WO2014158043A1 - Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel - Google Patents

Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel Download PDF

Info

Publication number
WO2014158043A1
WO2014158043A1 PCT/RU2013/000245 RU2013000245W WO2014158043A1 WO 2014158043 A1 WO2014158043 A1 WO 2014158043A1 RU 2013000245 W RU2013000245 W RU 2013000245W WO 2014158043 A1 WO2014158043 A1 WO 2014158043A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
rhenium
waste
nickel
concentration
Prior art date
Application number
PCT/RU2013/000245
Other languages
English (en)
Russian (ru)
Inventor
Владислав Валентинович СТРОГАНОВ
Ирина Дмитриевна ТРОШКИНА
Андрей Александрович КОЧЕДЫКОВ
Андрей Владимирович ШИЛЯЕВ
Original Assignee
Закрытое Акционерное Общество Торговый Дом "Галион"
Федеральноегосударственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Российский Химико-Технологический Университет Имени Д.И. Менделеева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество Торговый Дом "Галион", Федеральноегосударственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Российский Химико-Технологический Университет Имени Д.И. Менделеева" filed Critical Закрытое Акционерное Общество Торговый Дом "Галион"
Priority to PCT/RU2013/000245 priority Critical patent/WO2014158043A1/fr
Publication of WO2014158043A1 publication Critical patent/WO2014158043A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B61/00Obtaining metals not elsewhere provided for in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the regeneration of secondary metal raw materials, in particular, to the processing of waste heat-resistant nickel superalloys containing rhenium.
  • nickel alloys contain nickel, cobalt, tungsten, rhenium, tantalum and niobium. Chromium, molybdenum, and aluminum additives are also possible.
  • Pyrometallurgical, electrochemical and hydrometallurgical methods can be used to extract valuable components from waste from heat-resistant alloys.
  • Hydrometallurgical processing of waste heat-resistant alloys, based on reagent dissolution, is less energy-consuming and simpler in hardware design.
  • the closest to the proposed method for the extraction of rhenium from waste heat-resistant alloys is described in patent RU 2412267, 2011.
  • the method includes treating the waste with sulfuric acid at elevated temperature and supplying hydrogen peroxide to a solution of leaching of rhenium, nickel and cobalt and concentration in the insoluble residue of tungsten, niobium and tantalum, separation of the solution from the insoluble residue, extraction of rhenium from the leach solution with secondary aliphatic alcohol, washing the extract and reextracting rhenium with an alkaline solution a thief.
  • Peroxide feed hydrogen is carried out after the main part of nickel and cobalt is transferred into the solution and it is maintained while maintaining the oxidation-reduction potential in the range of 0.50- 0.75 V relative to the saturated silver chloride electrode, and rhenium is extracted, the extract is washed, and rhenium is re-extracted 2-5 steps.
  • metals including those contained in the waste residue after dissolution of the bulk (15-35% nickel and 10-30% cobalt)
  • hydrogen is precipitated with sulfuric acid.
  • the oxygen escaping during decomposition of hydrogen peroxide added to the waste residue can lead to the formation of explosive explosive gas, which should be attributed to the disadvantages of the process.
  • the present invention is aimed at achieving a technical result, which consists in reducing the consumption of an oxidizing agent, in increasing the safety of the method due to the diversity in time and space of operations accompanied by the evolution of hydrogen and oxygen.
  • the proposed method also allows complex use of other valuable components of superalloys.
  • Waste nickel-containing superalloys can be generated by grinding and polishing parts with abrasive tools.
  • the waste is a powder consisting of metal particles and abrasive materials. Before starting the proposed regeneration method, it is desirable to separate such waste from non-metallic components.
  • waste is relatively large pieces, scraps, shavings, etc., it is advisable to grind it to a powdery state before processing.
  • a method for recovering rhenium from waste nickel-containing superalloys involves treating the waste with hydrochloric acid, possibly mixed with sulfuric acid, transferring nickel and cobalt to solution (I), if the latter is present in the superalloy, and obtaining a solid residue (I). Then, the resulting solution (I) is separated off, and the solid residue is treated with (I) an oxidizing agent with rhenium being transferred into solution (II).
  • the oxidizing agent may be hydrogen peroxide, chlorine, salts of perchloric acid, and sulfuric acids (preferably the first two oxidizing agents).
  • the solution (II) is separated from the insoluble residue (I).
  • Rhenium is isolated from solution (I) by sorption on a weakly basic anion exchange resin and subsequent desorption by an alkaline solution, preferably an ammonia solution.
  • rhenium can be isolated by electrodialysis and / or precipitation, while the eluate can be pre-evaporated.
  • the mother liquors after precipitation and / or electrodialysis can also be sent for sorption purification.
  • Nickel concentrate is precipitated from solution (I), in which a small amount of rhenium may be present, and the remaining liquid phase is sent to sorption extraction of rhenium.
  • the insoluble residue (II) can be treated with an alkaline reagent and tungsten concentrate and solid tantalum can be obtained in solution (III). niobium concentrate.
  • oxygen-free hydrochloric acid which does not have oxidizing properties, reduces the likelihood of rhenium entering the solution during dissolution of the initial sections in comparison with the prototype where sulfuric acid is used.
  • the supply of hydrogen peroxide while maintaining the redox potential in the range of 0.50-0.75 V with respect to the saturated silver chloride electrode makes it possible to control the redox process in the healing solution, to avoid the supply of excess oxidizing agent, and thereby optimize its consumption. Maintaining the redox potential below 0.5 V leads to a deficiency of the oxidizing agent in the reaction mixture and a decrease in the extraction of rhenium into the solution, and maintaining the potential above 0.75 V leads to an excess of oxidizing agent in the reaction mixture and its increased consumption with almost unchanged extracting rhenium.
  • Sorption purification of the mother solutions of precipitation and / or electrodialysis which also leads to an increase in the capacity of the sorbent and the displacement of impurities at the sorption stage, helps to improve the quality of the obtained marketable rhenium product.
  • Example 1 To 100 g of powdered nickel-based superalloys containing 1.1% rhenium and 58% nickel, 120 ml of hydrochloric acid with a concentration of 12 mol / L was added and dissolved at 90 ° C for 3 hours. After the completion of the process, the solution decanted, the phases were separated. 20 ml of hydrogen peroxide with a concentration of 38% was added to the residue and the dissolution process was carried out for 2 hours while maintaining oxidation-reduction potential in the range of 0.50 - 0.75 V relative to the saturated silver chloride electrode. Upon completion of dissolution, the phases were separated, and the resulting solution was sent to sorption by weakly basic ion exchanger under dynamic conditions.
  • Rhenium was desorbed by an ammonia solution with a concentration of 8%, while the concentration of rhenium in the eluate was 12 g / L. After evaporation of the solution and its crystallization, 1.0 g of ammonium perrenate in terms of rhenium was obtained. The rhenium recovery rate was 91%.
  • the treatment of the solid residue was carried out using chlorine as an oxidizing agent.
  • a solution of gaseous chlorine at a volume ratio of residue (I) to the solution (1: 30) and maintaining the concentration of dissolved chlorine at 6 g / l at a temperature of 22 ° C.
  • the contact time was 3 hours.
  • Further regeneration stages were carried out as in Example 1, using an ammonia solution (6%) as eluent.
  • the concentration of rhenium in the eluate was 12 g / l. 1.05 g of ammonium perrenate was recalculated to rhenium.
  • the degree of extraction was 95.5%.
  • Example 2 After the starting material was dissolved and the solution was separated, as in Example 1, the solid residue was treated with a sodium hypochlorite solution under the following conditions: sodium hypochlorite concentration was 5%, contact time 2.5 h, temperature 20 ° C. Further regeneration steps were carried out as in Example 1. The concentration of rhenium in the eluate was 12 g / L. 0.99 g of ammonium perrenate, calculated as rhenium, was isolated. The degree of recovery was 89.9%.
  • Example 1 To 180 g of powdered nickel-based superalloys containing 0.8% rhenium and 55% nickel, a mixture of hydrochloric and sulfuric acids was added at a concentration of hydrochloric acid of 4 mol / L, and a concentration of sulfuric acid of 3 mol / L. The volumetric ratio of hydrochloric and sulfuric acids was 1: 1, and the ratio by weight of the mixture of acids to the waste of the supersolid was 18: 1. Dissolution was carried out at a temperature of 78-80 ° C. After the dissolution and phase separation process was completed, the solid residue was treated with a sodium chlorate solution under the following conditions: the concentration of sodium chlorate was 6%, the contact time was 3 hours, and the temperature was 20 ° C. Further stages of regeneration were carried out as in Example 1. The concentration of rhenium in the eluate was 10 g / L. 1.3 g of ammonium perrenate in terms of rhenium was isolated. The degree of extraction was 90.6%.
  • the given examples confirm the achievement of intensification of the process of dissolution of metal waste from heat-resistant nickel alloy containing rhenium. At the same time, harmful gaseous gaps are minimized due to optimization of the technological mode, selected methods and reagents.
  • the method according to the invention is relatively simple and can be implemented using standard equipment.

Abstract

L'invention concerne la régénération de déchets de superalliages à base de nickel réfractaires contenant du rhénium. Le procédé de régénération de composants à partir de déchets de superalliages contenant du nickel consiste à traiter les déchets avec de l'acide chlorhydrique afin d'obtenir une solution (I) de nickel et de cobalt et de produire un résidu solide (I), à séparer la solution (I) ainsi formée, à traiter le résidu solide (I) avec un oxydant afin d'obtenir une solution de rhénium (II), à séparer la solution (II) du résidu insoluble (II), et à extraire par sorption le rhénium de la solution (II). L'oxydant est choisi dans le groupe des substances comprenant du peroxyde d'hydrogène, du chlore et des sels d'oxacides de chlore. Le procédé est de préférence réalisé selon une concentration d'acide chlorhydrique de 5-7 moles/l, le rapport en volume entre l'acide et les déchets étant de (1-40):1 et la température étant de 70-90°C. Il est également possible de traiter les déchets à l'aide d'un mélange d'acides chlorhydrique et sulfurique selon une concentration d'acide chlorhydrique de 2-7 moles/l et une concentration d'acide sulfurique de 2-4 moles/l, le rapport entre le mélanges d'acides et les déchets étant de (1-40):1 et la température étant de 70-90°C.
PCT/RU2013/000245 2013-03-26 2013-03-26 Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel WO2014158043A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2013/000245 WO2014158043A1 (fr) 2013-03-26 2013-03-26 Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2013/000245 WO2014158043A1 (fr) 2013-03-26 2013-03-26 Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel

Publications (1)

Publication Number Publication Date
WO2014158043A1 true WO2014158043A1 (fr) 2014-10-02

Family

ID=51624873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000245 WO2014158043A1 (fr) 2013-03-26 2013-03-26 Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel

Country Status (1)

Country Link
WO (1) WO2014158043A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075015A1 (fr) 2015-10-26 2017-05-04 Techemet, Llc Procédé de récupération du platine à partir de matériaux contenant du rhénium et de métaux du groupe du platine
CN106676267A (zh) * 2017-03-28 2017-05-17 青岛阿库卡稀有金属有限公司 一种从含铼料液中去除阴离子的方法
CN111304446A (zh) * 2020-03-31 2020-06-19 中国科学院金属研究所 一种高温合金废料分段浸出综合利用的方法
CN111621654A (zh) * 2020-05-09 2020-09-04 中国石油天然气集团有限公司 一种脱铼捕获剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU839095A1 (ru) * 1978-04-17 1989-06-23 Институт геохимии и аналитической химии им.В.И.Вернадского Способ выделени рени
RU2003127374A (ru) * 2003-09-09 2005-03-27 Открытое акционерное общество "Горно-металлургическа компани "Норильский никель" (RU) Способ комплексной переработки дезактивированных платино-рениевых катализаторов
RU2313589C2 (ru) * 2001-11-14 2007-12-27 Х. К. Штарк Гмбх Способ выделения ценных металлов из суперсплавов
RU2421532C1 (ru) * 2010-04-05 2011-06-20 Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") Способ извлечения рения из отработанных катализаторов на носителях из оксида алюминия, содержащих платиновые металлы и рений
RU2010116311A (ru) * 2010-04-23 2011-10-27 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН (RU) Способ извлечения и очистки рения из растворов от переработки жаропрочных сплавов
US20120058029A1 (en) * 2009-03-13 2012-03-08 Neo Performance Materials Limited Rhenium recovery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU839095A1 (ru) * 1978-04-17 1989-06-23 Институт геохимии и аналитической химии им.В.И.Вернадского Способ выделени рени
RU2313589C2 (ru) * 2001-11-14 2007-12-27 Х. К. Штарк Гмбх Способ выделения ценных металлов из суперсплавов
RU2003127374A (ru) * 2003-09-09 2005-03-27 Открытое акционерное общество "Горно-металлургическа компани "Норильский никель" (RU) Способ комплексной переработки дезактивированных платино-рениевых катализаторов
US20120058029A1 (en) * 2009-03-13 2012-03-08 Neo Performance Materials Limited Rhenium recovery
RU2421532C1 (ru) * 2010-04-05 2011-06-20 Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") Способ извлечения рения из отработанных катализаторов на носителях из оксида алюминия, содержащих платиновые металлы и рений
RU2010116311A (ru) * 2010-04-23 2011-10-27 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН (RU) Способ извлечения и очистки рения из растворов от переработки жаропрочных сплавов

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075015A1 (fr) 2015-10-26 2017-05-04 Techemet, Llc Procédé de récupération du platine à partir de matériaux contenant du rhénium et de métaux du groupe du platine
US9702021B2 (en) 2015-10-26 2017-07-11 Techemet, Llc Method for platinum recovery from materials containing rhenium and platinum metals
US9708690B2 (en) 2015-10-26 2017-07-18 Techemet, Llc Method for platinum recovery from materials containing rhenium and platinum metals
DE112016004897T5 (de) 2015-10-26 2018-07-05 Techemet, Llc Verfahren zur Platingewinnung aus Rhenium- und Platinmetalle enthaltenden Materialien
CN106676267A (zh) * 2017-03-28 2017-05-17 青岛阿库卡稀有金属有限公司 一种从含铼料液中去除阴离子的方法
CN111304446A (zh) * 2020-03-31 2020-06-19 中国科学院金属研究所 一种高温合金废料分段浸出综合利用的方法
CN111621654A (zh) * 2020-05-09 2020-09-04 中国石油天然气集团有限公司 一种脱铼捕获剂及其制备方法

Similar Documents

Publication Publication Date Title
EP3093354B1 (fr) Procédé de récupération de scandium
Anderson et al. Extractive metallurgy of rhenium: a review
JP3741117B2 (ja) 白金族元素の相互分離方法
JP5967284B2 (ja) 高純度スカンジウムの回収方法
EP3904546B1 (fr) Procédé de récupération de composants à partir des batteries alcalines
JPH09217132A (ja) 希土類−鉄系合金からの有用元素の回収方法
AU2017369090B2 (en) Ion exchange processing method, and scandium recovery method
JP2018111858A (ja) 酸化スカンジウムの製造方法
AU2015310078A1 (en) Method for separating scandium
Nicol et al. Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): project overview with a focus on processing spent autocatalyst: novel PGM recycling technologies ready for demonstration at next scale
WO2014158043A1 (fr) Procédé de régénération de rhénium à partir de déchets de superalliages contenant du nickel
JP6319362B2 (ja) スカンジウム回収方法
JP7016463B2 (ja) テルルの回収方法
AU2019331801B2 (en) Method for producing nickel sulfate compound
US8956582B2 (en) Rhenium recovery
Kasikov et al. Processing of deactivated platinum-rhenium catalysts
JP5777150B2 (ja) 白金及びパラジウムの回収方法
WO2021059940A1 (fr) Procédé de récupération de scandium, et procédé d'échange d'ions
JP2011195935A (ja) 白金族元素の分離回収方法
Scheiner et al. Extraction and recovery of molybdenum and rhenium from molybdenite concentrates by electrooxidation: process demonstration
RU2412267C1 (ru) Способ извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов
JP6206358B2 (ja) スカンジウムの回収方法
JP6121359B2 (ja) 金属酸化物の浸出方法
JP4914976B2 (ja) 硫酸亜鉛溶液からのタリウム除去方法
JP2023130638A (ja) スカンジウムの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880521

Country of ref document: EP

Kind code of ref document: A1