WO2014162717A1 - シンチレータアレイ、x線検出器、およびx線検査装置 - Google Patents

シンチレータアレイ、x線検出器、およびx線検査装置 Download PDF

Info

Publication number
WO2014162717A1
WO2014162717A1 PCT/JP2014/001866 JP2014001866W WO2014162717A1 WO 2014162717 A1 WO2014162717 A1 WO 2014162717A1 JP 2014001866 W JP2014001866 W JP 2014001866W WO 2014162717 A1 WO2014162717 A1 WO 2014162717A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
resin
metal oxide
mass
scintillator array
Prior art date
Application number
PCT/JP2014/001866
Other languages
English (en)
French (fr)
Inventor
一光 森本
斉藤 昭久
祥卓 足達
正規 豊島
小柳津 英二
六反田 貴史
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN201480019536.6A priority Critical patent/CN105190775B/zh
Priority to JP2015509904A priority patent/JP6419692B2/ja
Publication of WO2014162717A1 publication Critical patent/WO2014162717A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present invention relates to a scintillator array, an X-ray detector, and an X-ray inspection apparatus.
  • an X-ray inspection apparatus such as an X-ray tomographic imaging apparatus (computed tomography (CT) apparatus) is used.
  • the X-ray CT apparatus has an X-ray tube (X-ray source) for irradiating a fan-shaped fan beam X-ray and an X-ray detector having a plurality of X-ray detection elements arranged in parallel, And the X-ray detection element is disposed to face each other such that the tomographic plane of the subject is at the center.
  • a subject is irradiated with a fan beam X-ray from an X-ray tube, absorption data of X-rays transmitted through the subject are collected by an X-ray detector, and the absorption data is analyzed by a computer
  • the tomogram of the subject is reproduced by (calculating the X-ray absorptivity at each position on the tomographic plane and reconstructing the image according to the X-ray absorptivity).
  • an X-ray detector of an X-ray CT apparatus a detector using a solid scintillator which emits visible light by stimulation by X-rays is widely used.
  • a solid scintillator it is easy to miniaturize the X-ray detection element and increase the number of channels, so the resolution of the X-ray CT apparatus can be further enhanced.
  • ceramic scintillators made of a sintered body of rare earth acid sulfide such as Gd 2 O 2 S: Pr have a large X-ray absorption coefficient and excellent luminous efficiency, Moreover, since afterglow (after glow) is short, it is suitable as a scintillator for X-ray detectors.
  • the sintered body (phosphor ceramic) of the rare earth oxysulfide phosphor that constitutes the ceramic scintillator various proposals have been made on the improvement of light output, the densification of the sintered body, the improvement of mechanical strength, etc. .
  • the light output of the ceramic scintillator can be increased by controlling the amount of PO 4 .
  • the light output is improved by controlling the amount of phosphorus in the ceramic scintillator (sintered body).
  • the improvement of the light output of the scintillator leads to the shortening of the inspection time as an X-ray inspection apparatus, that is, the reduction of exposure.
  • Development of scintillator materials is an effective means for improving light output.
  • the scintillator since the scintillator is used as an array through the reflective layer portion, it is also considered effective to improve the reflective layer portion used for the scintillator array in order to improve the light output of the scintillator.
  • the conventional scintillator array for example, one in which a resin layer containing titanium oxide particles is provided on both sides of a radiation shielding plate is used as a reflective layer portion. If it is a scintillator array of the said structure, it is thought that reflection efficiency will improve from using a radiation shielding board. However, since both the radiation shielding plate and the resin layer containing titanium oxide particles are used as the reflective layer portion, cost increase can not be avoided.
  • titanium oxide particles have photocatalytic properties. Therefore, when titanium oxide particles are mixed with resin to form a reflective layer portion, there is a problem that the resin is deteriorated due to the photocatalytic effect of titanium oxide particles during long-term use. When the resin of the reflective layer portion is deteriorated, the reflectance of the reflective layer portion is changed. As a result, there is a problem that the light output of the scintillator array is reduced.
  • the present embodiment is intended to address such a problem, and provides a scintillator array excellent in long-term reliability by improving the reflection effect of the reflection layer portion and further suppressing the deterioration of the resin.
  • the purpose is to
  • the scintillator array according to the present embodiment includes a plurality of scintillator blocks and a reflective layer portion provided between the plurality of scintillator blocks so as to integrate the plurality of scintillator blocks.
  • the reflective layer portion has a resin portion.
  • the resin part is 100 parts by mass in total of 70 to 84 parts by mass of the first metal oxide composed of titanium oxide and 16 to 30 parts by mass of the second metal oxide composed of metal oxides other than titanium oxide To contain.
  • the photocatalytic property of titanium oxide can be suppressed and the deterioration of the resin can be suppressed after the reflective property is imparted to the reflective layer portion.
  • the light output of the scintillator array can be stabilized. Therefore, the X-ray detector and the X-ray inspection apparatus having the scintillator array according to the embodiment can be made excellent in reliability.
  • FIG. 6 is a view showing an example of a manufacturing process of the scintillator array according to the embodiment.
  • the scintillator array according to the embodiment includes a plurality of scintillator blocks and a reflective layer portion provided between the plurality of scintillator blocks so as to integrate the plurality of scintillator blocks.
  • the resin part is 100 parts by mass in total of 70 to 84 parts by mass of the first metal oxide composed of titanium oxide and 16 to 30 parts by mass of the second metal oxide composed of metal oxides other than titanium oxide To contain.
  • the scintillator array 1 has a plurality of scintillator blocks 2.
  • a reflective layer portion 3 is provided between the plurality of scintillator blocks 2.
  • the reflective layer portion 3 is directly bonded to the scintillator block 2.
  • the plurality of scintillator blocks 2 are integrated by the reflective layer portion 3. That is, the scintillator array 1 includes the plurality of scintillator blocks 2 and the reflective layer portion 3 provided between the plurality of scintillator blocks 2 so as to integrate the plurality of scintillator blocks 2.
  • the scintillator array 1 has a structure having a plurality of scintillator blocks 2 arranged in a line, or a plurality of scintillator blocks 2 arranged two-dimensionally in a predetermined number in the longitudinal direction and a lateral direction as shown in FIG. It may have a provided structure.
  • the reflection layer portions 3 are provided between the scintillator blocks 2 in the longitudinal direction and the lateral direction.
  • the number of scintillator blocks 2 is appropriately set according to the structure, resolution, etc. of the X-ray detector.
  • the scintillator array 1 has a multi-channel structure.
  • the reflective layer portion 3 has a resin portion containing a metal oxide.
  • the resin portion contains 70 to 84 parts by mass of the first metal oxide by mass ratio of titanium oxide (titanium oxide particles) and 30 to 16 parts by mass of the second metal by mass ratio of metal oxides other than titanium oxide.
  • the oxide is contained in a total amount of 100 parts by mass.
  • the titanium oxide particles have high reflectance of light in the visible light region of 450 to 700 nm, so that the light output of the scintillator array 1 can be improved regardless of the material of the scintillator block 2. That is, the titanium oxide particles function as reflective particles. Examples of titanium oxide particles include particles of TiO 2 .
  • TiO 2 includes rutile type, anatase type, brookite type and the like. Among these, rutile type is preferable. Rutile TiO 2 is a material having low photocatalytic properties among TiO 2 .
  • the average particle diameter of a titanium oxide particle is 2 micrometers or less.
  • the average particle diameter of the titanium oxide particles is more preferably 1 ⁇ m or less, and still more preferably 0.4 ⁇ m or less.
  • the lower limit of the average particle diameter of the titanium oxide particles is not particularly limited, but is preferably 0.01 ⁇ m or more in consideration of the productivity of the titanium oxide particles.
  • titanium oxide particles are used as the first metal oxide, and metal oxides other than titanium oxide are used as the second metal oxide.
  • the total of the first metal oxide (titanium oxide particles) and the second metal oxide (a metal oxide other than titanium oxide) is 100 parts by mass, and the mass ratio of the first metal oxide (titanium oxide particles) is 70 It contains up to 84 parts by mass and contains 16 to 30 parts by mass of a second metal oxide (a metal oxide other than titanium oxide).
  • the photocatalytic properties of the titanium oxide particles can be suppressed while making use of the reflection properties of the titanium oxide particles.
  • the content of the second metal oxide is less than 16 parts by mass, the amount of the second metal oxide is small, that is, the amount of titanium oxide is too large, and the effect of suppressing the deterioration of the resin can not be sufficiently obtained.
  • the amount of the second metal oxide exceeds 30 parts by mass and deterioration of the resin can be suppressed, the amount of titanium oxide is small, so the reflectance of the reflective layer decreases.
  • the reflectance of the reflective layer portion decreases, the light output of the scintillator array 1 decreases. Therefore, the content of the second metal oxide is more preferably 16 to 30 parts by mass, and still more preferably 17 to 25 parts by mass.
  • the second metal oxide is preferably at least one selected from the group consisting of aluminum oxide, zirconium oxide, tantalum oxide, and silicon oxide.
  • Aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), and silicon oxide (SiO 2 ) have almost no photocatalytic properties. Further, aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), and silicon oxide (SiO 2 ) have a reflectance of visible light of a certain value or more, It is a component which contributes to reflectance improvement. Among these, aluminum oxide (Al 2 O 3 ) is particularly preferable. Aluminum oxide exhibits a white color when the purity is 95% or more, and the reflectance of visible light is improved. In addition, aluminum oxide has the merit of being cheaper than other metal oxides.
  • the second metal oxide may be contained as particles or may be contained as a surface film provided on the surface of titanium oxide particles.
  • part or all of the second metal oxide is preferably a surface film provided on the surface of titanium oxide particles. That is, the resin part may contain titanium oxide particles having a surface film of the second metal oxide.
  • the second metal oxide preferably contains both a surface film provided on the surface of titanium oxide particles and metal oxide particles. That is, the resin part may contain titanium oxide particles having a surface film of the second metal oxide and particles of the second metal oxide.
  • the surface coating of the second metal oxide can reduce the photocatalytic effect of the titanium oxide particles.
  • the surface coating amount is too large, the goodness of the reflectance of the titanium oxide particles is difficult to utilize.
  • the reflectance of the surface-coated titanium oxide particles may change depending on the surface coating amount. Therefore, by causing particles of metal oxides other than titanium oxide to be present together, it is possible to reduce partial variation in reflectance in the reflective layer portion 3.
  • the thickness of the surface film is preferably 1/10 or less of the diameter of the titanium oxide particles. If the surface film is too thick, the reflection properties of the titanium oxide particles may not be utilized. Moreover, it is preferable that the average particle diameter of a 2nd metal oxide particle is 2 micrometers or less.
  • the resin portion preferably contains, for example, a thermosetting resin.
  • a thermosetting resin 1 type chosen from the group which consists of an epoxy resin, a silicone resin, a phenol resin, a melamine resin, a urea resin, unsaturated polyester resin, an alkyd resin, a polyurethane resin, and a polyimide resin is preferable, for example.
  • an epoxy resin or a silicone resin it is preferable to use an epoxy resin or a silicone resin.
  • Epoxy resin or silicone resin is preferable because of high photocatalytic resistance.
  • the mass of the reflective particles is preferably in the range of 0.2 to 4 parts by mass. If the mass of the reflective particles is less than 0.2 parts by mass, the reflection properties of the reflective layer portion 3 may be insufficient. In addition, if the mass of the reflective particles exceeds 4 parts by mass, the adhesion strength between the scintillator block 2 and the reflective layer portion 3 may be reduced, and the intensity of the scintillator array 1 may be reduced. When the mass of the reflective particles is in the range of 0.2 to 4 parts by mass, the viscosity of the resin mixture described later can be easily adjusted. When the mass of the resin is 100 parts by mass, the mass of the reflective particles is more preferably 1 to 3 parts by mass. Here, the mass of the reflective particles indicates the total content of the first metal oxide and the second metal oxide.
  • the epoxy resin is preferably a two-component epoxy resin. Moreover, it is preferable that an epoxy resin is what does not have a double bond.
  • the epoxy resin is a general term for a resin having two or more epoxy groups (oxysilane ring) in one molecule and which is three-dimensionally cured by a curing agent or the like.
  • the one-pack type epoxy resin is a liquid resin in which an epoxy resin main agent and a curing agent are previously mixed, and is cured by heating.
  • the two-part epoxy resin is a liquid resin in which an epoxy resin main agent and a curing agent are separate, and is cured by mixing two liquid materials. That is, in the case of a two-part epoxy resin, it can be cured at room temperature.
  • the thickness of the reflective layer portion 3 and the width W of the reflective layer portion 3 can be easily adjusted.
  • the reflective layer portion 3 can be formed without heating, it is possible to prevent the surface coating from being altered in the surface coated titanium oxide particles.
  • the epoxy resin main agent and the curing agent before mixing can be stored separately and are easy to store.
  • the epoxy resin is preferably an aromatic epoxy resin or an aliphatic epoxy resin.
  • the aromatic epoxy resin has a benzene ring in its molecular structure.
  • aliphatic type epoxy resins do not have a benzene ring in the molecular structure.
  • Both the aromatic epoxy resin and the aliphatic epoxy resin are transparent resins.
  • the benzene ring is easily activated by X-ray irradiation or the photocatalytic effect of titanium oxide, and tends to cause deterioration of the resin.
  • the adhesive strength of the aromatic epoxy resin having a benzene ring is higher than that of the aliphatic epoxy resin.
  • an aliphatic epoxy resin in order to prevent deterioration of the resin of the scintillator array 1 and obtain long-term reliability.
  • an aromatic epoxy resin when it is desired to improve the bonding strength between the scintillator blocks 2 of the scintillator array 1, it is preferable to use an aromatic epoxy resin.
  • the shear strength can be 1.5 kgf / mm 2 or more, and with an aromatic epoxy resin, the shear strength can be 2.0 kgf / mm 2 or more.
  • the shear strength is measured using a bond tester, and is measured by a die shear test (at room temperature) in accordance with MIL STD-883.
  • the mass of the reflective particles is preferably in the range of 0.2 to 4 parts by mass. If the mass of the reflective particles is less than 0.2 parts by mass, the reflection characteristics of the reflective layer portion may be insufficient. In addition, if the mass of the reflective particles exceeds 4 parts by mass, the adhesive strength may be reduced, and the strength of the scintillator array 1 may be reduced. When the mass of the reflective particles is in the range of 0.2 to 4 parts by mass, the viscosity of the resin mixture described later can be easily adjusted. When the mass of the epoxy resin is 100 parts by mass, the mass of the reflective particles is more preferably 1 to 3 parts by mass. Here, the mass of the reflective particles indicates the total content of the first metal oxide and the second metal oxide.
  • the scintillator block 2 is preferably a solid scintillator made of single crystals or polycrystals of metal oxides, metal sulfides, metal oxysulfides.
  • a metal oxide fluorescent substance which comprises a solid scintillator the metal oxide which has a garnet structure is mentioned.
  • the garnet-type metal oxide is preferably aluminum garnet having a composition represented by the following formula (1).
  • the metal sulfide phosphor constituting the solid scintillator is preferably a rare earth sulfide, and examples thereof include composite sulfides such as NaGdS 2 : Bi.
  • metal oxysulfide phosphors include rare earth oxysulfides.
  • the rare earth acid sulfide is preferably gadolinium oxysulfide having a composition represented by the following formula (2).
  • Pra a (2) a is an activation amount of praseodymium (Pr) with respect to 1 mol of gadolinium oxysulfide (Gd 2 O 2 S), and is preferably in the range of 0.0001 to 0.005 mol.
  • the scintillator block 2 consisting of a single crystal or polycrystal of the above-mentioned metal oxide, metal sulfide or metal oxysulfide is easy to emit light when excited by X-rays, and also has high photosensitivity. Suitable for line detectors.
  • the scintillator block 2 is at least one selected from a sintered body of aluminum garnet having a composition represented by the formula (1) and a sintered body of gadolinium oxysulfide having a composition represented by the formula (2) More preferably, Moreover, since the sintered body represented by Formula (1) and Formula (2) does not deteriorate by heating at the time of hardening a resin part, it is preferable.
  • the thickness T of the scintillator block 2 is preferably in the range of 0.5 to 3 mm, and more preferably in the range of 1 to 2 mm. If the thickness T of the scintillator block 2 is less than 0.5 mm, the X-ray component passing through the scintillator block 2 may be increased, and the light output may be reduced. Even if the thickness T of the scintillator block 2 exceeds 3 mm, it is difficult to obtain a further improvement in light output, which causes an increase in manufacturing cost.
  • the longitudinal and lateral lengths of the scintillator block 2 are not particularly limited.
  • the length in the longitudinal direction is in the range of 20 to 50 mm and the length in the lateral direction is in the range of 1 to 3 mm.
  • the lengths in the longitudinal direction and the lateral direction be in the range of 0.5 to 2 mm.
  • the width W of the reflective layer portion 3 (the distance between adjacent scintillator blocks 2 / the width W in FIG. 1) is preferably in the range of 10 to 100 ⁇ m.
  • the width W of the reflective layer portion 3 is not particularly limited as long as the scintillator block 2 is disposed on the pixel of the photoelectric conversion element described later. However, when the width W of the reflective layer portion 3 is less than 10 ⁇ m, the function of the reflective layer portion 3 as an adhesive layer is reduced, and the adhesive strength of the reflective layer portion 3 to the scintillator block 2 is easily reduced. As a result, the intensity of the scintillator array 1 may be reduced. When the width of the reflective layer portion 3 exceeds 100 ⁇ m, the scintillator array 1 becomes larger than necessary.
  • the width W of the reflective layer portion 3 is more preferably in the range of 20 to 80 ⁇ m. In the scintillator array 1 shown in FIG. 2, the width W of the reflective layer portion 3 may not be the same in the vertical direction and the horizontal
  • the scintillator block 2 preferably has a surface roughness of 5 ⁇ m or less in arithmetic average roughness Ra (JIS B 0601-2001).
  • Ra arithmetic average roughness
  • the arithmetic average roughness Ra of the scintillator block 2 is more preferably 1 ⁇ m or less, further preferably 0.1 ⁇ m or less.
  • the reflective layer portion 3 preferably has a reflectance of 90% or more to light having a wavelength of 510 nm. Furthermore, it is preferable that the reflective layer portion 3 have a reflectance of 88% or more with respect to light having a wavelength of 670 nm.
  • the X-ray detector detects the visible light emitted by exciting the scintillator block 2 with X-rays and converting the visible light into an electrical signal by a photoelectric conversion element. Therefore, the reflective layer portion 3 is required to have a high reflectance to light having a wavelength of 450 to 700 nm which is a visible light region. The reflectance for light in all visible light regions is more preferably 85% or more.
  • the above-described gadolinium oxysulfide phosphor has large emission peaks in the range of 500 to 520 nm and in the range of 650 to 680 nm as the emission spectrum when excited by X-rays. Therefore, it is possible to further increase the light output of the scintillator array 1 by improving the reflectance of light in the above-mentioned wavelength region of the reflective layer portion 3.
  • FIG. 3 and FIG. 4 are diagrams showing the configuration of the X-ray detector of the embodiment.
  • the scintillator array 1 has a surface 1a to be an X-ray irradiation surface, and the photoelectric conversion element 4 is integrally installed on the surface 1b opposite to the surface 1a.
  • a photodiode is used as the photoelectric conversion element 4.
  • the photoelectric conversion element 4 is disposed at a position corresponding to the scintillator block 2 constituting the scintillator array 1.
  • the surface reflection layer 6 may be provided on the surface 1 a of the scintillator array 1.
  • the X-ray detector 5 is comprised by these.
  • the surface reflection layer 6 is not limited to the surface 1 a of the scintillator array 1, and may be provided on the surface 1 b which is the installation surface of the photoelectric conversion element 4. Furthermore, the surface reflection layer 6 may be provided on both the surface 1 a and the surface 1 b of the scintillator array 1. By providing the surface reflection layer 6 in the scintillator array 1, the reflection efficiency of visible light emitted from the scintillator block 2 can be further improved, and thus the light output of the scintillator array 1 can be increased.
  • a mixture of reflective particles and a transparent resin, a lacquer-based paint, or the like is used for the surface reflective layer 6, a mixture of reflective particles and a transparent resin, a lacquer-based paint, or the like is used.
  • the mixture of the reflective particles and the transparent resin preferably has the same dispersion state of reflective particles as the reflective layer portion 3.
  • the thickness of the surface reflection layer 6 is preferably in the range of 50 to 250 ⁇ m. If the thickness of the surface reflection layer 6 is less than 50 ⁇ m, the effect of improving the reflection efficiency can not be sufficiently obtained. When the thickness of the surface reflection layer 6 exceeds 250 ⁇ m, the transmitted X-ray dose decreases and the detection sensitivity decreases.
  • FIG. 5 shows an X-ray CT apparatus 10 which is an example of the X-ray inspection apparatus of the embodiment.
  • the X-ray CT apparatus 10 includes the X-ray detector 5 of the embodiment.
  • the X-ray detector 5 is attached to the inner wall surface of the cylinder on which the imaging region of the subject 11 is placed.
  • An X-ray tube 12 for emitting X-rays is installed at substantially the center of the circular arc of the cylinder to which the X-ray detector 5 is attached.
  • a subject 11 is disposed between the X-ray detector 5 and the X-ray tube 12.
  • a collimator (not shown) is provided on the X-ray irradiation surface side of the X-ray detector 5.
  • the X-ray detector 5 and the X-ray tube 12 are configured to rotate around the subject 11 while performing X-ray imaging. Image information of the subject 11 is collected three-dimensionally from different angles.
  • the signal (electrical signal converted by the photoelectric conversion element) obtained by the X-ray imaging is processed by the computer 13 and displayed as the object image 15 on the display 14.
  • the subject image 15 is, for example, a tomogram of the subject 11.
  • FIG. 2 it is also possible to construct a multi-tomographic image type X-ray CT apparatus 10 by using a scintillator array 1 in which scintillator blocks 2 are two-dimensionally arranged. In this case, a plurality of tomograms of the subject 11 can be simultaneously captured, and for example, imaging results can be depicted in three dimensions.
  • the X-ray CT apparatus 10 shown in FIG. 5 includes an X-ray detector 5 having the scintillator array 1 of the embodiment.
  • the scintillator array 1 according to the embodiment has excellent light output because the reflection efficiency of visible light emitted from the scintillator block 2 is high based on the configuration of the reflective layer portion 3 and the like.
  • the imaging time by the X-ray CT apparatus 10 can be shortened.
  • the exposure time of the subject 11 can be shortened, and it is possible to realize low exposure.
  • the X-ray inspection apparatus (X-ray CT apparatus 10) of the embodiment is applicable not only to X-ray inspection for medical diagnosis of human body but also to X-ray inspection of animals, X-ray inspection for industrial use, etc. .
  • the scintillator array 1 of the embodiment is manufactured, for example, as follows. Hereinafter, a method for efficiently manufacturing the scintillator array 1 of the embodiment will be described.
  • the manufacturing method of the scintillator array 1 of the embodiment is not limited to this.
  • the scintillator array 1 may have any configuration as described above, and is not limited to the manufacturing method.
  • titanium oxide particles having an average particle diameter of 2 ⁇ m or less are prepared.
  • the titanium oxide particles preferably have a particle size distribution in which a peak is present in the range of 0.2 to 0.3 ⁇ m.
  • the titanium oxide particles preferably have a rutile structure.
  • a metal oxide to be a second metal oxide is prepared.
  • the second metal oxide is added as metal oxide particles, it is preferable to use a metal oxide having an average particle diameter of 2 ⁇ m or less.
  • a surface treatment process is performed.
  • the surface treatment process includes a chlorine method, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, a colloid method and the like.
  • the amount of the second metal oxide that has become the surface coating can be determined by comparing the mass of the titanium oxide particles before the surface treatment step and the mass of the surface-coated titanium oxide particles after the surface treatment.
  • the mass ratio of titanium oxide to the second metal oxide can also be determined from the peak ratio of the peak of titanium oxide to the peak of the second metal oxide by X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • XRF analysis by X-ray fluorescence
  • a resin is prepared.
  • the resin is preferably a resin such as the epoxy resin and silicone resin described above.
  • the epoxy resin is preferably a two-component epoxy resin as described above.
  • Reflective particles such as titanium oxide particles and a resin such as epoxy resin are mixed.
  • an epoxy resin main agent and reflective particles such as titanium oxide particles are mixed.
  • the reflective particles titanium oxide particles, second metal oxide particles, or surface-coated titanium oxide particles
  • mixing using a three-roll is preferred.
  • Three-roll is a mixer that mixes using three rolls. Since three rolls are simultaneously moved and mixed, the mixing direction becomes a plurality of directions, and it becomes difficult to form aggregates during the mixing process. It is preferable to perform the mixing process using 3 rolls for 10 hours or more.
  • a plurality of scintillator blocks 2 processed into a predetermined shape are arranged at regular intervals.
  • a mixture of reflective particles and resin (hereinafter referred to as a resin mixture) is filled between adjacent scintillator blocks 2.
  • the resin mixture can be smoothly filled between the scintillator blocks 2. If the viscosity of the resin mixture is less than 1 Pa ⁇ s (1000 cps), the viscosity is too low, and when the transparent resin is cured, the dispersion state of the reflective particles may not be controlled well.
  • the filling step is preferably performed in vacuum. This can suppress the formation of a void in the reflective layer portion 3.
  • the degree of vacuum at the time of filling is preferably 4 kPa (30 Torr) or less. If in a vacuum atmosphere of 4 kPa or less, it is easy to control the existence ratio of voids in the thickness direction of the reflective layer portion 3 to 0.1% or less.
  • the surface of the scintillator block 2 is preferably processed flat so that the arithmetic average roughness Ra is 5 ⁇ m or less.
  • heat treatment is performed to cure the transparent resin. The heat treatment is preferably performed, for example, at a temperature in the range of 80 to 160 ° C., depending on the curing temperature of the transparent resin.
  • the scintillator block 2 made of a gadolinium oxysulfide sintered body or an aluminum garnet sintered body is preferable because it does not deteriorate in the heat treatment step.
  • it can be cured by leaving it at room temperature without heating. It is preferable to use a curing agent having such properties.
  • the scintillator block element 7 shown in FIG. 6 is a plate-like element before being cut into individual scintillator blocks 2.
  • the groove portion 8 to be the formation portion of the reflective layer portion 3 is formed in the scintillator block element 7.
  • the groove portion 8 is formed by processing the scintillator block element 7 to a predetermined depth so as not to penetrate to the back surface of the scintillator block element 7.
  • the scintillator block element 7 is provided with vertical and horizontal grooves, and the scintillator block element 7 is grooved so that the scintillator block 2 of a predetermined size is finally obtained.
  • the groove 8 provided in the scintillator block element 7 is filled with the resin mixture to be the reflective layer portion 3.
  • the resin mixture can be smoothly filled in the groove portion 8.
  • the void can be suppressed by filling the resin mixture into the groove 8 in vacuum.
  • the degree of vacuum at the time of filling is preferably 4 kPa or less. If in a vacuum atmosphere of 4 kPa or less, it is easy to control the existence ratio of voids in the thickness direction of the reflective layer portion 3 to 0.1% or less.
  • the rotation speed of the centrifuge is preferably 500 to 3000 rpm, and the rotation time is preferably 30 minutes or more.
  • the voids contained in the resin are released by the centrifugal force.
  • the viscosity of the resin mixture exceeds 2.5 Pa ⁇ s, it is difficult for the void to be released outside due to the centrifugal force.
  • the viscosity of the resin mixture is less than 0.5 Pa ⁇ s, the resin mixture may flow to the outside of the scintillator block element 7 when centrifugal force is applied.
  • the viscosity of the resin mixture is preferably in the range of 0.5 to 2.5 Pa ⁇ s. Furthermore, in order to uniformly fill the resin mixture in the grooves 8 provided in the scintillator block element 7, a certain rotational speed is required.
  • the rotational speed of the centrifuge is preferably 500 rpm or more. If the rotation speed is too fast, the resin mixture may flow to the outside of the scintillator block element 7 and fall.
  • the rotational speed of the centrifuge is preferably 3000 rpm or less.
  • the resin mixture can be uniformly filled inside.
  • the percentage of voids present in the thickness direction of the reflective layer portion 3 can be 1% or less, further 0.1% or less, or even 0% (or less than the detection limit).
  • the resin in the resin mixture filled in the groove 8 is cured.
  • the scintillator block element 7 having the reflective layer portion 3 is formed.
  • the scintillator block element 7 is separated into individual scintillator blocks 2 by polishing the scintillator block element 7 having the reflection layer portion 3 and at the same time the reflection layer
  • the portion 3 is processed to have a shape penetrating the front and back of the scintillator array 1. Polishing may be performed on either one side or both sides of the scintillator block element 7.
  • the polishing process of the scintillator block element 7 is preferably performed such that the arithmetic average roughness Ra of the scintillator block 2 is 5 ⁇ m or less. Further, for the polishing process of the scintillator block element 7, for example, a lapping process using diamond abrasive is applied. As shown in FIG. 6, the method of providing the grooves 8 in the scintillator block element 7 is effective for producing a large array.
  • aluminum oxide (Al 2 O 3 ) particles, zirconium oxide (ZrO 2 ) particles, tantalum oxide (Ta 2 O 5 ) particles, and silicon oxide (SiO 2 ) particles were prepared as the second metal oxide.
  • the second metal oxide particles those having an average particle diameter of 0.3 ⁇ m were prepared.
  • the titanium oxide particles and the second metal oxide particles were mixed. The mixed powder was subjected to an ultrasonic vibrator to sufficiently crush the aggregates.
  • an epoxy resin shown in Table 1 was prepared, mixed powder was added, and a mixing process was performed for 20 to 50 hours with a three-roll mixer.
  • the viscosity of the obtained resin mixture was adjusted to be in the range of 0.5 to 2.5 Pa ⁇ s.
  • the mass of the reflective particles (the total of the titanium oxide particles and the second metal oxide particles) was unified at 1.5 parts by mass.
  • the resin mixture was filled into the grooves of the scintillator block element using a centrifuge.
  • the filling step was performed in a vacuum (4 kPa or less) at a rotational speed of 500 to 3000 rpm.
  • the heating process was performed as needed, and the epoxy resin was hardened.
  • the back surface side (surface side in which the groove part is not formed) of the scintillator block element was grind
  • the material, the addition amount of the second metal oxide, and the material of the epoxy resin are as shown in Table 1.
  • Aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), and silicon oxide (SiO 2 ) were prepared as the second metal oxide.
  • a surface treatment step was performed on the titanium oxide particles to provide a surface coating of the second metal oxide.
  • the surface treatment process was performed by the chlorine method.
  • the mass ratio of the titanium oxide particles to the surface coating (second metal oxide) in the surface-coated titanium oxide particles is as shown in Table 2.
  • second metal oxide particles were prepared, and surface-coated titanium oxide particles and second metal oxide particles were added.
  • a second metal oxide particle one having an average particle diameter of 0.3 ⁇ m was prepared.
  • the surface-coated titanium oxide particles (a mixture of the surface-coated titanium oxide particles and the second metal oxide particles when the second metal oxide particles were added) were subjected to an ultrasonic vibrator to sufficiently crush aggregates.
  • an epoxy resin shown in Table 2 was prepared, mixed powder was added, and a mixing process was performed for 20 to 50 hours with a three-roll mixer.
  • the viscosity of the obtained resin mixture was adjusted to be in the range of 0.5 to 2.5 Pa ⁇ s.
  • the amount of the epoxy resin was 100 parts by mass
  • the amount of the reflective particles was unified to 2 parts by mass.
  • the resin mixture was filled into the grooves of the scintillator block element using a centrifuge.
  • the filling step was performed in a vacuum (4 kPa or less) at a rotational speed of 500 to 3000 rpm.
  • the heating process was performed as needed, and the epoxy resin was hardened.
  • the back surface side (surface side in which the groove part is not formed) of the scintillator block element was grind
  • the material, the addition amount of the second metal oxide, and the material of the epoxy resin are as shown in Table 2.
  • the reflectance of the reflective layer portion the durability to X-rays, and the shear strength were measured.
  • the reflectance of the reflective layer portion the light reflectance (%) at wavelengths of 510 nm and 670 nm was determined.
  • 10 kGy which is the X-ray irradiation condition corresponds to the X-ray irradiation amount irradiated to the scintillator array when used for about 10 years in the X-ray CT apparatus.
  • the shear strength was measured using a bond tester, and was performed by a die shear test (at room temperature) in accordance with US MIL STD-883. The measurement results are shown in Table 3.
  • the scintillator array according to the example had excellent reflectance. Therefore, it turns out that it can be set as the scintillator array excellent in light output. In addition, it can be seen that the durability to X-rays is also excellent. In addition, the use of both the surface-coated titanium oxide particles and the second metal oxide particles was superior in the characteristics.
  • the scintillator array according to the embodiment is excellent in light output, and moreover, is excellent in durability to X-rays. Therefore, a scintillator array excellent in long-term reliability can be obtained. Therefore, it is understood that the long-term reliability is enhanced in the X-ray detector and the X-ray inspection apparatus using the scintillator array of the embodiment.
  • Example 16 The epoxy resin of Example 1 was changed to a silicone resin, Example 16 was used, and the epoxy resin of Example 2 was changed to a silicone resin, Example 17 was used, and the epoxy resin of Example 1 was changed to a polyimide resin.
  • the product is referred to as Example 18 and the epoxy resin of Example 2 is changed to a polyimide resin to obtain Example 19.
  • the same measurements as in Example 1 were performed on the scintillator arrays according to Examples 16-19. The results are shown in Table 4.

Abstract

 光出力が高く、X線への耐久性の優れたシンチレータアレイを提供する。複数のシンチレータブロックと、複数のシンチレータブロックを一体化するように複数のシンチレータブロックの間に設けられた反射層部とを具備する。反射層部は、樹脂部を有する。樹脂部は、酸化チタンからなる70~84質量部の第一金属酸化物と、酸化チタン以外の金属酸化物からなる16~30質量部の第二金属酸化物と、を合計100質量部となるように含有する。

Description

シンチレータアレイ、X線検出器、およびX線検査装置
 本発明は、シンチレータアレイ、X線検出器、およびX線検査装置に関する。
 医療診断や工業用非破壊検査などの分野において、X線断層写真撮影装置(X線CT(Computed Tomography:CT)装置)などのX線検査装置が用いられている。X線CT装置は、扇状のファンビームX線を照射するX線管(X線源)と、並列配置された複数のX線検出素子を有するX線検出器とを、有し、X線管およびX線検出素子が被検体の断層面が中央にくるように対向して配置された構造を有している。X線CT装置では、被検体に対してX線管からファンビームX線を照射し、被検体を透過したX線の吸収データをX線検出器で収集した後、この吸収データをコンピュータで解析(断層面の個々の位置におけるX線吸収率の算出、およびX線吸収率に応じた画像の再構成)することによって、被検体の断層像を再生している。
 X線CT装置のX線検出器として、X線による刺激により可視光線を放射する固体シンチレータを用いた検出器が多用されている。固体シンチレータを用いたX線検出器では、X線検出素子を小型化してチャンネル数を増やすことが容易であることから、X線CT装置の解像度をより一層高めることができる。固体シンチレータとしては種々の物質が知られているが、特にGdS:Prのような希土類酸硫化物の焼結体からなるセラミックシンチレータは、X線吸収係数が大きく発光効率に優れ、また残光(アフターグロー)が短いことから、X線検出器用シンチレータとして好適である。
 セラミックシンチレータを構成する希土類酸硫化物蛍光体の焼結体(蛍光体セラミックス)において、光出力の向上、また焼結体の高密度化や機械的強度の向上などに関する種々の提案がなされている。例えば、PO量を制御することによりセラミックシンチレータの光出力を高めることが可能であることが知られている。セラミックシンチレータ(焼結体)中のリン量を制御することにより光出力は改善される。
 シンチレータの光出力の向上は、X線検査装置としての検査時間の短時間化、つまりは低被ばく化につながるものである。光出力の向上に対してシンチレータ材料の開発は有効な手段である。また、シンチレータは反射層部を介してアレイとして使われるため、シンチレータの光出力を向上させるためにはシンチレータアレイに用いられる反射層部を改善することも有力な手段とされている。
 従来のシンチレータアレイでは、例えば放射線遮蔽板の両面に酸化チタン粒子を含有する樹脂層が設けられたものを反射層部として用いていた。上記構造のシンチレータアレイであれば、放射線遮蔽板を用いていることから反射効率が向上すると考えられる。しかしながら、反射層部として、放射線遮蔽板と酸化チタン粒子を含有する樹脂層との両方を用いるため、コストアップは避けられなかった。
 酸化チタン粒子の反射特性は優れている。その一方で、酸化チタン粒子は、光触媒特性を有している。そのため、樹脂に酸化チタン粒子を混合して反射層部を形成すると、長期使用時に酸化チタン粒子の光触媒効果により樹脂が劣化するといった問題が生じていた。反射層部の樹脂が劣化すると反射層部の反射率が変化してしまう。その結果、シンチレータアレイの光出力が低下するといった不具合が生じていた。
特許第4266114号公報 特許第3104696号公報
 本実施形態は、このような問題に対応するためのものであり、反射層部の反射効果を向上させ、さらには樹脂の劣化を抑制することにより、長期信頼性の優れたシンチレータアレイを提供することを目的とするものである。
 本実施形態にかかるシンチレータアレイは、複数のシンチレータブロックと、複数のシンチレータブロックを一体化するように複数のシンチレータブロックの間に設けられた反射層部とを具備する。反射層部は、樹脂部を有する。樹脂部は、酸化チタンからなる70~84質量部の第一金属酸化物と、酸化チタン以外の金属酸化物からなる16~30質量部の第二金属酸化物と、を合計100質量部となるように含有する。
 本実施形態にかかるシンチレータアレイでは、反射層部に反射特性を付与した上で、酸化チタンの光触媒特性が抑制され、樹脂の劣化を抑制することができる。樹脂の劣化を防ぐことにより、シンチレータアレイの光出力を安定化させることができる。そのため、実施形態にかかるシンチレータアレイを具備するX線検出器およびX線検査装置を信頼性の優れたものとすることができる。
実施形態にかかるシンチレータアレイの側面の一例を示す図。 実施形態にかかるシンチレータアレイの上面の一例を示す図。 実施形態にかかるX線検出器の一例を示す図。 実施形態にかかるX線検出器の他の一例を示す図。 実施形態にかかるX線検査装置の一例を示す図。 実施形態にかかるシンチレータアレイの製造工程の一例を示す図。
 実施形態にかかるシンチレータアレイは、複数のシンチレータブロックと、複数のシンチレータブロックを一体化するように複数のシンチレータブロックの間に設けられた反射層部とを具備する。樹脂部は、酸化チタンからなる70~84質量部の第一金属酸化物と、酸化チタン以外の金属酸化物からなる16~30質量部の第二金属酸化物と、を合計100質量部となるように含有する。
 図1に実施形態にかかるシンチレータアレイの側面の一例を示す。また、図2に実施形態にかかるシンチレータアレイの上面の一例を示す。シンチレータアレイ1は、複数のシンチレータブロック2を有している。複数のシンチレータブロック2の間には、反射層部3が設けられている。反射層部3は、シンチレータブロック2に直接接着されている。複数のシンチレータブロック2は、反射層部3により一体化されている。すなわち、シンチレータアレイ1は、複数のシンチレータブロック2と、複数のシンチレータブロック2を一体化するように、複数のシンチレータブロック2の間に設けられた反射層部3と、を具備する。
 シンチレータアレイ1は、一列に並べられた複数のシンチレータブロック2を具備する構造、または図2に示すように縦方向および横方向に所定の個数ずつ二次元的に並べられた複数のシンチレータブロック2を具備する構造を有していてもよい。複数のシンチレータブロック2を二次元的に配列した場合、縦方向および横方向のシンチレータブロック2間にそれぞれ反射層部3が設けられる。シンチレータブロック2の個数は、X線検出器の構造や解像度等に応じて適宜に設定される。また、シンチレータアレイ1は、多チャンネル構造を有している。
 反射層部3は金属酸化物を含む樹脂部を有する。樹脂部は、酸化チタン(酸化チタン粒子)からなる質量比で70~84質量部の第一金属酸化物と、酸化チタン以外の金属酸化物からなる質量比で30~16質量部の第二金属酸化物と、を合計100質量部になるように含有する。
 酸化チタン粒子は、450~700nmの可視光領域の光の反射率が高いため、シンチレータブロック2の材質によらず、シンチレータアレイ1の光出力を向上させることができる。つまり、酸化チタン粒子は反射粒子として機能する。酸化チタン粒子としては、例えばTiOの粒子が挙げられる。また、TiOには、ルチル型、アナターゼ型、ブルッカイト型などの種類がある。この中では、ルチル型が好ましい。ルチル型TiOはTiOの中で光触媒特性が低い材料である。
 また、酸化チタン粒子の平均粒径は、2μm以下であることが好ましい。酸化チタン粒子の平均粒径が2μmを超えると、反射層部3内での分散状態を制御することが困難になる。酸化チタン粒子の平均粒径は、より好ましくは1μm以下であり、さらに好ましくは0.4μm以下である。酸化チタン粒子の平均粒径の下限値は、特に限定されるものではないが、酸化チタン粒子の製造性を考慮すると0.01μm以上であることが好ましい。
 このように、本実施形態では、第一金属酸化物として酸化チタン粒子と、第二金属酸化物として酸化チタン以外の金属酸化物と、を有している。また、第一金属酸化物(酸化チタン粒子)と第二金属酸化物(酸化チタン以外の金属酸化物)の合計を100質量部とし、第一金属酸化物(酸化チタン粒子)を質量比で70~84質量部含有し、第二金属酸化物(酸化チタン以外の金属酸化物)を16~30質量部含有する。
 第二金属酸化物を所定量含有させることにより、酸化チタン粒子の反射特性を活かした上で、酸化チタン粒子の光触媒特性を抑制することができる。第二金属酸化物の含有量が16質量部未満では、第二金属酸化物量が少ない、つまりは酸化チタン量が多すぎて樹脂の劣化を抑制する効果が十分得られない。一方、第二金属酸化物量が30質量部を超えて多いと樹脂の劣化を抑制することができるものの酸化チタン量が少ないため反射層部の反射率が低下する。反射層部の反射率が低下するとシンチレータアレイ1の光出力が低下する。このため、第二金属酸化物の含有量は、16~30質量部であることがより好ましく、さらには、17~25質量部であることがより好ましい。
 第二金属酸化物は、酸化アルミニウム、酸化ジルコニウム、酸化タンタル、および酸化ケイ素よりなる群から選ばれる少なくとも1種以上であることが好ましい。酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、酸化ケイ素(SiO)は、光触媒特性をほとんど有していない。また、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、酸化ケイ素(SiO)は、可視光の反射率が一定値以上あるため反射層部の反射率向上に寄与する成分である。この中では、酸化アルミニウム(Al)が特に好ましい。酸化アルミニウムは純度が95%以上となると白色を示し、可視光の反射率が向上する。また、酸化アルミニウムは他の金属酸化物と比べて安いといったメリットがある。
 第二金属酸化物は、粒子として含有されていてもよいし、酸化チタン粒子の表面に設けられた表面被膜として含有されていてもよい。例えば、第二金属酸化物の一部または全部は、酸化チタン粒子の表面に設けられた表面被膜であることが好ましい。すなわち、樹脂部は、第二金属酸化物の表面被膜を有する酸化チタン粒子を含んでいてもよい。
 第二金属酸化物は、酸化チタン粒子の表面に設けられた表面被膜と、金属酸化物粒子との両方を含有することが好ましい。すなわち、樹脂部は、第二金属酸化物の表面被膜を有する酸化チタン粒子と、第二金属酸化物の粒子と、を含んでいてもよい。
 第二金属酸化物の表面被膜により、酸化チタン粒子の光触媒効果を低減することができる。その一方で表面被膜量が多くなり過ぎると、酸化チタン粒子の反射率の良さが活かし難くなる。また、表面被膜付き酸化チタン粒子の反射率は、表面被膜量に応じて変化するおそれがある。そのため、酸化チタン以外の金属酸化物の粒子も併せて存在させることにより、反射層部3内の部分的な反射率のばらつきを低減することができる。
 第二金属酸化物を、表面被膜と粒子との両方で存在させる場合、粒子となる金属酸化物量B(質量部)に対する表面被膜となる金属酸化物量A(質量部)の比(A/B)は、A+B=100質量部(AとBの合計で100質量部)としたとき0.10以上であることが好ましい。また、表面被膜の厚さは、酸化チタン粒子の直径の1/10以下であることが好ましい。表面被膜が厚すぎると酸化チタン粒子の反射特性を生かせなくなるおそれがある。また、第二金属酸化物粒子の平均粒径は、2μm以下であることが好ましい。
 樹脂部は、例えば熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、およびポリイミド樹脂よりなる群から選ばれる1種が好ましい。これら樹脂の中では、エポキシ樹脂またはシリコーン樹脂を用いることが好ましい。エポキシ樹脂またはシリコーン樹脂は、光触媒耐性が高いため好適である。
 樹脂部に含まれる樹脂の質量を100質量部としたとき、反射粒子の質量は、0.2~4質量部の範囲であることが好ましい。反射粒子の質量が0.2質量部未満では、反射層部3の反射特性が不十分になるおそれがある。また、反射粒子の質量が4質量部を超えるとシンチレータブロック2と反射層部3との接着強度が低下し、シンチレータアレイ1の強度が低下するおそれがある。また、反射粒子の質量を0.2~4質量部の範囲にしておくと後述する樹脂混合物の粘度を調整しやすくなる。樹脂の質量を100質量部としたとき、反射粒子の質量は1~3質量部であることがより好ましい。なお、ここでの反射粒子の質量は第一金属酸化物および第二金属酸化物の合計含有量を示すものとする。
 エポキシ樹脂は、二液型エポキシ樹脂であることが好ましい。また、エポキシ樹脂は、二重結合を有しないものであることが好ましい。エポキシ樹脂は、1分子中に2個以上のエポキシ基(オキシシラン環)を有し、硬化剤などにより3次元で硬化する樹脂の総称である。一液型エポキシ樹脂は、エポキシ樹脂本剤と硬化剤が予め混合された液体状の樹脂であり、加熱により硬化する。二液型エポキシ樹脂は、エポキシ樹脂本剤と硬化剤が別々の液体状樹脂であり、2つの液体材料を混合することにより硬化する。つまり、二液型エポキシ樹脂の場合、室温で硬化させることができる。室温で硬化させることにより、反射層部3の厚さや反射層部3の幅Wを調整しやすい。また、加熱せずに反射層部3を形成することができるため、表面被膜付き酸化チタン粒子において表面被膜の変質を防ぐことができる。また、二液型エポキシ樹脂は、エポキシ樹脂本剤と硬化剤を混合して硬化するため、混合前のエポキシ樹脂本剤と硬化剤を別々に保管することができ、保管しやすい。
 エポキシ樹脂は、芳香族型エポキシ樹脂や脂肪族型エポキシ樹脂であることが好ましい。芳香族型のエポキシ樹脂は分子構造中にベンゼン環を有する。また、脂肪族型のエポキシ樹脂は分子構造中にベンゼン環を有さない。芳香族型エポキシ樹脂および脂肪族型エポキシ樹脂は、いずれも透明樹脂となる。また、ベンゼン環は、X線照射や酸化チタンの光触媒効果により活性化しやすく、樹脂の劣化の原因になりやすい。一方で、ベンゼン環を有する芳香族型エポキシ樹脂の接着強度は、脂肪族型エポキシ樹脂と比較して高い。そのため、シンチレータアレイ1の樹脂の劣化を防ぎ、長期信頼性を得たい場合は脂肪族型エポキシ樹脂を用いることが好ましい。一方、シンチレータアレイ1のシンチレータブロック2間の接合強度を向上させたい場合は芳香族型エポキシ樹脂を用いることが好ましい。脂肪族型エポキシ樹脂ではシェア強度1.5kgf/mm以上、芳香族型エポキシ樹脂では、シェア強度を2.0kgf/mm以上とすることができる。なお、シェア強度の測定はボンドテスターを使って行うとし、米国MIL STD-883に準じたダイシェアテスト(室温時)で行うとする。
 エポキシ樹脂の質量を100質量部としたとき、反射粒子の質量を0.2~4質量部の範囲とすることが好ましい。反射粒子の質量が0.2質量部未満では反射層部の反射特性が不十分になるおそれがある。また、反射粒子の質量が4質量部を超えると接着強度が低下し、シンチレータアレイ1の強度が低下するおそれがある。また、反射粒子の質量を0.2~4質量部の範囲にしておくと後述する樹脂混合物の粘度を調整しやすくなる。エポキシ樹脂の質量を100質量部としたとき、反射粒子の質量は1~3質量部であることがより好ましい。なお、ここでの反射粒子の質量は第一金属酸化物および第二金属酸化物の合計含有量を示すものとする。
 シンチレータブロック2は、金属酸化物、金属硫化物、金属酸硫化物の単結晶体または多結晶体からなる固体シンチレータであることが好ましい。固体シンチレータを構成する金属酸化物蛍光体としては、ガーネット構造を有する金属酸化物が挙げられる。ガーネット型金属酸化物は、下記の式(1)で表される組成を有するアルミニウムガーネットであることが好ましい。
 (Gd1-α-β-γTbαLuβCeγ(Al1-xGa  …(1)
(式中、αおよびβは0<α≦0.5原子%、0<β≦0.5原子%、α+β≦0.85原子%を満足する数、γは0.0001≦γ≦0.1原子%を満足する数、xは0<x<1原子%を満足する数、aは4.8≦a≦5.2原子%を満足する数、bは11.6≦b≦12.4原子%を満足する数である。
 固体シンチレータを構成する金属硫化物蛍光体は、希土類硫化物であることが好ましく、例えばNaGdS:Biのような複合硫化物が挙げられる。金属酸硫化物蛍光体としては、希土類酸硫化物が挙げられる。希土類酸硫化物は、下記の式(2)で表される組成を有する酸硫化ガドリニウムであることが好ましい。
 GdS:Pr  …(2)
aは酸硫化ガドリニウム(GdS)1モルに対するプラセオジム(Pr)の付活量であり、0.0001~0.005モルの範囲であることが好ましい。
 上述した金属酸化物、金属硫化物、金属酸硫化物の単結晶体または多結晶体からなるシンチレータブロック2は、X線で励起された際に発光しやすく、また光感度も高いことから、X線検出器に好適である。また、シンチレータブロック2は、式(1)で表される組成を有するアルミニウムガーネットの焼結体、および式(2)で表される組成を有する酸硫化ガドリニウムの焼結体から選ばれる少なくとも1つを備えることがより好ましい。また、式(1)および式(2)で表される焼結体は、樹脂部を硬化させるときの加熱により変質しないので好ましい。
 シンチレータブロック2の厚さTは、0.5~3mmの範囲であることが好ましく、さらに1~2mmの範囲であることがより好ましい。シンチレータブロック2の厚さTが0.5mm未満であると、シンチレータブロック2を透過するX線成分が増加し、光出力が低下するおそれがある。シンチレータブロック2の厚さTが3mmを超えても、それ以上の光出力の改善が得にくく、製造コストの増加要因となる。シンチレータブロック2の縦方向および横方向の長さは、特に限定されるものではない。シンチレータブロック2がバータイプ(棒状)である場合、縦方向の長さが20~50mmの範囲、横方向の長さが1~3mmの範囲であることが好ましい。図2に示すように、シンチレータブロック2を二次元的に並べる場合、縦方向および横方向の長さが共に0.5~2mmの範囲であることが好ましい。
 反射層部3の幅W(隣り合うシンチレータブロック2間の距離/図1の幅W)は、10~100μmの範囲であることが好ましい。反射層部3の幅Wは、後述する光電変換素子の画素上にシンチレータブロック2が配置される形状であれば特に限定されるものではない。ただし、反射層部3の幅Wが10μm未満の場合、反射層部3の接着層としての機能が低下し、反射層部3のシンチレータブロック2に対する接着強度が低下しやすい。これによって、シンチレータアレイ1としての強度が低下するおそれがある。反射層部3の幅が100μmを超えると、シンチレータアレイ1が必要以上に大型化してしまう。反射層部3の幅Wは20~80μmの範囲であることがより好ましい。図2に示したシンチレータアレイ1において、縦方向と横方向で反射層部3の幅Wが同じでなくてもよい。
 シンチレータブロック2は算術平均粗さRa(JIS B 0601-2001)で5μm以下の表面粗さを有することが好ましい。シンチレータブロック2の表面を算術平均粗さRaが5μm以下の平坦面とすることで、X線の乱反射を抑制することができる。すなわち、シンチレータブロック2に対するX線の照射量を増加させることができる。従って、シンチレータブロック2によるX線の測定精度が向上する。シンチレータブロック2の算術平均粗さRaは1μm以下であることがより好ましく、0.1μm以下であることがさらに好ましい。
 反射層部3は、波長が510nmの光に対して90%以上の反射率を有することが好ましい。さらに、反射層部3は波長が670nmの光に対して88%以上の反射率を有することが好ましい。X線検出器は、シンチレータブロック2をX線で励起して放射させた可視光を光電変換素子で電気信号に変えて検出する。従って、反射層部3には可視光領域である450~700nmの波長の光に対して反射率が高いことが求められる。これら全ての可視光領域の光に対する反射率は、85%以上であることがより好ましい。前述した酸硫化ガドリニウム蛍光体は、X線で励起した際の発光スペクトルとして500~520nmの範囲および650~680nmの範囲にそれぞれ大きな発光ピークを有する。従って、反射層部3の上記波長領域の光に対する反射率を向上させることによって、シンチレータアレイ1の光出力をさらに高めることが可能となる。
 次に、実施形態のX線検出器およびX線検査装置について、図面を参照して説明する。図3および図4は実施形態のX線検出器の構成を示す図である。シンチレータアレイ1はX線照射面となる面1aを有し、面1aとは反対側の面1bには光電変換素子4が一体的に設置されている。光電変換素子4としては、例えばフォトダイオードが用いられる。光電変換素子4は、シンチレータアレイ1を構成するシンチレータブロック2に対応する位置に配置されている。図4に示すように、シンチレータアレイ1の面1aに表面反射層6を設けてもよい。これらによって、X線検出器5が構成されている。
 表面反射層6は、シンチレータアレイ1の面1aに限られず、光電変換素子4の設置面である面1bに設けられてもよい。さらに、表面反射層6はシンチレータアレイ1の面1aおよび面1bの両方に設けられてもよい。シンチレータアレイ1に表面反射層6を設けることによって、シンチレータブロック2から放射される可視光の反射効率がさらに向上し、ひいてはシンチレータアレイ1の光出力を高めることができる。表面反射層6には、反射粒子と透明樹脂との混合物やラッカー系塗料等が用いられる。反射粒子と透明樹脂との混合物は、反射層部3と同様な反射粒子の分散状態を有していることが好ましい。表面反射層6の厚さは50~250μmの範囲が好ましい。表面反射層6の厚さが50μm未満であると、反射効率の向上効果を十分に得ることができない。表面反射層6の厚さが250μmを超えると、透過するX線量が低下して検出感度が低下する。
 図5は実施形態のX線検査装置の一例であるX線CT装置10を示している。X線CT装置10は、実施形態のX線検出器5を備えている。X線検出器5は被検体11の撮像部位を安置する円筒の内壁面に貼り付けられている。X線検出器5が貼り付けられた円筒の円弧の略中心には、X線を出射するX線管12が設置されている。X線検出器5とX線管12との間には被検体11が配置される。X線検出器5のX線照射面側には、図示しないコリメータが設けられている。
 X線検出器5およびX線管12は、被検体11を中心にしてX線による撮影を行いながら回転するように構成されている。被検体11の画像情報が異なる角度から立体的に集められる。X線撮影により得られた信号(光電変換素子により変換された電気信号)はコンピュータ13で処理され、ディスプレイ14上に被検体画像15として表示される。被検体画像15は、例えば被検体11の断層像である。図2に示すように、シンチレータブロック2を二次元的に配置したシンチレータアレイ1を用いることによって、マルチ断層像タイプのX線CT装置10を構成することも可能である。この場合、被検体11の断層像が複数同時に撮影され、例えば撮影結果を立体的に描写することもできる。
 図5に示すX線CT装置10は、実施形態のシンチレータアレイ1を有するX線検出器5を具備している。前述したように、実施形態のシンチレータアレイ1は反射層部3の構成等に基づいて、シンチレータブロック2から放射される可視光の反射効率が高いため、優れた光出力を有している。このようなシンチレータアレイ1を有するX線検出器5を用いることによって、X線CT装置10による撮影時間を短くすることができる。その結果、被検体11の被ばく時間を短くすることができ、低被ばく化を実現することが可能になる。実施形態のX線検査装置(X線CT装置10)は、人体の医療診断用のX線検査に限らず、動物のX線検査や工業用途のX線検査等に対しても適用可能である。
 実施形態のシンチレータアレイ1は、例えば以下のようにして製造される。以下に実施形態のシンチレータアレイ1を効率よく製造する方法について述べる。実施形態のシンチレータアレイ1の製造方法は、これに限定されるものではない。シンチレータアレイ1は前述した構成を具備するものであればよく、その製造方法に限定されるものではない。
 まず、平均粒径が2μm以下の酸化チタン粒子を用意する。酸化チタン粒子は0.2~0.3μmの範囲にピークが存在する粒度分布を有することが好ましい。また、酸化チタン粒子はルチル型構造のものであることが好ましい。
 次に、第二金属酸化物となる金属酸化物を用意する。第二金属酸化物を金属酸化物粒子として添加する場合は、平均粒径2μm以下の金属酸化物を用いることが好ましい。また、酸化チタン粒子に表面被膜を設ける場合は、表面処理工程を行う。表面処理工程は、塩素法、化学気相成長(Chemical Vapor Deposition:CVD)法、物理気相成長(Physical Vapor Deposition:PVD)法、コロイド法などが挙げられる。また、表面処理工程前の酸化チタン粒子の質量と表面処理後の表面被膜付き酸化チタン粒子の質量を比較することにより、表面被膜になった第二金属酸化物量を求めることができる。また、X線回折(X-Ray Diffraction:XRD)分析により、酸化チタンのピークと第二金属酸化物のピークのピーク比からも酸化チタンと第二金属酸化物の質量比を求めることができる。また、蛍光X線分析(X-ray Fluorescence:XRF)による分析も可能である。
 次に、酸化チタン粒子と第二金属酸化物の合計を100質量部としたとき、質量比で酸化チタン粒子を70~84質量部、第二金属酸化物を30~16質量部とする工程を行う。第二金属酸化物を金属酸化物粒子のみで添加する場合は、酸化チタン粒子の質量と第二金属酸化物粒子の質量を目的とする比率になるように配合する。また、表面被膜付き酸化チタン粒子と第二金属酸化物粒子の両方を存在させる場合は、予め表面被膜付き酸化チタン粒子における第二金属酸化物被膜量を求めておき、不足分を第二金属酸化物粒子として配合する。また、表面被膜付き酸化チタン粒子のみで対応する場合は、表面被膜付き酸化チタン粒子のみ用意する。
 反射層部3内での酸化チタン粒子などの凝集を防ぐために、超音波振動機等で酸化チタン粒子の凝集体を予め粉砕しておくことが好ましい。また、酸化チタン粒子中の不純物成分量は1質量%以下であることが好ましい。次に、樹脂を用意する。樹脂は前述に記載のエポキシ樹脂、シリコーン樹脂などの樹脂が好ましい。エポキシ樹脂は、前述のように二液型エポキシ樹脂であることが好ましい。
 酸化チタン粒子などの反射粒子とエポキシ樹脂などの樹脂とを混合する。二液型エポキシ樹脂の場合は、エポキシ樹脂本剤と酸化チタン粒子などの反射粒子を混合する。反射粒子(酸化チタン粒子、第二金属酸化物粒子または表面被膜付き酸化チタン粒子)は樹脂中に均一分散していることが好ましい。均一分散のためには、三本ロールを使用して混合することが好ましい。三本ロールは3本のロールを使って混合する混合機である。3本のロールを同時に動かして混合するため、混合方向が複数方向になり、混合工程中に凝集体が形成しにくくなる。三本ロールを使用した混合工程は10時間以上行うことが好ましい。また、必要に応じて、有機溶媒を混合して透明樹脂の粘性を低下させて混合することも効果的である。反射粒子を透明樹脂と混合するにあたり、全ての反射粒子を一気に混合するのではなく、少しずつ(例えば3分の1ずつ)混合することが好ましい。
 所定形状に加工されたシンチレータブロック2を一定の間隔で複数個配置する。反射粒子と樹脂との混合物(以下、樹脂混合物と記す)を、隣り合うシンチレータブロック2間に充填する。樹脂混合物の粘度を1~10Pa・s(1000~10000cps)にすることで、樹脂混合物をシンチレータブロック2間にスムーズに充填することができる。樹脂混合物の粘度が1Pa・s(1000cps)未満であると粘度が低すぎて、透明樹脂を硬化させたときに反射粒子の分散状態を良好に制御できないおそれがある。樹脂混合物の粘度が10Pa・s(10000cps)を超えると粘度が高すぎて、シンチレータブロック2間に均一に充填しにくくなる。また、二液型エポキシ樹脂の場合は、粘度を調整する前に硬化剤などを添加する。
 充填工程は真空中で行うことが好ましい。これによって、反射層部3内にボイドが形成されることを抑制することができる。充填時の真空度は4kPa(30Torr)以下であることが好ましい。4kPa以下の真空雰囲気中であれば、反射層部3の厚さ方向におけるボイドの存在割合を0.1%以下に制御しやすい。シンチレータブロック2の表面を、算術平均粗さRaが5μm以下となるように平坦に加工しておくことが好ましい。樹脂混合物を充填した後、透明樹脂を硬化させる熱処理を行う。熱処理は透明樹脂の硬化温度に応じて、例えば80~160℃の範囲の温度で行うことが好ましい。酸硫化ガドリニウム焼結体やアルミニウムガーネット焼結体からなるシンチレータブロック2は、熱処理工程で変質しないため好ましい。硬化させる前の透明樹脂内で反射粒子が沈積するのを防ぐために、反射粒子を混合した透明樹脂を充填してから3時間以内に熱処理することが好ましい。また、二液型エポキシ樹脂の場合は、加熱せずに室温で放置することにより硬化させることができる。このような特性を有する硬化剤を用いることが好ましい。
 反射粒子を混合した樹脂(樹脂混合物)の他の充填方法について、図6を参照して説明する。図6に示すシンチレータブロック素体7は、個々のシンチレータブロック2に切り出す前の板状素体である。図6(a)に示すように、反射層部3の形成箇所となる溝部8をシンチレータブロック素体7に形成する。溝部8はシンチレータブロック素体7の裏面まで貫通しないように、シンチレータブロック素体7を一定の深さまで加工して形成する。シンチレータブロック素体7に縦溝および横溝を設け、最終的に所定サイズのシンチレータブロック2が得られるように、シンチレータブロック素体7に溝加工を施す。
 次に、図6(b)に示すように、シンチレータブロック素体7に設けた溝部8内に反射層部3となる樹脂混合物を充填する。樹脂混合物の粘度を0.5~2.5Pa・sの範囲にすることによって、樹脂混合物を溝部8内にスムーズに充填することができる。さらに、樹脂混合物を真空中で溝部8内に充填することで、ボイドの発生を抑制することができる。充填時の真空度は4kPa以下が好ましい。4kPa以下の真空雰囲気中であれば、反射層部3の厚さ方向におけるボイドの存在割合を0.1%以下に制御しやすい。
 反射粒子を混合した樹脂(樹脂混合物)を、遠心機を使用して溝部8に充填することも有効である。遠心機による遠心力を利用することで、シンチレータブロック素体7に多数設けられた溝部8内に均一に樹脂混合物を充填することができる。遠心機は、多数のシンチレータブロック素体7に一度に樹脂混合物を充填する場合や大型のシンチレータブロック素体7に樹脂混合物を充填する場合に有効である。さらに、真空中で樹脂混合物の充填を行うことも有効である。遠心機を用いて樹脂混合物を充填する場合、遠心機の回転速度を500~3000rpmとし、回転時間を30分以上とすることが好ましい。
 遠心力を適用して樹脂混合物を溝部8内に充填する場合、樹脂に含まれるボイドは遠心力によって外に放出される。このとき、樹脂混合物の粘度が2.5Pa・sを超えると、遠心力によりボイドが外に放出されにくい。樹脂混合物の粘度が0.5Pa・s未満であると、遠心力を作用させたときに樹脂混合物がシンチレータブロック素体7の外側に流れ落ちてしまうおそれがある。樹脂混合物の粘度は0.5~2.5Pa・sの範囲が好ましい。さらに、シンチレータブロック素体7に設けた溝部8内に樹脂混合物を均一に充填するためには、ある程度の回転速度が必要である。遠心機の回転速度は500rpm以上が好ましい。回転速度が速すぎると樹脂混合物がシンチレータブロック素体7の外側に流れ落ちてしまうおそれがある。遠心機の回転速度は3000rpm以下が好ましい。
 上述したように、反射粒子を含有する樹脂(樹脂混合物)の粘度、充填工程中の真空度、遠心機の回転数や回転時間等を調整することによって、シンチレータブロック素体7に設けた溝部8内に樹脂混合物を均一に充填することができる。さらに、反射層部3の厚さ方向におけるボイドの存在割合を1%以下、さらには0.1%以下、またさらには0%(検出限界以下)にすることができる。
 次に、溝部8内に充填した樹脂混合物中の樹脂を硬化させる。樹脂を硬化させることによって、反射層部3を有するシンチレータブロック素体7を形成する。次いで、図6(c)に示すように、反射層部3を有するシンチレータブロック素体7を研磨加工することによって、シンチレータブロック素体7を個々のシンチレータブロック2に個片化すると同時に、反射層部3がシンチレータアレイ1の表裏を貫通する形状を有するように加工する。研磨加工はシンチレータブロック素体7の片面および両面のいずれに対して行ってもよい。シンチレータブロック素体7の研磨加工は、シンチレータブロック2の算術平均粗さRaが5μm以下となるように行うことが好ましい。また、シンチレータブロック素体7の研磨加工には、例えばダイヤモンド砥粒を使用したラップ研磨加工が適用される。図6に示したように、シンチレータブロック素体7に溝部8を設ける方法であれば、大型のアレイを作製するのに有効である。
(実施例1~5、比較例1~3)
 シンチレータブロック素体として、酸硫化ガドリニウム焼結体(GdS:Pr、a=0.01)からなる板材(縦40mm×横20mm×厚さ1.5mm)を用意した。次に、シンチレータブロック個々のサイズが縦1.0mm×横1.0mm×厚さ1.4mm、溝部の幅0.05mm(50μm)となるようにワイヤソー加工を行った。また、ワイヤソー加工後、歪取り熱処理を行った。次に、反射粒子として酸化チタン粒子を用意した。酸化チタン粒子としては、平均粒径が0.2μm、粒度分布のピークが0.22μmのものを用意した。また、酸化チタン粒子はルチル型のものを用意した。
 次に、第二金属酸化物として、酸化アルミニウム(Al)粒子、酸化ジルコニウム(ZrO)粒子、酸化タンタル(Ta)粒子、酸化ケイ素(SiO)粒子を用意した。また、第二金属酸化物粒子は、いずれも平均粒径0.3μmのものを用意した。酸化チタン粒子と第二金属酸化物粒子を混合した。混合粉を超音波振動機にかけて凝集体を十分粉砕した。
 次に、表1に示すエポキシ樹脂を用意し、混合粉を添加し、三本ロール混合機で20~50時間の混合工程を行った。得られた樹脂混合物の粘度は0.5~2.5Pa・sの範囲内になるように調整した。なお、樹脂混合物において、エポキシ樹脂を100質量部としたとき、反射粒子(酸化チタン粒子と第二金属酸化物粒子の合計)の質量を1.5質量部で統一した。
 次に、遠心機を用いて樹脂混合物をシンチレータブロック素体の溝部に充填した。充填工程は、真空中(4kPa以下)、回転速度500~3000rpmの範囲で行った。また、必要に応じ、加熱工程を行いエポキシ樹脂を硬化させた。その後、シンチレータブロック素体の裏面側(溝部を形成していない面側)をダイヤモンド砥石で研磨して、実施例および比較例にかかるシンチレータアレイを作製した。なお、第二金属酸化物の材質、添加量、エポキシ樹脂の材質に関しては表1に示した通りである。
Figure JPOXMLDOC01-appb-T000001
(実施例6~15)
シンチレータブロック素体として、酸硫化ガドリニウム焼結体(GdS:Pr、a=0.01)からなる板材(縦40mm×横20mm×厚さ1.5mm)を用意した。次に、シンチレータブロック個々のサイズが縦1.0mm×横1.0mm×厚さ1.4mm、溝部の幅0.05mm(50μm)となるようにワイヤソー加工を行った。また、ワイヤソー加工後、歪取り熱処理を行った。次に、反射粒子として酸化チタン粒子を用意した。酸化チタン粒子としては、平均粒径0.2μm、粒度分布のピークが0.22μmのものを用意した。また、酸化チタン粒子はルチル型のものとした。
 第二金属酸化物として、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、酸化ケイ素(SiO)を用意した。次に、酸化チタン粒子に表面処理工程を施して第二金属酸化物の表面被膜を設けた。なお、表面処理工程は、塩素法により行った。また、表面被膜付き酸化チタン粒子における酸化チタン粒子と表面被膜(第二金属酸化物)の質量比は表2に示した通りである。
 また、表2に示した条件に合うように、第二金属酸化物粒子を用意し、表面被膜付き酸化チタン粒子と第二金属酸化物粒子を添加した。なお、第二金属酸化物粒子としては平均粒径0.3μmのものを用意した。また、表面被膜付き酸化チタン粒子(第二金属酸化物粒子を添加した場合は、表面被膜付き酸化チタン粒子と第二金属酸化物粒子の混合物)を超音波振動機にかけて凝集体を十分粉砕した。
 次に、表2に示すエポキシ樹脂を用意し、混合粉を添加し、三本ロール混合機で20~50時間の混合工程を行った。得られた樹脂混合物の粘度は0.5~2.5Pa・sの範囲内になるように調整した。なお、エポキシ樹脂を100質量部としたとき反射粒子(表面被膜付き酸化チタン粒子と第二金属酸化物粒子の合計)の量は2質量部に統一した。
 次に、遠心機を用いて樹脂混合物をシンチレータブロック素体の溝部に充填した。充填工程は、真空中(4kPa以下)、回転速度500~3000rpmの範囲で行った。また、必要に応じ、加熱工程を行いエポキシ樹脂を硬化させた。その後、シンチレータブロック素体の裏面側(溝部を形成していない面側)をダイヤモンド砥石で研磨して、実施例および比較例にかかるシンチレータアレイを作製した。なお、第二金属酸化物の材質、添加量、エポキシ樹脂の材質に関しては表2に示した通りである。
Figure JPOXMLDOC01-appb-T000002
 実施例1~15および比較例1~3にかかるシンチレータアレイに対し、反射層部の反射率、X線に対する耐久性およびシェア強度を測定した。反射層部の反射率としては波長510nmと波長670nmの光反射率(%)を求めた。また、X線に対する耐久性の測定としては、10kGy(10キログレイ)のX線照射を行う前後での光出力の低下率を求めた。具体的には、(X線照射後の光出力/X線照射前の光出力)×100(%)により求めた。また、X線照射条件である10kGyは、X線CT装置において10年程度使用した際にシンチレータアレイに照射されるX線照射量に相当するものである。シェア強度の測定をボンドテスターを使って行い、米国MIL STD-883に準じたダイシェアテスト(室温時)で行った。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から分かる通り、実施例にかかるシンチレータアレイは反射率が優れていた。そのため、光出力の優れたシンチレータアレイとすることができることが分かる。また、X線に対する耐久性も優れていることが分かる。また、表面被膜付き酸化チタン粒子と第二金属酸化物粒子の両方を用いた方が特性が優れていた。
 以上のように、実施形態にかかるシンチレータアレイは光出力に優れ、その上でX線への耐久性に優れている。そのため、長期信頼性の優れたシンチレータアレイとすることができる。従って、実施形態のシンチレータアレイを用いたX線検出器およびX線検査装置において、長期信頼性を高くすることがわかる。
(実施例16~19)
 実施例1のエポキシ樹脂をシリコーン樹脂に変えたものを実施例16とし、実施例2のエポキシ樹脂をシリコーン樹脂に変えたものを実施例17とし、実施例1のエポキシ樹脂をポリイミド樹脂に変えたものを実施例18とし、実施例2のエポキシ樹脂をポリイミド樹脂に変えたものを実施例19とした。実施例16~19にかかるシンチレータアレイに対して、実施例1と同様の測定を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から分かる通り、樹脂を変えた場合であっても優れた効果が得られた。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。

Claims (15)

  1.  複数のシンチレータブロックと、前記複数のシンチレータブロックを一体化するように前記複数のシンチレータブロックの間に設けられた反射層部と、を具備するシンチレータアレイであって、
     前記反射層部は、樹脂部を有し、
     前記樹脂部は、酸化チタンからなる70~84質量部の第一金属酸化物と、前記酸化チタン以外の金属酸化物からなる16~30質量部の第二金属酸化物と、を合計100質量部となるように含有することを特徴とするシンチレータアレイ。
  2.  前記第二金属酸化物は、酸化アルミニウム、酸化ジルコニウム、酸化タンタル、および酸化ケイ素よりなる群から選ばれる少なくとも1種以上を含有することを特徴とする請求項1に記載のシンチレータアレイ。
  3.  前記樹脂部は、前記酸化チタンの粒子を含むことを特徴とする請求項1に記載のシンチレータアレイ。
  4.  前記酸化チタンの粒子の平均粒径は、2μm以下であることを特徴とする請求項3に記載のシンチレータアレイ。
  5.  前記樹脂部は、前記第二金属酸化物の表面被膜を有する前記酸化チタンの粒子を含むことを特徴とする請求項1に記載のシンチレータアレイ。
  6.  前記樹脂部は、前記第二金属酸化物の表面被膜を有する前記酸化チタンの粒子と、前記第二金属酸化物の粒子と、を含むことを特徴とする請求項1に記載のシンチレータアレイ。
  7.  前記第二金属酸化物の表面被膜の量と第二金属酸化物の粒子の量との和を100質量部としたとき、前記第二金属酸化物の粒子の質量部Bに対する前記第二金属酸化物の表面被膜の質量部Aの比(A/B)は、0.10以上であることを特徴とする請求項6に記載のシンチレータアレイ。
  8.  前記第二金属酸化物の表面被膜の厚さは、前記酸化チタンの粒子の直径の1/10以下であることを特徴とする請求項5に記載のシンチレータアレイ。
  9.  前記樹脂部は、エポキシ樹脂またはシリコーン樹脂を含むことを特徴とする請求項1に記載のシンチレータアレイ。
  10.  前記樹脂部は、二液型エポキシ樹脂を含むことを特徴とする請求項1に記載のシンチレータアレイ。
  11.  前記樹脂部は、芳香族型エポキシ樹脂または脂肪族型エポキシ樹脂を含むことを特徴とする請求項1に記載のシンチレータアレイ。
  12.  前記樹脂部に含まれる樹脂の質量を100質量部としたとき、前記第一金属酸化物および前記第二金属酸化物の合計含有量は、0.2~4質量部であることを特徴とする請求項1に記載のシンチレータアレイ。
  13.  前記シンチレータブロックは、酸硫化ガドリニウム焼結体またはアルミニウムガーネット焼結体を有することを特徴とする請求項1に記載のシンチレータアレイ。
  14.  請求項1に記載のシンチレータアレイを具備することを特徴とするX線検出器。
  15.  請求項14に記載のX線検出器を具備することを特徴とするX線検査装置。
PCT/JP2014/001866 2013-04-01 2014-03-31 シンチレータアレイ、x線検出器、およびx線検査装置 WO2014162717A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480019536.6A CN105190775B (zh) 2013-04-01 2014-03-31 闪烁器阵列、x射线检测器、及x射线检查装置
JP2015509904A JP6419692B2 (ja) 2013-04-01 2014-03-31 シンチレータアレイ、x線検出器、およびx線検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076322 2013-04-01
JP2013076322 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014162717A1 true WO2014162717A1 (ja) 2014-10-09

Family

ID=51658030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001866 WO2014162717A1 (ja) 2013-04-01 2014-03-31 シンチレータアレイ、x線検出器、およびx線検査装置

Country Status (3)

Country Link
JP (1) JP6419692B2 (ja)
CN (1) CN105190775B (ja)
WO (1) WO2014162717A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082337A1 (ja) * 2015-11-12 2017-05-18 株式会社 東芝 セラミックシンチレータアレイとその製造方法、放射線検出器、および放射線検査装置
JP2018194396A (ja) * 2017-05-16 2018-12-06 株式会社東芝 シンチレータアレイ、並びにそれを用いた放射線検出器、並びに放射線検査装置、およびシンチレータアレイの製造方法
JPWO2018020555A1 (ja) * 2016-07-25 2018-12-06 野洲メディカルイメージングテクノロジー株式会社 シンチレータセンサ基板及びシンチレータセンサ基板の製造方法
EP3396679A4 (en) * 2015-12-25 2019-07-31 Kabushiki Kaisha Toshiba CERAMIC SCINTILLATOR NETWORK, X-RAY DETECTOR, AND X-RAY INSPECTION DEVICE
JP6879426B1 (ja) * 2020-09-30 2021-06-02 日立金属株式会社 シンチレータ構造体およびその製造方法
WO2022191214A1 (ja) * 2021-03-09 2022-09-15 株式会社 東芝 シンチレータアレイ、およびそれを用いた放射線検出器、放射線検査装置
US11619750B2 (en) 2020-09-30 2023-04-04 Hitachi Metals, Ltd. Scintillator structure and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018105611A1 (ja) * 2016-12-06 2019-10-31 株式会社東芝 シンチレータアレイ、シンチレータアレイを製造する方法、放射線検出器、および放射線検査装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180554A (ja) * 1998-12-21 2000-06-30 Hitachi Metals Ltd 放射線検出器およびそれを用いた放射線ct装置
JP2009058453A (ja) * 2007-09-03 2009-03-19 Tohoku Univ アレイ製造方法、シンチレータアレイ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3104696B2 (ja) * 1998-12-21 2000-10-30 日立金属株式会社 放射線検出器およびそれを用いた放射線ct装置
US6479824B1 (en) * 2000-11-08 2002-11-12 Ge Medical Systems Global Technology Company, Llc Scintillator arrays for CT imaging and other applications
JP2003014853A (ja) * 2001-07-02 2003-01-15 Hitachi Metals Ltd 多チャンネル放射線検出器、その放射線検出器を持ったx線ct装置及びその放射線検出器の製造方法
US20030178570A1 (en) * 2002-03-25 2003-09-25 Hitachi Metals, Ltd. Radiation detector, manufacturing method thereof and radiation CT device
JP2004003970A (ja) * 2002-03-25 2004-01-08 Hitachi Metals Ltd 放射線検出器およびその製造方法、放射線ct装置
JP2004184163A (ja) * 2002-12-02 2004-07-02 Hitachi Medical Corp 放射線検出器及び医用画像診断装置
JP4525123B2 (ja) * 2003-06-30 2010-08-18 株式会社島津製作所 放射線検出器およびその製造方法
US7099429B2 (en) * 2003-10-06 2006-08-29 Ge Medical Systems Global Technology Company, Llc Scintillator arrays for radiation detectors and methods of manufacture
US7308074B2 (en) * 2003-12-11 2007-12-11 General Electric Company Multi-layer reflector for CT detector
JP4305241B2 (ja) * 2004-03-26 2009-07-29 株式会社島津製作所 放射線検出器
JP2005348907A (ja) * 2004-06-10 2005-12-22 Hitachi Medical Corp X線ct装置用x線検出器
DE102005037899A1 (de) * 2005-08-10 2007-02-15 Siemens Ag Detektormodul, Detektor und Computertomographiegerät
US20120223252A1 (en) * 2011-03-03 2012-09-06 Saint-Gobain Ceramics & Plastics, Inc. System, method and apparatus for an imaging array using non-uniform septa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180554A (ja) * 1998-12-21 2000-06-30 Hitachi Metals Ltd 放射線検出器およびそれを用いた放射線ct装置
JP2009058453A (ja) * 2007-09-03 2009-03-19 Tohoku Univ アレイ製造方法、シンチレータアレイ

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10416319B2 (en) 2015-11-12 2019-09-17 Kabushiki Kaisha Toshiba Ceramic scintillator array, method for manufacturing same, radiation detector and radiation inspection device
CN107924731A (zh) * 2015-11-12 2018-04-17 株式会社东芝 陶瓷闪烁器阵列和其制造方法、放射线检测器及放射线检查装置
JPWO2017082337A1 (ja) * 2015-11-12 2018-08-30 株式会社東芝 セラミックシンチレータアレイとその製造方法、放射線検出器、および放射線検査装置
CN107924731B (zh) * 2015-11-12 2020-10-30 株式会社东芝 陶瓷闪烁器阵列和其制造方法、放射线检测器及放射线检查装置
WO2017082337A1 (ja) * 2015-11-12 2017-05-18 株式会社 東芝 セラミックシンチレータアレイとその製造方法、放射線検出器、および放射線検査装置
EP3376507A4 (en) * 2015-11-12 2019-07-17 Kabushiki Kaisha Toshiba CERAMIC SCINTILLATOR NETWORK, METHOD FOR MANUFACTURING THE SAME, RADIATION DETECTOR, AND RADIATION DETECTION DEVICE
EP3396679A4 (en) * 2015-12-25 2019-07-31 Kabushiki Kaisha Toshiba CERAMIC SCINTILLATOR NETWORK, X-RAY DETECTOR, AND X-RAY INSPECTION DEVICE
JPWO2018020555A1 (ja) * 2016-07-25 2018-12-06 野洲メディカルイメージングテクノロジー株式会社 シンチレータセンサ基板及びシンチレータセンサ基板の製造方法
JP2018194396A (ja) * 2017-05-16 2018-12-06 株式会社東芝 シンチレータアレイ、並びにそれを用いた放射線検出器、並びに放射線検査装置、およびシンチレータアレイの製造方法
JP6879426B1 (ja) * 2020-09-30 2021-06-02 日立金属株式会社 シンチレータ構造体およびその製造方法
JP2022058106A (ja) * 2020-09-30 2022-04-11 日立金属株式会社 シンチレータ構造体
JP2022058071A (ja) * 2020-09-30 2022-04-11 日立金属株式会社 シンチレータ構造体およびその製造方法
JP2022079677A (ja) * 2020-09-30 2022-05-26 日立金属株式会社 シンチレータ構造体
JP7082759B2 (ja) 2020-09-30 2022-06-09 日立金属株式会社 シンチレータ構造体
JP7156566B2 (ja) 2020-09-30 2022-10-19 日立金属株式会社 シンチレータ構造体
US11619750B2 (en) 2020-09-30 2023-04-04 Hitachi Metals, Ltd. Scintillator structure and manufacturing method thereof
WO2022191214A1 (ja) * 2021-03-09 2022-09-15 株式会社 東芝 シンチレータアレイ、およびそれを用いた放射線検出器、放射線検査装置

Also Published As

Publication number Publication date
JP6419692B2 (ja) 2018-11-07
CN105190775B (zh) 2018-02-23
JPWO2014162717A1 (ja) 2017-02-16
CN105190775A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2014162717A1 (ja) シンチレータアレイ、x線検出器、およびx線検査装置
JP6113662B2 (ja) シンチレータアレイとそれを用いたx線検出器およびx線検査装置
JP6158167B2 (ja) 固体シンチレータ、放射線検出器、および放射線検査装置
JP6829209B2 (ja) セラミックシンチレータアレイとその製造方法、放射線検出器、および放射線検査装置
EP2985333B1 (en) Fluorescent material, scintillator and radiation conversion panel
JP5022600B2 (ja) セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置
CN109874346B (zh) 陶瓷闪烁器阵列、x射线检测器及x射线检查装置
JP2006328397A (ja) 蛍光混和材、蛍光スクリーン及びイメージング組立体
EP2893374B1 (en) Scintillator, radiation detection unit, and method of manufacturing scintillator
JP2004061492A (ja) X線検出器用シンチレータ、その製造方法並びにそれを用いたx線検出器及びx線ct装置
JP2017015627A (ja) シンチレータアレイとその製造方法、およびそれを用いた放射線検出器と放射線検査装置
JP2018194396A (ja) シンチレータアレイ、並びにそれを用いた放射線検出器、並びに放射線検査装置、およびシンチレータアレイの製造方法
WO2022191214A1 (ja) シンチレータアレイ、およびそれを用いた放射線検出器、放射線検査装置
WO2021095791A1 (ja) シンチレータアレイ、シンチレータアレイの製造方法、放射線検出器、および放射線検査装置
JP7451794B2 (ja) シンチレータアレイ、シンチレータアレイの製造方法、放射線検出器、および放射線検査装置
WO2022209470A1 (ja) シンチレータ構造体
JP7485146B2 (ja) シンチレータアレイ、放射線検出器、及び放射線検査装置
JP2022158411A (ja) シンチレータ構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019536.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779252

Country of ref document: EP

Kind code of ref document: A1