WO2014161242A1 - 导电膜及其制备方法以及包含该导电膜的触摸屏 - Google Patents

导电膜及其制备方法以及包含该导电膜的触摸屏 Download PDF

Info

Publication number
WO2014161242A1
WO2014161242A1 PCT/CN2013/079141 CN2013079141W WO2014161242A1 WO 2014161242 A1 WO2014161242 A1 WO 2014161242A1 CN 2013079141 W CN2013079141 W CN 2013079141W WO 2014161242 A1 WO2014161242 A1 WO 2014161242A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
substrate
conductive layer
hole
Prior art date
Application number
PCT/CN2013/079141
Other languages
English (en)
French (fr)
Inventor
唐根初
董绳财
刘伟
唐彬
Original Assignee
深圳欧菲光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欧菲光科技股份有限公司 filed Critical 深圳欧菲光科技股份有限公司
Priority to JP2015509297A priority Critical patent/JP5887642B2/ja
Priority to KR1020137026483A priority patent/KR101510580B1/ko
Priority to US13/968,315 priority patent/US9538654B2/en
Publication of WO2014161242A1 publication Critical patent/WO2014161242A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to electronic technology, and more particularly to a conductive film, a method of fabricating the same, and a touch screen including the same. Background technique
  • OGS One Glass Solution
  • ITO conductive film and sensor directly on the protective glass, so that one glass can play the dual role of protecting glass and touch sensor.
  • a conductive film is prepared, and then the display module is attached to the conductive film to obtain a touch screen.
  • a conductive layer (generally an ITO layer) is formed directly on the surface of the protective glass to obtain a conductive film for preparing a touch panel. Therefore, in the conductive film obtained by the conventional process, the conductive layer protrudes from the surface of the glass. Since the conductive material, such as ITO, is generally soft in texture, the conductive layer protruding from the surface of the glass is easily scratched. Therefore, when the display module is attached, the conductive layer may be scratched to cause the film to be scrapped, and the yield of the product is not high. Summary of the invention
  • a conductive film comprising:
  • a substrate comprising a first surface and a second surface disposed opposite the first surface; a first substrate layer attached to the first surface, the first substrate layer being formed by curing a gel coat, a first mesh groove is formed on a side of the first substrate layer away from the substrate, Filling a conductive material in the first grid groove to form a first conductive layer;
  • a second substrate layer attached to a side of the first substrate layer away from the substrate, the second substrate layer being formed by curing a gel coat, the second substrate layer being away from the first substrate a second grid groove is formed on one side of the layer, and the second grid groove is filled with a conductive material to form a second conductive layer;
  • a light shielding layer is attached to an edge of the second substrate layer away from the first substrate layer, and a region of the second substrate layer attached to the light shielding layer forms a second non-visible region, wherein the light shielding layer is in the a projection area on the first substrate layer forming a first non-visible area, the first grid groove extending to the first non-visible area, the second grid groove extending to the second Non-visible area;
  • a first through hole is formed in the light shielding layer, and the first through hole penetrates the light shielding layer and the second substrate layer and communicates with the first mesh groove, and the first through hole is filled with conductive a material to form a first lead electrode electrically connected to the first conductive layer; a surface of the light shielding layer further having a second lead electrode, wherein the second lead electrode is electrically connected to the second conductive layer.
  • the second lead electrode is formed by etching, and the lead conductive material is electrically connected to the conductive material of the second conductive layer; or a second pass is formed on the light shielding layer. a second through hole penetrating through the light shielding layer and communicating with the second mesh groove, wherein the second through hole is filled with a conductive material and electrically connected to the conductive material of the second conductive layer.
  • the thickness of the first conductive layer is not greater than the depth of the first mesh recess, and the thickness of the second conductive layer is not greater than the depth of the second mesh recess.
  • the electrically conductive material is silver.
  • the first mesh groove and the second mesh groove have a width of 1 to 5 micrometers, a depth of 2 to 6 micrometers, and an aspect ratio greater than 1.
  • the transmittance of the first conductive layer and the second conductive layer is greater than 85%.
  • the light shielding layer has a thickness of 1 to 10 ⁇ m.
  • the substrate is glass.
  • a touch screen includes:
  • a display module attached to the second substrate layer by an optical adhesive tape away from the first substrate layer
  • a method for preparing a conductive film comprising the steps of:
  • the substrate comprising a first surface and a second surface disposed opposite the first surface
  • a first through hole and a second through hole are formed in the light shielding layer, the first through hole is in communication with the first mesh groove, and the second through hole is connected to the second mesh groove ;
  • the first via hole and the second via hole are filled with a conductive material to respectively form a first lead electrode electrically connected to the first conductive layer and a second lead electrically connected to the second conductive layer electrode.
  • the first conductive layer and the second conductive layer are respectively located in the first mesh groove and the second mesh In the recess, the first conductive layer and the second conductive layer are respectively covered by the first substrate layer and the second substrate layer. Therefore, the first substrate layer and the second substrate layer can provide protection to the first conductive layer and the second conductive layer, thereby preventing the first conductive layer and the second conductive layer from being scratched when the touch screen is manufactured, thereby improving the product. Yield
  • the edge of the substrate is provided with a light shielding layer, and the first lead electrode and the second lead electrode may be disposed in the first non-visible area and the second non-visible area projected by the light shielding layer. Therefore, when the touch panel is assembled, the wiring of the first lead electrode and the second lead electrode is not observed from the front of the screen, so that the appearance of the product can be improved.
  • FIG. 1 is a schematic view showing a layered structure of a touch screen in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing a layered structure of a conductive film in the touch screen shown in FIG.
  • FIG. 3 is a schematic view showing a layered structure of another view of the conductive film shown in FIG. 2;
  • Figure 4 is a perspective view of the conductive film shown in Figure 2;
  • FIG. 5 is a schematic view showing a mesh shape of a first conductive layer and a second conductive layer in the conductive film shown in FIG. 2;
  • FIG. 6 is a schematic view showing a mesh shape of a first conductive layer and a second conductive layer in another embodiment
  • FIG. 7 is a flow chart showing a method for preparing a conductive film in one embodiment.
  • a touch screen 10 in a preferred embodiment of the present invention includes a conductive film 100 and a display module 200.
  • the display module 200 is attached to the conductive film 100 by an optical adhesive.
  • the conductive film 100 includes a substrate 110, a first substrate layer 120, a first conductive layer 130, a second substrate layer 140, a second conductive layer 150, a light shielding layer 160, and a first The lead electrode 170 and the second lead electrode 180.
  • the substrate 110 is a plate-like structure including a first surface (not labeled) and a second surface (not labeled), wherein the first surface is disposed opposite to the second surface.
  • the substrate 110 is a glass substrate, and the glass used for the manufacture of the substrate 110 is subjected to a strengthening treatment, so that the substrate 110 is obtained with high strength and can be well protected.
  • the substrate 110 may also be a film of other materials, such as polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate plastic. (PC) and ethylene terephthalate (PET) film.
  • PBT polybutylene terephthalate
  • PMMA polymethyl methacrylate
  • PC polycarbonate plastic
  • PET ethylene terephthalate
  • the material of the substrate 110 is preferably a transparent insulating material.
  • the first substrate layer 120 is attached to the first surface of the substrate 110.
  • the first substrate layer 120 is formed by curing a paste applied to the substrate 110, and therefore has a thickness smaller than the thickness of the substrate 110. Further, the first substrate layer 120 is made of a transparent insulating material, and the material is different from the material of the substrate 110.
  • a first mesh recess 121 is formed on a side of the first substrate layer 120 away from the substrate 110.
  • a conductive material is filled in the first mesh recess 121 to form the first conductive layer 130. Since the first conductive layer 130 is located in the first grid recess 121, the first substrate layer 120 may coat the first conductive layer 130. Therefore, the first substrate layer 120 can protect the first conductive layer 130, thereby preventing the first conductive layer 130 from being scratched in a subsequent bonding process.
  • the conductive material is filled in the first mesh groove 121 to form the first conductive layer 130, and the first conductive layer 130 is a conductive mesh formed by the intersection of the conductive thin wires.
  • ITO is making a big size
  • the conductive film has a relatively large electrical resistance, so the sensitivity of a conventional touch panel prepared using a conductive film containing an ITO conductive layer is not good.
  • the grid-like structure can effectively reduce the electric resistance, so that the electric resistance of the first conductive layer 130 is small, thereby improving the sensitivity of the product.
  • the second substrate layer 140 is attached to the side of the first substrate layer 120 remote from the substrate 110.
  • the second substrate layer 140 is formed by curing a paste applied to the first substrate layer 120, the thickness of which is smaller than the thickness of the substrate 110.
  • the side of the second substrate layer 140 away from the first substrate layer 120 is attached to the display module 200 to attach the display module 200 to the conductive film 100.
  • a second mesh recess 141 is defined in a side of the second substrate layer 140 away from the first substrate layer 120.
  • a conductive material is filled in the second mesh recess 141 to form a second conductive layer 150. Since the second conductive layer 150 is located in the second grid recess 141, the second substrate layer 140 may coat the second conductive layer 150. Therefore, the second substrate layer 140 forms a protection to the second conductive layer 150 to prevent the second conductive layer 150 from being scratched in the subsequent bonding process.
  • the conductive material is filled in the second mesh groove 141 to form the first conductive layer 170, and the second conductive layer 150 is a conductive mesh formed by the intersection of the conductive thin wires. Since ITO has a relatively large electric resistance when making a large-sized conductive film, the sensitivity of a conventional touch panel prepared using a conductive film of an ITO conductive layer is not good. The grid-like structure can effectively reduce the resistance, thereby making the second conductive layer
  • the resistance of 140 is small, which in turn increases the sensitivity of the product.
  • the light shielding layer 160 is attached to the edge of the second substrate layer 140 away from the side of the first substrate layer 120.
  • the light shielding layer 160 is formed of a light shielding material applied to the edge of the surface of the second substrate layer 140, and the light shielding layer 160 is formed into an annular layer structure.
  • the light shielding layer 160 is made of a material that is opaque to form a shadow on the edges of the first substrate layer 120 and the second substrate layer 140.
  • the second substrate layer 140 is attached to the region of the light-shielding layer 160 to form a second non-visible region (not shown), and the projection region of the light-shielding layer 160 on the first substrate layer 120 forms a first non-visible region (not shown). Wherein the first mesh recess 121 extends to the first non-visible area and the second mesh recess 141 extends to the second non-visible area.
  • the light shielding layer 160 is an ink layer or a black photoresist layer having a thickness of 1 to 10 ⁇ m.
  • the light shielding layer 160 may have a thickness of 6 ⁇ m, and the light shielding layer
  • the thickness of the light shielding layer 160 may be 1 micrometer, thereby achieving a thinner thickness. Degree.
  • a first through hole (not shown) is defined in the light shielding layer 160.
  • the first through hole penetrates through the light shielding layer 160 and the second substrate layer 140 and communicates with the first mesh groove 121.
  • the first via hole is filled with a conductive material to form a first lead electrode 170.
  • the first through hole communicates with the first mesh groove 131. Therefore, the first lead electrode 170 formed in the first via hole can be electrically connected to the first conductive layer 130.
  • the first lead electrode 170 directs the first conductive layer 130 to the surface of the light shielding layer 160, thereby facilitating the first conductive layer 130 to be electrically connected to the controller of the electronic device.
  • the second lead electrode 180 is formed on the surface of the light shielding layer 160, and the second lead electrode 180 is electrically connected to the second conductive layer 150.
  • the second lead electrode 180 is formed by etching to form a lead, and the lead conductive material is electrically connected to the conductive material of the second conductive layer 150.
  • a second through hole (not shown) may be formed in the light shielding layer, and the second through hole penetrates through the light shielding layer 160 and communicates with the second mesh groove 141.
  • the second via hole is filled with a conductive material to form a second lead electrode 180.
  • the second through hole communicates with the second mesh groove 141. Therefore, the second lead electrode 180 formed in the second via hole can be electrically connected to the second conductive layer 150.
  • the second conductive layer is electrically connected to the second lead electrode.
  • the second lead electrode 180 leads the second conductive layer 150 to the surface of the light shielding layer 160, thereby facilitating the second conductive layer 150 to be electrically connected to the controller of the electronic device.
  • the first lead electrode 170 and the second lead electrode are used to electrically connect the first conductive layer 130 and the second conductive layer 150 with a controller of the electronic device, thereby making the controller feel
  • the operation on the touch screen was detected. Since the first lead electrode 170 and the second lead electrode 180 are both located on the surface of the light shielding layer 160. Therefore, the wiring of the first lead electrode 170 and the second lead electrode 180 is not observed on the prepared electronic device, thereby contributing to an improvement in the appearance of the product.
  • the conductive material forming the first conductive layer 130, the second conductive layer 150, the first lead electrode 170, and the second lead electrode 180 is silver.
  • Silver is a good conductor and has a low electrical resistivity, which further improves the sensitivity of the product.
  • the wire material may also be a polymer conductive material, graphene, carbon nanotubes, and indium tin oxide (ITO).
  • ITO indium tin oxide
  • the mesh shape of the first mesh groove 121 and the second mesh groove 141 may also be a regular polygon, and the first conductive layer 130 and the first conductive layer 130 The centers of the grids of the two conductive layers 150 are staggered to avoid the generation of moire fringes.
  • the thickness of the first conductive layer 130 is not greater than the depth of the first mesh groove 121, and the thickness of the second conductive layer 150 is not greater than the depth of the second mesh groove 141. Therefore, the first conductive layer 130 and the second conductive layer 150 may be insulated by the first substrate layer 120 and the second substrate layer 140 to form a capacitor structure between the first conductive layer 130 and the second conductive layer 150. It should be noted that in other embodiments, the first conductive layer 130 may be insulated from the second conductive layer 150 by laying an insulating layer on the first substrate layer 120 and the second substrate layer 140.
  • the first mesh groove 121 and the second mesh groove 141 have a width of 1 to 5 micrometers, a height of 2 to 6 micrometers, and an aspect ratio of more than 1. Therefore, the transmittance of the first conductive layer 130 and the second conductive layer 150 formed is greater than 85%, and the light passes through the conductive layer so that there is not much loss, so that the display screen including the conductive film 100 can be better. The display effect.
  • the conductive film 100 has at least the following advantages as compared with the conventional conductive film:
  • the first conductive layer 130 and the second conductive layer 150 are respectively located in the first mesh recess 121 and the second mesh recess 141, and the first conductive layer 130 and the second conductive layer 150 are respectively formed by the first substrate layer. 120 and a second substrate layer 140 are coated. Therefore, the first substrate layer 120 and the second substrate layer 140 can provide protection to the first conductive layer 130 and the second conductive layer 150, thereby preventing the first conductive layer 130 and the second conductive layer 150 from being scratched when the touch screen is manufactured.
  • the edge of the substrate 110 is provided with a light shielding layer 160, and the first lead electrode 170 and the second lead electrode 180 may be disposed on the first non-visible area formed by the light shielding layer 160 and Within the second non-visible area. Therefore, when assembled into the touch screen 10, the first lead electrode is not observed from the front of the screen.
  • the wiring of the 170 and the second lead electrode 180 can improve the appearance of the product. Further, the present invention also provides a method of preparing a conductive film.
  • a method for preparing a conductive film includes steps S110 to S180: Step S110, providing a substrate, the substrate including a first surface and a second surface disposed opposite to the first surface.
  • the material of the substrate is glass. Moreover, the glass is reinforced to give the substrate a good protection. It should be noted that in other embodiments, the substrate may be other materials such as polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate plastic (PC). And ethylene terephthalate (PET) and the like.
  • PBT polybutylene terephthalate
  • PMMA polymethyl methacrylate
  • PC polycarbonate plastic
  • PET ethylene terephthalate
  • Step S120 applying a gel on the first surface of the substrate, and curing the gel to form a first substrate layer, and opening a first mesh groove on a side of the first substrate layer away from the substrate.
  • the formed first substrate layer is attached to the first surface of the substrate.
  • the first mesh groove may be formed on the side of the first substrate layer away from the substrate by using an embossing method, and the depth of the first mesh groove is smaller than the thickness of the first substrate layer.
  • Step S130 filling a conductive material into the first grid groove to form a first conductive layer.
  • the conductive material is formed in the first grid groove to form mutually interleaved conductive thin wires, and the conductive thin wires constitute a conductive mesh.
  • the first grid groove may be filled with a conductive silver paste, and then the conductive silver paste is sintered and solidified to form a conductive mesh.
  • the thickness of the first conductive layer is smaller than the depth of the first mesh groove. Therefore, the first conductive layer is coated in the first substrate layer, and the first substrate layer can protect the first conductive layer, thereby preventing the first conductive layer from being scratched during the subsequent bonding process.
  • Step S140 coating a glue on a side of the first substrate layer away from the substrate, and curing the glue to form a second substrate layer, and forming a second mesh groove on the second substrate layer.
  • the material forming the second substrate layer is the same as the material forming the first substrate layer.
  • the second mesh groove may be formed on the side of the second substrate layer away from the first substrate layer by embossing, and the depth of the second groove is smaller than the thickness of the second substrate layer. .
  • Step S150 filling a conductive material into the second grid groove to form a second conductive layer.
  • the conductive material is formed in the second grid groove to form mutually interleaved metal conductive thin wires, and the metal conductive thin wires constitute a conductive mesh.
  • the first grid groove may be filled with a conductive silver paste, and then the conductive silver paste is sintered and solidified to form a conductive mesh.
  • Step S160 applying a light shielding material on a side edge of the second substrate layer away from the first substrate layer to form an annular light shielding layer.
  • the light shielding layer is made of a material that is opaque to form a shadow on the edges of the first substrate layer, the second substrate layer, and the substrate.
  • the projection area of the light shielding layer on the first substrate layer forms a first non-visible area
  • the area of the second substrate layer to which the light shielding layer is attached forms a second non-visible area.
  • the material forming the light shielding layer may be an ink or a black photoresist having a thickness of 1 to 10 ⁇ m.
  • the thickness of the light shielding layer may be 6 ⁇ m
  • the thickness of the light shielding layer may be 1 ⁇ m. Therefore, the formation of the light shielding layer by the black photoresist can further reduce the thickness of the conductive film.
  • Step S170 a first through hole and a second through hole are formed in the light shielding layer, the first through hole communicates with the first mesh groove, and the second through hole communicates with the second mesh groove.
  • the first through hole and the second through hole may be formed on the light shielding layer by an exposure and development method.
  • the first through hole communicates with the first mesh groove through the light shielding layer and the second substrate layer.
  • the second through hole communicates with the second mesh groove through the light shielding layer.
  • Step S180 filling the first through hole and the second through hole with a conductive material to respectively form a first lead electrode electrically connected to the first conductive layer and a second lead electrode electrically connected to the second conductive layer.
  • the first through hole and the second through hole may be filled with a conductive silver paste, and the silver paste is solidified to form a first lead electrode and a second lead electrode, respectively. Since the first through hole communicates with the first mesh groove. Therefore, the first lead electrode formed in the first via hole is electrically connected to the first conductive layer. Similarly, the second lead electrode and the second conductive layer are also electrically connected.
  • the first lead electrode and the second lead electrode are led to the surface of the light shielding layer through the first through hole and the second through hole.
  • the first lead electrode and the second lead electrode may be wired on the surface of the light shielding layer to be electrically connected to the flexible circuit board. Due to the first introduction Both the wire electrode and the second lead electrode are located on the surface of the light shielding layer, so that the wiring of the leads cannot be observed from the front surface of the touch screen, thereby contributing to an improvement in the appearance of the product.
  • the first conductive layer and the second conductive layer of the conductive film obtained by the above-described method for preparing a conductive film are respectively coated in the first substrate layer and the second substrate layer, as compared with the conventional conductive film preparation method. Therefore, the first substrate layer and the second substrate layer can provide protection to the first conductive layer and the second conductive layer, thereby preventing the first conductive layer and the second conductive layer from being scratched when the touch screen is manufactured, thereby improving the product. Yield. Further, the edge of the second substrate layer is provided with a light shielding layer, and both the first lead electrode and the second lead electrode may be led to the surface of the light shielding layer.

Abstract

一种导电膜,包括基片、第一基质层、第一导电层、第二基质层、第二导电层、遮光层、第一引线电极及第二引线电极。第一基质层及第二基质层上分别开设有第一网格凹槽及第二网格凹槽,且在第一网格凹槽及第二网格凹槽中填充导电材料以分别形成第一导电层及第二导电层。由于第一导电层及第二导电层分别位于第一网格凹槽及第二网格凹槽内,故第一基质层及第二基质层分别包覆第一导电层及第二导电层。因此,第一基质层和第二基质层可对第一导电层及第二导电层提供保护,从而防止在制造触摸屏时对第一导电层及第二导电层造成刮伤,进而可提高产品的良率。此外,本发明还提供一种导电膜的制备方法及触摸屏。

Description

导电膜及其制备方法以及包含该导电膜的触摸屏 技术领域
本发明涉及电子技术, 特别是涉及一种导电膜及其制备方法以及包含 该导电膜的触摸屏。 背景技术
在日常生活中, 电容式触摸屏已广泛应用于各种电子产品, 给人们的 生活带来极大方便。 随着人们对用户体验的进一步提高, 电子产品越来越 向轻薄化的方向发展。触摸屏是决定电子设备是否做薄的重要因素。因此, 随着对电子产品的轻薄化需要, 触摸屏也逐步向轻薄化发展。 OGS(One Glass Solution, 即一体化触控)是触摸屏向轻薄化发展的重要途径。 OGS 的主要思路在保护玻璃上直接形成 ITO导电膜及传感器,使一块玻璃同时 起到保护玻璃和触摸传感器的双重作用。
生产触摸屏时需先制备导电膜,再将显示模组贴附于导电膜上以得到 触摸屏。 在一般的 OGS工艺中, 大多是直接在保护玻璃表面形成导电层 (一般为 ITO层) , 从而得到用于制备触摸屏的导电膜。 故在传统工艺得 到的导电膜中, 导电层突出于玻璃表面。 而由于导电材料, 如 ITO的质地 一般较软, 故突出于玻璃表面的导电层容易被划伤。 因此, 在贴合显示模 组时可能会划伤导电层而导致电膜报废传统, 进而使得产品良率不高。 发明内容
基于此, 有必要提供一种可提高产品良率的导电膜及其制备方法以及 包含该导电膜的触摸屏。
一种导电膜, 包括:
基片, 包括第一表面及与所述第一表面相对设置的第二表面; 第一基质层, 附着于所述第一表面, 所述第一基质层由胶状物涂层固 化形成, 所述第一基质层远离所述基片的一侧开设有第一网格凹槽, 所述 第一网格凹槽内填充导电材料, 形成第一导电层;
第二基质层, 附着于所述第一基质层上远离所述基片的一侧, 所述第 二基质层由胶状物涂层固化形成, 所述第二基质层远离所述第一基质层的 一侧开设有第二网格凹槽, 所述第二网格凹槽内填充导电材料, 形成第二 导电层; 及
遮光层, 附着于所述第二基质层远离所述第一基质层一侧的边缘, 所 述第二基质层附着所述遮光层的区域形成第二非可视区域, 所述遮光层在 所述第一基质层上的投影区域形成第一非可视区域, 所述第一网格凹槽延 伸至所述第一非可视区域, 所述第二网格凹槽延伸至所述第二非可视区 域;
所述遮光层上开设第一通孔, 所述第一通孔贯穿所述遮光层及所述第 二基质层并与所述第一网格凹槽连通, 所述第一通孔内填充导电材料, 以 形成与所述第一导电层电连接的第一引线电极; 所述遮光层表面还具有第 二引线电极, 所述第二引线电极与第二导电层电连接。
在其中一个实施例中, 所述第二引线电极通过蚀刻方式形成引线, 且 使所述引线导电材料与所述第二导电层的导电材料电连接; 或在所述遮光 层上开设第二通孔, 所述第二通孔贯穿所述遮光层并与所述第二网格凹槽 连通, 所述第二通孔内填充导电材料, 并与所述第二导电层的导电材料电 连接。
在其中一个实施例中, 所述第一导电层的厚度不大于所述第一网格凹 槽的深度, 所述第二导电层的厚度不大于所述第二网格凹槽的深度。
在其中一个实施例中, 所述导电材料为银。
在其中一个实施例中, 所述第一网格凹槽及所述第二网格凹槽的宽度 介于 1~5微米, 深度介于 2~6微米, 且深宽比大于 1, 所述第一导电层及 所述第二导电层的透过率大于 85%。
在其中一个实施例中, 所述遮光层的厚度为 1~10微米。
在其中一个实施例中, 为油墨层或黑色光阻层。 在其中一个实施例中, 所述基片为玻璃。
在其中一个实施例中, 所述第一网格凹槽及所述第二网格凹槽的网格 为随机网格。 一种触摸屏, 包括:
如上述优选实施例中任一项所述的导电膜;
显示模组, 通过光学胶贴附于所述第二基质层远离所述第一基质层的
一种导电膜的制备方法, 包括以下步骤:
提供一基片, 所述基片包括第一表面及与所述第一表面相对设置的第 二表面;
在所述基片的第一表面涂覆胶状物, 并使所述胶状物固化以形成第一 基质层, 在所述第一基质层上远离所述基片的一侧开设第一网格凹槽; 向所述第一网格凹槽内填充导电材料, 以形成第一导电层;
在所述第一基质层上远离所述基片的一侧涂覆胶状物, 并使所述胶状物 固化以形成第二基质层, 在所述第二基质层上开设第二网格凹槽;
向所述第二网格凹槽中填充导电材料, 以形成第二导电层; 在所述第二基质层远离所述第一基质层的一侧边缘涂覆遮光材料, 以 形成环形的遮光层;
在所述遮光层上开设第一通孔及第二通孔, 所述第一通孔与所述第一 网格凹槽连通, 所述第二通孔与所述第二网格凹槽连通;
所述第一通孔及所述第二通孔内填充导电材料, 以分别形成与所述第 一导电层电连接的第一引线电极及与所述第二导电层点电连接的第二引 线电极。
与传统的导电膜相比, 上述导电膜具有至少如下优点:
1、 由于第一导电层及第二导电层分别位于第一网格凹槽及第二网格 凹槽内, 第一导电层及第二导电层分别被第一基质层及第二基质层包覆。 因此, 第一基质层和第二基质层可对第一导电层及第二导电层提供保护, 从而防止在制造触摸屏时对第一导电层及第二导电层造成刮伤, 进而可提 高产品的良率;
2、 基片的边缘设有遮光层, 第一引线电极及第二引线电极可设置于 由遮光层投影形成的第一非可视区域及第二非可视区域内。 因此, 在组装 成触摸屏时, 从屏幕正面观察不到第一引线电极及第二引线电极的布线, 从而可改善产品的外观。 附图说明
图 1为本发明较佳实施例中触摸屏的层状结构示意图;
图 2图 1所示触摸屏中导电膜的层状结构示意图;
图 3为图 2所示导电膜另一视角的层状结构示意图;
图 4为图 2所示导电膜立体结构图;
图 5为图 2所示导电膜中第一导电层及第二导电层的网格形状示意 图;
图 6为另一实施例中第一导电层及第二导电层的网格形状示意图; 图 7为一个实施例中导电膜的制备方法的流程示意图。 具体实施方式
为了便于理解本发明, 下面将参照相关附图对本发明进行更全面的描 述。 附图中给出了本发明的较佳实施例。 但是, 本发明可以以许多不同的 形式来实现, 并不限于本文所描述的实施例。 相反地, 提供这些实施例的 目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是, 当元件被称为 "固定于"另一个元件, 它可以直接在另 一个元件上或者也可以存在居中的元件。 当一个元件被认为是 "连接 "另一 个元件, 它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义, 本文所使用的所有的技术和科学术语与属于本发明的 技术领域的技术人员通常理解的含义相同。 本文中在本发明的说明书中所 使用的术语只是为了描述具体的实施例的目的, 不是旨在于限制本发明。 本文所使用的术语 "及 I或"包括一个或多个相关的所列项目的任意的和 所有的组合。
请参阅图 1,本发明较佳实施例中的触摸屏 10包括导电膜 100及显示 模组 200。 其中, 显示模组 200通过光学胶贴附于导电膜 100上。
请一并参阅 2、 图 3及图 4, 导电膜 100包括基片 110、 第一基质层 120、 第一导电层 130、 第二基质层 140、 第二导电层 150、 遮光层 160、 第一引线电极 170、 及第二引线电极 180。
基片 110为板状结构,包括第一表面(图未标)及第二表面(图未标), 其中第一表面与第二表面相对设置。在本实施例中,基片 110为玻璃基片, 且用于制造基片 110的玻璃经过强化处理, 故得到基片 110强度高, 可很 好的起到保护作用。 需要指出的是, 在其他的实施例中, 基片 110还可为 其他材质的薄膜, 如聚对苯二甲酸丁二酯 (PBT) 、 聚甲基丙烯酸甲酯 (PMMA) 、 聚碳酸酯塑料(PC) 以及对苯二甲酸乙二酯(PET)薄膜等。 当导电膜 100应用于触摸屏制备时, 制备基片 110的材料优选为透明绝缘 材料。
第一基质层 120附着于基片 110的第一表面。第一基质层 120由涂覆 于基片 110上的胶状物固化形成, 因此, 其厚度小于基片 110的厚度。 此 外,第一基质层 120由透明绝缘材料制成,且该材料异于基片 110的材料。
此外,第一基质层 120远离基片 110的一侧开设有第一网格凹槽 121。 导电材料填充于第一网格凹槽 121内, 以形成第一导电层 130。 由于第一 导电层 130位于第一网格凹槽 121内, 故第一基质层 120可包覆第一导电 层 130。 因此, 第一基质层 120可对第一导电层 130形成保护, 从而防止 该第一导电层 130在后续的贴合程序中被刮伤。
具体的, 导电材料填充于第一网格凹槽 121以形成第一导电层 130, 第一导电层 130为由导电细线交叉构成的导电网格。由于 ITO在做大尺寸 的导电膜时电阻比较大,故传统的利用包含 ITO导电层的导电膜所制备的 触摸屏的灵敏度不好。 而网格状的结构可有效的减小电阻, 从而使第一导 电层 130的电阻较小, 进而可提高产品的灵敏度。
第二基质层 140附着于第一基质层 120上远离基片 110的一侧。第二 基质层 140由涂覆于第一基质层 120上的胶状物固化形成, 其厚度小于基 片 110的厚度。 具体的, 第二基质层 140远离第一基质层 120的一侧与显 示模组 200贴合, 以使显示模组 200贴附于导电膜 100上。
此外, 第二基质层 140远离第一基质层 120的一侧开设有第二网格凹 槽 141。 导电材料填充于第二网格凹槽 141内, 以形成第二导电层 150。 由于第二导电层 150位于第二网格凹槽 141内, 故第二基质层 140可包覆 第二导电层 150。 因此, 第二基质层 140对第二导电层 150形成保护, 防 止该第二导电层 150在后续贴合程序中被刮伤。
具体的, 导电材料填充于第二网格凹槽 141以形成第一导电层 170, 第二导电层 150为由导电细线交叉构成的导电网格。由于 ITO在做大尺寸 的导电膜时电阻比较大,故传统的利用 ITO导电层的导电膜所制备的触摸 屏的灵敏度不好。 而网格状的结构可有效的减小电阻, 从而使第二导电层
140的电阻较小, 进而提高产品的灵敏度。
遮光层 160附着于第二基质层 140远离第一基质层 120—侧的边缘。 遮光层 160由涂覆于第二基质层 140表面边缘的遮光材料形成, 所形成的 遮光层 160为环形层状结构。 遮光层 160由不透光的材料制成, 故可在第 一基质层 120及第二基质层 140的边缘形成阴影。第二基质层 140附着遮 光层 160的区域形成第二非可视区域 (图未标) , 遮光层 160在第一基质 层 120上的投影区域形成第一非可视区域 (图未示) 。 其中, 第一网格凹 槽 121延伸至第一非可视区域,第二网格凹槽 141延伸至第二非可视区域。
在本实施例中, 遮光层 160为油墨层或黑色光阻层, 其厚度介于 1~10 微米。 遮光层 160为油墨层时, 遮光层 160的厚度可为 6微米, 而遮光层
160为黑色光阻层时, 遮光层 160的厚度可为 1微米, 从而达到更薄的厚 度。
遮光层 160上开设有第一通孔 (图未示) 。 第一通孔贯穿遮光层 160 及第二基质层 140并与第一网格凹槽 121连通。
第一通孔内填充导电材料, 形成第一引线电极 170。 由于第一通孔与 第一网格凹槽 131连通。 因此, 可使第一通孔内形成的第一引线电极 170 与第一导电层 130电连接。第一引线电极 170将第一导电层 130引到遮光 层 160的表面, 从而便于第一导电层 130与电子设备的控制器电连接。
第二引线电极 180形成于遮光层 160的表面, 第二引线电极 180与第 二导电层电连接 150。
在本实施例中, 第二引线电极 180通过蚀刻方式形成引线, 且使该引 线导电材料与第二导电层 150的导电材料电连接。此外,在其他实施例中, 还可在遮光层上开设第二通孔 (图未示) , 第二通孔贯穿遮光层 160并与 第二网格凹槽 141连通。 第二通孔内填充导电材料, 以形成第二引线电极 180。 由于第二通孔与第二网格凹槽 141连通。 因此, 可使第二通孔内形 成的第二引线电极 180与第二导电层 150电连接。所述第二导电层点电连 接的第二引线电极。 第二引线电极 180将第二导电层 150引到遮光层 160 的表面, 从而便于第二导电层 150与电子设备的控制器电连接。
导电膜 100用于制备电子设备的触摸屏时, 第一引线电极 170及第二 引线电极用于将第一导电层 130及第二导电层 150与电子设备的控制器电 连接, 从而使控制器感测到触摸屏上的操作。 由于第一引线电极 170及第 二引线电极 180均位于遮光层 160的表面。 因此, 在制备的电子设备上观 测不到第一引线电极 170及第二引线电极 180的布线, 从而有助于提升产 品外观。
在本实施例中, 形成第一导电层 130、 第二导电层 150、 第一引线电 极 170及第二引线电极 180的导电材料为银。 银为良导体, 电阻率小, 从 而可进一步提高产品的灵敏度。 需要指出的是, 在其他实施例中, 导线材 料还可为高分子导电材料、 石墨烯、 碳纳米管以及氧化铟锡 (ITO) 等。 请一并参阅图 5, 在本实施例中, 第一网格凹槽 121及第二网格凹槽 141的网格为随机网格。 因此, 形成的第一导电层 130及第二导电层 150 的网格形状也为随机网格。 由于随机网格的中心随机分布, 从而使得第一 导电层 130与第二导电层 150之间不会产生干涉现象, 进而避免产生莫尔 条纹, 提升包含导电膜 100的显示屏的显示效果。 需要指出的是, 如图 6 所示, 在其他实施例中, 第一网格凹槽 121及第二网格凹槽 141的网格形 状还可为正多边形,而第一导电层 130与第二导电层 150的网格中心错开, 以避免产生莫尔条紋。
在本实施例中, 第一导电层 130的厚度不大于第一网格凹槽 121的深 度, 第二导电层 150的厚度不大于第二网格凹槽 141的深度。 因此, 第一 导电层 130与第二导电层 150可通过第一基质层 120及第二基质层 140绝 缘, 从而在第一导电层 130与第二导电层 150之间形成电容结构。 需要指 出的是, 在其他实施例中, 还可通过在第一基质层 120与第二基质层 140 铺设绝缘层的方式使第一导电层 130与第二导电层 150绝缘。
在本实施例中,第一网格凹槽 121及第二网格凹槽 141的宽度介于 1~5 微米, 高度介于 2~6微米, 且深宽比大于 1。 因此, 形成的第一导电层 130 及第二导电层 150的透过率大于 85% , 光线从导电层穿过使不会有太多损 耗, 从而可使包含导电膜 100的显示屏具有更佳的显示效果。
与传统的导电膜相比, 导电膜 100具有至少如下优点:
1、由于第一导电层 130及第二导电层 150分别位于第一网格凹槽 121 及第二网格凹槽 141内, 第一导电层 130及第二导电层 150分别被第一基 质层 120及第二基质层 140包覆。因此,第一基质层 120和第二基质层 140 可对第一导电层 130及第二导电层 150提供保护, 从而防止在制造触摸屏 时对第一导电层 130及第二导电层 150造成刮伤,进而可提高产品的良率; 2、 基片 110的边缘设有遮光层 160, 第一引线电极 170及第二引线电 极 180可设置于由遮光层 160投影形成的第一非可视区域及第二非可视区 域内。 因此, 在组装成触摸屏 10时, 从屏幕正面观察不到第一引线电极 170及第二引线电极 180的布线, 从而可改善产品的外观。 此外, 本发明还提供一种导电膜的制备方法。
请参阅图 7,在一个实施例中,导电膜的制备方法包括步骤 S110~S180: 步骤 S110,提供一基片, 基片包括第一表面及与第一表面相对设置的 第二表面。
本实施例中, 基片的材质为玻璃。 而且, 玻璃经过强化处理, 使得基 片能很好的起到保护作用。 需要指出的是, 在其他的实施例中, 基片还可 为其他材质,如聚对苯二甲酸丁二酯(PBT)、聚甲基丙烯酸甲酯(PMMA)、 聚碳酸酯塑料 (PC) 以及对苯二甲酸乙二酯 (PET) 等。
步骤 S120,在基片的第一表面涂覆胶状物, 并使胶状物固化以形成第 一基质层, 在第一基质层上远离基片的一侧开设第一网格凹槽。
具体的, 形成的第一基质层附着于基片的第一表面。 进一步的, 在本 实施例中, 可采用压印的方式在第一基质层远离基片的一侧形成第一网格 凹槽, 且第一网格凹槽的深度小于第一基质层的厚度。
步骤 S130, 向第一网格凹槽内填充导电材料, 以形成第一导电层。
在本实施例中, 导电材料形成在第一网格凹槽内形成相互交错的导电细 线, 该导电细线组成导电网格。 具体地, 可先向第一网格凹槽中填充导电银 浆, 再使导电银浆烧结固化, 形成导电网格。
进一步的, 第一导电层的厚度小于第一网格凹槽的深度。 因此, 第一导 电层包覆于第一基质层内, 第一基质层可对第一导电层起到保护作用, 从而 可避免第一导电层在后续的贴合过程中被划伤。
步骤 S140, 在第一基质层上远离基片的一侧涂覆胶状物, 并使胶状物固 化以形成第二基质层, 在第二基质层上开设第二网格凹槽。
具体的, 形成第二基质层的材料与形成第一基质层的材料相同。 进一步 的, 在本实施例中, 可采用压印的方式在第二基质层远离第一基质层的一侧 形成第二网格凹槽, 且第二凹槽的深度小于第二基质层的厚度。 步骤 S150 , 向第二网格凹槽中填充导电材料, 以形成第二导电层。 在本实施例中, 导电材料形成在第二网格凹槽内形成相互交错的金属 导电细线, 该金属导电细线组成导电网格。 具体地, 可先向第一网格凹槽 中填充导电银浆, 再使导电银浆烧结固化, 形成导电网格。
步骤 S160 ,在第二基质层远离所述第一基质层的一侧边缘涂覆遮光材 料, 以形成环形的遮光层。
具体的, 遮光层由不透光的材料制成, 故可在第一基质层、 第二基质 层以及基片的边缘形成阴影。遮光层在第一基质层上的投影区域形成第一 非可视区域, 而第二基质层上附着遮光层的区域形成第二非可视区域。 在 本实施例中, 形成遮光层的材料可为油墨或黑色光阻, 其厚度介于 1~10 微米。 当采用油墨形成遮光层时, 遮光层的厚度可为 6微米, 而当采用黑 色光阻形成遮光层时, 遮光层的厚度可为 1微米。 因此, 采用黑色光阻形 成遮光层能进一步降低导电膜的厚度。
步骤 S170 ,在遮光层上开设第一通孔及第二通孔,第一通孔与第一网 格凹槽连通, 第二通孔与第二网格凹槽连通。
具体的, 可通过曝光显影方法在遮光层上形成第一通孔及第二通孔。 其中, 第一通孔贯穿遮光层及第二基质层而与第一网格凹槽连通。 第二通 孔贯穿遮光层与第二网格凹槽连通。
步骤 S180 , 向第一通孔及二通孔内填充导电材料, 以分别形成与第一 导电层电连接的第一引线电极及与第二导电层点电连接的第二引线电极。
具体的, 可向第一通孔及二通孔内填充导电银浆, 并使银浆固化, 以 分别形成第一引线电极及第二引线电极。 由于第一通孔与第一网格凹槽连 通。因此, 形成于第一通孔内的第一引线电极与第一导电层电连接。 同理, 第二引线电极与第二导电层也电连接。
通过第一通孔及第二通孔, 第一引线电极及第二引线电极引至遮光层 的表面。 当将导电膜 100用于制备触摸屏使, 第一引线电极及第二引线电 极可在遮光层的表面进行布线, 从而与柔性电路板电连接。 而由于第一引 线电极及第二引线电极均位于遮光层的表面, 故从触摸屏的正面不能观察 到引线的布线, 从而有助于提升产品的外观。
与传统的导电膜制备方法相比, 通过上述导电膜的制备方法得到的导 电膜的第一导电层及第二导电层分别包覆于第一基质层及第二基质层内。 因此, 第一基质层和第二基质层可对第一导电层及第二导电层提供保护, 从而防止在制造触摸屏时对第一导电层及第二导电层造成刮伤, 进而可提 高产品的良率。 此外, 第二基质层的边缘设有遮光层, 第一引线电极及第 二引线电极均可引至遮光层的表面。 因此, 在组装成触摸屏时, 从屏幕正 面观察不到第一引线电极及第二引线电极的布线, 从而可改善产品的外 观。 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和 详细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以 做出若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利 的保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
1、 一种导电膜, 其特征在于, 包括:
基片, 包括第一表面及与所述第一表面相对设置的第二表面; 第一基质层, 附着于所述第一表面, 所述第一基质层由胶状物涂层固 化形成, 所述第一基质层远离所述基片的一侧开设有第一网格凹槽, 所述 第一网格凹槽内填充导电材料, 形成第一导电层;
第二基质层, 附着于所述第一基质层上远离所述基片的一侧, 所述第 二基质层由胶状物涂层固化形成, 所述第二基质层远离所述第一基质层的 一侧开设有第二网格凹槽, 所述第二网格凹槽内填充导电材料, 形成第二 导电层; 及
遮光层, 附着于所述第二基质层远离所述第一基质层一侧的边缘, 所 述第二基质层附着所述遮光层的区域形成第二非可视区域, 所述遮光层在 所述第一基质层上的投影区域形成第一非可视区域, 所述第一网格凹槽延 伸至所述第一非可视区域, 所述第二网格凹槽延伸至所述第二非可视区 域;
所述遮光层上开设第一通孔, 所述第一通孔贯穿所述遮光层及所述第 二基质层并与所述第一网格凹槽连通, 所述第一通孔内填充导电材料, 以 形成与所述第一导电层电连接的第一引线电极; 所述遮光层表面还具有第 二引线电极, 所述第二引线电极与所述第二导电层电连接。
2、 根据权利要求 1所述的导电膜, 其特征在于, 所述第二引线电极 通过蚀刻方式形成引线, 且使所述引线导电材料与所述第二导电层的导电 材料电连接; 或在所述遮光层上开设第二通孔, 所述第二通孔贯穿所述遮 光层并与所述第二网格凹槽连通, 所述第二通孔内填充导电材料, 并与所 述第二导电层的导电材料电连接。
3、 根据权利要求 1所述的导电膜, 其特征在于, 所述第一导电层的 厚度不大于所述第一网格凹槽的深度, 所述第二导电层的厚度不大于所述 第二网格凹槽的深度。
4、 根据权利要求 1所述的导电膜, 其特征在于, 所述导电材料为银。
5、 根据权利要求 1~4任一所述的导电膜, 其特征在于, 所述第一网 格凹槽及所述第二网格凹槽的宽度介于 1~5微米, 深度介于 2~6微米, 且 深宽比大于 1, 所述第一导电层及所述第二导电层的透过率大于 85%。
6、 根据权利要求 1所述的导电膜, 其特征在于, 所述遮光层的厚度 为 1~10微米。
7、 根据权利要求 6所述的导电膜, 其特征在于, 为油墨层或黑色光 阻层。
8、 根据权利要求 1所述的导电膜, 其特征在于, 所述基片为玻璃。
9、 根据权利要求 1所述的导电膜, 其特征在于, 所述第一网格凹槽 及所述第二网格凹槽的网格为随机网格。
10、 一种触摸屏, 其特征在于, 包括:
如上述权利要求 1~9任一项所述的导电膜;
显示模组, 通过光学胶贴附于所述第二基质层远离所述第一基质层的
11、 一种导电膜的制备方法, 其特征在于, 包括以下步骤:
提供一基片, 所述基片包括第一表面及与所述第一表面相对设置的第 二表面;
在所述基片的第一表面涂覆胶状物, 并使所述胶状物固化以形成第一 基质层, 在所述第一基质层上远离所述基片的一侧开设第一网格凹槽; 向所述第一网格凹槽内填充导电材料, 以形成第一导电层;
在所述第一基质层上远离所述基片的一侧涂覆胶状物, 并使所述胶状物 固化以形成第二基质层, 在所述第二基质层上开设第二网格凹槽;
向所述第二网格凹槽中填充导电材料, 以形成第二导电层;
在所述第二基质层远离所述第一基质层的一侧边缘涂覆遮光材料, 以 形成环形的遮光层;
在所述遮光层上开设第一通孔及第二通孔, 所述第一通孔与所述第一 网格凹槽连通, 所述第二通孔与所述第二网格凹槽连通;
所述第一通孔及所述第二通孔内填充导电材料, 以分别形成与所述第 一导电层电连接的第一引线电极及与所述第二导电层点电连接的第二引
PCT/CN2013/079141 2013-03-30 2013-07-10 导电膜及其制备方法以及包含该导电膜的触摸屏 WO2014161242A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015509297A JP5887642B2 (ja) 2013-03-30 2013-07-10 導電性フィルム及びその製造方法ならびに該導電性フィルムを含むタッチスクリーン
KR1020137026483A KR101510580B1 (ko) 2013-03-30 2013-07-10 도전성 필름, 도전성 필름 제조 방법, 및 도전성 필름을 구비하는 터치 스크린
US13/968,315 US9538654B2 (en) 2013-03-30 2013-08-15 Conductive film, method for manufacturing the same, and touch screen including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310109644.XA CN103198885B (zh) 2013-03-30 2013-03-30 导电膜及其制备方法以及包含该导电膜的触摸屏
CN201310109644.X 2013-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/968,315 Continuation US9538654B2 (en) 2013-03-30 2013-08-15 Conductive film, method for manufacturing the same, and touch screen including the same

Publications (1)

Publication Number Publication Date
WO2014161242A1 true WO2014161242A1 (zh) 2014-10-09

Family

ID=48721356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079141 WO2014161242A1 (zh) 2013-03-30 2013-07-10 导电膜及其制备方法以及包含该导电膜的触摸屏

Country Status (5)

Country Link
JP (1) JP5887642B2 (zh)
KR (1) KR101510580B1 (zh)
CN (1) CN103198885B (zh)
TW (1) TWI506499B (zh)
WO (1) WO2014161242A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496085A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 盖板组件及其制造方法与电子装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013192555A1 (en) 2012-06-22 2013-12-27 Covidien Lp Microwave thermometry for microwave ablation systems
US9538654B2 (en) 2013-03-30 2017-01-03 Shenzhen O-Film Tech Co., Ltd. Conductive film, method for manufacturing the same, and touch screen including the same
CN104345940A (zh) * 2013-07-31 2015-02-11 南昌欧菲光科技有限公司 一种透明导电膜及其引线电极
CN104951155B (zh) * 2014-03-31 2019-05-17 宸盛光电有限公司 电容式触控装置及其制作方法
CN104598088B (zh) * 2015-01-29 2018-11-13 深圳莱宝高科技股份有限公司 电容式触摸屏和制作所述电容式触摸屏的掩膜装置
US20170075473A1 (en) 2015-09-15 2017-03-16 Hyundai Motor Company Touch input device and method for manufacturing the same
CN105425996B (zh) * 2015-11-11 2018-04-24 业成光电(深圳)有限公司 触控面板及其边框线路的制造方法
CN207184913U (zh) * 2017-05-25 2018-04-03 京东方科技集团股份有限公司 电路板、包括该电路板的背光模组和显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201207524A (en) * 2010-07-30 2012-02-16 Iljin Display Co Ltd Electrode line structure and capacitive touch sensor using same
JP2012247852A (ja) * 2011-05-25 2012-12-13 Innovation & Infinity Global Corp タッチパネルに適用される透明導電構造及びその製造方法
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN102930922A (zh) * 2012-10-25 2013-02-13 南昌欧菲光科技有限公司 一种具有各向异性导电的透明导电膜
CN203179573U (zh) * 2013-03-30 2013-09-04 深圳欧菲光科技股份有限公司 导电膜以及包含该导电膜的触摸屏

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827430B2 (ja) * 1990-04-02 1998-11-25 松下電器産業株式会社 多層プリント配線板の製造方法
JP3980918B2 (ja) * 2002-03-28 2007-09-26 株式会社東芝 アクティブマトリクス基板及びその製造方法、表示装置
JP2009205379A (ja) * 2008-02-27 2009-09-10 Seiko Instruments Inc タッチパネル付き表示装置
JP5113773B2 (ja) * 2009-01-20 2013-01-09 株式会社ジャパンディスプレイイースト 表示装置
KR101071159B1 (ko) * 2009-11-18 2011-10-10 이성호 접촉 감지장치
JP2011186717A (ja) * 2010-03-08 2011-09-22 Daiwa Sangyo:Kk 静電容量型タッチパネルとその製造方法
WO2011159107A2 (ko) * 2010-06-16 2011-12-22 (주)삼원에스티 터치패널센서
EP2631751A4 (en) * 2010-10-19 2016-05-18 Lg Chemical Ltd TOUCH SCREEN COMPRISING AN ELECTROCONDUCTIVE PATTERN AND METHOD FOR PRODUCING THE SAME
JP2012109170A (ja) * 2010-11-19 2012-06-07 Sony Corp 透明電極基板および光電変換素子
JP2012174003A (ja) * 2011-02-22 2012-09-10 Panasonic Corp タッチパネル
KR101907484B1 (ko) * 2011-07-21 2018-12-05 미래나노텍(주) 터치 스크린 패널 제조 장치 및 제조 방법
CN102929454A (zh) * 2011-08-12 2013-02-13 宸鸿科技(厦门)有限公司 电容式触控面板及降低其金属导体可见度的方法
CN103197784B (zh) * 2012-01-06 2016-05-25 宸鸿科技(厦门)有限公司 触控面板及其制作方法
CN102830851B (zh) * 2012-09-25 2015-05-13 信利光电股份有限公司 触摸屏及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201207524A (en) * 2010-07-30 2012-02-16 Iljin Display Co Ltd Electrode line structure and capacitive touch sensor using same
JP2012247852A (ja) * 2011-05-25 2012-12-13 Innovation & Infinity Global Corp タッチパネルに適用される透明導電構造及びその製造方法
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN102930922A (zh) * 2012-10-25 2013-02-13 南昌欧菲光科技有限公司 一种具有各向异性导电的透明导电膜
CN203179573U (zh) * 2013-03-30 2013-09-04 深圳欧菲光科技股份有限公司 导电膜以及包含该导电膜的触摸屏

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496085A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 盖板组件及其制造方法与电子装置

Also Published As

Publication number Publication date
TW201437869A (zh) 2014-10-01
JP2015518616A (ja) 2015-07-02
KR101510580B1 (ko) 2015-04-08
CN103198885B (zh) 2014-12-17
TWI506499B (zh) 2015-11-01
CN103198885A (zh) 2013-07-10
JP5887642B2 (ja) 2016-03-16
KR20140127735A (ko) 2014-11-04

Similar Documents

Publication Publication Date Title
TWI506499B (zh) 導電膜、其製造方法以及包含該導電膜之觸控屏
TWI510993B (zh) 觸摸屏感應模組及其製作方法和顯示器
JP3191884U (ja) タッチスクリーン
TWI541838B (zh) 透明導電膜中之導電結構、透明導電膜及製作方法
TWI506519B (zh) 導電膜、其製造方法以及包含該導電膜之觸控屏
JP3204335U (ja) 透明導電膜
US20140307178A1 (en) Touch screen sensing module, manufacturing method thereof and display device
CN106126001A (zh) 触控面板及其制造方法
JP5884763B2 (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
TW201510833A (zh) 觸控面板
CN203179573U (zh) 导电膜以及包含该导电膜的触摸屏
US9538654B2 (en) Conductive film, method for manufacturing the same, and touch screen including the same
TWM405012U (en) Resistance-type touch panel
US9089061B2 (en) Conductive film, method for making the same, and touch screen including the same
TW201333796A (zh) 電容式觸控單元
CN103219069A (zh) 导电膜及其制备方法以及包含该导电膜的触摸屏
TWM478869U (zh) 觸控面板
CN203179572U (zh) 导电膜以及包含该导电膜的触摸屏
CN212391786U (zh) 透明导电薄膜及包含其的触控面板
JP5847019B2 (ja) タッチパネル
TWI439915B (zh) 觸控面板結構的製造方法
CN114327116A (zh) 透明导电薄膜及包含其的触控面板
TW201426482A (zh) 觸控面板結構的製造方法
TWM342556U (en) Touch panel device
WO2013020406A1 (zh) 触控面板结构及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137026483

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015509297

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880747

Country of ref document: EP

Kind code of ref document: A1