車両のヨーレートが時々刻々目標通りのものとなるようにすることを狙った過渡ヨーレート制御につき説明する。
 この過渡ヨーレート制御は、図2の機能別ブロック線図により示すごときもので、図3のフローチャートに示すごとくに遂行される。
 目標加速度演算部21(ステップS21)においては、アクセル開度APOおよび車速VSPから予定のマップを基に、運転者が要求する車両の目標加速度αを検索して求める。
 片輪モータトルク演算部22(ステップS22)においては、上記の車両目標加速度αを用いてモータトルク指令値tTmを、tTm=車両目標加速度α×車両重量W÷伝動ギヤ比i×タイヤ動半径Rw÷2の演算により求める。
 左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)においては、図4に実線で示すモータの定常駆動時における動力性能制限トルクを表した動力性能制限線(例えばモータ定格トルク線)を基に、車輪回転数ωから動力性能制限値(例えばモータ定格トルク)を求め、これを超えないようモータトルク指令値tTmを制限して加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)と定める。
 目標ヨーレート演算部24(ステップS24)においては、予定のマップを基に操舵角θおよび車速VSPから車両の目標ヨーレートtφを検索する。
 ヨーモーメント演算部25(ステップS25)においては、目標ヨーレートtφを実現するのに必要なヨーモーメントMyを演算する。
 左右輪モータトルク差演算部26(ステップS26)においては、ヨーモーメントMyを生じさせるのに必要な左右輪モータトルク差ΔtTmを、ヨーモーメントMyと、トレッド幅Lwと、伝動ギヤ比iと、タイヤ動半径Rwとから、ΔtTm=My÷トレッド幅Lw÷ギヤ比i×タイヤ動半径Rwの演算により求める。
 従って左右輪モータトルク差演算部26(ステップS26)は、本発明における左右輪駆動力差設定手段に相当する。
 過渡ヨーレート制御用モータトルク指令値演算部27(ステップS27)においては、左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)で求めた加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)を、左右輪モータトルク差演算部26(ステップS26)で求めた左右輪モータトルク差ΔtTmの半値(ΔtTm/2)だけ加減算して、過渡ヨーレート制御用モータトルク指令値tTm_Y(左輪過渡ヨーレート制御用モータトルク指令値tTm_Y_L、右輪過渡ヨーレート制御用モータトルク指令値tTm_Y_R)を求める。
 なお、この加減算に際しては、過渡ヨーレート制御の目標ヨーレートtφを実現するのに必要なヨーモーメントMyの向きに応じ、外側となる車輪側の加速トルク指令値tTm_Limに左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を加算し、内側となる車輪側の加速トルク指令値tTm_Limから左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を減算するのは言うまでもない。
 従って過渡ヨーレート制御用モータトルク指令値演算部27(ステップS27)は、左右輪モータトルク差演算部26(ステップS26)と共に、本発明における左右輪駆動力差設定手段を構成する。
 過渡ヨーレート制御用モータトルク制限部28L,28R(ステップS28)においては、上記のようにして求めた過渡ヨーレート制御用モータトルク指令値tTm_Y(左輪過渡ヨーレート制御用モータトルク指令値tTm_Y_L、右輪過渡ヨーレート制御用モータトルク指令値tTm_Y_R)が、図4に一点鎖線で例示した過渡ヨーレート制御時モータトルク許容上限値Tm_Lim_Yを超えないよう、これらtTm_Y(tTm_Y_L, tTm_Y_R)をそれぞれ制限して、最終的な過渡ヨーレート制御用モータトルク指令値Tm_L,Tm_Rとし、これらを図1に示すごとく出力して電動モータ3Rl,3RRの駆動制御に供する。
 従って過渡ヨーレート制御用モータトルク制限部28L,28R(ステップS28)は、本発明におけるモータ上限トルク変更手段に相当する。
 なお図4に一点鎖線で例示した過渡ヨーレート制御時モータトルク許容上限値Tm_Lim_Yは、全ての車輪回転数ω域において、同図に実線で示した動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とする。
 また過渡ヨーレート制御時モータトルク許容上限値Tm_Lim_Yは、操舵角θおよび車速VSPから求めた目標ヨーレートを実現するのに必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きなものとする。
 その理由は、左右モータ駆動車輪間駆動力差の要求応答が高いほど、また、左右モータ駆動車輪間駆動力差の設定時間が短いほど、当該左右輪駆動力差制御に際して駆動力が大きくなる側のモータトルクがモータ定格トルクを超えたとしても、この超過トルクの付与時間が短く、電動モータの耐久性を阻害する虞がないためである。
 ちなみに左右輪駆動力差制御は、上記した過渡ヨーレート制御のほかに、以下のような目的で行われることもあるし、制御の結果として左右輪間に駆動力差が発生することもある。
 (1)車両のヨーレート検出値φと、運転状態に応じた目標ヨーレートtφとの乖離を減ずるよう左右モータ駆動車輪間に駆動力差を設定する、ヨーレートフィードバック式の過渡ヨーレート制御。
 (2)車両の前後方向荷重移動が発生する加減速操作時のヨーレート変化を減ずるよう左右モータ駆動車輪間に駆動力差を設定する、過渡加減速旋回時ヨーレート制御。
 (3)車両の車幅方向荷重移動を生ずる旋回走行時のヨーレート変化を減ずるよう左右モータ駆動車輪間に駆動力差を設定する、定常横加速度発生時ヨーレート制御。
 (4)過渡横風による外乱を抑制するよう左右モータ駆動車輪間に駆動力差を設定する、過渡横風外乱抑制用ヨーレート制御。
 (5)左右モータ駆動車輪のスリップ率を個々に目標に近づけるよう対応する電動モータをトルク制御し、該トルク制御の結果として前記左右モータ駆動車輪間に駆動力差を設定する、左右輪独立トラクションコントロール(左右独立TCS)。
 上記した各制御の左右輪駆動力差要求応答と、左右輪駆動力差設定時間との組み合わせは図5に示すとおりであり、左右独立TCSは左右輪駆動力差要求応答が最も高く、且つ左右輪駆動力差設定時間が最も短いことから、左右独立TCS時は他の制御に比べてモータトルク許容上限値を最も大きくすることができる。
 次にモータトルク許容上限値を大きくすることができるのは、過渡横風外乱抑制用ヨーレート制御時であり、
 その次にモータトルク許容上限値を大きくすることができるのは、上記した実施例において説明した過渡ヨーレート制御時である。
 定常横加速度発生時ヨーレート制御や過渡加減速旋回時ヨーレート制御では、モータトルク許容上限値をモータ定格トルクよりも大きくし得る余裕代が最も小さい。
<効果>
 上記した第1実施例になる左右モータ駆動車輪の駆動力制御装置(左右モータ駆動車輪間駆動力差制御)にあっては、車両のヨーレートφを時々刻々、操舵角θおよび車速VSPから求めた目標通ヨーレートtφとなすための過渡ヨーレート制御に際し、左右インホイールモータ3RL,3RRのモータトルク許容上限値Tm_Lim_Yを図4に示すごとく実線図示の動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とし、この過渡ヨーレート制御時モータトルク許容上限値Tm_Lim_Yを、目標ヨーレート実現用左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きくなるよう変化させるため、以下の効果を得ることができる。
 つまり、上記の左右モータ駆動車輪間駆動力差制御はほんの一瞬であり、かかる一瞬に左右インホイールモータ3RL,3RRの出力トルクが図4に実線で示す動力性能制限値(例えばモータ定格トルク)を超えても、左右インホイールモータ3RL,3RRの耐久性に支障がないのに、左右インホイールモータ3RL,3RRの出力トルクを不必要に大きく制限してしまうのを回避することができる。
 そして、かように左右インホイールモータ3RL,3RRの出力トルクを不必要に大きく制限すると、予定通りの左右モータ駆動車輪間駆動力差制御が行われず、この制御が狙いとする車両状態制御を期し難いが、
 本実施例によれば左右インホイールモータ3RL,3RRの過渡ヨーレート制御時モータトルク許容上限値Tm_Lim_Yを、目標ヨーレート実現用左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きくなるよう変化させるため、左右インホイールモータ3RL,3RRを不必要に大きく制限してしまうことがなくなり、上記の問題を解消することができる。
 なお当該作用・効果は、車両のヨーレート検出値φと、運転状態に応じた上記目標ヨーレートtφとの乖離を減ずるよう左右モータ駆動車輪間に駆動力差を設定する、ヨーレートフィードバック式の過渡ヨーレート制御の場合においても、同様に奏し得られることは言うまでもない。
<左右モータ駆動車輪間駆動力差制御>
 図1に示した電気自動車において車両コントローラ11が電動モータ3RL,3RRを介し実行する第2実施例の左右モータ駆動車輪間駆動力差制御を、過渡加減速旋回時ヨーレート制御につき、つまり加減速旋回時のヨーレート変化を抑制するよう左右モータ駆動車輪1RL,1RR間に駆動力差を設定する場合につき、以下に説明する。
 この過渡加減速旋回時ヨーレート制御は、図6の機能別ブロック線図により示すごときもので、図7のフローチャートに示すごとくに遂行される。
 目標加速度演算部21(ステップS21)においては、図2,3につき前述したと同様、アクセル開度APOおよび車速VSPから予定のマップを基に、運転者が要求する車両の目標加速度αを検索して求める。
 片輪モータトルク演算部22(ステップS22)においては、図2,3につき前述したと同様、上記の車両目標加速度αを用いてモータトルク指令値tTmを、tTm=車両目標加速度α×車両重量W÷伝動ギヤ比i×タイヤ動半径Rw÷2の演算により求める。
 左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)においては、図2,3につき前述したと同様、図8に実線で示す動力性能制限線(例えばモータ定格トルク線)を基に、車輪回転数ωから動力性能制限値(例えばモータ定格トルク)を求め、これを超えないようモータトルク指令値tTmを制限して加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)と定める。
 目標ヨーレート演算部24(ステップS24)においては、図2,3につき前述したと同様、予定のマップを基に操舵角θおよび車速VSPから車両の目標ヨーレートtφを検索する。
 加減速旋回時ヨーレート変化抑制用目標ヨーレート演算部31(ステップS31)においては、アクセル開度APOおよびブレーキペダル踏み込み量BPOと、目標ヨーレートtφとから、加減速旋回時ヨーレート変化抑制用目標ヨーレートtφ_Gx_ΔYを以下のようにして求める。
 先ずアクセル開度APOおよびブレーキペダル踏み込み量BPOから車両の前後加速度を演算し(前後加速度センサで検出してもよい)、この前後加速度から車両の前後荷重移動を求める。
 次に、この前後荷重移動と目標ヨーレートtφとから、前後荷重移動に伴う加減速旋回時ヨーレート変化を演算して、これを狙い通り抑制するのに必要な加減速旋回時ヨーレート変化抑制用目標ヨーレートtφ_Gx_ΔYを決定する。
 ヨーモーメント演算部32(ステップS32)においては、目標ヨーレートtφを実現するのに必要なヨーモーメントと、加減速旋回時ヨーレート変化抑制用目標ヨーレートtφ_Gx_ΔYを実現するのに必要なヨーモーメントとを合算して、これら目標ヨーレートを実現可能なヨーモーメントMyを演算する。
 左右輪モータトルク差演算部33(ステップS33)においては、上記のヨーモーメントMyを生じさせるのに必要な左右輪モータトルク差ΔtTmを、ヨーモーメントMyと、トレッド幅Lwと、伝動ギヤ比iと、タイヤ動半径Rwとから、ΔtTm=My÷トレッド幅Lw÷ギヤ比i×タイヤ動半径Rwの演算により求める。
 従って左右輪モータトルク差演算部33(ステップS33)は、本発明における左右輪駆動力差設定手段に相当する。
 加減速旋回時ヨーレート変化抑制用モータトルク指令値演算部34(ステップS34)においては、左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)で求めた加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)を、左右輪モータトルク差演算部33(ステップS33)で求めた左右輪モータトルク差ΔtTmの半値(ΔtTm/2)だけ加減算して、加減速旋回時ヨーレート変化抑制用モータトルク指令値tTm_Y_Gx(加減速旋回時ヨーレート変化抑制用左輪モータトルク指令値tTm_Y_Gx_L、加減速旋回時ヨーレート変化抑制用右輪モータトルク指令値tTm_Y_Gx_R)を求める。
 なお、この加減算に際しては、過渡加減速旋回時ヨーレート変化抑制用の目標ヨーレート(tφ+tφ_Gx_ΔY)を実現するのに必要なヨーモーメントMyの向きに応じ、外側となる車輪側の加速トルク指令値tTm_Limに左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を加算し、内側となる車輪側の加速トルク指令値tTm_Limから左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を減算するのは言うまでもない。
 従って加減速旋回時ヨーレート変化抑制用モータトルク指令値演算部34(ステップS34)は、左右輪モータトルク差演算部33(ステップS33)と共に、本発明における左右輪駆動力差設定手段を構成する。
 過渡加減速旋回時制御用モータトルク制限部35L,35R(ステップS35)においては、上記のようにして求めた過渡加減速旋回時ヨーレート変化抑制用モータトルク指令値tTm_Y_Gx(加減速旋回時ヨーレート変化抑制用左輪モータトルク指令値tTm_Y_Gx_L、加減速旋回時ヨーレート変化抑制用右輪モータトルク指令値tTm_Y_Gx_R)が、図8に一点鎖線で例示した過渡加減速旋回時制御用モータトルク許容上限値Tm_Lim_Y_Gxを超えないよう、これらtTm_Y_Gx(tTm_Y_Gx_L, tTm_Y_Gx_R)をそれぞれ制限して、最終的な過渡加減速旋回時制御用モータトルク指令値Tm_L,Tm_Rとし、これらを図1に示すごとく出力して電動モータ3Rl,3RRの駆動制御に供する。
 従って過渡加減速旋回時制御用モータトルク制限部35L,35R(ステップS35)は、本発明におけるモータ上限トルク変更手段に相当する。
 なお図8に一点鎖線で例示した過渡加減速旋回時制御用モータトルク許容上限値Tm_Lim_Y_Gxは、全ての車輪回転数ω域において、同図に実線で示した動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とする。
 また過渡加減速旋回時制御用モータトルク許容上限値Tm_Lim_Y_Gxは、目標ヨーレートtφおよび加減速旋回時ヨーレート変化抑制用目標ヨーレートtφ_Gx_ΔYを実現するのに必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きなものとする。
 その理由は、左右モータ駆動車輪間駆動力差の要求応答が高いほど、また、左右モータ駆動車輪間駆動力差の設定時間が短いほど、当該左右輪駆動力差制御に際して駆動力が大きくなる側のモータトルクがモータ定格トルクを超えたとしても、この超過トルクの付与時間が短く、電動モータの耐久性を阻害する虞がないためである。
<効果>
 上記した第2実施例になる左右モータ駆動車輪の駆動力制御装置(左右モータ駆動車輪間駆動力差制御)にあっては、加減速旋回時におけるヨーレート変化を抑制するための左右モータ駆動車輪間駆動力差制御に際し、左右インホイールモータ3RL,3RRのモータトルク許容上限値Tm_Lim_Y_Gxを図8に示すごとく実線図示の動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とし、この過渡加減速旋回時ヨーレート変化抑制制御用モータトルク許容上限値Tm_Lim_Y_Gxを、目標ヨーレートtφおよび加減速旋回時ヨーレート変化抑制用目標ヨーレートtφ_Gx_ΔYの実現に必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きくなるよう変化させるため、
 第1実施例におけると同様に、左右インホイールモータ3RL,3RRの出力トルクが不必要に大きく制限されてしまうのを回避することができ、当該制限により予定通りの左右モータ駆動車輪間駆動力差制御が行われず、狙った過渡加減速旋回時ヨーレート変化抑制効果が得られないという問題を回避することができる。
<左右モータ駆動車輪間駆動力差制御>
 図1に示した電気自動車において車両コントローラ11が電動モータ3RL,3RRを介し実行する第3実施例の左右モータ駆動車輪間駆動力差制御を、定常横加速度発生時ヨーレート制御につき、つまり車両の車幅方向荷重移動を生ずる旋回走行時のヨーレート変化が抑制されるよう左右モータ駆動車輪1RL,1RR間に駆動力差を設定する場合につき、以下に説明する。
 この定常横加速度発生時ヨーレート制御は、図9の機能別ブロック線図により示すごときもので、図10のフローチャートに示すごとくに遂行される。
 目標加速度演算部21(ステップS21)、片輪モータトルク演算部22(ステップS22)、左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)、および目標ヨーレート演算部24(ステップS24)はそれぞれ、前記した第1,2実施例(図2,3および図6,7)におけると同様なものである。
 目標加速度演算部21(ステップS21)においては、アクセル開度APOおよび車速VSPから予定のマップを基に、運転者が要求する車両の目標加速度αを検索し、
 片輪モータトルク演算部22(ステップS22)においては、この車両目標加速度αを得るのに必要なモータトルク指令値tTm(=車両目標加速度α×車両重量W÷伝動ギヤ比i×タイヤ動半径Rw÷2)を演算する。
 左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)においては、図11に実線で示す動力性能制限線(例えばモータ定格トルク線)を基に車輪回転数ωから求めた動力性能制限値(例えばモータ定格トルク)を超えないようモータトルク指令値tTmを制限して加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)と定める。
 目標ヨーレート演算部24(ステップS24)においては、予定のマップを基に操舵角θおよび車速VSPから車両の目標ヨーレートtφを検索する。
 定常横加速度発生時ヨーレート変化抑制用目標ヨーレート演算部41(ステップS41)においては、図1のセンサ16で検出した横加速度Gy、および目標ヨーレート演算部24(ステップS24)で求めた目標ヨーレートtφから、定常横加速度発生時ヨーレート変化抑制用目標ヨーレートtφ_Gy_ΔYを以下のようにして求める。
 先ず、検出した横加速度Gyから車両の車幅方向荷重移動を求め、
 次に、この車幅方向荷重移動と目標ヨーレートtφとから、車幅方向荷重移動に伴うヨーレート変化を演算して、これを狙い通り抑制するのに必要な車幅方向荷重移動発生時ヨーレート変化抑制用目標ヨーレートtφ_Gy_ΔYを決定する。
 ヨーモーメント演算部42(ステップS42)においては、目標ヨーレートtφを実現するのに必要なヨーモーメントと、定常横加速度発生時ヨーレート変化抑制用目標ヨーレートtφ_Gy_ΔYを実現するのに必要なヨーモーメントとを合算して、これら目標ヨーレートを実現可能なヨーモーメントMyを演算する。
 左右輪モータトルク差演算部43(ステップS43)においては、上記のヨーモーメントMyを生じさせるのに必要な左右輪モータトルク差ΔtTmを、ヨーモーメントMyと、トレッド幅Lwと、伝動ギヤ比iと、タイヤ動半径Rwとから、ΔtTm=My÷トレッド幅Lw÷ギヤ比i×タイヤ動半径Rwの演算により求める。
 従って左右輪モータトルク差演算部43(ステップS43)は、本発明における左右輪駆動力差設定手段に相当する。
 定常横加速度発生時ヨーレート変化抑制用モータトルク指令値演算部44(ステップS44)においては、左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)で求めた加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)を、左右輪モータトルク差演算部43(ステップS43)で求めた左右輪モータトルク差ΔtTmの半値(ΔtTm/2)だけ加減算して、定常横加速度発生時ヨーレート変化抑制用モータトルク指令値tTm_Y_Gy(加減速旋回時ヨーレート変化抑制用左輪モータトルク指令値tTm_Y_Gy_L、加減速旋回時ヨーレート変化抑制用右輪モータトルク指令値tTm_Y_Gy_R)を求める。
 なお、この加減算に際しては、定常横加速度発生時ヨーレート変化抑制用の目標ヨーレート(tφ+tφ_Gy_ΔY)を実現するのに必要なヨーモーメントMyの向きに応じ、外側となる車輪側の加速トルク指令値tTm_Limに左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を加算し、内側となる車輪側の加速トルク指令値tTm_Limから左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を減算するのは言うまでもない。
 従って定常横加速度発生時ヨーレート変化抑制用モータトルク指令値演算部44(ステップS44)は、左右輪モータトルク差演算部43(ステップS43)と共に、本発明における左右輪駆動力差設定手段を構成する。
 定常横加速度発生時制御用モータトルク制限部45L,45R(ステップS45)においては、上記のようにして求めた定常横加速度発生時ヨーレート変化抑制用モータトルク指令値tTm_Y_Gy(加減速旋回時ヨーレート変化抑制用左輪モータトルク指令値tTm_Y_Gy_L、加減速旋回時ヨーレート変化抑制用右輪モータトルク指令値tTm_Y_Gy_R)が、図11に一点鎖線で例示した定常横加速度発生時制御用モータトルク許容上限値Tm_Lim_Y_Gyを超えないよう、これらtTm_Y_Gy(tTm_Y_Gy_L, tTm_Y_Gy_R)をそれぞれ制限して、最終的な定常横加速度発生時制御用モータトルク指令値Tm_L,Tm_Rとし、これらを図1に示すごとく出力して電動モータ3Rl,3RRの駆動制御に供する。
 従って定常横加速度発生時制御用モータトルク制限部45L,45R(ステップS45)は、本発明におけるモータ上限トルク変更手段に相当する。
 なお図11に一点鎖線で例示した定常横加速度発生時制御用モータトルク許容上限値Tm_Lim_Y_Gyは、全ての車輪回転数ω域において、同図に実線で示した動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とする。
 また定常横加速度発生時制御用モータトルク許容上限値Tm_Lim_Y_Gyは、目標ヨーレートtφおよび定常横加速度発生時ヨーレート変化抑制用目標ヨーレートtφ_Gy_ΔYを実現するのに必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きなものとする。
 その理由は、左右モータ駆動車輪間駆動力差の要求応答が高いほど、また、左右モータ駆動車輪間駆動力差の設定時間が短いほど、当該左右輪駆動力差制御に際して駆動力が大きくなる側のモータトルクがモータ定格トルクを超えたとしても、この超過トルクの付与時間が短く、電動モータの耐久性を阻害する虞がないためである。
<効果>
 上記した第3実施例になる左右モータ駆動車輪の駆動力制御装置(左右モータ駆動車輪間駆動力差制御)にあっては、定常横加速度発生時におけるヨーレート変化を抑制するための左右モータ駆動車輪間駆動力差制御に際し、左右インホイールモータ3RL,3RRのモータトルク許容上限値Tm_Lim_Y_Gyを図11に示すごとく実線図示の動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とし、この定常横加速度発生時ヨーレート変化抑制制御用モータトルク許容上限値Tm_Lim_Y_Gyを、目標ヨーレートtφおよび定常横加速度発生時ヨーレート変化抑制用モータトルク指令値tTm_Y_Gyの実現に必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きくなるよう変化させるため、
 第1実施例におけると同様に、左右インホイールモータ3RL,3RRの出力トルクが不必要に大きく制限されてしまうのを回避することができ、当該制限により予定通りの左右モータ駆動車輪間駆動力差制御が行われず、狙った定常横加速度発生時ヨーレート変化抑制効果が得られないという問題を回避することができる。
<左右モータ駆動車輪間駆動力差制御>
 図1に示した電気自動車において車両コントローラ11が電動モータ3RL,3RRを介し実行する第4実施例の左右モータ駆動車輪間駆動力差制御を、過渡横風外乱抑制用ヨーレート制御につき、つまり過渡横風による外乱を抑制するよう左右モータ駆動車輪1RL,1RR間に駆動力差を設定する場合につき、以下に説明する。
 この定常横加速度発生時ヨーレート制御は、図12の機能別ブロック線図により示すごときもので、図13のフローチャートに示すごとくに遂行される。
 目標加速度演算部21(ステップS21)、片輪モータトルク演算部22(ステップS22)、左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)、および目標ヨーレート演算部24(ステップS24)はそれぞれ、前記した第1,2実施例(図2,3および図6,7)におけると同様なものである。
 目標加速度演算部21(ステップS21)においては、アクセル開度APOおよび車速VSPから予定のマップを基に、運転者が要求する車両の目標加速度αを検索し、
 片輪モータトルク演算部22(ステップS22)においては、この車両目標加速度αを得るのに必要なモータトルク指令値tTm(=車両目標加速度α×車両重量W÷伝動ギヤ比i×タイヤ動半径Rw÷2)を演算する。
 左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)においては、図11に実線で示す動力性能制限線(例えばモータ定格トルク線)を基に車輪回転数ωから求めた動力性能制限値(例えばモータ定格トルク)を超えないようモータトルク指令値tTmを制限して加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)と定める。
 目標ヨーレート演算部24(ステップS24)においては、予定のマップを基に操舵角θおよび車速VSPから車両の目標ヨーレートtφを検索する。
 過渡横風外乱抑制用目標ヨーレート演算部51(ステップS51)においては、図1のセンサ14で検出したヨーφ、および目標ヨーレート演算部24(ステップS24)で求めた目標ヨーレートtφから、両者間の偏差(過渡横風による外乱であるヨーレート変化)を求め、これを狙い通り抑制するのに必要な過渡横風外乱抑制用目標ヨーレートtφ_Gyw_ΔYを決定する。
 ヨーモーメント演算部52(ステップS52)においては、目標ヨーレートtφを実現するのに必要なヨーモーメントと、過渡横風外乱抑制用目標ヨーレートtφ_Gyw_ΔYを実現するのに必要なヨーモーメントとを合算して、これら目標ヨーレートを実現可能なヨーモーメントMyを演算する。
 左右輪モータトルク差演算部53(ステップS53)においては、上記のヨーモーメントMyを生じさせるのに必要な左右輪モータトルク差ΔtTmを、ヨーモーメントMyと、トレッド幅Lwと、伝動ギヤ比iと、タイヤ動半径Rwとから、ΔtTm=My÷トレッド幅Lw÷ギヤ比i×タイヤ動半径Rwの演算により求める。
 従って左右輪モータトルク差演算部53(ステップS53)は、本発明における左右輪駆動力差設定手段に相当する。
 過渡横風外乱抑制制御用モータトルク指令値演算部54(ステップS54)においては、左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)で求めた加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)を、左右輪モータトルク差演算部53(ステップS53)で求めた左右輪モータトルク差ΔtTmの半値(ΔtTm/2)だけ加減算して、過渡横風外乱抑制用モータトルク指令値tTm_Y_Gyw(過渡横風外乱抑制用左輪モータトルク指令値tTm_Y_Gyw_L、過渡横風外乱抑制用右輪モータトルク指令値tTm_Y_Gyw_R)を求める。
 なお、この加減算に際しては、過渡横風外乱抑制用の目標ヨーレート(tφ+tφ_Gyw_ΔY)を実現するのに必要なヨーモーメントMyの向きに応じ、外側となる車輪側の加速トルク指令値tTm_Limに左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を加算し、内側となる車輪側の加速トルク指令値tTm_Limから左右輪モータトルク差ΔtTmの半値(ΔtTm/2)を減算するのは言うまでもない。
 従って過渡横風外乱抑制制御用モータトルク指令値演算部54(ステップS54)は、左右輪モータトルク差演算部53(ステップS53)と共に、本発明における左右輪駆動力差設定手段を構成する。
 過渡横風外乱抑制制御用モータトルク制限部55L,55R(ステップS55)においては、上記のようにして求めた過渡横風外乱抑制制御用モータトルク指令値tTm_Y_Gyw(過渡横風外乱抑制制御用左輪モータトルク指令値tTm_Y_Gyw_L、過渡横風外乱抑制制御用右輪モータトルク指令値tTm_Y_Gyw_R)が、図14に一点鎖線で例示した過渡横風外乱抑制制御用モータトルク許容上限値Tm_Lim_Y_Gywを超えないよう、これらtTm_Y_Gyw(tTm_Y_Gyw_L, tTm_Y_Gyw_R)をそれぞれ制限して、最終的な過渡横風外乱抑制制御用モータトルク指令値Tm_L,Tm_Rとし、これらを図1に示すごとく出力して電動モータ3Rl,3RRの駆動制御に供する。
 従って過渡横風外乱抑制制御用モータトルク制限部55L,55R(ステップS55)は、本発明におけるモータ上限トルク変更手段に相当する。
 なお図14に一点鎖線で例示した過渡横風外乱抑制制御用モータトルク許容上限値Tm_Lim_Y_Gywは、全ての車輪回転数ω域において、同図に実線で示した動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とする。
 また過渡横風外乱抑制制御用モータトルク許容上限値Tm_Lim_Y_Gywは、目標ヨーレートtφおよび過渡横風外乱抑制用目標ヨーレートtφ_Gyw_ΔYを実現するのに必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きなものとする。
 その理由は、左右モータ駆動車輪間駆動力差の要求応答が高いほど、また、左右モータ駆動車輪間駆動力差の設定時間が短いほど、当該左右輪駆動力差制御に際して駆動力が大きくなる側のモータトルクがモータ定格トルクを超えたとしても、この超過トルクの付与時間が短く、電動モータの耐久性を阻害する虞がないためである。
<効果>
 上記した第4実施例になる左右モータ駆動車輪の駆動力制御装置(左右モータ駆動車輪間駆動力差制御)にあっては、過渡横風発生時におけるヨーレート変化(外乱)を抑制するための左右モータ駆動車輪間駆動力差制御に際し、左右インホイールモータ3RL,3RRのモータトルク許容上限値Tm_Lim_Y_Gywを図14に示すごとく実線図示の動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とし、この過渡横風外乱(ヨーレート変化)抑制制御用モータトルク許容上限値Tm_Lim_Y_Gywを、目標ヨーレートtφおよび過渡横風外乱抑制用モータトルク指令値tTm_Y_Gywの実現に必要な左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク指令値間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きくなるよう変化させるため、
 第1実施例におけると同様に、左右インホイールモータ3RL,3RRの出力トルクが不必要に大きく制限されてしまうのを回避することができ、当該制限により予定通りの左右モータ駆動車輪間駆動力差制御が行われず、狙った過渡横風外乱(ヨーレート変化)抑制効果が得られないという問題を回避することができる。
左右モータ駆動車輪間駆動力差制御>
 図1に示した電気自動車において車両コントローラ11が電動モータ3RL,3RRを介し実行する、第5実施例の左右モータ駆動車輪間駆動力差制御を、左右輪独立トラクションコントロール(左右独立TCS)につき、つまり左右モータ駆動車輪1RL,1RRのスリップ率を個々に目標に近づけるよう対応する電動モータ3RL,3RRをトルク制御し、該トルク制御の結果として左右モータ駆動車輪1RL,1RR間に駆動力差が設定される場合につき、以下に説明する。
 この左右独立TCSによる左右モータ駆動車輪間駆動力差制御は、図15の機能別ブロック線図により示すごときもので、図16のフローチャートに示すごとくに遂行される。
 目標加速度演算部21(ステップS21)、片輪モータトルク演算部22(ステップS22)、および左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)はそれぞれ、前記した第1,2実施例(図2,3および図6,7)におけると同様なものである。
 目標加速度演算部21(ステップS21)においては、アクセル開度APOおよび車速VSPから予定のマップを基に、運転者が要求する車両の目標加速度αを検索し、
 片輪モータトルク演算部22(ステップS22)においては、この車両目標加速度αを得るのに必要なモータトルク指令値tTm(=車両目標加速度α×車両重量W÷伝動ギヤ比i×タイヤ動半径Rw÷2)を演算する。
 左輪動力性能制限部23Lおよび右輪動力性能制限部23R(ステップS23)においては、図11に実線で示す動力性能制限線(例えばモータ定格トルク線)を基に車輪回転数ωから求めた動力性能制限値(例えばモータ定格トルク)を超えないようモータトルク指令値tTmを制限して加速トルク指令値tTm_Lim(左加速トルク指令値tTm_Lim_L、右加速トルク指令値tTm_Lim_R)と定める。
 左右独立TCS用目標スリップ率演算部61L,61R(ステップS61)においては、車速VSPから左右モータ駆動車輪1RL,1RRの目標スリップ率So(So_L,So_R)をそれぞれマップ検索により求める。
 左右独立TCS用モータトルク演算部62L,62R(ステップS62)においては、左右モータ駆動車輪1RL,1RRの車輪速Vw(Vw_L,Vw_R)と車速VSPとから、それぞれの実スリップ率S(S_L,S_R)を演算し、これら実スリップ率S(S_L,S_R)を対応する目標スリップ率So(So_L,So_R)に近づけるための左右独立TCS用左輪モータトルクTm_TCS(Tm_TCS_L, Tm_TCS_R)を決定する。
 ここで左右独立TCS用モータトルク演算部62L,62R(ステップS62)は、本発明における左右輪駆動力差設定手段に相当する。
 左右独立TCS用モータトルク制限部63L,63R(ステップS63)においては、上記のようにして求めた左右独立TCS用左輪モータトルクTm_TCS(Tm_TCS_L, Tm_TCS_R)が、図17に一点鎖線で例示した左右独立TCS時用モータトルク許容上限値Tm_Lim_TCSを超えないよう、これらTm_TCS(Tm_TCS_L, Tm_TCS_R)をそれぞれ制限して、最終的な左右独立TCS用モータトルク指令値Tm_L,Tm_Rとし、これらを図1に示すごとく出力して電動モータ3Rl,3RRの駆動制御に供する。
 従って左右独立TCS用モータトルク制限部63L,63R(ステップS63)は、本発明におけるモータ上限トルク変更手段に相当する。
 なお図17に一点鎖線で例示した左右独立TCS時用モータトルク許容上限値Tm_Lim_TCSは、全ての車輪回転数ω域において、同図に実線で示した動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とする。
 また左右独立TCS時用モータトルク許容上限値Tm_Lim_TCSは、左右独立TCS用モータトルク演算部62L,62R(ステップS62)で設定される左右モータトルクTm_TCS_L, Tm_TCS_R間の差トルク(左右モータ駆動車輪間駆動力差)の要求応答が高いほど、また、かかる左右モータトルク間の差トルク(左右モータ駆動車輪間駆動力差)を設定する時間が短いほど大きなものとする。
 その理由は、左右モータ駆動車輪間駆動力差の要求応答が高いほど、また、左右モータ駆動車輪間駆動力差の設定時間が短いほど、当該左右輪駆動力差制御に際して駆動力が大きくなる側のモータトルクがモータ定格トルクを超えたとしても、この超過トルクの付与時間が短く、電動モータの耐久性を阻害する虞がないためである。
<効果>
 上記した第5実施例になる左右モータ駆動車輪の駆動力制御装置(左右モータ駆動車輪間駆動力差制御)にあっては、左右独立TCSによる左右モータ駆動車輪間駆動力差制御に際し、左右インホイールモータ3RL,3RRのモータトルク許容上限値Tm_Lim_TCSを図17に示すごとく実線図示の動力性能制限値(例えばモータ定格トルク)よりも大きなトルク値とし、この左右独立TCS時用モータトルク許容上限値Tm_Lim_TCSを、左右独立TCSの実行に必要な左右モータ駆動車輪間駆動力差の要求応答が高いほど、また、かかる左右モータ駆動車輪間駆動力差の設定時間が短いほど大きくなるよう変化させるため、
 第1実施例におけると同様に、左右インホイールモータ3RL,3RRの出力トルクが不必要に大きく制限されてしまうのを回避することができ、当該制限により予定通りの左右独立TCSが行われず、左右独立TCSによるスリップ防止効果が狙い通りのものでなくなるという問題を回避することができる。

Claims (8)

  1.  個々の電動モータにより駆動され、左右で対をなすモータ駆動車輪を具え、
     これら左右モータ駆動車輪間に、対応する前記電動モータの制御によって、車両状態制御用の駆動力差を設定する左右輪駆動力差設定手段を設けた電動車両において、
     前記左右輪駆動力差設定手段が前記左右モータ駆動車輪間に設定する駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるモータ上限トルク変更手段を設けたことを特徴とする左右モータ駆動車輪の駆動力制御装置。
  2.  請求項1に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記モータ上限トルク変更手段は、前記左右輪駆動力差設定手段が設定する左右モータ駆動車輪間駆動力差の要求応答が高いほど、また設定時間が短いほど、前記対応する電動モータの許容上限トルクを大きくするものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
  3.  請求項2に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記モータ上限トルク変更手段は、前記左右輪駆動力差設定手段が設定する左右モータ駆動車輪間駆動力差の要求応答が高いほど、また設定時間が短いほど、前記対応する電動モータの許容上限トルクを、該電動モータの定常駆動時動力性能制限トルクよりも大きくするものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
  4.  請求項1~3のいずれか1項に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記左右輪駆動力差設定手段は、電動車両の操舵角および車速から求めた目標ヨーレートを実現するため、前記左右モータ駆動車輪間に駆動力差を設定するものであり、
     前記モータ上限トルク変更手段は、該左右モータ駆動車輪間駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
  5.  請求項1~3のいずれか1項に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記左右輪駆動力差設定手段は、電動車両のヨーレート検出値と、運転状態に応じた目標ヨーレートとの乖離を減ずるため、前記左右モータ駆動車輪間に駆動力差を設定するものであり、
     前記モータ上限トルク変更手段は、該左右モータ駆動車輪間駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
  6.  請求項1~3のいずれか1項に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記左右輪駆動力差設定手段は、電動車両の前後方向荷重移動を生ずる加減速操作時のヨーレート変化を減ずるため、前記左右モータ駆動車輪間に駆動力差を設定するものであり、
     前記モータ上限トルク変更手段は、該左右モータ駆動車輪間駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
  7.  請求項1~3のいずれか1項に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記左右輪駆動力差設定手段は、電動車両の車幅方向荷重移動を生ずる旋回走行時のヨーレート変化を減ずるため、前記左右モータ駆動車輪間に駆動力差を設定するものであり、
     前記モータ上限トルク変更手段は、該左右モータ駆動車輪間駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
  8.  請求項1~3のいずれか1項に記載された、左右モータ駆動車輪の駆動力制御装置において、
     前記左右輪駆動力差設定手段は、前記左右モータ駆動車輪のスリップ率を個々に目標に近づけるよう対応する電動モータをトルク制御し、該トルク制御の結果として前記左右モータ駆動車輪間に駆動力差を設定するものであり、
     前記モータ上限トルク変更手段は、該左右モータ駆動車輪間駆動力差の要求応答または設定時間、或いはこれら双方に応じ、前記対応する電動モータの許容上限トルクを変化させるものであることを特徴とする左右モータ駆動車輪の駆動力制御装置。
PCT/JP2014/056333 2013-04-03 2014-03-11 左右モータ駆動車輪の駆動力制御装置 WO2014162830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015509970A JPWO2014162830A1 (ja) 2013-04-03 2014-03-11 左右モータ駆動車輪の駆動力制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-077961 2013-04-03
JP2013077961 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014162830A1 true WO2014162830A1 (ja) 2014-10-09

Family

ID=51658132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056333 WO2014162830A1 (ja) 2013-04-03 2014-03-11 左右モータ駆動車輪の駆動力制御装置

Country Status (2)

Country Link
JP (1) JPWO2014162830A1 (ja)
WO (1) WO2014162830A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153232A (ja) * 2016-02-24 2017-08-31 株式会社Subaru 車両の制御装置及び車両の制御方法
CN109955728A (zh) * 2017-12-22 2019-07-02 株式会社斯巴鲁 车辆的控制装置和车辆的控制方法
JP2019115097A (ja) * 2017-12-21 2019-07-11 株式会社クボタ 電動作業車
US10793124B2 (en) 2018-03-07 2020-10-06 Ford Global Technologies, Llc Vehicle wheel torque control systems and methods
CN111746305A (zh) * 2020-07-10 2020-10-09 江西科技学院 线控四轮驱动轮毂电机电动汽车节能控制方法及系统
CN113459826A (zh) * 2020-03-31 2021-10-01 本田技研工业株式会社 车辆行为控制装置和车辆行为控制方法
CN113910919A (zh) * 2021-10-27 2022-01-11 东风越野车有限公司 一种轮毂电机车辆轮端同步步长目标转矩控制方法、系统和介质
JP7388071B2 (ja) 2019-09-11 2023-11-29 株式会社デンソー 車輪駆動装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977071B (zh) * 2019-12-13 2023-01-10 长城汽车股份有限公司 新能源车辆的控制方法、装置及新能源车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073457A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp 車両の制御装置
JP2005312187A (ja) * 2004-04-21 2005-11-04 Toyota Motor Corp 自動車
JP2007168789A (ja) * 2007-02-14 2007-07-05 Toyota Motor Corp ハイブリッド車両の制御装置
JP2012130226A (ja) * 2010-12-17 2012-07-05 Toyota Motor Corp 車両駆動装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655895B2 (ja) * 2005-11-11 2011-03-23 トヨタ自動車株式会社 車両の制御装置
JP5250541B2 (ja) * 2009-12-21 2013-07-31 三菱自動車工業株式会社 電動車両の差動制限制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073457A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp 車両の制御装置
JP2005312187A (ja) * 2004-04-21 2005-11-04 Toyota Motor Corp 自動車
JP2007168789A (ja) * 2007-02-14 2007-07-05 Toyota Motor Corp ハイブリッド車両の制御装置
JP2012130226A (ja) * 2010-12-17 2012-07-05 Toyota Motor Corp 車両駆動装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153232A (ja) * 2016-02-24 2017-08-31 株式会社Subaru 車両の制御装置及び車両の制御方法
JP2019115097A (ja) * 2017-12-21 2019-07-11 株式会社クボタ 電動作業車
US10967903B2 (en) 2017-12-21 2021-04-06 Kubota Corporation Electrically powered work vehicle
CN109955728A (zh) * 2017-12-22 2019-07-02 株式会社斯巴鲁 车辆的控制装置和车辆的控制方法
US10793124B2 (en) 2018-03-07 2020-10-06 Ford Global Technologies, Llc Vehicle wheel torque control systems and methods
JP7388071B2 (ja) 2019-09-11 2023-11-29 株式会社デンソー 車輪駆動装置
CN113459826A (zh) * 2020-03-31 2021-10-01 本田技研工业株式会社 车辆行为控制装置和车辆行为控制方法
CN111746305A (zh) * 2020-07-10 2020-10-09 江西科技学院 线控四轮驱动轮毂电机电动汽车节能控制方法及系统
CN113910919A (zh) * 2021-10-27 2022-01-11 东风越野车有限公司 一种轮毂电机车辆轮端同步步长目标转矩控制方法、系统和介质
CN113910919B (zh) * 2021-10-27 2023-06-06 东风越野车有限公司 一种轮毂电机车辆轮端同步步长目标转矩控制方法、系统和介质

Also Published As

Publication number Publication date
JPWO2014162830A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014162830A1 (ja) 左右モータ駆動車輪の駆動力制御装置
US10093308B2 (en) Electronic stability control system for vehicle
JP5790871B2 (ja) 電動車両の駆動力制御装置および電動車両の駆動力制御方法
JP4513612B2 (ja) 車両のトルク配分制御装置
US20050159871A1 (en) Vehicle braking control apparatus
US20150088380A1 (en) Active torque steer compensation during negative powertrain torque for hybrid and electric vehicles
EP3028893B1 (en) Vehicle
JP5550891B2 (ja) 電動車両の制御装置および制御方法
JP2006081343A (ja) 車両の回生制動制御装置
JP2004104991A (ja) 回生制動を持つ車両の独立制動及び操縦性の制御方法及びシステム
JP4005594B2 (ja) 回生制御装置
KR20170118208A (ko) 차량
JP2015192471A (ja) 車両運動制御装置
JP2007325372A (ja) 電動車両の制御装置
WO2024012089A1 (zh) 分布式三电机车辆的控制方法、装置、电动车和介质
CN102975631B (zh) 四轮全驱电动汽车轴饱和补偿姿态控制系统及控制方法
JP2008141875A (ja) 走行装置及び駆動制御装置
JP2012056367A (ja) 電動車両の制御装置
WO2017138587A1 (ja) 車輪独立駆動式車両の駆動制御装置
JP2006187047A (ja) 4輪独立駆動車の駆動力制御装置
JP4935022B2 (ja) 車両の左右トルク配分制御装置
JP2015223860A (ja) 車両制御装置
JP6730656B2 (ja) 車両の回頭制御装置
WO2016125686A1 (ja) 車両の制駆動トルク制御装置
JP2007056933A (ja) 車両の左右トルク配分制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14780172

Country of ref document: EP

Kind code of ref document: A1