WO2022209470A1 - シンチレータ構造体 - Google Patents

シンチレータ構造体 Download PDF

Info

Publication number
WO2022209470A1
WO2022209470A1 PCT/JP2022/007653 JP2022007653W WO2022209470A1 WO 2022209470 A1 WO2022209470 A1 WO 2022209470A1 JP 2022007653 W JP2022007653 W JP 2022007653W WO 2022209470 A1 WO2022209470 A1 WO 2022209470A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
scintillator
gos
scintillator structure
cells
Prior art date
Application number
PCT/JP2022/007653
Other languages
English (en)
French (fr)
Inventor
正信 中橋
尚弘 谷口
有 木部
光 千代
亮大 岡本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021063296A external-priority patent/JP2022158413A/ja
Priority claimed from JP2021063292A external-priority patent/JP2022158411A/ja
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN202280024712.XA priority Critical patent/CN117121120A/zh
Priority to US18/550,604 priority patent/US20240150644A1/en
Publication of WO2022209470A1 publication Critical patent/WO2022209470A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/203Measuring radiation intensity with scintillation detectors the detector being made of plastics
    • G01T1/2033Selection of materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/08Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a binder in the phosphor layer

Definitions

  • the present invention relates to a scintillator structure, and for example, to a technique effectively applied to a scintillator structure having a plurality of cells each containing a resin and a phosphor.
  • Patent Document 1 describes a technique related to a phosphor molding containing a bisphenol A type epoxy resin.
  • a scintillator is a substance that absorbs the energy of radiation and emits visible light when exposed to radiation such as X-rays and gamma rays.
  • This scintillator is commercialized as a scintillator structure containing a scintillator and a reflective layer, and an X-ray detector that combines the scintillator structure and a photoelectric conversion element such as a photodiode is used in medical equipment such as X-ray CT, It is used in analysis equipment, non-destructive inspection equipment using radiation, radiation leakage inspection equipment, etc.
  • gadolinium oxysulfide Gadolinium oxysulfide
  • gadolinium oxysulfide will be referred to as "GOS”.
  • gadolinium oxysulfide itself hardly emits light, and gadolinium oxysulfide contains praseodymium, terbium, or the like to emit light.
  • the term "GOS” is used in this specification to imply a substance (phosphor) that emits light by containing praseodymium, terbium, or the like in gadolinium oxysulfide itself.
  • gadolinium oxysulfide itself contains praseodymium, terbium, etc., it may be expressed as "GOS" containing praseodymium or "GOS” containing terbium.
  • This “GOS” has the advantage of having a higher visible light emission output than cadmium tungstate (CdWO 4 ), but the manufacturing cost is high.
  • improving reliability is a high-priority item required of the scintillator structure. This is because if the reliability of the scintillator structure can be improved, the life of the radiation detector can be lengthened. Therefore, scintillators are required to have high radiation resistance in order to improve reliability.
  • the scintillator is composed of a mixture of "GOS" powder and resin, it is desired that the resin is less susceptible to alteration and deterioration when exposed to radiation.
  • An object of the present invention is to improve the reliability of scintillator structures.
  • a scintillator structure in one embodiment includes a plurality of cells and a reflective layer covering the plurality of cells.
  • each of the plurality of cells contains a resin and a phosphor, and the resin contains a main agent containing bi-7-oxabicyclo[4.1.0]heptane and a curing agent.
  • a scintillator structure in one embodiment includes a plurality of cells and a reflective layer covering the plurality of cells.
  • each of the plurality of cells contains a resin and a phosphor, and the resin contains a main agent and a curing agent.
  • the main ingredients are 3,4-epoxycyclohexylmethyl (3,4-epoxy)cyclohexane carboxylate and 1,2-epoxy-4-(2-oxiranyl)cyclohexane of 2,2-bis(hydroxymethyl)-1-butanol. and adducts.
  • the reliability of the scintillator structure can be improved.
  • FIG. 1 is a diagram schematically showing an X-ray detector.
  • the X-ray detector 100 has a scintillator structure 10 and a light receiving element 20.
  • the scintillator structure 10 is composed of a plurality of scintillators 11 that generate visible light from X-rays incident on the X-ray detector 100 and a reflective layer 12 covering each of the plurality of scintillators 11 .
  • the light receiving element 20 has a function of generating current from visible light generated by the scintillator 11, and is composed of a photoelectric conversion element represented by a photodiode, for example.
  • the light receiving element 20 is provided, for example, on the support 30 and is provided corresponding to each of the scintillators 11 .
  • the scintillator 11 has the function of absorbing X-rays and generating visible light, and is composed of phosphor 11a and resin 11b.
  • the material obtained by mixing the "GOS" powder constituting the phosphor 11a and the resin 11b is sometimes called "resin GOS". That is, the scintillator 11 in this embodiment is made of "resin GOS".
  • the phosphor 11a is gadolinium oxysulfide containing praseodymium, terbium, or the like, and the resin 11b is, for example, an epoxy resin.
  • the reflective layer 12 is composed of a resin 12b containing reflective particles 12a made of titanium oxide.
  • the scintillator 11 is divided into a plurality of cells (CL). That is, from the viewpoint of improving the resolution of an X-ray image, the scintillator 11 is divided into a plurality of cells CL corresponding to each of the plurality of light receiving elements 20 (arraying of the scintillator 11).
  • the scintillator structure 10 includes multiple cells CL and the reflective layer 12 covering the multiple cells CL. Specifically, the top surface and four side surfaces of the cell CL are covered with a reflective layer 12 . On the other hand, the bottom surface of the cell CL is not covered with the reflective layer 12 because it needs to be in contact with the light receiving element 20 .
  • the X-ray detector configured in this way operates as follows.
  • a part of the visible light emitted from the scintillator 11 is directly incident on the light receiving element 20, and the other part of the visible light emitted by the scintillator 11 is emitted from the scintillator.
  • the light is condensed on the light receiving element 20 while being repeatedly reflected by the reflective layer 12 covering the light receiving element 11 .
  • the light receiving element 20 composed of, for example, a photodiode
  • electrons of the semiconductor material constituting the photodiode are excited from the valence band to the conduction band by the energy of the visible light.
  • a current due to electrons excited in the conduction band flows through the photodiode.
  • An X-ray image is acquired based on the current output from the photodiode.
  • the X-ray detector 100 can acquire an X-ray image.
  • the scintillator structure 10 is composed of a rectangular parallelepiped scintillator 11 and a reflective layer 12 covering the scintillator 11 .
  • the rectangular parallelepiped scintillator 11 is formed through processing steps such as a dicing step and a grinding step, a processed surface is formed on the surface of the rectangular parallelepiped shape. That is, the term “processed surface” refers to a surface that has been mechanically processed.
  • the "machined surface” includes a surface ground with a grinding wheel to increase the thickness of the workpiece, or a surface obtained by cutting the workpiece with a slicing blade for dicing.
  • the "processed surface” is defined as a surface where the resin is exposed and the surface where the "GOS” powder is broken.
  • FIG. 1 schematically shows a scintillator 11 using "resin GOS” in which the interface between the scintillator 11 and the reflective layer 12 is a "processed surface".
  • the "processed surface” includes a region where the resin 11b is cut and a region where the phosphor 11a ("GOS" powder) is broken.
  • the X-ray detector 100 is configured in this manner.
  • CWO cadmium tungstate
  • this “CWO” contains cadmium, which is a substance subject to the RoHS Directive/REACH Regulation.
  • "GOS” ceramic has been used as the scintillator 11 instead of “CWO” containing cadmium.
  • This "GOS” ceramic has an advantage over “CWO” in that it has a higher emission output of visible light, but has a disadvantage in that the manufacturing cost is higher.
  • the "resin GOS” includes a “first resin GOS” obtained by mixing "GOS” powder obtained by adding praseodymium (Pr) and cerium (Ce) to gadolinium oxysulfide and an epoxy resin, and terbium (Tb ) and cerium (Ce) added to gadolinium oxysulfide, and “second resin GOS” obtained by mixing powder and epoxy resin.
  • first resin GOS obtained by mixing "GOS” powder obtained by adding praseodymium (Pr) and cerium (Ce) to gadolinium oxysulfide and an epoxy resin, and terbium (Tb ) and cerium (Ce) added to gadolinium oxysulfide
  • second resin GOS obtained by mixing powder and epoxy resin.
  • Both the "first resin GOS” and the “second resin GOS” have the advantage of higher light output than “CWO”. Furthermore, there is also the advantage that the afterglow characteristics of the "first resin GOS” are equivalent to those of the "CWO". In other words, the performance of the scintillator structure 10 is required not only to have a large emission output but also to have good afterglow characteristics.
  • the scintillator 11 forming the scintillator structure 10 is a material that emits visible light when exposed to X-rays.
  • the mechanism by which the scintillator 11 generates visible light when exposed to X-rays is as follows.
  • the scintillator 11 when the scintillator 11 is irradiated with X-rays, electrons in the scintillator 11 receive energy from the X-rays and transition from a low-energy ground state to a high-energy excited state. Then, the electrons in the excited state transition to the ground state with low energy. At this time, most of the excited electrons immediately transition to the ground state. On the other hand, some of the excited electrons transition to the ground state after a certain amount of time has passed.
  • afterglow is visible light that occurs when a certain amount of time elapses after the timing of the transition from the excited state to the ground state after the X-ray irradiation.
  • a large afterglow means that the intensity of the visible light generated until a certain amount of time has passed after the irradiation of X-rays is high.
  • the afterglow generated by the previous X-ray irradiation remains until the next X-ray irradiation, and the remaining afterglow becomes noise. For this reason, it is desirable that the afterglow is small.
  • good afterglow characteristics mean that the afterglow is small.
  • the afterglow characteristics of the "first resin GOS" are equivalent to those of "CWO".
  • Resin GOS has the following advantages compared to “CWO”, and is excellent as a scintillator 11 capable of achieving both performance and manufacturing cost.
  • “Resin GOS” has a higher luminous output than “CWO”.
  • the afterglow characteristics of the "first resin GOS” are equivalent to those of “CWO”.
  • “Resin GOS” does not use cadmium.
  • "Resin GOS” has a lower manufacturing cost than "CWO”.
  • Cesium iodide (CsI) is used as the scintillator 11, and the "resin GOS” has the following advantages over “CsI”.
  • "Second resin GOS” has better X-ray stopping properties than “CsI”.
  • the afterglow characteristic of the "second resin GOS” is about 1/70 of that of "CsI”.
  • "Resin GOS” is a stable substance with no deliquescence.
  • "resin GOS” has the following advantages compared to “GOS” ceramics. That is, “resin GOS” and “GOS” ceramics contain heavy metals such as “Gd”, “Ga” or “Bi". These heavy metals are relatively expensive, and there is concern about adverse effects on living bodies and the environment when they flow out. Therefore, it is desirable that the scintillator 11 contains as little heavy metal as possible.
  • "resin GOS” which consists of a mixture of "GOS” powder and resin, uses less “GOS” than bulk "GOS” ceramic. This means that the "resin GOS” makes it possible to construct the scintillator 11 with less heavy metal content than the "GOS” ceramic. From this, it can be said that the "resin GOS” is superior to the "GOS” ceramic in that it can provide a scintillator 11 with a low heavy metal content.
  • the "resin GOS” is considered promising as a scintillator 11 that can achieve both performance and manufacturing cost.
  • the phosphor 11a used in this embodiment is composed of, for example, gadolinium oxysulfide or gadolinium-aluminum-gallium garnet (GGAG).
  • gadolinium oxysulfide has a composition of "Gd 2 O 2 S” activated with at least one selected from, for example, praseodymium (Pr), cerium (Ce), and terbium (Tb).
  • the phosphor 11a is not limited to a specific composition.
  • the resin 11b and the resin 12b are made of a material that is resistant to alteration and deterioration when exposed to radiation.
  • the materials of these resins 11b and 12b are characteristic points of this embodiment, and these characteristic points will be described later.
  • the constituent material of the reflecting particles 12a include white particles such as “TiO 2 ” (titanium oxide), “Al 2 O 3 ” (aluminum oxide), and “ZrO 2 ” (zirconium oxide).
  • white particles such as “TiO 2 ” (titanium oxide), “Al 2 O 3 ” (aluminum oxide), and “ZrO 2 ” (zirconium oxide).
  • the reflecting particles 12a for example, bulk or a mixture of powder and resin can be used.
  • the reflective particles 12a made of “rutile-type TiO 2 ” are desirable because they are excellent in light reflection efficiency. From the viewpoint of improving the light receiving efficiency of the light receiving element 20, the light reflectance of the reflective particles 12a is desirably 80% or more, and the light reflectance of the reflective particles 12a is desirably 90% or more. .
  • the scintillator 11 and the reflective material forming the reflective layer 12 may contain other additives in addition to the components described above. For example, it is desirable to add a curing catalyst to shorten the curing time of the resin.
  • an epoxy resin is used as the resin contained in the "resin GOS".
  • This epoxy resin contains at least a main agent and a curing agent as constituent materials.
  • a bisphenol A type epoxy resin is used as the main agent and an amine-based curing agent is used as the curing agent.
  • a general epoxy resin that uses a bisphenol A type epoxy resin as a main ingredient and an amine-based curing agent as a curing agent as the resin that constitutes the "resin GOS” irradiation of radiation (X-rays)
  • the present inventors have newly discovered that when is repeated over a long period of time, it deteriorates and discolors.
  • discoloration of a translucent resin means that the absorption of light increases, which means that the transmittance of light decreases as a result. For this reason, the light generated from the scintillator made of "resin GOS" is less likely to reach the light-receiving element (photodiode), resulting in deterioration of the detection performance of the X-ray detector.
  • a feature of this embodiment is that the following epoxy resins are used as resins contained in the "resin GOS" and resins contained in the reflector as epoxy resins containing at least a main agent and a curing agent. . Thereby, the reliability of the X-ray detector having the scintillator structure according to the present embodiment as a constituent element can be ensured for a long period of time.
  • the main agent contains bi-7-oxabicyclo[4.1.0]heptane.
  • bi-7-oxabicyclo[4.1.0]heptane is a material that does not have a carbon double bond, discoloration due to cleavage of the carbon double bond by X-ray irradiation is unlikely to occur. .
  • bi-7-oxabicyclo[4.1.0]heptane is a material with excellent radiation resistance.
  • a material that does not have a carbon double bond in order to suppress discoloration due to X-ray irradiation. This is because the carbon double bond is weaker than the carbon single bond, and the carbon double bond is easily broken by X-ray irradiation, resulting in discoloration of the material.
  • an acid anhydride curing agent represented by a phthalic anhydride curing agent can be used as the curing agent.
  • one kind of polybasic carboxylic acid anhydrides that are non-aromatic and do not chemically have a carbon double bond may be used, You may use two or more types together.
  • curing agents include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and dodecenylsuccinic anhydride. be able to. In particular, it is desirable to use methylhexahydrophthalic anhydride.
  • acid anhydride compounds include “Likacid TH”, “TH-1A”, “HH”, “MH”, “MH-700”, and “MH-700G” (all manufactured by Shin Nippon Rika Co., Ltd.). is mentioned.
  • a curing catalyst is not an essential constituent material, but it is desirable to add it from the viewpoint of promoting the curing reaction of the main agent.
  • the curing catalyst it is desirable to use an organophosphorus compound that is resistant to discoloration even when exposed to X-rays.
  • the curing catalyst tetrabutylphosphonium 0,0-diethylphosphorodithioate (Hishiko-Rin PX-4ET manufactured by Nippon Kagaku Kogyo Co., Ltd.), methyltributylphosphonium dimethyl phosphate (Hishiko-Rin PX-4MP Nippon Kagaku Kogyo company) and the like.
  • total light transmittance used in this specification is intended to include light that is transmitted in a direction deviated from the incident direction due to scattering inside the scintillator.
  • the “total light transmittance” represents the transmittance when not only the transmitted light that passes straight from the incident direction but also the transmitted light that is scattered inside the scintillator and deviates from the straight traveling direction. ing.
  • the purpose of using this "total light transmittance" is that, in the scintillator structure, as a result of the scintillator cells being covered with a reflective layer, the light scattered inside the cells is also repeatedly reflected and finally reaches the bottom surface of the cell.
  • the light scattered inside the cell also contributes to the detection of radiation by the light receiving element because the light is incident on the light receiving element arranged in the cell.
  • the total light transmittance is used in order to consider all the transmitted light that contributes to detection of radiation.
  • total light transmittance in this specification means the total light transmittance measured using light having a wavelength of 542 nm for a sample with a thickness of 1.5 mm.
  • total light transmittance when measuring the “total light transmittance”, after preparing a sample of 15 mm x 15 mm x 1.5 mm in length x width x thickness, the surface of the sample was mirror-finished, and the sample was We measure the “total light transmittance" for each.
  • total light transmittance was measured for light having a wavelength of 542 nm with an ultraviolet-visible-near-infrared spectrophotometer V-570 manufactured by JASCO Corporation.
  • the diffuse transmitted light and straight transmitted light were collected on the detector and the total light transmittance was measured.
  • Table 1 is a table showing verification results for sample A and sample B.
  • sample A shows "resin GOS” in the present embodiment, using a resin containing bi-7-oxabicyclo[4.1.0]heptane as a main agent and It is a “resin GOS” using "Me-HHPA” (material name: methylhexahydrophthalic anhydride; product name: “Rikashid MH-T” manufactured by Shin Nippon Rika Co., Ltd.).
  • sample B represents a "resin GOS” in the related art, which uses a bisphenol A type epoxy resin as a main agent and an amine compound as a curing agent.
  • sample B the initial “total light transmittance (0 kGy)" before X-ray irradiation is "90.902", while the “total light transmittance (0 kGy)" after X-ray irradiation with a dose of 100 kGy The rate (100 kGy)" is "78.361", and the “difference in total light transmittance” is "12.541".
  • the verification results in this embodiment show that the total light transmittance of the “resin GOS” containing bi-7-oxabicyclo[4.1.0]heptane even after irradiation with a high dose of X-rays of 100 kGy. There is great technical significance in that the suppression of the decrease in
  • the “resin GOS” containing bi-7-oxabicyclo[4.1.0]heptane does not reduce the “total light transmittance” even after 100 kGy of X-ray irradiation.
  • the results of this verification are data based on the assumption of a high dose of 100 kGy. This is because it provides data.
  • FIG. 2 is a flow chart explaining the flow of the manufacturing process of the scintillator structure.
  • the substrate on which the scintillator is formed is diced to separate the substrate into a plurality of cells (S107).
  • a plurality of singulated cells are rearranged (S108), and then coated with a reflective material so as to cover the plurality of cells (S109).
  • the scintillator structure that has passed the inspection is shipped (S111).
  • FIG. 3 is a diagram schematically showing the steps from the dicing step to the reflector coating step.
  • the substrate WF on which scintillators made of "resin GOS" are formed by dicing the substrate WF on which scintillators made of "resin GOS" are formed, the substrate WF is singulated into a plurality of cells CL. Then, the plurality of singulated cells CL are rearranged in a line, for example. After that, an outer frame FR is arranged so as to enclose a plurality of cells CL rearranged in a line. Next, a reflector made of, for example, an epoxy resin containing titanium oxide is applied so as to cover the plurality of cells CL arranged in the outer frame FR. After that, the outer frame FR is removed. Thus, the scintillator structure 10A is manufactured.
  • the line-shaped scintillator structure 10A using 1 ⁇ n cells is described as an example, but the technical concept of the present embodiment is not limited to this. It can also be applied to an array-like (matrix-like) scintillator structure using n ⁇ n cells.
  • This embodiment is characterized by the use of "resin GOS” containing bi-7-oxabicyclo[4.1.0]heptane, and this bi-7-oxabicyclo[4.1.0] ] Heptane has the property of having a low viscosity.
  • the viscosity of bi-7-oxabicyclo[4.1.0]heptane is 0.064 (Pa ⁇ s), which is very small.
  • the plurality of singulated cells CL are rearranged and then covered with a reflective material. Therefore, for example, if a resin containing bi-7-oxabicyclo[4.1.0]heptane is used as the resin constituting the reflector, the step of applying the reflector covering the rearranged cells CL can be easily implemented.
  • bi-7-oxabicyclo[4.1.0]heptane since the viscosity of bi-7-oxabicyclo[4.1.0]heptane is very low, bi-7-oxabicyclo[4.1.0]heptane is used as the resin constituting the reflector.
  • the use of a resin containing 1.0]heptane has the advantage of improving the workability of the step of applying the reflective material. Further, according to the present embodiment, as a result of improving the workability, it is possible to obtain a remarkable effect that the manufacturing cost of the scintillator structure can be reduced through the improvement of the manufacturing yield.
  • a feature of this embodiment is that the following epoxy resins are used as resins contained in the "resin GOS" and resins contained in the reflector as epoxy resins containing at least a main agent and a curing agent. . Thereby, the reliability of the X-ray detector having the scintillator structure according to the present embodiment as a constituent element can be ensured for a long period of time.
  • main agent >> The main ingredients are 3,4-epoxycyclohexylmethyl (3,4-epoxy)cyclohexane carboxylate and 1,2-epoxy-4-(2-oxiranyl)cyclohexane of 2,2-bis(hydroxymethyl)-1-butanol. Including mixtures with adducts. In particular, since these mixtures are materials having no carbon double bonds, discoloration due to cleavage of carbon double bonds by X-ray irradiation is less likely to occur.
  • a material that does not have a carbon double bond in order to suppress discoloration due to X-ray irradiation. This is because the carbon double bond is weaker than the carbon single bond, and the carbon double bond is easily broken by X-ray irradiation, resulting in discoloration of the material.
  • an acid anhydride curing agent represented by a phthalic anhydride curing agent can be used as the curing agent.
  • one kind of polybasic carboxylic acid anhydrides that are non-aromatic and do not chemically have a carbon double bond may be used, You may use two or more types together.
  • curing agents include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and dodecenylsuccinic anhydride. be able to. In particular, it is desirable to use methylhexahydrophthalic anhydride.
  • acid anhydride compounds include “Likacid TH”, “TH-1A”, “HH”, “MH”, “MH-700”, and “MH-700G” (all manufactured by Shin Nippon Rika Co., Ltd.). is mentioned.
  • a curing catalyst is not an essential constituent material, but it is desirable to add it from the viewpoint of promoting the curing reaction of the main agent.
  • the curing catalyst it is desirable to use an organophosphorus compound that is resistant to discoloration even when exposed to X-rays.
  • the curing catalyst tetrabutylphosphonium 0,0-diethylphosphorodithioate (Hishiko-Rin PX-4ET manufactured by Nippon Kagaku Kogyo Co., Ltd.), methyltributylphosphonium dimethyl phosphate (Hishiko-Rin PX-4MP Nippon Kagaku Kogyo company) and the like.
  • total light transmittance used in this specification is intended to include light that is transmitted in a direction deviated from the incident direction due to scattering inside the scintillator.
  • the “total light transmittance” represents the transmittance when not only the transmitted light that passes straight from the incident direction but also the transmitted light that is scattered inside the scintillator and deviates from the straight traveling direction. ing.
  • the purpose of using this "total light transmittance" is that, in the scintillator structure, as a result of the scintillator cells being covered with a reflective layer, the light scattered inside the cells is also repeatedly reflected and finally reaches the bottom surface of the cell.
  • the light scattered inside the cell also contributes to the detection of radiation by the light receiving element because the light is incident on the light receiving element arranged in the cell.
  • the total light transmittance is used in order to consider all the transmitted light that contributes to detection of radiation.
  • total light transmittance in this specification means the total light transmittance measured using light having a wavelength of 542 nm for a sample with a thickness of 1.5 mm.
  • total light transmittance when measuring the “total light transmittance”, after preparing a sample of 15 mm x 15 mm x 1.5 mm in length x width x thickness, the surface of the sample was mirror-finished, and the sample was We measure the “total light transmittance" for each.
  • total light transmittance was measured for light having a wavelength of 542 nm with an ultraviolet-visible-near-infrared spectrophotometer V-570 manufactured by JASCO Corporation.
  • the diffuse transmitted light and straight transmitted light were collected on the detector and the total light transmittance was measured.
  • Table 2 is a table showing verification results for Sample C and Sample D.
  • sample C indicates the "resin GOS" in the present embodiment, and 3,4-epoxycyclohexylmethyl (3,4-epoxy)cyclohexane carboxylate and 2,2-bis(hydroxy A mixture of methyl)-1-butanol with 1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct was used, and "Me-HHPA” (material name: methylhexahydrophthalic anhydride) was used as a curing agent.
  • Product name “Ricacid MH-T” manufactured by Shin Nippon Rika Co., Ltd.).
  • sample D represents a "resin GOS” in the related art, which uses a bisphenol A type epoxy resin as a main agent and an amine compound as a curing agent.
  • sample D the initial “total light transmittance (0 kGy)" before X-ray irradiation was “90.902", while the “total light transmittance” after X-ray irradiation at a dose of 100 kGy The rate (100 kGy)" is “78.361”, and the “difference in total light transmittance” is "12.541".
  • the "total light transmittance decrease rate" of sample C is “7.4%", while the “total light transmittance decrease rate” of sample D is “16%”. Therefore, it can be seen from the results of Table 2 that the "resin GOS" of the present embodiment can suppress the decrease in "total light transmittance” even after X-ray irradiation.
  • the present embodiment shows the verification results after irradiation with a high dose of X-rays of 100 kGy.
  • FIG. 2 is a flow chart explaining the flow of the manufacturing process of the scintillator structure.
  • the substrate on which the scintillator is formed is diced to separate the substrate into a plurality of cells (S107).
  • a plurality of singulated cells are rearranged (S108), and then coated with a reflective material so as to cover the plurality of cells (S109).
  • the scintillator structure that has passed the inspection is shipped (S111).
  • FIG. 3 is a diagram schematically showing the steps from the dicing step to the reflector coating step.
  • the substrate WF on which scintillators made of "resin GOS" are formed by dicing the substrate WF on which scintillators made of "resin GOS" are formed, the substrate WF is singulated into a plurality of cells CL. Then, the plurality of singulated cells CL are rearranged in a line, for example. After that, an outer frame FR is arranged so as to enclose a plurality of cells CL rearranged in a line. Next, a reflector made of, for example, an epoxy resin containing titanium oxide is applied so as to cover the plurality of cells CL arranged in the outer frame FR. After that, the outer frame FR is removed. Thus, the scintillator structure 10A is manufactured.
  • the line-shaped scintillator structure 10A using 1 ⁇ n cells is described as an example, but the technical concept of the present embodiment is not limited to this. It can also be applied to an array-like (matrix-like) scintillator structure using n ⁇ n cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)

Abstract

シンチレータ構造体の信頼性を向上する。シンチレータ構造体は、複数のセルと、複数のセルを覆う反射層とを備える。ここで、複数のセルのそれぞれは、樹脂と蛍光体とを含み、樹脂は、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む主剤と、硬化剤とを含む。または、複数のセルのそれぞれは、樹脂と蛍光体とを含み、樹脂は、主剤と硬化剤を含む。主剤は、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物とを含む。

Description

シンチレータ構造体
 本発明は、シンチレータ構造体に関し、例えば、それぞれ樹脂と蛍光体とを含む複数のセルを有するシンチレータ構造体に適用して有効な技術に関する。
 特開昭63-100391号公報(特許文献1)には、ビスフェノールA型エポキシ樹脂を含む蛍光体成型体に関する技術が記載されている。
特開昭63-100391号公報
 シンチレータは、X線やガンマ線に代表される放射線が当たると、放射線のエネルギーを吸収して可視光を発生させる物質である。このシンチレータは、シンチレータと反射層とを含むシンチレータ構造体として製品化され、シンチレータ構造体とフォトダイオードなどの光電変換素子とを組み合わせたX線検出器が、例えば、X線CTなどの医療機器、分析機器、放射線を用いた非破壊検査装置、放射線漏洩検査装置などに用いられている。
 例えば、シンチレータには、ガドリニウム酸硫化物(GdS)からなるセラミックスが使用されている。ここで、本明細書では、ガドリニウム酸硫化物を「GOS」と呼ぶことにする。なお、厳密には、ガドリニウム酸硫化物自体はほとんど発光せず、ガドリニウム酸硫化物にプラセオジウムやテルビウムなどを含有させることによって発光する。このことから、本明細書で「GOS」という文言は、ガドリニウム酸硫化物自体にプラセオジウムやテルビウムなどが含有されて発光する物質(蛍光体)を暗に意図して使用することにする。ただし、ガドリニウム酸硫化物自体にプラセオジウムやテルビウムなどが含有されていることを明示的に示す必要がある場合、プラセオジウムを含有する「GOS」やテルビウムを含有する「GOS」と表現することがある。
 また、シンチレータを「GOS」単体から構成する場合、「GOS」はセラミックから構成される。一方、後述するように、シンチレータを「GOS」と樹脂の混合物から構成することも検討されており、この場合の「GOS」は粉体から構成される。したがって、本明細書では、特にセラミックと粉体とを明示する必要がないときには、単に「GOS」と表現する。これに対し、セラミックを明示する必要があるときは「GOS」セラミックと呼ぶ。一方、粉体を明示する必要があるときは「GOS」粉体と呼ぶことにする。
 この「GOS」は、タングステン酸カドミウム(CdWO)よりも可視光の発光出力が大きいという利点を有する一方、製造コストが高い。
 このことから、シンチレータ構造体の製造コストを低減するため、シンチレータとして「GOS」粉体と樹脂の混合物を使用することが検討されている。
 この点に関し、シンチレータ構造体に要求される優先度の高い項目として、信頼性を向上することがある。なぜなら、シンチレータ構造体の信頼性を向上することができれば、放射線検出器の寿命を長くすることができるからである。したがって、シンチレータには、信頼性を向上するために放射線耐性が高いことが要求される。特に、上述したように、シンチレータを「GOS」粉体と樹脂の混合物から構成する場合は、樹脂に対して、放射線を照射した際に変質劣化しにくいことが望まれている。
 本発明の目的は、シンチレータ構造体の信頼性を向上することにある。
 一実施の形態におけるシンチレータ構造体は、複数のセルと、複数のセルを覆う反射層とを備える。ここで、複数のセルのそれぞれは、樹脂と蛍光体とを含み、樹脂は、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む主剤と、硬化剤とを含む。
 一実施の形態におけるシンチレータ構造体は、複数のセルと、複数のセルを覆う反射層とを備える。ここで、複数のセルのそれぞれは、樹脂と蛍光体とを含み、樹脂は、主剤と硬化剤を含む。主剤は、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物とを含む。
 一実施の形態によれば、シンチレータ構造体の信頼性を向上することができる。
X線検出器を模式的に示す図である。 シンチレータ構造体の製造工程の流れを説明するフローチャートである。 ダイシング工程から反射材塗布工程までの工程を模式的に示す図である。
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 <X線検出器の概要>
 図1は、X線検出器を模式的に示す図である。
 図1において、X線検出器100は、シンチレータ構造体10と受光素子20とを有している。シンチレータ構造体10は、X線検出器100に入射されるX線から可視光を発生する複数のシンチレータ11と、これらの複数のシンチレータ11のそれぞれを覆う反射層12から構成されている。一方、受光素子20は、シンチレータ11で発生した可視光から電流を生成する機能を有し、例えば、フォトダイオードに代表される光電変換素子から構成されている。この受光素子20は、例えば、支持体30に設けられており、複数のシンチレータ11のそれぞれに対応して設けられている。
 シンチレータ11は、X線を吸収して可視光を発生させる機能を有し、蛍光体11aと樹脂11bから構成されている。ここで、本明細書では、蛍光体11aを構成する「GOS」粉体と樹脂11bとを混合した材料を「樹脂GOS」と呼ぶこともある。つまり、本実施の形態におけるシンチレータ11は、「樹脂GOS」から構成されている。蛍光体11aは、プラセオジウムやテルビウムなどを含有するガドリニウム酸硫化物であり、樹脂11bは、例えば、エポキシ樹脂である。また、反射層12は、酸化チタンからなる反射粒子12aを含有する樹脂12bから構成されている。
 近年では、図1に示すように、シンチレータ構造体10において、シンチレータ11は、複数のセル(CL)に分割されている。すなわち、X線画像の解像度を向上する観点から、複数の受光素子20のそれぞれに合わせてシンチレータ11を複数のセルCLに分割することが行われている(シンチレータ11のアレイ化)。このように、シンチレータ構造体10は、複数のセルCLと、複数のセルCLを覆う反射層12とを備えている。具体的に、セルCLの上面と4つの側面は、反射層12で覆われる。一方、セルCLの下面は、受光素子20と接触させる必要があるため、反射層12で覆われてはいない。
 このように構成されているX線検出器は、以下に示すように動作する。
 すなわち、X線がシンチレータ構造体10のシンチレータ11に入射すると、シンチレータ11を構成する蛍光体11a内の電子は、X線のエネルギーを受け取って基底状態から励起状態に遷移する。その後、励起状態の電子は、基底状態に遷移する。この際、励起状態と基底状態との間のエネルギー差に相当する可視光が放出される。このようなメカニズムによって、シンチレータ11は、X線を吸収して可視光を発生させる。
 そして、シンチレータ11から発生した可視光のうちの一部の可視光は、直接的に受光素子20に入射するとともに、シンチレータ11から発生した可視光のうちの他の一部の可視光は、シンチレータ11を覆う反射層12での反射を繰り返しながら受光素子20に集光される。続いて、例えば、フォトダイオードから構成される受光素子20に可視光が入射すると、この可視光のエネルギーによって、フォトダイオードを構成する半導体材料の電子が価電子帯から伝導帯に励起される。これにより、伝導帯に励起した電子に起因する電流がフォトダイオードに流れる。そして、フォトダイオードから出力された電流に基づいて、X線画像が取得される。このようにして、X線検出器100によれば、X線画像を取得することができる。
 例えば、図1に示すように、シンチレータ構造体10は、直方体形状をしたシンチレータ11とシンチレータ11を覆う反射層12から構成されている。ここで、直方体形状をしたシンチレータ11は、ダイシング工程や研削工程などの加工工程を経て形成されることから、直方体形状の表面には、加工面が形成される。すなわち、「加工面」とは、機械的な加工が施された面をいう。具体的に、「加工面」には、ワーク厚み出しを実施するにあたり、研削砥石にて研削した面、もしくは、ダイシング処理を実施するためにスライシングブレードにてワークを切断した表面が含まれる。
 例えば、「樹脂GOS」を使用したシンチレータ11において、「加工面」とは、樹脂が露出する面と「GOS」粉体が破断した面とが混在する面として定義される。例えば、図1では、「樹脂GOS」を使用したシンチレータ11において、シンチレータ11と反射層12との界面が「加工面」である場合を模式的に表している。この場合、「加工面」においては、樹脂11bを切断する領域と蛍光体11a(「GOS」粉体)が破断する領域が混在することがわかる。このようにして、X線検出器100が構成されている。
 <「樹脂GOS」の採用理由>
 上述したように、本実施の形態では、シンチレータ11として「樹脂GOS」が採用されている。以下では、この理由について説明する。
 例えば、シンチレータ構造体10を構成するシンチレータ11として、タングステン酸カドミウム(以下、「CWO」と呼ぶ)が使用されているが、この「CWO」には、RoHS指令/REACH規則対象物質であるカドミウムが含まれている。このことから、シンチレータ11として、カドミウムを含有する「CWO」に替えて「GOS」セラミックが使用されてきている。この「GOS」セラミックは、「CWO」に比べて、可視光の発光出力が高いというメリットを有している一方、製造コストが高くなるデメリットがある。
 そこで、製造コストを削減する観点から、シンチレータ11として、「GOS」セラミックに替えて、エポキシ樹脂などからなる樹脂と「GOS」粉体とを混合した「樹脂GOS」を採用することが検討されている。すなわち、「GOS」セラミックによる製造コストの上昇を抑制するために、「GOS」セラミックよりも価格の安い「樹脂GOS」をシンチレータ11に使用する動きがある。
 ここで、「樹脂GOS」には、プラセオジウム(Pr)とセリウム(Ce)をガドリニウム酸硫化物に添加した「GOS」粉体とエポキシ樹脂とを混合した「第1樹脂GOS」と、テルビウム(Tb)とセリウム(Ce)をガドリウム酸硫化物に添加した「GOS」粉体とエポキシ樹脂とを混合した「第2樹脂GOS」とがある。
 そして、「第1樹脂GOS」と「第2樹脂GOS」は、ともに、「CWO」に比べて、発光出力が高いという利点を有している。さらには、「第1樹脂GOS」の残光特性は、「CWO」と同等であるという利点もある。すなわち、シンチレータ構造体10の性能としては、発光出力が大きいだけでなく、残光特性が良好であることも要求される。
 そこで、残光特性について説明する。シンチレータ構造体10を構成するシンチレータ11は、X線を当てると可視光を発生させる物質である。シンチレータ11において、X線を当てると可視光を発生させるメカニズムは、以下のようなものである。
 すなわち、シンチレータ11にX線を照射すると、シンチレータ11内の電子がX線からエネルギーを受け取って、エネルギーの低い基底状態からエネルギーの高い励起状態に遷移する。そして、励起状態にある電子は、エネルギーの低い基底状態に遷移する。このとき、励起された電子の大部分は、直ちに基底状態に遷移する。一方、励起された電子のうちの一部の電子は、ある程度の時間が経過した後に基底状態に遷移する。
 このある程度の時間が経過した後に生じる電子の励起状態から基底状態への遷移によって発生する可視光が残光になる。つまり、残光とは、励起状態から基底状態に遷移するタイミングがX線を照射した時刻からある程度時間が経過後に生じることによって発生する可視光である。そして、この残光が大きいということは、X線を照射してからもある程度の時間経過後まで発生する可視光の強度が大きいことを意味する。この場合、次のX線を照射するときまで前のX線照射で発生した残光が残存することになり、残存した残光はノイズとなる。このことから、残光は小さいことが望ましい。つまり、残光特性が良好であるとは、残光が小さいことを意味する。この点に関し、「第1樹脂GOS」の残光特性は、「CWO」の残光特性と同等である。
 したがって、「樹脂GOS」は、「CWO」に比べて、以下に示す利点を有していることから、性能と製造コストを両立可能なシンチレータ11として優れている。
(1)「樹脂GOS」は、「CWO」に比べて発光出力が高い。
(2)「第1樹脂GOS」の残光特性は、「CWO」の残光特性と同等である。
(3)「樹脂GOS」では、カドミウムを使用しない。
(4)「樹脂GOS」は、「CWO」に比べて製造コストが低い。
 また、シンチレータ11としてヨウ化セシウム(CsI)が使用されるが、「樹脂GOS」は、「CsI」に比べても、以下に示す利点を有している。
(1)「第2樹脂GOS」は、「CsI」に比べてX線のストッピング特性がよい。
(2)「第2樹脂GOS」の残光特性は、「CsI」の約1/70である。
(3)「樹脂GOS」は、潮解性のない安定した物質である。
 さらに、「樹脂GOS」は、「GOS」セラミックに比べて、以下に示す利点も有している。すなわち、「樹脂GOS」や「GOS」セラミックには、「Gd」、「Ga」または「Bi」などの重金属が含まれている。これらの重金属は、比較的高価であるとともに、流出による生体や環境への悪影響が懸念される。したがって、シンチレータ11に含まれる重金属は、できるだけ少ないことが望ましい。この点に関し、「GOS」粉体と樹脂の混合物から構成される「樹脂GOS」は、バルクである「GOS」セラミックよりも「GOS」の使用量が少ない。このことは、「樹脂GOS」によれば、「GOS」セラミックよりも、重金属の含有量が少ないシンチレータ11を構成できることを意味する。このことから、重金属の含有量の少ないシンチレータ11を提供できる点で、「樹脂GOS」は、「GOS」セラミックよりも優れているということができる。
 以上のことから、「樹脂GOS」は、性能と製造コストを両立可能なシンチレータ11として有望視されていることになる。
 <具体的な材料>
 続いて、シンチレータ構造体10を構成する構成要素の具体的な材料について説明する。
 <<蛍光体11a>>
 本実施の形態で使用される蛍光体11aは、例えば、ガドリニウム酸硫化物、または、ガドリニウム-アルミニウム-ガリウムガーネット(GGAG)から構成される。ここで、ガドリウム酸硫化物は、例えば、プラセオジウム(Pr)、セリウム(Ce)あるいはテルビウム(Tb)から選ばれた少なくとも1種類で賦活した「GdS」の組成を有する。一方、「GGAG」は、例えば、セリウム(Ce)やプラセオジウム(Pr)などから選ばれた少なくとも1種類で賦活した(Gd1-xLu3+a(GaAl1-u5-a12(x=0~0.5、u=0.2~0.6、a=-0.05~0.15)の主組成を有する。ただし、蛍光体11aは、特定の組成物に限定されるものではない。
 <<樹脂11bおよび樹脂12b>>
 樹脂11bおよび樹脂12bは、放射線を照射した際に変質劣化しにくい材料から構成される。これらの樹脂11bおよび樹脂12bの材料は、本実施の形態における特徴点であり、この特徴点については後述する。
 <<反射粒子12a>>
 反射粒子12aの構成材料としては、例えば、「TiO」(酸化チタン)、「Al」(酸化アルミニウム)、「ZrO」(酸化ジルコニウム)などの白色粒子を挙げることができる。ここで、反射粒子12aは、例えば、バルクまたは粉体と樹脂の混合物を使用することができる。特に、「ルチル型TiO」からなる反射粒子12aは、光反射効率に優れており望ましい粒子である。反射粒子12aの光反射率は、受光素子20での受光効率を向上させる観点から、80%以上であることが望ましく、さらに、反射粒子12aの光反射率は、90%以上であることが望ましい。
 <<その他の添加剤>>
 シンチレータ11および反射層12を構成する反射材には、上述した成分以外に、その他の添加剤が配合されていてもよい。例えば、樹脂の硬化時間を短縮させるために、硬化触媒を配合することが望ましい。
 <改善の検討>
 例えば、「樹脂GOS」に含まれる樹脂には、エポキシ樹脂が使用される。このエポキシ樹脂は、少なくとも主剤と硬化剤とを構成材料として含んでおり、例えば、主剤としては、ビスフェノールA型エポキシ樹脂が使用されるとともに、硬化剤としては、アミン系硬化剤が使用されることが多い。ところが、「樹脂GOS」を構成する樹脂として、ビスフェノールA型エポキシ樹脂を主剤とし、かつ、アミン系硬化剤を硬化剤として使用する一般的なエポキシ樹脂を使用する場合、放射線(X線)の照射が長期間にわたって繰り返されると、劣化して変色することを本発明者は新規に見出した。
 そして、透光性を有する樹脂が変色するということは、光の吸収が大きくなることを意味することから、結果的に、光の透過率が低下することを意味する。このことから、「樹脂GOS」からなるシンチレータから発生した光は、受光素子(フォトダイオード)に届きにくくなるため、X線検出器の検出性能が低下することになる。
 つまり、本発明者の検討によると、「樹脂GOS」を構成する樹脂として、ビスフェノールA型エポキシ樹脂を主剤とし、かつ、アミン系硬化剤を硬化剤として使用する一般的なエポキシ樹脂を使用すると、X線検出器において、長期間にわたって安定した検出性能を発揮させることが困難であることを見出した。言い換えれば、上述した一般的なエポキシ樹脂を「樹脂GOS」を構成する樹脂として使用すると、X線検出器の信頼性を長期間にわたって確保することが困難となることを本発明者は新規な知見として獲得している。
 したがって、上述した新規な知見に基づくと、X線検出器の信頼性を長期間にわたって確保するためには、上述した一般的なエポキシ樹脂に替えて、長期間にわたるX線が照射されても変色しにくい樹脂を「樹脂GOS」を構成する樹脂として採用することが望ましいことがわかる。そこで、本発明者は、長期間にわたるX線が照射されても変色しにくい放射線耐性に優れた樹脂を見出したので、以下に、この点について説明する。
 <実施の形態における特徴(具体的態様1)>
 本実施の形態における特徴点は、少なくとも主剤と硬化剤とを含むエポキシ樹脂として、以下に示すエポキシ樹脂を「樹脂GOS」に含有される樹脂および反射材に含有される樹脂に使用する点である。これにより、本実施の形態におけるシンチレータ構造体を構成要素とするX線検出器の信頼性を長期間にわたって確保することができる。
 <<主剤>>
 主剤は、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む。特に、ビ-7-オキサビシクロ[4.1.0]ヘプタンは、炭素二重結合を有さない材料であることから、X線照射によって炭素二重結合が切断されることによる変色が生じにくい。つまり、ビ-7-オキサビシクロ[4.1.0]ヘプタンは、放射線耐性に優れた材料である。
 <<硬化剤>>
 硬化剤は、X線照射による変色を抑制するため、炭素二重結合を有さない材料を使用することが望ましい。なぜなら、炭素二重結合は、炭素一重結合よりも結合強度が弱く、X線照射によって炭素二重結合が容易に切断される結果、材料の変色が生じやすくなるからである。例えば、硬化剤としては、無水フタル酸系硬化剤に代表される酸無水物系硬化剤を使用することができる。特に、X線照射による変色を効果的に抑制する観点から、非芳香族かつ炭素二重結合を化学的に有さない多塩基酸カルボン酸無水物のうちの1種類を使用してもよく、2種類以上を併用してもよい。
 具体的に、硬化剤としては、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物などを挙げることができる。特に、メチルヘキサヒドロ無水フタル酸を使用することが望ましい。
 酸無水物化合物の具体例としては、「リカシッドTH」、「TH-1A」、「HH」、「MH」、「MH-700」、「MH-700G」(いずれも新日本理化社製)などが挙げられる。
 <<硬化触媒>>
 硬化触媒は、必須構成材料ではないが、主剤の硬化反応を促進する観点からは添加することが望ましい。硬化触媒としては、X線を照射しても変色しにくい有機リン系化合物を使用することが望ましい。具体的に、硬化触媒としては、テトラブチルホスホニウム 0,0-ジエチルホスホロジチオエート(ヒシコ-リンPX-4ET 日本化学工業社製)、メチルトリブチルホスホニウム ジメチルホスフェート(ヒシコ-リンPX-4MP 日本化学工業社製)などを挙げることができる。
 <効果の検証>
 上述したビ-7-オキサビシクロ[4.1.0]ヘプタンを含む「樹脂GOS」によれば、X線照射後においても、「全光線透過率」の低下を抑制することができる検証結果について説明する。
 本明細書でいう「全光線透過率」とは、シンチレータの内部で散乱することにより透過方向が入射方向からずれて透過した光も透過光に含む意図で使用している。すなわち、「全光線透過率」には、入射方向から直進して透過する透過光だけでなく、シンチレータの内部で散乱されて透過方向が直進方向からずれた透過光も含む場合の透過率を表している。この「全光線透過率」を使用する意図は、シンチレータ構造体においては、シンチレータからなるセルは反射層で覆われる結果、セルの内部で散乱された光も反射を繰り返して最終的にセルの底面に配置された受光素子に入射されるため、セルの内部で散乱された光も受光素子での放射線の検出に寄与することになるからである。つまり、放射線の検出に寄与する透過光をすべて加味して評価するために、「全光線透過率」を使用している。
 また、本明細書における「全光線透過率」は、厚さ1.5mmのサンプルに対して542nmの波長を有する光を使用して測定された全光線透過率を意味している。なお、「全光線透過率」の測定にあたっては、縦×横×厚さが15mm×15mm×1.5mmのサンプルを作製した後、サンプルの表面を鏡面加工しているものを使用して、サンプルごとの「全光線透過率」を測定している。
 なお、「全光線透過率」は、日本分光製の紫外可視近赤外分光光度計V-570で542nmの波長を有する光に対して測定した。
 ここでは、積分球装置と反射板を使用し、拡散透過光と直進透過光を検出器に集めて全光線透過率を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1は、サンプルAとサンプルBについての検証結果を示す表である。
 表1において、サンプルAは、本実施の形態における「樹脂GOS」を示しており、主剤としてビ-7-オキサビシクロ[4.1.0]ヘプタンを含む樹脂を使用し、かつ、硬化剤として「Me-HHPA」(材料名:メチルヘキサヒドロ無水フタル酸 製品名:新日本理化社製「リカシッドMH-T」)を使用した「樹脂GOS」である。一方、サンプルBは、関連技術における「樹脂GOS」を示しており、主剤としてビスフェノールA型エポキシ樹脂を使用し、かつ、硬化剤としてアミン系化合物を使用した「樹脂GOS」である。
 表1に示すように、サンプルAでは、X線を照射する前の初期の「全光線透過率(0kGy)」が「92.489」である一方、線量が100kGyであるX線照射後の「全光線透過率(100kGy)」が「86.087」であり、「全光線透過率差」は、「6.402」である。
 これに対し、サンプルBでは、X線を照射する前の初期の「全光線透過率(0kGy)」が「90.902」である一方、線量が100kGyであるX線照射後の「全光線透過率(100kGy)」が「78.361」であり、「全光線透過率差」は、「12.541」である。
 この結果、サンプルAの「全光線透過率減少率」は、「7.4%」であるのに対し、サンプルBの「全光線透過率減少率」は、「16%」である。したがって、表1の結果から、本実施の形態における「樹脂GOS」によれば、X線照射後においても、「全光線透過率」の低下を抑制できることが裏付けられていることがわかる。
 特に、表1の結果から、本実施の形態における「樹脂GOS」によれば、X線を照射する前において、542nmの波長を有する光に対する初期の全光線透過率を90%以上に確保しながら、線量が100kGyのX線を照射した後において、542nmの波長を有する光に対する全光線透過率の低下率が8%未満であるという優れた性能を実現できる。このことから、本実施の形態における「樹脂GOS」を使用することによって、発光出力が高く、放射線耐性に優れたシンチレータ構造体を提供することができる。この結果、本実施の形態におけるシンチレータ構造体を使用することによって、長期間にわたって安定した検出性能を維持できる信頼性に優れたX線検出器を提供することができる。
 特に、本実施の形態における検証結果は、100kGyという高い線量のX線を照射した後においても、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む「樹脂GOS」の全光線透過率の低下の抑制が裏付けられている点に大きな技術的意義がある。
 例えば、材料に対して、たとえ放射線耐性を有することが知られていたとしても、どのぐらいの線量のX線照射に対して耐性を有しているについて分からなければ、実際にX線検出器の信頼性を長期間にわたって確保することができるか否かについて言及することができない。すなわち、単に定性的に放射線耐性を有している材料だからからといって、必ずしも、高い線量のX線が使用されるX線検出器の信頼性を長期間にわたって保証することはできない。この点に関し、本実施の形態では、線量が100kGyという高線量のX線を照射した後における検証結果を示しており、この検証結果に基づいて、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む「樹脂GOS」の放射線耐性が優れていることが裏付けられている。つまり、本実施の形態は、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む「樹脂GOS」によれば、100kGyのX線照射後においても、「全光線透過率」の低下を抑制できることを検証している点に大きな技術的意義がある。なぜなら、この検証結果は、高い線量である100kGyを前提としたデータであることから、高い線量のX線が使用されるX線検出器の信頼性を長期間にわたって保証する根拠として信頼性の高いデータを提供することになるからである。
 <シンチレータ構造体の製造方法>
 続いて、シンチレータ構造体の製造方法について説明する。
 図2は、シンチレータ構造体の製造工程の流れを説明するフローチャートである。
 図2において、まず、原料粉末とフラックス成分を所定量秤量して混合した後(S101)、この混合物を坩堝に充填し、1300℃~1400℃の大気炉中で7~9時間焼成することにより(S102)、「GOS」粉体を生成する。そして、「GOS」粉体中に含まれるフラックス成分や不純物を塩酸と温水を使用した洗浄により除去する(S103)。次に、「GOS」粉体にエポキシ樹脂を滴下することにより、「GOS」粉体にエポキシ樹脂を浸み込ませる(S104)。次に、エポキシ樹脂を硬化させた後(S105)、「GOS」粉体と混合していないエポキシ樹脂を除去する(S106)。これにより、「樹脂GOS」からなるシンチレータを形成できる。
 続いて、シンチレータが形成された基板をダイシングすることにより、基板を複数のセルに個片化する(S107)。個片化された複数のセルは、再配列された後(S108)、複数のセルを覆うように反射材が塗布される(S109)。そして、シンチレータ構造体10Aとしての不要部を切断した後(S110)、検査をパスしたシンチレータ構造体が出荷される(S111)。
 図3は、ダイシング工程から反射材塗布工程までの工程を模式的に示す図である。
 図3に示すように、「樹脂GOS」からなるシンチレータが形成された基板WFをダイシングすることにより、基板WFは複数のセルCLに個片化される。そして、個片化された複数のセルCLは、例えば、ライン状に再配列される。その後、ライン状に再配列された複数のセルCLを内包するように外枠FRが配置される。次に、外枠FR内に配置された複数のセルCLを覆うように、例えば、酸化チタンを含有するエポキシ樹脂からなる反射材を塗布する。その後、外枠FRを除去する。このようにして、シンチレータ構造体10Aが製造される。
 なお、図3では、1×n個のセルを使用したライン状のシンチレータ構造体10Aを例に挙げて説明しているが、本実施の形態における技術的思想は、これに限らず、例えば、n×n個のセルを使用したアレイ状(行列状)のシンチレータ構造体にも適用可能である。
 <製法上の利点>
 本実施の形態では、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む「樹脂GOS」を使用する点に特徴点があるが、このビ-7-オキサビシクロ[4.1.0]ヘプタンは、粘度が低いという性質がある。この結果、本実施の形態によれば、以下に示す利点を得ることができるので、この点について説明する。
 ビ-7-オキサビシクロ[4.1.0]ヘプタンの粘度は、0.064(Pa・s)であり、非常に小さい。ここで、上述したシンチレータ構造体の製造方法で説明したように、個片化された複数のセルCLは、再配列された後、反射材で覆われる。したがって、例えば、反射材を構成する樹脂としても、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む樹脂を使用すると、再配列された複数のセルCLを覆う反射材を塗布する工程を容易に実施することができる。すなわち、本実施の形態によれば、ビ-7-オキサビシクロ[4.1.0]ヘプタンの粘度が非常に小さいことから、反射材を構成する樹脂として、ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む樹脂を使用すると、反射材の塗布工程の作業性を向上できる利点が得られる。そして、本実施の形態によれば、作業性が向上する結果、製造歩留まりの向上を通じて、シンチレータ構造体の製造コストを削減できるという顕著な効果を得ることができる。このように本実施の形態によれば、「樹脂GOS」だけでなく、反射層12としても、ビ-7-オキサビシクロ[4.1.0]ヘプタンを使用することにより、長期間にわたるX線検出器の信頼性を確保することができるだけでなく、シンチレータ構造体の製造コストも削減できる点で、非常に優れた技術的思想であるということができる。
 <実施の形態における特徴(具体的態様2)>
 本実施の形態における特徴点は、少なくとも主剤と硬化剤とを含むエポキシ樹脂として、以下に示すエポキシ樹脂を「樹脂GOS」に含有される樹脂および反射材に含有される樹脂に使用する点である。これにより、本実施の形態におけるシンチレータ構造体を構成要素とするX線検出器の信頼性を長期間にわたって確保することができる。
 <<主剤>>
 主剤は、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物を含む。特に、これらの混合物は、炭素二重結合を有さない材料であることから、X線照射によって炭素二重結合が切断されることによる変色が生じにくい。つまり、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物は、放射線耐性に優れた材料である。
 <<硬化剤>>
 硬化剤は、X線照射による変色を抑制するため、炭素二重結合を有さない材料を使用することが望ましい。なぜなら、炭素二重結合は、炭素一重結合よりも結合強度が弱く、X線照射によって炭素二重結合が容易に切断される結果、材料の変色が生じやすくなるからである。例えば、硬化剤としては、無水フタル酸系硬化剤に代表される酸無水物系硬化剤を使用することができる。特に、X線照射による変色を効果的に抑制する観点から、非芳香族かつ炭素二重結合を化学的に有さない多塩基酸カルボン酸無水物のうちの1種類を使用してもよく、2種類以上を併用してもよい。
 具体的に、硬化剤としては、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物などを挙げることができる。特に、メチルヘキサヒドロ無水フタル酸を使用することが望ましい。
 酸無水物化合物の具体例としては、「リカシッドTH」、「TH-1A」、「HH」、「MH」、「MH-700」、「MH-700G」(いずれも新日本理化社製)などが挙げられる。
 <<硬化触媒>>
 硬化触媒は、必須構成材料ではないが、主剤の硬化反応を促進する観点からは添加することが望ましい。硬化触媒としては、X線を照射しても変色しにくい有機リン系化合物を使用することが望ましい。具体的に、硬化触媒としては、テトラブチルホスホニウム 0,0-ジエチルホスホロジチオエート(ヒシコ-リンPX-4ET 日本化学工業社製)、メチルトリブチルホスホニウム ジメチルホスフェート(ヒシコ-リンPX-4MP 日本化学工業社製)などを挙げることができる。
 <効果の検証>
 上述した3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物を含む「樹脂GOS」によれば、X線照射後においても、「全光線透過率」の低下を抑制することができる検証結果について説明する。
 本明細書でいう「全光線透過率」とは、シンチレータの内部で散乱することにより透過方向が入射方向からずれて透過した光も透過光に含む意図で使用している。すなわち、「全光線透過率」には、入射方向から直進して透過する透過光だけでなく、シンチレータの内部で散乱されて透過方向が直進方向からずれた透過光も含む場合の透過率を表している。この「全光線透過率」を使用する意図は、シンチレータ構造体においては、シンチレータからなるセルは反射層で覆われる結果、セルの内部で散乱された光も反射を繰り返して最終的にセルの底面に配置された受光素子に入射されるため、セルの内部で散乱された光も受光素子での放射線の検出に寄与することになるからである。つまり、放射線の検出に寄与する透過光をすべて加味して評価するために、「全光線透過率」を使用している。
 また、本明細書における「全光線透過率」は、厚さ1.5mmのサンプルに対して542nmの波長を有する光を使用して測定された全光線透過率を意味している。なお、「全光線透過率」の測定にあたっては、縦×横×厚さが15mm×15mm×1.5mmのサンプルを作製した後、サンプルの表面を鏡面加工しているものを使用して、サンプルごとの「全光線透過率」を測定している。
 なお、「全光線透過率」は、日本分光製の紫外可視近赤外分光光度計V-570で542nmの波長を有する光に対して測定した。
 ここでは、積分球装置と反射板を使用し、拡散透過光と直進透過光を検出器に集めて全光線透過率を測定した。
Figure JPOXMLDOC01-appb-T000002
 表2は、サンプルCとサンプルDについての検証結果を示す表である。
 表2において、サンプルCは、本実施の形態における「樹脂GOS」を示しており、主剤として3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物を使用し、かつ、硬化剤として「Me-HHPA」(材料名:メチルヘキサヒドロ無水フタル酸 製品名:新日本理化社製「リカシッドMH-T」)を使用した「樹脂GOS」である。一方、サンプルDは、関連技術における「樹脂GOS」を示しており、主剤としてビスフェノールA型エポキシ樹脂を使用し、かつ、硬化剤としてアミン系化合物を使用した「樹脂GOS」である。
 表2に示すように、サンプルCでは、X線を照射する前の初期の「全光線透過率(0kGy)」が「92.661」である一方、線量が100kGyであるX線照射後の「全光線透過率(100kGy)」が「86.292」であり、「全光線透過率差」は、「6.369」である。
 これに対し、サンプルDでは、X線を照射する前の初期の「全光線透過率(0kGy)」が「90.902」である一方、線量が100kGyであるX線照射後の「全光線透過率(100kGy)」が「78.361」であり、「全光線透過率差」は、「12.541」である。
 この結果、サンプルCの「全光線透過率減少率」は、「7.4%」であるのに対し、サンプルDの「全光線透過率減少率」は、「16%」である。したがって、表2の結果から、本実施の形態における「樹脂GOS」によれば、X線照射後においても、「全光線透過率」の低下を抑制できることが裏付けられていることがわかる。
 特に、表2の結果から、本実施の形態における「樹脂GOS」によれば、X線を照射する前において、542nmの波長を有する光に対する初期の全光線透過率を90%以上に確保しながら、線量が100kGyのX線を照射した後において、542nmの波長を有する光に対する全光線透過率の低下率が8%未満であるという優れた性能を実現できる。このことから、本実施の形態における「樹脂GOS」を使用することによって、発光出力が高く、放射線耐性に優れたシンチレータ構造体を提供することができる。この結果、本実施の形態におけるシンチレータ構造体を使用することによって、長期間にわたって安定した検出性能を維持できる信頼性に優れたX線検出器を提供することができる。
 特に、本実施の形態における検証結果は、100kGyという高い線量のX線を照射した後においても、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物を含む「樹脂GOS」の全光線透過率の低下の抑制が裏付けられている点に大きな技術的意義がある。
 例えば、材料に対して、たとえ放射線耐性を有することが知られていたとしても、どのぐらいの線量のX線照射に対して耐性を有しているについて分からなければ、実際にX線検出器の信頼性を長期間にわたって確保することができるか否かについて言及することができない。すなわち、単に定性的に放射線耐性を有している材料だからからといって、必ずしも、高い線量のX線が使用されるX線検出器の信頼性を長期間にわたって保証することはできない。この点に関し、本実施の形態では、線量が100kGyという高線量のX線を照射した後における検証結果を示しており、この検証結果に基づいて、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物を含む「樹脂GOS」の放射線耐性が優れていることが裏付けられている。つまり、本実施の形態は、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物との混合物を含む「樹脂GOS」によれば、100kGyのX線照射後においても、「全光線透過率」の低下を抑制できることを検証している点に大きな技術的意義がある。なぜなら、この検証結果は、高い線量である100kGyを前提としたデータであることから、高い線量のX線が使用されるX線検出器の信頼性を長期間にわたって保証する根拠として信頼性の高いデータを提供することになるからである。
 <シンチレータ構造体の製造方法>
 続いて、シンチレータ構造体の製造方法について説明する。
 図2は、シンチレータ構造体の製造工程の流れを説明するフローチャートである。
 図2において、まず、原料粉末とフラックス成分を所定量秤量して混合した後(S101)、この混合物を坩堝に充填し、1300℃~1400℃の大気炉中で7~9時間焼成することにより(S102)、「GOS」粉体を生成する。そして、「GOS」粉体中に含まれるフラックス成分や不純物を塩酸と温水を使用した洗浄により除去する(S103)。次に、「GOS」粉体にエポキシ樹脂を滴下することにより、「GOS」粉体にエポキシ樹脂を浸み込ませる(S104)。次に、エポキシ樹脂を硬化させた後(S105)、「GOS」粉体と混合していないエポキシ樹脂を除去する(S106)。これにより、「樹脂GOS」からなるシンチレータを形成できる。
 続いて、シンチレータが形成された基板をダイシングすることにより、基板を複数のセルに個片化する(S107)。個片化された複数のセルは、再配列された後(S108)、複数のセルを覆うように反射材が塗布される(S109)。そして、シンチレータ構造体10Aとしての不要部を切断した後(S110)、検査をパスしたシンチレータ構造体が出荷される(S111)。
 図3は、ダイシング工程から反射材塗布工程までの工程を模式的に示す図である。
 図3に示すように、「樹脂GOS」からなるシンチレータが形成された基板WFをダイシングすることにより、基板WFは複数のセルCLに個片化される。そして、個片化された複数のセルCLは、例えば、ライン状に再配列される。その後、ライン状に再配列された複数のセルCLを内包するように外枠FRが配置される。次に、外枠FR内に配置された複数のセルCLを覆うように、例えば、酸化チタンを含有するエポキシ樹脂からなる反射材を塗布する。その後、外枠FRを除去する。このようにして、シンチレータ構造体10Aが製造される。
 なお、図3では、1×n個のセルを使用したライン状のシンチレータ構造体10Aを例に挙げて説明しているが、本実施の形態における技術的思想は、これに限らず、例えば、n×n個のセルを使用したアレイ状(行列状)のシンチレータ構造体にも適用可能である。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 10 シンチレータ構造体
 11 シンチレータ
 11a 蛍光体
 11b 樹脂
 12 反射層
 12a 反射粒子
 12b 樹脂
 20 受光素子
 30 支持体
 100 X線検出器
 CL セル

Claims (9)

  1.  複数のセルと、
     前記複数のセルを覆う反射層と、
     を備える、シンチレータ構造体であって、
     前記複数のセルのそれぞれは、樹脂と蛍光体とを含み、
     前記樹脂は、
     ビ-7-オキサビシクロ[4.1.0]ヘプタンを含む主剤と、
     硬化剤と、
     を含む、シンチレータ構造体。
  2.  請求項1に記載のシンチレータ構造体において、
     前記反射層も前記樹脂を含む、シンチレータ構造体。
  3.  請求項1または2に記載のシンチレータ構造体において、
     前記硬化剤は、酸無水物系硬化剤である、シンチレータ構造体。
  4.  請求項3に記載のシンチレータ構造体において、
     前記酸無水物系硬化剤は、無水フタル酸系硬化剤である、シンチレータ構造体。
  5.  請求項1~4のいずれか1項に記載のシンチレータ構造体において、
     前記樹脂は、さらに、硬化触媒を含み、
     前記硬化触媒は、有機リン系化合物である、シンチレータ構造体。
  6.  複数のセルと、
     前記複数のセルを覆う反射層と、
     を備える、シンチレータ構造体であって、
     前記複数のセルのそれぞれは、樹脂と蛍光体とを含み、
     前記樹脂は、
     主剤と、
     硬化剤と、
     を含み、
     前記主剤は、
     3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートと、
     2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物と、
     を含む、シンチレータ構造体。
  7.  請求項6に記載のシンチレータ構造体において、
     前記硬化剤は、酸無水物系硬化剤である、シンチレータ構造体。
  8.  請求項7に記載のシンチレータ構造体において、
     前記酸無水物系硬化剤は、無水フタル酸系硬化剤である、シンチレータ構造体。
  9.  請求項6~8のいずれか1項に記載のシンチレータ構造体において、
     前記樹脂は、さらに、硬化触媒を含み、
     前記硬化触媒は、有機リン系化合物である、シンチレータ構造体。
PCT/JP2022/007653 2021-04-02 2022-02-24 シンチレータ構造体 WO2022209470A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280024712.XA CN117121120A (zh) 2021-04-02 2022-02-24 闪烁体结构体
US18/550,604 US20240150644A1 (en) 2021-04-02 2022-02-24 Scintillator structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-063296 2021-04-02
JP2021063296A JP2022158413A (ja) 2021-04-02 2021-04-02 シンチレータ構造体
JP2021-063292 2021-04-02
JP2021063292A JP2022158411A (ja) 2021-04-02 2021-04-02 シンチレータ構造体

Publications (1)

Publication Number Publication Date
WO2022209470A1 true WO2022209470A1 (ja) 2022-10-06

Family

ID=83458392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007653 WO2022209470A1 (ja) 2021-04-02 2022-02-24 シンチレータ構造体

Country Status (2)

Country Link
US (1) US20240150644A1 (ja)
WO (1) WO2022209470A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266936A (ja) * 2005-03-24 2006-10-05 Hitachi Metals Ltd X線検出体およびx線検出装置
JP2011022068A (ja) * 2009-07-17 2011-02-03 Konica Minolta Medical & Graphic Inc シンチレータパネル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266936A (ja) * 2005-03-24 2006-10-05 Hitachi Metals Ltd X線検出体およびx線検出装置
JP2011022068A (ja) * 2009-07-17 2011-02-03 Konica Minolta Medical & Graphic Inc シンチレータパネル

Also Published As

Publication number Publication date
US20240150644A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
Yanagida Inorganic scintillating materials and scintillation detectors
JP5281742B2 (ja) シンチレータ物質及びシンチレータ物質を含む放射線検出器
JP3332200B2 (ja) X線ct用放射線検出器
JP7164065B2 (ja) シンチレータ構造体
US8247778B2 (en) Scintillator arrays and methods of making the same
JP7164064B2 (ja) シンチレータ構造体
JP6419692B2 (ja) シンチレータアレイ、x線検出器、およびx線検査装置
JP2014032029A (ja) シンチレータ及びこれを用いた放射線検出器
WO2022209470A1 (ja) シンチレータ構造体
JP6087421B2 (ja) シンチレータ及び放射線検出器
WO2022209469A1 (ja) シンチレータ構造体
JP7347624B2 (ja) シンチレータ構造体
JP2022158413A (ja) シンチレータ構造体
JP7156566B2 (ja) シンチレータ構造体
JP2022158411A (ja) シンチレータ構造体
US11199636B2 (en) Scintillator plate, radiation detecting apparatus, and radiation detecting system
JP6456946B2 (ja) 結像システムへの適用のためのCe3+活性化発光組成物
JP4451112B2 (ja) 放射線検出器及びそれを用いた放射線画像診断装置
JP2022141118A (ja) シンチレータ構造体およびその製造方法
CN114316943A (zh) 闪烁体结构体及其制造方法
JP7136377B2 (ja) シンチレータ構造体
JP2004003970A (ja) 放射線検出器およびその製造方法、放射線ct装置
US20060131502A1 (en) Radiation detector
KR20210082932A (ko) 엑스선 검출기
JP2024030321A (ja) シンチレータ構造体およびシンチレータの評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550604

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779695

Country of ref document: EP

Kind code of ref document: A1