WO2014157647A1 - 複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体 - Google Patents

複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体 Download PDF

Info

Publication number
WO2014157647A1
WO2014157647A1 PCT/JP2014/059224 JP2014059224W WO2014157647A1 WO 2014157647 A1 WO2014157647 A1 WO 2014157647A1 JP 2014059224 W JP2014059224 W JP 2014059224W WO 2014157647 A1 WO2014157647 A1 WO 2014157647A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite resin
particles
resin particles
particle
Prior art date
Application number
PCT/JP2014/059224
Other languages
English (en)
French (fr)
Inventor
正彦 小澤
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to EP14776551.5A priority Critical patent/EP2980145B1/en
Priority to JP2015508777A priority patent/JP5918905B2/ja
Priority to CN201480019158.1A priority patent/CN105073861B/zh
Priority to US14/778,799 priority patent/US20160060444A1/en
Publication of WO2014157647A1 publication Critical patent/WO2014157647A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to composite resin particles and their expandable composite resin particles, pre-expanded particles, and expanded molded articles. More specifically, the present invention is a composite resin particle having excellent chemical resistance, heat resistance, bending strength, good foam particle life when a foaming agent is included, energy-saving molding, and excellent foam moldability, The present invention relates to the expandable composite resin particles, the pre-expanded particles, and the expanded molded body.
  • foam molded articles containing a polystyrene-based resin as a thermoplastic resin component are excellent in cushioning, rigidity, heat insulation, light weight, water resistance, foam moldability, etc. It is widely used as a structural member for automobiles.
  • a foamed molded product of polystyrene resin is excellent in rigidity, but has a problem that it is inferior in impact resistance and chemical resistance.
  • a foamed molded product of polypropylene resin is excellent in impact resistance and chemical resistance, and is therefore used for automobile-related parts.
  • polypropylene resin is inferior in foaming gas retention, and in order to obtain the foamed molded product, it is necessary to precisely control the molding conditions, and there is a problem that the manufacturing cost is increased.
  • the foamed molded product of polypropylene resin has a problem that it is inferior in rigidity to the foamed molded product of polystyrene resin.
  • a foam molded body in which a polystyrene resin having good rigidity and foam moldability and a polypropylene resin having good chemical resistance and impact resistance is combined is proposed.
  • a polystyrene resin having good rigidity and foam moldability and a polypropylene resin having good chemical resistance and impact resistance is combined.
  • Patent Document 1 for the purpose of providing a styrene-modified polypropylene resin foam molded article having excellent mechanical properties and chemical resistance, 100 parts by mass of a polypropylene resin is provided.
  • a styrene-modified polypropylene resin containing a polystyrene resin in an amount of 30 parts by mass or more and less than 600 parts by mass and having a polystyrene resin having a particle diameter of 5 ⁇ m or less dispersed in the polypropylene resin. Particles have been proposed.
  • Patent Document 2 provides a carbon black-containing modified polystyrene resin molded article having excellent chemical resistance, heat resistance, foam moldability and the like and having self-extinguishing properties.
  • JP 2010-270284 A provides a styrene-modified polyethylene resin foam molded article molded at a low temperature, that is, produced by energy saving molding and having high oil resistance.
  • a styrene-modified polyethylene-based absorbance ratio is 11.0 or less than 2.5 at 698cm -1 and 2850 cm -1 obtained from an infrared absorption spectrum of the measured foam molded article surface by ATR-FTIR Resin foam moldings have been proposed.
  • Patent Document 1 The styrene-modified polypropylene resin particles of Patent Document 1 are excellent in chemical resistance because a polystyrene resin having a particle diameter of 5 ⁇ m or less is dispersed in the polypropylene resin, but energy-saving molding is not possible.
  • the carbon black-containing modified polystyrene resin particles of Patent Document 2 have a polystyrene resin ratio in the center of the particles that is 1.2 times or more of the polystyrene resin ratio of the entire particles, chemical resistance and heat resistance Excellent in energy-saving molding.
  • Styrene-modified polyethylene-based resin expanded molded article of Patent Document 3 since the absorbance ratio at 698cm -1 and 2850 cm -1 is 11.0 or less than 2.5, the molding at low temperatures (energy saving molding) is Although it is possible and excellent in oil resistance, since many polystyrene resins are present in the surface layer, the life of foamed particles is short, and since a polyethylene resin is used, the heat resistance is poor.
  • the present invention is excellent in chemical resistance, heat resistance and bending strength, has a good foamed particle life when a foaming agent is included, can be energy-saving molded, and has excellent foam moldability, and its foam It is an object to provide a conductive composite resin particle, a pre-foamed particle, and a foamed molded product.
  • the inventors of the present invention have made extensive studies to solve the above problems, and as a result, in the composite resin particles containing 100 to 400 parts by mass of polystyrene resin with respect to 100 parts by mass of polypropylene resin, the surface layer part thereof And the outermost layer part each having a polystyrene resin having a specific particle size dispersed in the polypropylene resin, and the absorbance derived from the polystyrene resin and the polypropylene resin derived from the infrared absorption spectrum of the surface of the composite resin particle
  • the present inventors have found that the above-mentioned problems can be solved when the ratio of the absorbance to the light absorbance falls within a specific range, and has completed the present invention.
  • composite resin particles comprising a polypropylene resin and a polystyrene resin
  • the content of the polystyrene resin is 100 to 400 parts by mass with respect to 100 parts by mass of the polypropylene resin
  • the surface layer portion from 0.2 ⁇ m to 1.0 ⁇ m from the surface of the composite resin particle is a state in which a polystyrene resin having a particle diameter of 0.3 ⁇ m or less is dispersed in the polypropylene resin.
  • the outermost layer portion from the surface of the composite resin particle to 0.2 ⁇ m is a state in which a polystyrene resin having a particle diameter of 0.3 to 1.5 ⁇ m is dispersed in the polypropylene resin.
  • the absorbance ratio (D698 / D1376) between the absorbance at 698 cm ⁇ 1 derived from polystyrene resin (D698) and the absorbance at 1376 cm ⁇ 1 derived from polypropylene resin (D1376) obtained from the infrared absorption spectrum of the surface of the composite resin particle is , 0.5 to 2.5 composite resin particles are provided.
  • the expandable composite resin particle containing said composite resin particle and a foaming agent is provided. Furthermore, according to the present invention, pre-expanded particles obtained by foaming the composite resin particles are provided.
  • the present invention is a foam molded body obtained by foam molding the above pre-foamed particles,
  • the surface layer portion from 0.2 ⁇ m to 1.0 ⁇ m from the surface of the foamed molded product is in a state in which a polystyrene resin having a particle major axis of 0.5 ⁇ m or less is dispersed in the polypropylene resin.
  • a foam molded article in which the outermost layer portion from the surface of the foam molded article to 0.2 ⁇ m is in a state in which a polystyrene resin having a particle major axis of 0.5 to 2.5 ⁇ m is dispersed in the polypropylene resin.
  • composite resin particles having excellent chemical resistance, heat resistance, bending strength, good foam life when foaming agents are included, energy-saving molding, and excellent foam moldability and foaming thereof
  • Composite resin particles, pre-expanded particles, and expanded molded articles can be provided.
  • the composite resin particles of the present invention exhibit the above-described effects when carbon black is contained as a colorant, and can impart design properties to the molded foam molded article.
  • FIG. It is the TEM image of (a) outermost layer part and surface layer part, and (b) inside of the composite resin particle of Example 1. It is the TEM image of (a) outermost layer part and surface layer part, and (b) inside of the foaming molding of Example 1.
  • FIG. It is the TEM image of (a) outermost layer part and surface layer part of the composite resin particle of the comparative example 2, and (b) inside. It is the TEM image of (a) outermost layer part and surface layer part, and (b) inside of the foaming molding of the comparative example 2.
  • the composite resin particles of the present invention are composite resin particles containing a polypropylene resin and a polystyrene resin,
  • the content of the polystyrene resin is 100 to 400 parts by mass with respect to 100 parts by mass of the polypropylene resin,
  • the surface layer portion from 0.2 ⁇ m to 1.0 ⁇ m from the surface of the composite resin particle is a state in which a polystyrene resin having a particle diameter of 0.3 ⁇ m or less is dispersed in the polypropylene resin.
  • the outermost layer portion from the surface of the composite resin particle to 0.2 ⁇ m is a state in which a polystyrene resin having a particle diameter of 0.3 to 1.5 ⁇ m is dispersed in the polypropylene resin.
  • the absorbance ratio (D698 / D1376) of the absorbance at 698 cm ⁇ 1 derived from polystyrene resin (D698) and the absorbance at 1376 cm ⁇ 1 derived from polypropylene resin (D1376) obtained from the infrared absorption spectrum of the surface of the composite resin particle is 0.5 to 2.5.
  • the “surface layer portion” refers to a range in which the distance (depth) from the surfaces of the composite resin particles and the foamed molded product exceeds 0.2 ⁇ m and reaches 1.0 ⁇ m.
  • the “outermost layer portion” refers to a range in which the distance (depth) from the surfaces of the composite resin particles and the foamed molded product is up to 0.2 ⁇ m.
  • “inside” means that the composite resin particles are divided into two equal parts, and the center of the cut surface (at least inside 1/5 from the center of the circle).
  • the foamed molded product is divided into two equal parts, and the center of the foamed particles (at least inside 1/5 from the center of the circle) constituting the cut surface.
  • the distance (depth) from the surface representing the surface layer portion and the outermost layer portion of the composite resin particle and the particle diameter of the polystyrene resin are determined by the cross section of the composite resin particle as specifically described in the examples. For example, by using a transmission electron microscope to enlarge to a magnification (for example, 1000 to 10000 times) that can measure the above-mentioned distance and particle diameter, and to visualize with the photograph transferred from the display device or the display image Can be confirmed.
  • (A) Dispersion state of polystyrene-based resin in the surface layer portion and outermost layer portion of the composite resin particles The surface layer portion from 0.2 ⁇ m to 1.0 ⁇ m from the surface of the composite resin particles has a particle size of 0. It is a state in which polystyrene resin of 3 ⁇ m or less is dispersed, The outermost layer portion from the surface of the composite resin particle to 0.2 ⁇ m is in a state in which a polystyrene resin having a particle diameter of 0.3 to 1.5 ⁇ m is dispersed in a polypropylene resin.
  • the “particle diameter” means the particle diameter of the longest part of the polystyrene resin dispersed in the polypropylene resin contained in the composite resin particles
  • the “particle long diameter” means a composite resin foam molded article.
  • the “particle major axis” is the particle diameter of the polystyrene resin dispersed in the expanded polystyrene resin contained in the composite resin foam molded article. Also called “dispersed major axis”.
  • the foamed particle life may be shortened.
  • the dispersion diameter is, for example, 0.1, 0.15, 0.2, 0.25, and 0.3 ⁇ m. Accordingly, the dispersion diameter of the polystyrene resin in the surface layer is preferably 0.1 to 0.3 ⁇ m, more preferably 0.1 to 0.2 ⁇ m.
  • the particle diameter (dispersion diameter) of the polystyrene-based resin in the outermost layer is less than 0.3 ⁇ m, energy-saving molding may not be possible.
  • the dispersion diameter of the polystyrene resin in the outermost layer exceeds 1.5 ⁇ m, chemical resistance may be deteriorated.
  • the dispersion diameter is, for example, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3. 1.4 and 1.5 ⁇ m.
  • the dispersion diameter of the polystyrene resin at the outermost layer is preferably 0.3 to 1.3 ⁇ m, more preferably 0.3 to 1.0 ⁇ m.
  • the dispersion diameter is preferably more than 0.3 ⁇ m.
  • the composite resin particles of the present invention are in a state where a polystyrene resin having a specific particle diameter is dispersed in the surface layer portion and the outermost layer portion, and the dispersion diameter of the polystyrene resin in the surface layer portion is the polystyrene of the outermost layer portion. Smaller than the dispersion diameter of the resin.
  • the difference between the dispersion diameter of the surface layer portion and the dispersion diameter of the outermost layer portion is 0.2 to 1.2 ⁇ m, for example, 0.2, 0.3, 0.4, 0.5, 0.6, They are 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 ⁇ m, preferably 0.2 to 0.8 ⁇ m.
  • the dispersion state of the polystyrene-based resin in the surface layer portion and the outermost layer portion of the composite resin particles is, for example, traced from a TEM photograph of the surface layer portion and the outermost layer portion so that the area of each particle is substantially the same, and the particle size is 1 It can be confirmed by measuring one by one. Specifically, it will be described in detail in Examples.
  • the composite resin particle of the present invention has a polypropylene resin on the surface (surface layer portion and outermost layer portion) of the composite resin particle as described in detail in Example 1, for example. It is a structure that exists in a rich manner, and the polystyrene-based resin exists in a rich manner as it goes inside the particles.
  • the composite resin particle of the present invention has such an inclined structure, and it is considered that the effect of the present invention can be expressed by dispersing a polystyrene resin having a specific particle diameter in the polypropylene resin on the surface. .
  • the composite resin particle has an absorbance ratio (D698 / D6) of the absorbance at 698 cm ⁇ 1 derived from polystyrene resin (D698) obtained from the infrared absorption spectrum of the surface thereof and the absorbance at 1376 cm ⁇ 1 derived from polypropylene resin (D1376).
  • D1376) is 0.5 to 2.5.
  • an absorbance ratio of 0.5 indicates that the abundance of the polystyrene-based resin is about 10%
  • an absorbance ratio of 2.5 is This means that the abundance of polystyrene resin is about 42%.
  • the absorbance ratio (D698 / D1376) is, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1 .4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5.
  • the absorbances D698 and D1376 are obtained from the infrared absorption spectrum, and mean the peak height derived from the vibration of each resin component contained in the composite resin particle. Specifically, it will be described in detail in Examples.
  • the polypropylene resin contained in the composite resin particles of the present invention is not particularly limited, and a resin obtained by a known polymerization method can be used.
  • a propylene-ethylene copolymer can be used in addition to the polypropylene resin.
  • a polymer is used.
  • the propylene-ethylene copolymer is mainly composed of a copolymer of ethylene and propylene, but may contain ethylene or another monomer copolymerizable with propylene in the molecule. Good. Examples of such monomers include one or more monomers selected from ⁇ -olefins, cyclic olefins, and diene monomers.
  • the polypropylene resin preferably has a melting point in the range of 120 to 145 ° C.
  • the melting point of the polypropylene resin is less than 120 ° C., the heat resistance is poor, and the heat resistance of the foamed molded article containing the polypropylene resin produced using the polypropylene resin particles may be low.
  • the melting point exceeds 145 ° C., the polymerization temperature becomes high, and good polymerization may not be possible.
  • the melting points are, for example, 120, 125, 130, 135, 140 and 145 ° C.
  • polystyrene resin is not particularly limited, and examples thereof include styrene monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, and bromostyrene. Or a copolymer thereof.
  • the polystyrene resin may be a copolymer of the above styrene monomer and a vinyl monomer copolymerizable with the styrene monomer.
  • vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl
  • monofunctional monomers such as maleate, dimethyl fumarate, diethyl fumarate, and ethyl fumarate, and bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate.
  • (meth) acryl means acryl, methacryl or a combination thereof.
  • the content of the polystyrene resin is 100 to 400 parts by mass with respect to 100 parts by mass of the polypropylene resin.
  • a composite resin By using such a composite resin, it is possible to obtain a foamed molded article having excellent properties of a polypropylene resin and a polystyrene resin. If the content of the polystyrene resin is less than 100 parts by mass, the polystyrene resin may be insufficient and desired foamability may not be obtained, and the rigidity of the foamed molded product obtained by secondary foaming of the pre-expanded particles is reduced. There are things to do.
  • the content of the polystyrene resin exceeds 400 parts by mass, the chemical resistance and heat resistance of the foamed molded product obtained by secondary foaming of the pre-foamed particles may be lowered.
  • the content of the polystyrene resin with respect to 100 parts by mass of the polypropylene resin is, for example, 100, 150, 200, 250, 300, 350, and 400 parts by mass. Therefore, a preferable content of the polystyrene resin is 100 to 300 parts by mass, more preferably 100 to 250 parts by mass with respect to 100 parts by mass of the polypropylene resin.
  • the composite resin particle of the present invention is a flame retardant, a flame retardant aid, a foaming aid, a plasticizer, a lubricant, an anti-bonding agent, a fusion accelerator, an electrification as long as the effects of the present invention are not impaired.
  • Known additives such as an inhibitor, a spreading agent, a bubble regulator, a cross-linking agent, a filler, and a colorant may be contained.
  • Flame retardants include tris (2,3-dibromopropyl) isocyanurate, bis [3,5-dibromo-4- (2,3-dibromopropoxy) phenyl] sulfone, tetrabromocyclooctane, hexabromocyclododecane, tris Examples thereof include dibromopropyl phosphate, tetrabromobisphenol A, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3-dibromopropyl ether), and the like.
  • flame retardant aids include organic peroxides such as 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, dicumyl peroxide, and cumene hydroperoxide. It is done.
  • foaming aid examples include aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene, cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, ethyl acetate, butyl acetate and the like having a boiling point of 200 ° C. or less under 1 atm.
  • aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene
  • cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane
  • ethyl acetate butyl acetate and the like having a boiling point of 200 ° C. or less under 1 atm.
  • a solvent is mentioned.
  • plasticizer examples include glycerin fatty acid esters such as phthalic acid esters, glycerin diacetomonolaurate, glycerin tristearate and diacetylated glycerin monostearate, and adipic acid esters such as diisobutyl adipate.
  • glycerin fatty acid esters such as phthalic acid esters, glycerin diacetomonolaurate, glycerin tristearate and diacetylated glycerin monostearate
  • adipic acid esters such as diisobutyl adipate.
  • Examples of the lubricant include paraffin wax and zinc stearate.
  • Examples of the binding inhibitor include calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylene bis stearamide, tricalcium phosphate, and dimethyl silicon.
  • Examples of the fusion accelerator include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, and polyethylene wax.
  • antistatic agent examples include polyoxyethylene alkylphenol ether and stearic acid monoglyceride.
  • spreading agent examples include polybutene, polyethylene glycol, and silicone oil.
  • air conditioner examples include ethylene bis stearamide and polyethylene wax.
  • crosslinking agent examples include 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t. -Organic peroxides such as butylperoxyhexane.
  • filler examples include silicon dioxide produced synthetically or naturally.
  • Colorants include furnace black, ketjen black, channel black, thermal black, acetylene black, carbon black such as graphite and carbon fiber, chromate such as yellow lead, zinc yellow and barium yellow, and ferrocyanides such as bitumen , Sulfides such as cadmium yellow and cadmium red, oxides such as iron black and red husk, silicates such as ultramarine blue, inorganic pigments such as titanium oxide, monoazo pigments, disazo pigments, azo lakes, condensed azo pigments, chelate azos Organic pigments such as azo pigments such as pigments, polycyclic pigments such as phthalocyanine, anthraquinone, perylene, perinone, thioindigo, quinacridone, dioxazine, isoindolinone, and quinophthalone.
  • the composite resin particles of the present invention preferably contain carbon black as a colorant.
  • the amount of carbon black added is about 1.0 to 2.5% by mass with respect to the resin component.
  • the amount of carbon black added is, for example, 1.0, 1.5, 2.0, and 2.5% by mass.
  • (F) Manufacturing method of composite resin particle It does not specifically limit as a manufacturing method of composite resin particle, For example, a seed polymerization method is mentioned.
  • the monomer mixture is absorbed into the seed particles, and the composite resin particles can be obtained by polymerizing the monomer mixture after or while absorbing the monomer mixture.
  • the foamed resin particles can be obtained by impregnating the composite resin particles with a foaming agent described later after polymerization or while polymerizing.
  • a resin particle contain a flame retardant and a flame retardant adjuvant, you may add them at the time of superposition
  • the method for producing composite resin particles by the seed polymerization method is, for example, first, after absorbing a monomer mixture containing a styrene monomer into a polypropylene resin particle as a seed particle in an aqueous medium, Alternatively, the composite resin particles are obtained by polymerizing the monomer mixture while absorbing. In the monomer mixture, it is not necessary to supply all the monomers constituting the monomer mixture simultaneously into the aqueous medium, and all or a part of the monomers may be supplied into the aqueous medium at different timings. When a flame retardant or flame retardant aid is included in the composite resin particles, the flame retardant or flame retardant aid may be added to the monomer mixture or aqueous medium, or may be included in the seed particles. Also good.
  • Polypropylene resin particles as seed particles are the above-mentioned polypropylene resin particles, and the average particle diameter can be appropriately adjusted according to the average particle diameter of the foamable composite resin particles to be produced.
  • the preferable particle diameter of the seed particles is in the range of 0.5 to 1.5 mm, more preferably in the range of 0.6 to 1.0 mm, and the average mass is about 30 to 90 mg / 100 grains.
  • examples of the shape include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, and a prismatic shape.
  • the method for producing seed particles is not particularly limited and can be produced by a known method.
  • it can be obtained by a method in which a raw material resin is melted with an extruder and granulated into pellets by strand cutting, underwater cutting, hot cutting, or the like, or a method in which resin particles are directly pulverized and pelletized with a pulverizer.
  • the particles obtained by the above method may be classified into particles having a desired average particle diameter by appropriately sieving. By using the classified seed particles, expandable composite resin particles having a narrow particle size distribution and a desired particle size can be obtained.
  • the aqueous medium examples include water and a mixed medium of water and a water-soluble solvent (for example, a lower alcohol such as methyl alcohol or ethyl alcohol).
  • a dispersant may be used in order to stabilize the dispersibility of the droplets and seed particles of the monomer mixture.
  • examples of such a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose; magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, Examples thereof include inorganic dispersants such as magnesium carbonate and magnesium oxide.
  • an inorganic dispersant is preferable because a more stable dispersion state can be maintained.
  • a surfactant in combination.
  • surfactants include sodium dodecylbenzene sulfonate and sodium ⁇ -olefin sulfonate.
  • the power required for stirring (Pv) required to stir the aqueous medium 1 m 3 including the polypropylene resin particles, the styrene monomer, and, if necessary, other dispersions and dissolved materials is 0.06 to 0.8 kw / Stirring conditions adjusted to m 3 are preferred.
  • the power required for stirring is preferably 0.1 to 0.5 kw / m 3 . This required power for stirring corresponds to the net energy per unit volume received by the contents in the reaction vessel.
  • the power required for stirring refers to that measured in the following manner. That is, an aqueous medium containing polypropylene resin particles, styrene monomers and, if necessary, other dispersions and dissolved substances is supplied into a polymerization vessel of a polymerization apparatus, and a stirring blade is rotated at a predetermined rotational speed to produce an aqueous medium. Stir the medium. At this time, the rotational driving load necessary to rotate the stirring blade is measured as a current value A 1 (ampere). A value obtained by multiplying the current value A 1 by an effective voltage (volts) is defined as P 1 (watts).
  • the stirring blade of the polymerization apparatus is rotated at the same rotation speed as described above in an empty state of the polymerization vessel, and the rotational driving load required to rotate the stirring blade is measured as a current value A 2 (ampere).
  • a value obtained by multiplying the current value A 2 by an effective voltage (volt) is P 2 (watts), and the required power for stirring can be calculated by the following formula.
  • the shape and structure of the polymerization vessel are not particularly limited as long as they are conventionally used for the polymerization of styrene monomers.
  • the stirring blade is not particularly limited as long as the power required for stirring can be set within a predetermined range.
  • paddle blades such as V-type paddle blades, inclined paddle blades, flat paddle blades, fiddler blades, pull margin blades, turbine blades such as turbine blades and fan turbine blades, propeller blades such as marine propeller blades, etc.
  • paddle blades are preferable, and V-type paddle blades, inclined paddle blades, flat paddle blades, Ferdler blades, and pull margin blades are more preferable.
  • the stirring blade may be a single-stage blade or a multi-stage blade. Further, the size of the stirring blade is not particularly limited as long as the required power for stirring can be set within a predetermined range. Furthermore, you may provide a baffle plate (baffle) in the superposition
  • baffle plate baffle
  • the polymerization of the monomer mixture can be performed, for example, by heating at 60 to 150 ° C. for 2 to 40 hours.
  • the polymerization can be performed after the monomer mixture is absorbed into the seed particles or while the monomer mixture is absorbed into the seed particles.
  • the amount of monomer and resin is almost the same.
  • the monomer mixture is usually polymerized in the presence of a polymerization initiator.
  • the polymerization initiator is usually impregnated into the seed particles simultaneously with the monomer mixture.
  • the polymerization initiator is not particularly limited as long as it is conventionally used for polymerization of styrene monomers.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is, for example, in the range of 0.1 to 5 parts
  • the polymerization initiator is suspended or emulsified and dispersed in advance in the aqueous medium when the polymerization initiator is added to the aqueous medium. It is preferable to add to the dispersion liquid above, or to add the polymerization initiator to the monomer in the monomer mixture or the monomer mixture before adding it to the aqueous medium.
  • the composite resin particles of the present invention can be obtained by polymerizing a styrene monomer in at least two stages and appropriately setting the polymerization conditions at that time.
  • the styrene monomer is added at a temperature at which the polymerization initiator does not decompose, and the polymerization initiator is maintained within the 10-hour half-life temperature (T1) of T1 to T1 + 15 ° C.
  • the first polymerization is carried out in the range of the melting point (T2) T2-5 ° C. to T2 + 10 ° C., followed by the second polymerization.
  • the expandable composite resin particles of the present invention include the composite resin particles of the present invention and a foaming agent.
  • the expandable composite resin particles of the present invention are obtained by impregnating the composite resin particles of the present invention with a foaming agent.
  • the impregnation with the foaming agent may be performed while polymerizing the resin monomer by a known method, or may be performed after the polymerization.
  • the impregnation during the polymerization can be performed by performing the polymerization reaction in a closed container and press-fitting a foaming agent into the container.
  • polymerization can be performed by pressing-in a foaming agent in a sealed container.
  • the temperature during the impregnation is preferably in the range of 50 to 80 ° C., more preferably in the range of 60 to 70 ° C.
  • the foaming agent is not particularly limited, and any known one can be used, and a gaseous or liquid organic compound having a boiling point equal to or lower than the softening point of the polystyrene-based resin and being normal pressure is particularly suitable.
  • a gaseous or liquid organic compound having a boiling point equal to or lower than the softening point of the polystyrene-based resin and being normal pressure is particularly suitable.
  • hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane, cyclopentadiene, n-hexane, petroleum ether, ketones such as acetone and methyl ethyl ketone, methanol, ethanol, isopropyl alcohol, etc.
  • Alcohols such as dimethyl ether, diethyl ether, dipropyl ether, and methyl ethyl ether, and inorganic gases such as carbon dioxide, nitrogen, and ammonia.
  • foaming agents may be used alone or in combination of two or more.
  • hydrocarbons are preferable from the viewpoint of quickly replacing with air and suppressing changes in the foamed molded article over time, hydrocarbons having a boiling point of ⁇ 45 to 40 ° C. are more preferable, propane, n-butane, isobutane, Particularly preferred are n-pentane, isopentane and the like.
  • the content of the blowing agent is not particularly limited, but is preferably in the range of 7 to 15% by mass.
  • the content of the foaming agent is, for example, 7, 8, 9, 10, 11, 12, 13, 14, and 15% by mass, and a range of 7 to 12% by mass is more preferable.
  • the content of the foaming agent is less than 7% by mass, pre-foamed particles having a desired density may not be obtained from the foamable composite resin particles, and the effect of increasing the secondary foaming power during in-mold foam molding is reduced. For this reason, the appearance of the foamed molded product may not be good.
  • content of a foaming agent exceeds 15 mass%, the time which the cooling process in the manufacturing process of a foaming molding requires becomes long, and productivity may fall.
  • the foaming agent may be used in combination with a known foaming aid or plasticizer as long as the effects of the present invention are not impaired.
  • foaming aids and plasticizers include diisobutyl adipate, toluene, cyclohexane, and ethylbenzene.
  • the prefoamed particles of the present invention are obtained by foaming the foamable composite resin particles of the present invention.
  • the foamed particles of the present invention can be obtained by foaming the foamable composite resin particles to a desired bulk density using heated steam or the like.
  • the expanded particles can be used as they are for applications such as cushioning fillers, and can also be used as a raw material for foam molded articles for foaming in the mold. When used as a raw material for a foamed molded article, the expanded particles are generally referred to as “pre-expanded particles”, and the foam for obtaining them is referred to as “pre-expanded”.
  • the bulk density of the expanded particles is preferably in the range of 0.018 to 0.050 g / cm 3 . If the bulk density of the expanded particles is less than 0.018 g / cm 3 , the resulting expanded molded article may shrink and the appearance may not be good, and the thermal insulation performance and mechanical strength of the expanded molded article may decrease. There is. On the other hand, when the bulk density of the expanded particles exceeds 0.050 g / cm 3 , the lightweight property of the expanded molded article may be lowered.
  • the bulk density of the expanded particles is, for example, 0.018, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, and 0.050 g / cm 3 .
  • the foam molded body of the present invention is obtained by foam molding the pre-foamed particles of the present invention,
  • the surface layer portion from 0.2 ⁇ m to 1.0 ⁇ m from the surface of the foam molded article is in a state in which a polystyrene resin having a particle major axis of 0.5 ⁇ m or less is dispersed in a polypropylene resin.
  • the outermost layer portion from the surface of the foamed molded product to 0.2 ⁇ m is characterized in that a polystyrene resin having a particle major axis of 0.5 to 2.5 ⁇ m is dispersed in a polypropylene resin.
  • the long particle diameter is preferably more than 0.5 ⁇ m.
  • the dispersion state of the polystyrene-based resin in the surface layer portion and the outermost layer portion of the foamed molded product is the dispersion state of the polystyrene-based resin in the surface layer portion and the outermost layer portion of the composite resin particle of the present invention, except that the particle diameter is the particle major axis. Can be confirmed as well. Specifically, it will be described in detail in Examples.
  • ⁇ Absorbance ratio of composite resin particle surface (in the case of polypropylene resin)>
  • the absorbance ratio (D698 / D1376) on the surface of the composite resin particles is measured as follows.
  • each light absorbency obtained from an infrared absorption spectrum says the height of the peak originating in the vibration of each resin component contained in a composite resin particle.
  • Ten particles selected at random are subjected to surface layer analysis by infrared spectroscopic analysis ATR measurement method to obtain infrared absorption spectra. In this analysis, an infrared absorption spectrum in the depth range from the sample surface to several ⁇ m (about 2 ⁇ m) is obtained.
  • the individual absorbance ratio (D698 / D1376) is calculated from each infrared absorption spectrum, and the arithmetic average of the individual absorbance ratios calculated for the surface layer is defined as the absorbance ratio.
  • the polystyrene resin ratio (% by mass) is calculated from the absorbance ratio (D698 / D1376) based on a calibration curve described later.
  • the absorbances D698 and D1376 are measured under the following conditions using a measuring device manufactured by Nicolet; trade name “Fourier Transform Infrared Spectrometer MAGNA 560” and “Thunder Dome” manufactured by Spectra-Tech as an ATR accessory.
  • the absorbance D698 at 698 cm ⁇ 1 obtained from the infrared absorption spectrum is an absorbance corresponding to the absorption spectrum derived from the out-of-plane vibration of the benzene ring contained in the polystyrene resin. In this absorbance measurement, peak separation is not performed even when other absorption spectra overlap at 698 cm ⁇ 1 .
  • Absorbance D698 is a straight line connecting the 1280 cm -1 and 860 cm -1 as a baseline, means the maximum absorbance between 710 cm -1 and 685cm -1.
  • the absorbance D1376 at 1376 cm ⁇ 1 obtained from the infrared absorption spectrum is an absorbance corresponding to the absorption spectrum derived from the CH 3 symmetric bending vibration of —C—CH 3 hydrocarbon contained in the polypropylene resin. . In this absorbance measurement, peak separation is not performed even if other absorption spectra overlap at 1376 cm ⁇ 1 .
  • Absorbance D1376 is a straight line connecting the 1414Cm -1 and 1340 cm -1 as a baseline, means the maximum absorbance between 1400 cm -1 and 1350 cm -1.
  • a plurality of types of standard samples are prepared by uniformly mixing polystyrene resin and polypropylene resin at a predetermined composition ratio, and each standard is prepared.
  • a sample is subjected to particle surface analysis by ATR infrared spectroscopy to obtain an infrared absorption spectrum.
  • the absorbance ratio is calculated from each of the obtained infrared absorption spectra.
  • a calibration curve is drawn by taking the composition ratio (polystyrene resin ratio (% by mass) in the standard sample) on the vertical axis and the absorbance ratio (D698 / D1376) on the horizontal axis.
  • the composition ratio of the polystyrene resin and the polypropylene resin in the composite resin particle of the present invention is determined from the absorbance ratio of the composite resin particle of the present invention.
  • ⁇ Absorbance ratio of composite resin particle surface (in the case of polyethylene resin)> The measurement is performed in the same manner as the polypropylene resin except that the absorbance ratio (D698 / D2850) of the surface of the composite resin particle is measured. About the obtained infrared absorption spectrum, peak processing is performed as follows, and each absorbance is obtained. Absorbance D698 at 698 cm ⁇ 1 obtained from the infrared absorption spectrum is an absorbance corresponding to the absorption spectrum derived from the out-of-plane deformation vibration of the benzene ring contained in the styrene resin. In this absorbance measurement, peak separation is not performed even when other absorption spectra overlap at 698 cm ⁇ 1 .
  • Absorbance D698 is a straight line connecting the 2000 cm -1 and 870 cm -1 as a baseline, means the maximum absorbance between 710 cm -1 and 685cm -1.
  • the absorbance D2850 at 2850 cm ⁇ 1 obtained from the infrared absorption spectrum is an absorbance corresponding to the absorption spectrum derived from the CH 2 symmetric bending vibration of —C—CH 2 hydrocarbon contained in the polyethylene resin. . In this absorbance measurement, peak separation is not performed even when other absorption spectra overlap at 2850 cm ⁇ 1 .
  • Absorbance D2850 is a straight line connecting the 3125Cm -1 and 2720cm -1 as a baseline, it means the maximum absorbance between 2875cm -1 and 2800 cm -1.
  • a plurality of types of standard samples are prepared by uniformly mixing polystyrene resin and polyethylene resin at a predetermined composition ratio, and each standard is prepared.
  • a sample is subjected to particle surface analysis by ATR infrared spectroscopy to obtain an infrared absorption spectrum.
  • the absorbance ratio is calculated from each of the obtained infrared absorption spectra.
  • a calibration curve is drawn by taking the composition ratio (polystyrene resin ratio (% by mass) in the standard sample) on the vertical axis and the absorbance ratio (D698 / D2850) on the horizontal axis.
  • the composition ratio of the polystyrene resin and the polyethylene resin in the composite resin particle of the present invention is determined from the absorbance ratio of the composite resin particle of the present invention.
  • a section is cut out from the composite resin particles and the molded foam, and the section is embedded in an epoxy resin, and then an ultrathin section (thickness 70 nm) is obtained using an ultramicrotome (trade name: LEICA ULTRACUT UCT, manufactured by Leica Microsystems). create. Subsequently, the ultrathin section was photographed with a transmission electron microscope (TEM, manufactured by Hitachi High-Technologies Corporation, model: H-7600) at a magnification of 5000 times, and 0.2 ⁇ m from the surface of the composite resin particles and the foamed molded product.
  • TEM transmission electron microscope
  • the structure of the surface layer part in the range up to 1.0 ⁇ m and the outermost layer part in the range up to 0.2 ⁇ m from the surface is observed. Ruthenium tetroxide is used as the staining agent.
  • the dispersion diameter and the dispersion major axis of the polystyrene resin dispersed in the composite resin particles and the foamed molded product were confirmed by the following method. That is, for example, the particle diameter (dispersion diameter) of the surface layer portion of the composite resin particle is 0 by tracing FIG. 1A so that the particle areas are substantially the same and measuring the dispersion diameter one by one.
  • the range of the particle diameter (dispersion diameter) of the outermost layer portion is 0.3 to 1.5 ⁇ m
  • the particle length (dispersion length) of the surface layer portion of the foamed molded product is 0.5 ⁇ m or less. It was confirmed that the range of the particle major axis (dispersion major axis) of the part was 0.5 to 2.5 ⁇ m.
  • Heating dimensional change rate is measured by the method B described in JIS K 6767: 1999 “Foamed Plastics—Polyethylene—Test Method”.
  • the foamed molded product having a density of 0.025 g / cm 3 was dried at a temperature of 50 ° C. for 1 day, and then a test piece 150 ⁇ 150 ⁇ 30 mm (thickness) was cut out from the foamed molded product.
  • a heating dimensional change rate S (%) by the following formula.
  • S (L1-L0) / L0 ⁇ 100
  • S represents a heating dimensional change rate (%)
  • L1 represents an average dimension (mm) after heating
  • L0 represents an initial average dimension (mm).
  • a heating dimensional change rate S (shrinkage rate) of 1.0% or less is considered good.
  • ⁇ Chemical resistance> Three flat rectangular plate-shaped test pieces having a length of 100 mm, a width of 100 mm and a thickness of 20 mm are cut out from the foamed molded article and left to stand for 24 hours under the conditions of 23 ⁇ 2 ° C. and humidity of 50 ⁇ 5%.
  • a test piece is cut out from a foaming molding so that the upper surface whole surface of a test piece may be formed from the surface of a foaming molding.
  • 1 g of different chemicals gasoline, kerosene, dibutyl phthalate (DBP)
  • DBP dibutyl phthalate
  • a flat plate-shaped test piece having a length of 400 mm, a width of 300 mm, and a thickness of 30 mm is cut out from the foamed molded body, and a cutting line having a depth of about 5 mm is formed on the surface with a cutter knife along a straight line connecting the centers of a pair of long sides. Then, the foamed molded product is manually divided into two along this score line.
  • the number (a) of the expanded particles broken within the expanded particles in an arbitrary range of 100 to 150 and the fracture at the interface between the expanded particles is counted, and the fusion rate F (%) is calculated by the following formula.
  • F (a) / [(a) + (b)] ⁇ 100
  • a fusing rate F of 80% or more is considered good.
  • ⁇ Bending strength of foam molding> The bending strength (average maximum bending strength) of the foamed molded product is measured according to the method described in JIS K 7221-2: 2006 “Hard foamed plastic”. Five rectangular parallelepiped test pieces having a length of 25 mm, a width of 130 mm, and a thickness of 20 mm (on one side of the skin) are cut out from the foamed molded article and left for 24 hours under conditions of 23 ° C. ⁇ 2 ° C. and humidity of 50% ⁇ 5%. This test piece is measured for bending strength under the following measurement conditions using a bending strength measuring instrument (Orientec Co., Ltd., model: UCT-10T).
  • the density of the foamed molded product is measured by the method described in JIS A 9511: 1995 “Foamed plastic heat insulating plate”.
  • Example 1 Polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name: F-744NP, melting point: 140 ° C.) 17.88 kg, carbon black masterbatch (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name: PPRM-10H381, carbon black content 45 (Mass%) 2.22 kg was supplied to an extruder, melt-kneaded, and granulated by an underwater cutting method to obtain 5.0 mass% of oval (egg) carbon black-containing polypropylene resin particles. The average mass of the obtained polypropylene resin particles was about 0.6 mg.
  • the temperature of the reaction system is raised to 120 ° C. and held for 1 hour, polymerized while absorbing the styrene monomer inside the polypropylene resin particles, and raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles.
  • the temperature was maintained for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
  • the reaction liquid of the first polymerization is set to 125 ° C., which is 15 ° C.
  • the reaction solution was cooled to room temperature (30 ° C.), about 40 kg of composite resin particles were taken out from the 100 L autoclave, 400 mL of 20% hydrochloric acid was added, and the inorganic dispersant was removed. Then, using the obtained composite resin particles, the absorbance ratio of the surface and the dispersion state of the polystyrene resin in the surface layer portion and the outermost layer portion of the composite resin particles were measured.
  • the pre-expanded particles are filled into the cavities of a mold having a cavity of 400 mm ⁇ 300 mm ⁇ 30 mm, 0.18 MPa water vapor was introduced for 20 seconds and heated, and then cooled until the maximum surface pressure of the foamed molded product decreased to 0.001 MPa to obtain a foamed molded product. Under these molding conditions, a foamed molded article having good appearance and fusion was obtained. The density of the obtained foamed molded product was 0.025 g / cm 3 .
  • the dispersion state of the polystyrene-type resin in the surface layer part and the outermost layer part, the heating dimensional change rate, chemical resistance, a fusion rate, and bending strength were measured using the obtained foaming molding.
  • the dimensional change rate with respect to a mold was measured using the foaming molding shape
  • FIG. 1 is a TEM image of (a) the outermost layer portion and the surface layer portion and (b) the interior of the composite resin particles of Example 1.
  • the surface layer portion from 0.2 ⁇ m to 1.0 ⁇ m from the surface of the composite resin particle has a particle diameter of 0.2 ⁇ m or less in polypropylene resin.
  • the polystyrene resin having a maximum particle length of 1.0 ⁇ m is dispersed in the polypropylene resin. Confirmed that the condition.
  • FIG. 2 is a TEM image of (a) the outermost layer portion and the surface layer portion and (b) the inside of the foam molded article of Example 1.
  • the surface layer portion of the foamed molded product having a surface exceeding 0.2 ⁇ m and up to 1.0 ⁇ m has a polystyrene resin with a particle length of 0.2 ⁇ m or less in the polypropylene resin.
  • the polystyrene resin having the maximum particle length of 1.5 ⁇ m is dispersed in the polypropylene resin. I confirmed that there was.
  • Example 2 In the first polymerization, a foamed molded product was obtained in the same manner as in Example 1 except that the reaction system was maintained at a temperature of 130 ° C. for 1 hour, and the foamed molded product was evaluated together with the composite resin particles in the middle. .
  • Example 3 No carbon black was used, 16 kg of polypropylene resin particles were changed to 12 kg, 6.72 kg of styrene monomer in the first polymerization was changed to 5.04 kg, 14 g of dicumyl peroxide was changed to 10 g, and styrene was determined in the second polymerization.
  • the same procedure as in Example 1 was conducted except that 17.28 kg of monomer was 22.96 kg and 72 g of dicumyl peroxide was 84 g (mass ratio of polypropylene resin particles to styrene resin: 3/7).
  • the foamed molded product was obtained, and the foamed molded product was evaluated together with the composite resin particles on the way.
  • Example 4 In the first polymerization, except that 14 g of dicumyl peroxide was changed to 14 g of di-t-butyl peroxide as a polymerization initiator, and the reaction system was maintained at a temperature of 120 ° C. for 1 hour at a temperature of 130 ° C. for 1 hour.
  • the foam molded body was obtained in the same manner as in Example 1, and the foam molded body was evaluated together with the composite resin particles on the way.
  • Example 5 16 kg of polypropylene resin particles are 20 kg, 6.72 kg of styrene monomer in the first polymerization is 8.40 kg, 14 g of dicumyl peroxide is 17 g, and 17.28 kg of styrene monomer in the second polymerization is 11.
  • a foamed molded article was obtained in the same manner as in Example 1 except that 60 kg and dicumyl peroxide 72 g were changed to 60 g and (mass ratio of polypropylene resin particles to styrene resin: 1/1) were obtained. The foamed molded product was evaluated together with the composite resin particles.
  • Example 6 16 kg of polypropylene resin particles are 8 kg, 6.72 kg of styrene monomer in the first polymerization is 3.36 kg, 14 g of dicumyl peroxide is 7 g, and 17.28 kg of styrene monomer in the second polymerization is 28.
  • a foamed molded article was obtained in the same manner as in Example 1 except that 64 kg and 72 g of dicumyl peroxide were changed to 96 g and (mass ratio of polypropylene resin particles to styrene resin: 2/8) was obtained. The foamed molded product was evaluated together with the composite resin particles.
  • Example 1 Polyethylene resin particles in the same manner as in Example 1 except that an ethylene-vinyl acetate copolymer (EVA, manufactured by Nippon Polyethylene, trade name: LV-115, melting point: 105 ° C.) is used instead of the polypropylene resin. Got. The average mass of the obtained polyethylene resin particles was about 0.4 mg. Next, an aqueous suspension was obtained in the same manner as in Example 1 except that polyethylene resin particles were used instead of polypropylene resin particles, and the required power for stirring was 1.05 kg / m 3 .
  • EVA ethylene-vinyl acetate copolymer
  • the temperature of the reaction system was raised to 130 ° C. and held for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the reaction liquid of the first polymerization is set to 90 ° C. which is 15 ° C. lower than the melting point of the polyethylene resin particles, and 60 g of sodium dodecylbenzenesulfonate is added to the reaction liquid as a surfactant, and then a polymerization initiator.
  • FIG. 3 is a TEM image of (a) the outermost layer portion and the surface layer portion and (b) the inside of the composite resin particles of Comparative Example 2.
  • FIG. 4 is a TEM image of (a) the outermost layer portion and the surface layer portion and (b) the inside of the foam molded article of Comparative Example 2.
  • FIG. 5 is a TEM image of (a) the outermost layer portion and the surface layer portion and (b) the inside of the composite resin particles of Comparative Example 3.
  • 6 is a TEM image of (a) the outermost layer portion and the surface layer portion and (b) the inside of the foamed molded article of Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリプロピレン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子であり、ポリスチレン系樹脂の含有量がポリプロピレン系樹脂100質量部に対して100~400質量部であり、複合樹脂粒子の表層部は、ポリプロピレン系樹脂中に、粒子径0.3μm以下のポリスチレン系樹脂が分散された状態であり、複合樹脂粒子の最表層部は、ポリプロピレン系樹脂中に、粒子径0.3~1.5μmのポリスチレン系樹脂が分散された状態であり、複合樹脂粒子の表面の赤外線吸収スペクトルから得られるポリスチレン系樹脂由来とポリプロピレン系樹脂由来の吸光度の比が0.5~2.5である複合樹脂粒子。

Description

複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体
 本発明は、複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体に関する。さらに詳しくは、本発明は、耐薬品性や耐熱性、曲げ強度に優れ、発泡剤を含ませたときに発泡粒ライフが良好で、省エネルギー成形が可能で発泡成形性に優れた複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体に関する。
 従来から、ポリスチレン系樹脂を熱可塑性樹脂成分として含む発泡成形体は、緩衝性、剛性、断熱性、軽量性、耐水性および発泡成形性などに優れるため、包装用緩衝材、建材用断熱材、自動車用構造部材などとして幅広く利用されている。
 一般に、ポリスチレン系樹脂の発泡成形体は、剛性には優れるが、耐衝撃性および耐薬品性に劣るという問題がある。
 一方、ポリプロピレン系樹脂の発泡成形体は、耐衝撃性および耐薬品性に優れるため、自動車関連部品に利用されている。
 しかし、ポリプロピレン系樹脂は発泡ガスの保持性に劣り、その発泡成形体を得るためには、成形条件を精密に制御する必要があり、製造コストが掛かるという問題がある。また、ポリプロピレン系樹脂の発泡成形体は、ポリスチレン系樹脂の発泡成形体に比して剛性に劣るという問題もある。
 そこで、上記のような問題点を解決するために、剛性および発泡成形性の良好なポリスチレン系樹脂と、耐薬品性および耐衝撃性の良好なポリプロピレン系樹脂とを複合化した発泡成形体が提案されている。
 例えば、国際公開第WO2007/099833号(特許文献1)には、機械特性や耐薬品性などに優れたスチレン改質ポリプロピレン系樹脂発泡成形体を提供することを目的として、ポリプロピレン系樹脂100質量部に対して、ポリスチレン系樹脂を30質量部以上600質量部未満含有し、ポリプロピレン系樹脂中に、粒子径が5μm以下のポリスチレン系樹脂が分散された状態で存在しているスチレン改質ポリプロピレン系樹脂粒子が提案されている。
 また、国際公開第WO2008/117504号(特許文献2)には、耐薬品性や耐熱性、発泡成形性などに優れ、自己消火性を有するカーボンブラック含有改質ポリスチレン系樹脂成形体を提供することを目的として、カーボンブラック含有ポリプロピレン系樹脂100質量部に対して、ポリスチレン系樹脂を100質量部以上400質量部未満含有し、ATR法赤外分光分析により測定された粒子中心部の赤外線吸収スペクトルから得られる698cm-1および1376cm-1における吸光度比により算出される粒子中心部のポリスチレン系樹脂比率が、粒子全体のポリスチレン系樹脂比率に対して1.2倍以上であるカーボンブラック含有改質ポリスチレン系樹脂粒子が提案されている。
 さらに、特開2010-270284号公報(特許文献3)には、低い温度で成形された、すなわち省エネルギー成形によりつくられ、かつ耐油性の高いスチレン改質ポリエチレン系樹脂発泡成形体を提供することを目的として、ATR-FTIRにより測定された発泡成形体表面の赤外線吸収スペクトルから得られる698cm-1および2850cm-1での吸光度比が2.5を超えて11.0以下であるスチレン改質ポリエチレン系樹脂発泡成形体が提案されている。
国際公開第WO2007/099833号 国際公開第WO2008/117504号 特開2010-270284号公報
 しかしながら、上記の先行技術には、次のような問題がある。
 特許文献1のスチレン改質ポリプロピレン系樹脂粒子は、粒子径が5μm以下のポリスチレン系樹脂が、ポリプロピレン系樹脂中に分散しているため、耐薬品性には優れるが、省エネルギー成形ができない。
 特許文献2のカーボンブラック含有改質ポリスチレン系樹脂粒子は、粒子中心部のポリスチレン系樹脂比率が、粒子全体のポリスチレン系樹脂比率に対して1.2倍以上であるため、耐薬品性と耐熱性に優れるが、省エネルギー成形ができない。
 特許文献3のスチレン改質ポリエチレン系樹脂発泡成形体は、698cm-1および2850cm-1での吸光度比が2.5を超えて11.0以下であるため、低い温度で成形(省エネルギー成形)が可能であり、耐油性にも優れるが、表層にポリスチレン系樹脂が多く存在するため、発泡粒ライフが短く、またポリエチレン系樹脂を使用しているため、耐熱性に劣る。
 そこで、本発明は、耐薬品性や耐熱性、曲げ強度に優れ、発泡剤を含ませたときに発泡粒ライフが良好で、省エネルギー成形が可能で発泡成形性に優れた複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を提供することを課題とする。
 本発明の発明者は、上記の課題を解決するために鋭意研究を重ねた結果、ポリプロピレン系樹脂100質量部に対して100~400質量部のポリスチレン系樹脂を含む複合樹脂粒子において、その表層部と最表層部が、それぞれ特定粒径のポリスチレン系樹脂がポリプロピレン系樹脂に分散された状態にあり、かつ複合樹脂粒子の表面の赤外線吸収スペクトルから得られるポリスチレン系樹脂由来の吸光度とポリプロピレン系樹脂由来の吸光度との比率が特定の範囲にある場合に、上記の課題を解決できることを見出し、本発明を完成するに至った。
 かくして、本発明によれば、ポリプロピレン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子であり、
 前記ポリスチレン系樹脂の含有量が、ポリプロピレン系樹脂100質量部に対して100~400質量部であり、
 前記複合樹脂粒子の表面から0.2μmを超え1.0μmまでの表層部は、前記ポリプロピレン系樹脂中に、粒子径0.3μm以下のポリスチレン系樹脂が分散された状態であり、
 前記複合樹脂粒子の表面から0.2μmまでの最表層部は、前記ポリプロピレン系樹脂中に、粒子径0.3~1.5μmのポリスチレン系樹脂が分散された状態であり、
 前記複合樹脂粒子の表面の赤外線吸収スペクトルから得られるポリスチレン系樹脂由来の698cm-1の吸光度(D698)とポリプロピレン系樹脂由来の1376cm-1の吸光度(D1376)との吸光度比(D698/D1376)が、0.5~2.5である複合樹脂粒子が提供される。
 また、本発明によれば、上記の複合樹脂粒子と発泡剤とを含む発泡性複合樹脂粒子が提供される。
 さらに、本発明によれば、上記の複合樹脂粒子を発泡させて得られた予備発泡粒子が提供される。
 また、本発明によれば、上記の予備発泡粒子を発泡成形させて得られた発泡成形体であり、
 前記発泡成形体の表面から0.2μmを超え1.0μmまでの表層部は、前記ポリプロピレン系樹脂中に、粒子長径0.5μm以下のポリスチレン系樹脂が分散された状態であり、
 前記発泡成形体の表面から0.2μmまでの最表層部は、前記ポリプロピレン系樹脂中に、粒子長径0.5~2.5μmのポリスチレン系樹脂が分散された状態である発泡成形体が提供される。
 本発明によれば、耐薬品性や耐熱性、曲げ強度に優れ、発泡剤を含ませたときに発泡粒ライフが良好で、省エネルギー成形が可能で発泡成形性に優れた複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を提供することができる。
 また、本発明の複合樹脂粒子は、着色剤としてカーボンブラックを含有する場合に、上記の効果を発揮すると共に、成形された発泡成形体に意匠性を付与することができる。
実施例1の複合樹脂粒子の(a)最表層部および表層部ならびに(b)内部のTEM画像である。 実施例1の発泡成形体の(a)最表層部および表層部ならびに(b)内部のTEM画像である。 比較例2の複合樹脂粒子の(a)最表層部および表層部ならびに(b)内部のTEM画像である。 比較例2の発泡成形体の(a)最表層部および表層部ならびに(b)内部のTEM画像である。 比較例3の複合樹脂粒子の(a)最表層部および表層部ならびに(b)内部のTEM画像である。 比較例3の発泡成形体の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
(1)複合樹脂粒子
 本発明の複合樹脂粒子は、ポリプロピレン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子であり、
 前記ポリスチレン系樹脂の含有量が、ポリプロピレン系樹脂100質量部に対して100~400質量部であり、
 前記複合樹脂粒子の表面から0.2μmを超え1.0μmまでの表層部は、前記ポリプロピレン系樹脂中に、粒子径0.3μm以下のポリスチレン系樹脂が分散された状態であり、
 前記複合樹脂粒子の表面から0.2μmまでの最表層部は、前記ポリプロピレン系樹脂中に、粒子径0.3~1.5μmのポリスチレン系樹脂が分散された状態であり、
 前記複合樹脂粒子の表面の赤外線吸収スペクトルから得られるポリスチレン系樹脂由来の698cm-1の吸光度(D698)とポリプロピレン系樹脂由来の1376cm-1の吸光度(D1376)との吸光度比(D698/D1376)が、0.5~2.5であることを特徴とする。
 本発明において、「表層部」とは、複合樹脂粒子および発泡成形体の表面からの距離(深さ)が0.2μmを超え1.0μmまでの範囲のことをいう。
 また、「最表層部」とは、複合樹脂粒子および発泡成形体の表面からの距離(深さ)が0.2μmまでの範囲のことをいう。
 さらに、「内部」とは、複合樹脂粒子を二等分し、さらにその切断面の中心(少なくとも円中心から1/5より内側)をいう。発泡成形体の場合、発泡成形体を二等分し、その切断面を構成している発泡粒子の中心(少なくとも円中心から1/5より内側)をいう。
 本発明において、複合樹脂粒子の表層部および最表層部を表す表面からの距離(深さ)ならびにポリスチレン系樹脂の粒子径は、実施例において具体的に説明するように、複合樹脂粒子の断面を、例えば、透過型電子顕微鏡を用いて、上記の距離や粒子径が計測できる倍率(例えば、1000~10000倍)に拡大し、その表示装置またはその表示画像から転写された写真で可視化することにより確認することができる。
 (a)複合樹脂粒子の表層部および最表層部におけるポリスチレン系樹脂の分散状態
 複合樹脂粒子の表面から0.2μmを超え1.0μmまでの表層部は、ポリプロピレン系樹脂中に、粒子径0.3μm以下のポリスチレン系樹脂が分散された状態であり、
 複合樹脂粒子の表面から0.2μmまでの最表層部は、ポリプロピレン系樹脂中に、粒子径0.3~1.5μmのポリスチレン系樹脂が分散された状態である。
 ここで、「粒子径」とは、複合樹脂粒子に含まれるポリプロピレン系樹脂中に分散しているポリスチレン系樹脂の最長部分の粒子径を意味し、「粒子長径」とは、複合樹脂発泡成形体に含まれる引き伸ばされた状態のポリスチレン系樹脂における最長部分の粒子径を意味する。
 上記の「粒子径」が、ポリプロピレン系樹脂中に分散されたポリスチレン系樹脂の粒子径であることから、本明細書では、これを「分散径」ともいう。
 また、上記の「粒子長径」が、複合樹脂発泡成形体に含まれる、引き伸ばされた状態のポリスチレン系樹脂中に分散されたポリスチレン系樹脂の粒子径であることから、本明細書では、これを「分散長径」ともいう。
 表層部のポリスチレン系樹脂の粒子径(分散径)が0.3μmを超えると、発泡粒ライフが短くなる虞がある。その分散径は、例えば、0.1、0.15、0.2、0.25及び0.3μmである。
 したがって、好ましい表層部のポリスチレン系樹脂の分散径は、0.1~0.3μmであり、より好ましくは0.1~0.2μmである。
 最表層部のポリスチレン系樹脂の粒子径(分散径)が0.3μm未満では、省エネルギー成形できないことがある。一方、最表層部のポリスチレン系樹脂の分散径が1.5μmを超えると、耐薬品性が低下してしまう虞がある。その分散径は、例えば、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4及び1.5μmである。
 したがって、好ましい最表層部のポリスチレン系樹脂の分散径は、0.3~1.3μmであり、より好ましくは0.3~1.0μmである。また、分散径は0.3μmを超えることが好ましい。
 このように本発明の複合樹脂粒子は、その表層部および最表層部に特定の粒子径のポリスチレン系樹脂が分散された状態であり、表層部のポリスチレン系樹脂の分散径は最表層部のポリスチレン系樹脂の分散径よりも小さい。この表層部の分散径と最表層部の分散径との差は、0.2~1.2μmであり、例えば、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1及び1.2μmであり、好ましくは0.2~0.8μmである。
 複合樹脂粒子の表層部および最表層部におけるポリスチレン系樹脂の分散状態は、例えば、表層部および最表層部のTEM写真を各粒子の面積がほぼ同一になるようにトレースして、粒子径を1つずつ測定することで確認することができる。
 具体的には、実施例において詳述する。
 (b)複合樹脂粒子の表面の吸光度比
 本発明の複合樹脂粒子は、例えば、実施例1において詳述するように、複合樹脂粒子の表面(表層部および最表層部)にはポリプロピレン系樹脂がリッチに存在し、その粒子内部に行くにつれてポリスチレン系樹脂がリッチに存在する構造である。
 本発明の複合樹脂粒子は、このような傾斜構造を有し、表面のポリプロピレン系樹脂中に特定の粒子径を有するポリスチレン系樹脂が分散することにより、本発明の効果を発現できるものと考えられる。
 すなわち、複合樹脂粒子は、その表面の赤外線吸収スペクトルから得られるポリスチレン系樹脂由来の698cm-1の吸光度(D698)とポリプロピレン系樹脂由来の1376cm-1の吸光度(D1376)との吸光度比(D698/D1376)が、0.5~2.5である。
 例えば、ポリスチレン系樹脂と、ポリプロピレン系樹脂で構成された複合樹脂粒子である場合に、吸光度比0.5は、ポリスチレン系樹脂の存在率が約10%であることを、吸光度比2.5は、ポリスチレン系樹脂の存在率が約42%であることを意味する。
 上記の吸光度比(D698/D1376)は、例えば、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4及び2.5である。
 なお、吸光度D698およびD1376は、赤外吸収スペクトルから得られるもので、複合樹脂粒子に含まれる各樹脂成分の振動に由来するピークの高さを意味する。
 具体的には、実施例において詳述する。
 (c)ポリプロピレン系樹脂
 本発明の複合樹脂粒子に含まれるポリプロピレン系樹脂は、特に限定されず、公知の重合方法で得られた樹脂を使用できるが、例えば、ポリプロピレン樹脂以外にもプロピレン-エチレン共重合体が用いられる。このプロピレン-エチレン共重合体は、エチレンとプロピレンの共重合体を主成分とするものであるが、エチレンまたはプロピレンと共重合し得る他の単量体を分子内に含有するものであってもよい。そのような単量体としては、α-オレフィン、環状オレフィン、ジエン系単量体から選択された1種または2種以上のものが挙げられる。
 本発明において、ポリプロピレン系樹脂としては、120~145℃の範囲の融点を有するものが好ましい。ポリプロピレン系樹脂の融点が120℃未満では、耐熱性が乏しく、ポリプロピレン系樹脂粒子を用いて製造されるポリプロピレン系樹脂を含む発泡成形体の耐熱性が低くなることがある。また、融点が145℃を超えると、重合温度が高くなり、良好な重合ができなくなることがある。その融点は、例えば、120、125、130、135、140及び145℃である。
 (d)ポリスチレン系樹脂
 ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレンなどのスチレン系単量体の単独重合体またはこれらの共重合体が挙げられる。
 また、ポリスチレン系樹脂としては、上記のスチレン系単量体と、このスチレン系単量体と共重合可能なビニル系単量体との共重合体であってもよい。このようなビニル系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートなどの単官能単量体、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能単量体などが挙げられる。本発明において、(メタ)アクリルとは、アクリル、メタクリル又はそれらの組み合わせを意味する。
 ポリスチレン系樹脂の含有量は、ポリプロピレン系樹脂100質量部に対して100~400質量部である。このような複合樹脂にすることにより、ポリプロピレン系樹脂とポリスチレン系樹脂との優れた特性を併せ持つ発泡成形体を得ることができる。
 ポリスチレン系樹脂の含有量が100質量部未満では、ポリスチレン系樹脂が不足し所望の発泡性を得ることができないことがあり、予備発泡粒子を二次発泡させて得られる発泡成形体の剛性が低下することがある。一方、ポリスチレン系樹脂の含有量が400質量部を超えると、予備発泡粒子を二次発泡させて得られる発泡成形体の耐薬品性および耐熱性が低下することがある。ポリプロピレン系樹脂100質量部に対するポリスチレン系樹脂の含有量は、例えば、100、150、200、250、300、350及び400質量部である。
 したがって、好ましいポリスチレン系樹脂の含有量は、ポリプロピレン系樹脂100質量部に対して100~300質量部、より好ましくは100~250質量部である。
 (e)添加剤
 本発明の複合樹脂粒子は、本発明の効果を阻害しない範囲で、難燃剤、難燃助剤、発泡助剤、可塑剤、滑剤、結合防止剤、融着促進剤、帯電防止剤、展着剤、気泡調整剤、架橋剤、充填材、着色剤などの公知の添加剤が含まれていてもよい。
 難燃剤としては、トリス(2,3-ジブロモプロピル)イソシアヌレート、ビス[3,5-ジブロモ-4-(2,3-ジブロモプロポキシ)フェニル]スルホン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、トリスジブロモプロピルホスフェート、テトラブロモビスフェノールA、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)などが挙げられる。
 難燃助剤としては、2,3-ジメチル-2,3-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、ジクミルパーオキサイド、クメンヒドロパーオキサイドなどの有機過酸化物が挙げられる。
 発泡助剤としては、スチレン、トルエン、エチルベンゼン、キシレンなどの芳香族有機化合物、シクロヘキサン、メチルシクロヘキサンなどの環式脂肪族炭化水素、酢酸エチル、酢酸ブチルなどの1気圧下における沸点が200℃以下の溶剤が挙げられる。
 可塑剤としては、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、ジアセチル化グリセリンモノステアレートなどのグリセリン脂肪酸エステル、ジイソブチルアジペートのようなアジピン酸エステルなどが挙げられる。
 滑剤としては、パラフィンワックス、ステアリン酸亜鉛などが挙げられる。
 結合防止剤としては、炭酸カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルシリコンなどが挙げられる。
 融着促進剤としては、ステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル、ポリエチレンワックスなどが挙げられる。
 帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリドなどが挙げられる。
 展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイルなどが挙げられる。
 気泡調整剤としては、エチレンビスステアリン酸アミド、ポリエチレンワックスなどが挙げられる。
 架橋剤としては、2,2-ジ-t-ブチルパーオキシブタン、2,2-ビス(t-ブチルパーオキシ)ブタン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサンなどの有機過酸化物などが挙げられる。
 充填材としては、合成または天然に産出される二酸化ケイ素などが挙げられる。
 着色剤としては、ファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維などのカーボンブラック、黄鉛、亜鉛黄、バリウム黄などのクロム酸塩、紺青などのフェロシアン化物、カドミウムイエロー、カドミウムレッドなどの硫化物、鉄黒、紅殻などの酸化物、群青のようなケイ酸塩、酸化チタンなどの無機系の顔料、モノアゾ顔料、ジスアゾ顔料、アゾレーキ、縮合アゾ顔料、キレートアゾ顔料などのアゾ顔料、フタロシアニン系、アントラキノン系、ペリレン系、ペリノン系、チオインジゴ系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの多環式顔料などの有機系の顔料が挙げられる。
 本発明の複合樹脂粒子は、上記の添加剤の中でも、着色剤としてカーボンブラックを含有するのが好ましい。これにより、成形された発泡成形体に意匠性を付与することができる。
 カーボンブラックの添加量は、上記の樹脂成分に対して、1.0~2.5質量%程度である。そのカーボンブラックの添加量は、例えば、1.0、1.5、2.0及び2.5質量%である。
 (f)複合樹脂粒子の製造方法
 複合樹脂粒子の製造方法としては、特に限定されず、例えば、シード重合法が挙げられる。
 シード重合法は、一般に、種粒子に単量体混合物を吸収させ、吸収させた後または吸収させつつ単量体混合物の重合を行うことにより複合樹脂粒子を得ることができる。また、重合させた後または重合させつつ複合樹脂粒子に後述する発泡剤を含浸させて発泡性樹脂粒子を得ることができる。
 なお、樹脂粒子中に難燃剤や難燃助剤を含有させる場合には、単量体混合物の重合時にそれらを添加してもよいし、重合完了後の複合樹脂粒子に含浸させてもよい。
 シード重合法による複合樹脂粒子の製造方法は、例えば、まず、水性媒体中で、種粒子としてのポリプロピレン系樹脂粒子に、スチレン系単量体を含む単量体混合物を吸収させ、吸収させた後または吸収させつつ単量体混合物の重合を行うことで複合樹脂粒子を得る。
 単量体混合物は、これを構成する単量体を全て同時に水性媒体中に供給する必要はなく、単量体の全部あるいは一部を別々のタイミングで水性媒体中に供給してもよい。複合樹脂粒子中に難燃剤や難燃助剤を含有させる場合には、難燃剤や難燃助剤を単量体混合物や水性媒体中に添加しても、あるいは、種粒子中に含有させてもよい。
 種粒子としてのポリプロピレン系樹脂粒子は、前記のポリプロピレン系樹脂の粒子であり、その平均粒子径は、作製する発泡性複合樹脂粒子の平均粒子径などに応じて適宜調整できる。
 種粒子の好ましい粒子径は、0.5~1.5mmの範囲であり、より好ましくは、0.6~1.0mmの範囲であり、その平均質量は30~90mg/100粒程度である。
 また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状などが挙げられる。
 種粒子の製造方法は、特に限定されず、公知の方法により製造できる。例えば、原料樹脂を押出機で溶融し、ストランドカット、水中カット、ホットカットなどにより造粒ペレット化する方法、粉砕機にて直接樹脂粒子を粉砕しペレット化する方法により得られる。
 また、前記の方法により得られた粒子は、適宜篩い分けすることで、所望の平均粒子径の粒子に分級してもよい。分級した種粒子を使用することで、粒径分布が狭く所望粒子径を有する発泡性複合樹脂粒子を得ることができる。
 水性媒体としては、水、水と水溶性溶媒(例えば、メチルアルコールやエチルアルコールなどの低級アルコール)との混合媒体が挙げられる。
 水性媒体には、単量体混合物の液滴および種粒子の分散性を安定させるために分散剤を用いてもよい。このような分散剤としては、例えば、部分けん化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロースなどの有機系分散剤;ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウムなどの無機系分散剤が挙げられる。これらの中でも、より安定な分散状態を維持可能であるため、無機系分散剤が好ましい。
 無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、α-オレフィンスルホン酸ナトリウムなどが挙げられる。
 ポリプロピレン系樹脂粒子、スチレン系モノマー及び、必要に応じて他の分散物及び溶解物を含めた水性媒体1m3を攪拌させるのに要する撹拌所要動力(Pv)が、0.06~0.8kw/m3となるように調整された攪拌条件が好ましい。撹拌所要動力は、0.1~0.5kw/m3であることが好ましい。この撹拌所要動力は、反応容器内の内容物が攪拌により受けた、正味の単位体積当たりのエネルギーに対応する。
 ここで、撹拌所要動力は下記要領で測定したものをいう。
 すなわち、ポリプロピレン系樹脂粒子、スチレン系モノマー及び必要に応じて他の分散物並びに溶解物を含有する水性媒体を重合装置の重合容器内に供給し、攪拌翼を所定の回転数で回転させて水性媒体を攪拌する。このとき、攪拌翼を回転させるのに必要な回転駆動負荷を電流値A1(アンペア)として計測する。この電流値A1に実効電圧(ボルト)を乗じた値をP1(ワット)とする。
 そして、重合装置の攪拌翼を重合容器内が空の状態で、上記と同一回転数で回転させ、攪拌翼を回転させるのに必要な回転駆動負荷を電流値A2(アンペア)として計測する。
この電流値A2に実効電圧(ボルト)を乗じた値をP2(ワット)とし、下記式によって撹拌所要動力を算出できる。なお、V(m3)は、ポリプロピレン系樹脂粒子、スチレン系モノマー及び必要に応じて他の分散物並びに溶解物を含めた水性媒体全体の体積である。
   撹拌所要動力(Pv)=(P1-P2)/V
 重合容器の形状及び構造としては、従来からスチレン系モノマーの重合に用いられているものであれば、特に限定されない。
 また、攪拌翼は、撹拌所要動力を所定の範囲に設定可能であれば、特に限定されない。
 具体的には、V型パドル翼、傾斜パドル翼、平パドル翼、ファードラー翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内、パドル翼が好ましく、V型パドル翼、傾斜パドル翼、平パドル翼、ファードラー翼、プルマージン翼がより好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。
 また、攪拌翼の大きさについても、撹拌所要動力を所定の範囲に設定可能であれば、特に限定されない。
 更に、重合容器に邪魔板(バッフル)を設けてもよい。
 単量体混合物の重合は、例えば、60~150℃で、2~40時間加熱することにより行うことができる。重合は、単量体混合物を種粒子中に吸収させた後、または単量体混合物を種粒子に吸収させながら行うことができる。なお、単量体と樹脂の量はほぼ同一である。
 単量体混合物は、通常重合開始剤の存在下で重合する。重合開始剤は、通常単量体混合物と同時に種粒子に含浸させる。
 重合開始剤としては、従来からスチレン系単量体の重合に用いられているものであれば、特に限定されない。例えば、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、2,2-t-ブチルパーオキシブタン、t-ブチルパーオキシ-3,3,5-トリメチルヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、ジクミルパーオキサイドなどの有機過酸化物が挙げられる。これら重合開始剤は、単独でまたは2種以上を組み合わせて用いてもよい。重合開始剤の使用量は、単量体混合物100質量部に対して、例えば0.1~5質量部の範囲である。
 重合開始剤を種粒子または種粒子から成長途上の粒子に均一に吸収させるために、重合開始剤を水性媒体中に添加するにあたって、重合開始剤を水性媒体中に予め懸濁または乳化分散させた上で分散液中に添加するか、あるいは重合開始剤を単量体混合物または単量体混合物のいずれかの単量体に予め溶解させた上で水性媒体中に添加することが好ましい。
 本発明の複合樹脂粒子は、少なくとも2段階でスチレン系単量体を重合させ、その際の重合条件を適宜設定することにより得ることができる。具体的には、重合開始剤が分解しない温度で、スチレン系単量体を添加し、重合開始剤の10時間半減期温度(T1)T1~T1+15℃の範囲で保持し、さらにポリプロピレン系樹脂の融点(T2)T2-5℃~T2+10℃の範囲で第1の重合を行い、次に第2の重合を行う。
(2)発泡性複合樹脂粒子
 本発明の発泡性複合樹脂粒子は、本発明の複合樹脂粒子と発泡剤とを含む。
 具体的には、本発明の発泡性複合樹脂粒子は、本発明の複合樹脂粒子に発泡剤を含浸させることにより得られる。発泡剤の含浸は、公知の方法により、樹脂の単量体を重合させつつ行ってもよく、重合させた後に行ってもよい。
 例えば、重合中での含浸は、重合反応を密閉容器中で行い、容器中に発泡剤を圧入することにより行うことができる。また重合終了後の含浸は、密閉容器中で、発泡剤を圧入することにより行うことができる。
 含浸時の条件は、複合樹脂粒子や発泡剤の種類、得ようとする発泡性複合樹脂粒子の物性などにより適宜設定すればよい。
 例えば、含浸時の温度が低いと、複合樹脂粒子に発泡剤を含浸させるのに要する時間が長くなり、生産効率が低下することがある。一方、含浸時の温度が高いと、複合樹脂粒子同士が合着して結合粒が発生することがある。したがって、含浸時の温度は、50~80℃の範囲であるのが好ましく、60~70℃の範囲であるのがより好ましい。
 発泡剤としては、特に限定されず、公知のものをいずれも使用でき、沸点がポリスチレン系樹脂の軟化点以下であり、常圧でガス状または液状の有機化合物が特に適している。
 例えば、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n-ヘキサン、石油エーテルなどの炭化水素、アセトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテルなどの低沸点のエーテル化合物、炭酸ガス、窒素、アンモニアなどの無機ガスなどが挙げられる。これらの発泡剤は、単独でまたは2種以上を組み合せて用いてもよい。
 これらの中でも、空気と速く置換して発泡成形体の経時変化を抑制する観点で、炭化水素が好ましく、-45~40℃の沸点を有する炭化水素がより好ましく、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタンなどが特に好ましい。
 発泡剤の含有量は、特に限定されないが、7~15質量%の範囲であるのが好ましい。その発泡剤の含有量は、例えば、7、8、9、10、11、12、13、14及び15質量%であり、7~12質量%の範囲がより好ましい。
 発泡剤の含有量が7質量%未満では、発泡性複合樹脂粒子から所望の密度の予備発泡粒子を得られないことがあり、また型内発泡成形時の二次発泡力を高める効果が小さくなるために、発泡成形体の外観が良好とならないことがある。一方、発泡剤の含有量が15質量%を超えると、発泡成形体の製造工程における冷却工程に要する時間が長くなり、生産性が低下することがある。
 本発明の効果を阻害しない範囲で、発泡剤は公知の発泡助剤や可塑剤と併用してもよい。このような発泡助剤や可塑剤としては、例えば、アジピン酸ジイソブチル、トルエン、シクロヘキサン、エチルベンゼンなどが挙げられる。
(3)予備発泡粒子
 本発明の予備発泡粒子(単に「発泡粒子」ともいう)は、本発明の発泡性複合樹脂粒子を発泡させて得られる。
 具体的には、本発明の発泡粒子は、加熱水蒸気などを用いて所望の嵩密度に発泡性複合樹脂粒子を発泡させることで得られる。
 発泡粒子は、クッションの充填材などの用途ではそのまま使用でき、また型内発泡させるための発泡成形体の原料として使用できる。発泡成形体の原料として用いられる場合、通常、発泡粒子を「予備発泡粒子」と称し、それを得るための発泡を「予備発泡」と称する。
 発泡粒子の嵩密度は、0.018~0.050g/cm3の範囲であるのが好ましい。
 発泡粒子の嵩密度が0.018g/cm3未満では、得られる発泡成形体に収縮が発生して外観が良好とならないことがあり、また発泡成形体の断熱性能および機械的強度が低下することがある。一方、発泡粒子の嵩密度が0.050g/cm3を超えると、発泡成形体の軽量性が低下することがある。その発泡粒子の嵩密度は、例えば、0.018、0.020、0.025、0.030、0.035、0.040、0.045及び0.050g/cm3である。
 なお、発泡前に、発泡性複合樹脂粒子の表面に、ステアリン酸亜鉛のような粉末状金属石鹸類を塗布してもよい。この塗布により、発泡工程における発泡性複合樹脂粒子同士の結合を減少させることができる。
(4)発泡成形体
 本発明の発泡成形体は、本発明の予備発泡粒子を発泡成形させて得られ、
 発泡成形体の表面から0.2μmを超え1.0μmまでの表層部は、ポリプロピレン系樹脂中に、粒子長径0.5μm以下のポリスチレン系樹脂が分散された状態であり、
 発泡成形体の表面から0.2μmまでの最表層部は、ポリプロピレン系樹脂中に、粒子長径0.5~2.5μmのポリスチレン系樹脂が分散された状態であることを特徴とする。粒子長径は0.5μmを超えることが好ましい。
 発泡成形体の表層部および最表層部におけるポリスチレン系樹脂の分散状態は、粒子径を粒子長径にすること以外は、本発明の複合樹脂粒子の表層部および最表層部におけるポリスチレン系樹脂の分散状態と同様に確認することができる。
 具体的には、実施例において詳述する。
 以下、実施例および比較例により本発明を具体的に説明するが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。
 実施例および比較例においては、得られた複合樹脂粒子および発泡成形体を次のようにして評価した。
<複合樹脂粒子の表面の吸光度比(ポリプロピレン系樹脂の場合)>
 複合樹脂粒子の表面の吸光度比(D698/D1376)を次の要領で測定する。
 なお、赤外吸収スペクトルから得られる各吸光度は、複合樹脂粒子に含まれる各樹脂成分の振動に由来するピークの高さをいう。
 無作為に選択した10個の粒子について、赤外分光分析ATR測定法により表層分析を行って赤外吸収スペクトルを得る。この分析では、試料表面から数μm(約2μm)までの深さの範囲の赤外吸収スペクトルが得られる。
 各赤外吸収スペクトルから個別吸光度比(D698/D1376)をそれぞれ算出し、表層について算出した個別吸光度比の相加平均を吸光度比とする。
 ポリスチレン系樹脂比率(質量%)は、後述の検量線に基づいて、吸光度比(D698/D1376)から算出する。
 吸光度D698およびD1376は、Nicolet社製の測定装置;商品名「フーリエ変換赤外分光分析計 MAGNA560」と、ATRアクセサリーとしてSpectra-Tech社製「サンダードーム」を用いて次の条件で測定する。
(測定条件)
  高屈折率結晶種:Ge(ゲルマニウム)
  入射角:45°±1°
  測定領域:4000cm-1~675cm-1
  測定深度の端数依存性:補正せず
  反射回数:1回
  検出器:DTGS KBr
  分解能:4cm-1
  積算回数:32回
  その他:試料と接触させずに赤外線吸収スペクトルを上記の条件で測定し、測定された赤外線吸収スペクトルをバックグラウンドとする。試料の測定時には、バックグラウンドが測定スペクトルに関与しないように、測定データを処理する。ATR法では、試料と高屈折率結晶の密着度合によって、赤外吸収スペクトルの強度が変化する。そのため、ATRアクセサリーの「サンダードーム」で掛けられる最大荷重を掛けて密着度合をほぼ均一にして測定を行う。
 以上の条件で得られた赤外線吸収スペクトルについて、次のようにピーク処理をしてそれぞれの吸光度を求める。
 赤外吸収スペクトルから得られる698cm-1での吸光度D698は、ポリスチレン系樹脂に含まれるベンゼン環の面外変角振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、698cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しない。吸光度D698は、1280cm-1と860cm-1を結ぶ直線をベースラインとして、710cm-1と685cm-1間の最大吸光度を意味する。
 また、赤外吸収スペクトルから得られる1376cm-1での吸光度D1376は、ポリプロピレン系樹脂に含まれる-C-CH3炭化水素のCH3の対称変角振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、1376cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しない。吸光度D1376は、1414cm-1と1340cm-1を結ぶ直線をベースラインとして、1400cm-1と1350cm-1間の最大吸光度を意味する。
 吸光度比からポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を求める方法としては、ポリスチレン系樹脂とポリプロピレン系樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を作製し、各標準試料についてATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。得られた赤外吸収スペクトルのそれぞれから吸光度比を算出する。そして、縦軸に組成割合(標準試料中のポリスチレン系樹脂比率(質量%))を、横軸に吸光度比(D698/D1376)をとることで、検量線を描く。この検量線に基づいて、本発明の複合樹脂粒子の吸光度比から、本発明の複合樹脂粒子におけるポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を求める。
 なお、前記検量線は、下記の式に近似される。
・D698/D1376<2.35の場合、
  Y=-2.5119X1 2+22.966X1
・10.0>(D698/D1376)>2.35の場合、
  Y=27.591Ln(X1)+16.225
   X1=(D698/D1376)、Y=ポリスチレン系樹脂量(%)
<複合樹脂粒子の表面の吸光度比(ポリエチレン系樹脂の場合)>
 複合樹脂粒子の表面の吸光度比(D698/D2850)を測定する以外は、ポリプロピレン系樹脂と同様に行う。
 得られた赤外線吸収スペクトルについて、次のようにピーク処理をしてそれぞれの吸光度を求める。
 赤外吸収スペクトルから得られる698cm-1での吸光度D698は、スチレン系樹脂に含まれるベンゼン環の面外変角振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、698cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しない。吸光度D698は、2000cm-1と870cm-1を結ぶ直線をベースラインとして、710cm-1と685cm-1間の最大吸光度を意味する。
 また、赤外吸収スペクトルから得られる2850cm-1での吸光度D2850は、ポリエチレン系樹脂に含まれる-C-CH2炭化水素のCH2の対称変角振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、2850cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しない。吸光度D2850は、3125cm-1と2720cm-1を結ぶ直線をベースラインとして、2875cm-1と2800cm-1間の最大吸光度を意味する。
 吸光度比からポリスチレン系樹脂とポリエチレン系樹脂の組成割合を求める方法としては、ポリスチレン系樹脂とポリエチレン系樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を作製し、各標準試料についてATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。得られた赤外吸収スペクトルのそれぞれから吸光度比を算出する。そして、縦軸に組成割合(標準試料中のポリスチレン系樹脂比率(質量%))を、横軸に吸光度比(D698/D2850)をとることで、検量線を描く。この検量線に基づいて、本発明の複合樹脂粒子の吸光度比から、本発明の複合樹脂粒子におけるポリスチレン系樹脂とポリエチレン系樹脂の組成割合を求める。
 なお、前記検量線は、下記の式に近似される。
・D698/D2850<1.42の場合、
  Y=21.112X2
・1.42<(D698/D2850)<8.24の場合、
  Y=28.415Ln(X2)+20.072
   X2=(D698/D2850)、Y=ポリスチレン系樹脂量(%)
<複合樹脂粒子および発泡成形体の表層部および最表層部におけるポリスチレン系樹脂の分散状態>
 複合樹脂粒子および発泡成形体から切片を切り出し、その切片をエポキシ樹脂中に包埋後、ウルトラミクロトーム(ライカマイクロシステムズ社製、商品名:LEICA ULTRACUT UCT)を用いて超薄切片(厚み70nm)を作成する。
 次いで、超薄切片を透過型電子顕微鏡(TEM、株式会社日立ハイテクノロジーズ製、型式:H-7600)にて倍率5000倍で写真撮影を行い、複合樹脂粒子および発泡成形体の表面から0.2μmを超え1.0μmまでの範囲の表層部および表面から0.2μmまでの範囲の最表層部の構造を観察する。染色剤は四酸化ルテニウムを用いる。
 観察において、複合樹脂粒子および発泡成形体中に分散されたポリスチレン系樹脂の分散径および分散長径は、次の方法により確認した。すなわち、例えば、図1(a)を粒子の面積がほぼ同一になるようにトレースして、分散径を1つずつ測定することで、複合樹脂粒子の表層部の粒子径(分散径)が0.3μm以下、最表層部の粒子径(分散径)の範囲が0.3~1.5μmであること、ならびに発泡成形体の表層部の粒子長径(分散長径)が0.5μm以下、最表層部の粒子長径(分散長径)の範囲が0.5~2.5μmであることを確認した。
<加熱寸法変化率>
 JIS K 6767:1999「発泡プラスチック-ポリエチレン-試験方法」に記載のB法にて加熱寸法変化率を測定する。
 得られた密度0.025g/cm3の発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から試験片150×150×30mm(厚さ)を切り出し、その中央部に縦および横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、80℃の熱風循環式乾燥機の中に168時間置いた後に取り出し、23℃±2℃、湿度50%±5%の場所に1時間放置後、縦および横線の寸法を下記式により加熱寸法変化率S(%)を算出する。
   S=(L1-L0)/L0×100
 式中、Sは加熱寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
 加熱寸法変化率S(収縮率)が1.0%以下であれば良好とする。
<対金型寸法変化率>
 予備発泡後7日目および30日目に同条件で成形する。金型の所定部分の寸法を測定し、その所定部分に対応する発泡成形体の寸法を測定し、次式(1)(2)によりそれぞれの寸法変化率を求める。
   予備発泡後7日目の対金型寸法変化率C7(%)
      =(金型寸法-成形体寸法)÷金型寸法×100   (1)
   予備発泡後30日目の対金型寸法変化率C30(%)
      =(金型寸法-成形体寸法)÷金型寸法×100   (2)
 得られた対金型寸法変化率の差C30-C7を、下記の基準に基づいて評価する。
  ○:C30-C7が0.3%未満
  ×:C30-C7が0.3%以上
<耐薬品性>
 発泡成形体から縦100mm×横100mm×厚み20mmの平面長方形状の板状試験片を3枚切り出し、23±2℃、湿度50±5%の条件で24時間放置する。なお、試験片の上面全面が発泡成形体の表面から形成されるように試験片を発泡成形体から切り出す。
 次に、3枚の試験片の上面毎に別々の薬品(ガソリン、灯油、ジブチルフタレート(DBP))1gを均一に塗布し、23±2℃、湿度50±5%の条件で60分放置する。その後、試験片の上面から薬品を拭き取り、試験片の上面を目視観察し、下記の基準に基づいて評価する。
  ○:良好   変化なし
  △:やや悪い 表面軟化
  ×:悪い   表面陥没(収縮)
<融着率>
 発泡成形体から縦400mm×横300mm×厚み30mmの平板形状の板状試験片を切り出し、その表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約5mmの切り込み線を入れた後、この切り込み線に沿って発泡成形体を手で二分割する。そして、二分割された発泡成形体の破断面の発泡粒子について、100~150個の任意の範囲について発泡粒子内で破断している発泡粒子の数(a)と、発泡粒子同士の界面で破断している発泡粒子数(b)を計数し、下記式により融着率F(%)を算出する。
   F=(a)/[(a)+(b)]×100
 融着率Fが80%以上であれば良好とする。
<発泡成形体の曲げ強度>
 発泡成形体の曲げ強度(平均最大曲げ強度)をJIS K 7221-2:2006「硬質発泡プラスチック」に記載の方法に準拠して測定する。
 発泡成形体から縦25mm×横130mm×厚さ20mm(片面スキン下側)の直方体形状の試験片を5個切り出し、23℃±2℃、湿度50%±5%の条件で24時間放置する。この試験片を曲げ強度測定器(オリエンテック株式会社製、型式:UCT-10T)を用いて、下記の測定条件下で曲げ強度を測定する。
(測定条件)
  試験速度:10mm/分
  支点間距離:100mm
  たわみ量:50mm
  加圧くさび:5R
  支持台:5R
 得られた結果の相加平均を曲げ強度とし、下記の基準に基づいて評価する。
  ○:曲げ強度が0.3MPa以上
  ×:曲げ強度が0.3MPa未満
<発泡成形体の密度>
 発泡成形体の密度は、JIS A 9511:1995「発泡プラスチック保温板」記載の方法で測定する。
 発泡成形後に得られる発泡成形体の体積Va(cm3)と、その質量W(g)を測定し、下記式により発泡成形体の密度(g/cm3)を求める。
   発泡成形体の密度(g/cm3)=W/Va
(実施例1)
 ポリプロピレン系樹脂(株式会社プライムポリマー製、商品名:F-744NP、融点:140℃)17.88kg、カーボンブラックマスターバッチ(大日精化工業株式会社製、商品名:PPRM-10H381、カーボンブラックコンテント45質量%)2.22kgを押出機に供給し、溶融混練し水中カット方式により造粒して、楕円球状(卵状)のカーボンブラック5.0質量%含有ポリプロピレン系樹脂粒子を得た。得られたポリプロピレン系樹脂粒子の平均質量は約0.6mgであった。
 次に、撹拌機付100Lオートクレーブに、得られたポリプロピレン系樹脂粒子16kgを入れ、水性媒体として純水40kg、分散剤としてピロリン酸マグネシウム400g、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム10gを加え、撹拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水性懸濁液を得た。これ以後の攪拌所要動力が0.20kw/m3を維持するように回転数を調整した。
 次に、得られた水性懸濁液中に、重合開始剤としてジクミルパーオキサイド14gを溶解させたスチレン単量体6.72kgを30分掛けて滴下した。滴下後30分間保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
 次に、反応系の温度を120℃に昇温して1時間保持し、ポリプロピレン系樹脂粒子の内部にスチレン単量体を吸収させながら重合させ、ポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させた。
 次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より15℃低い125℃にして、この反応液中に、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム60gを加えた後、重合開始剤としてジクミルパーオキサイド72gを溶解させたスチレン単量体17.28kgを4時間掛けて滴下し、スチレン単量体をポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)させた。
 滴下終了後、反応系の温度を125℃で1時間保持し、さらに140℃に昇温して3時間保持して重合を完結させた(ポリプロピレン系樹脂粒子とスチレン系樹脂との質量比:4/6)。
 次に、反応液を常温(30℃)まで冷却させ、約40kgの複合樹脂粒子を100Lオートクレーブから取り出し、20%塩酸を400mL加え、無機分散剤を除去した。
 そして、得られた複合樹脂粒子を用いて、その表面の吸光度比ならびに複合樹脂粒子の表層部および最表層部におけるポリスチレン系樹脂の分散状態を測定した。
 次に、撹拌機付5Lオートクレーブに、取り出し後の複合樹脂粒子2000gと水2000g、ドデシルベンゼンスルホン酸ナトリウム2.0gを再び投入し、発泡剤としてブタン520mL(300g)を注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
 その後、常温(30℃)まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性複合樹脂粒子2000gを得た。
 次に、得られた発泡性複合樹脂粒子を嵩密度0.025g/cm3に予備発泡させて、予備発泡粒子2000gを得た。
 次に、得られた予備発泡粒子を1日間室温(23℃)に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型のキャビティ内に予備発泡粒子を充填し、成形型に0.18MPaの水蒸気を20秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
 この成形条件により外観、融着とも良好な発泡成形体を得た。得られた発泡成形体の密度は0.025g/cm3であった。
 そして、得られた発泡成形体を用いて、その表層部および最表層部におけるポリスチレン系樹脂の分散状態、加熱寸法変化率、耐薬品性、融着率ならびに曲げ強度を測定した。
 また、発泡粒ライフの評価については、予備発泡後7日目および30日目に同条件で成形した発泡成形体を用い、対金型寸法変化率を測定した。
 図1は、実施例1の複合樹脂粒子の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
 図1に基づいて各粒子径を1つずつ測定することで、複合樹脂粒子の表面から0.2μmを超え1.0μmまでの表層部には、ポリプロピレン系樹脂中に粒子径0.2μm以下のポリスチレン系樹脂が分散された状態であり、また複合樹脂粒子の表面から0.2μmまでの最表層部には、ポリプロピレン系樹脂中に粒子長径最大値が1.0μmのポリスチレン系樹脂が分散された状態であることを確認した。
 図2は、実施例1の発泡成形体の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
 図2に基づいて各粒子径を1つずつ測定することで、発泡成形体の表面0.2μmを超え1.0μmまでの表層部には、ポリプロピレン系樹脂中に粒子長径0.2μm以下のポリスチレン系樹脂が分散された状態であり、また発泡成形体の表面から0.2μmまでの最表層部には、ポリプロピレン系樹脂中に粒子長径最大値1.5μmのポリスチレン系樹脂が分散された状態であることを確認した。
(実施例2)
 第1の重合で、反応系の保持条件を温度130℃、1時間にすること以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
(実施例3)
 カーボンブラックを使用しなかったこと、ポリプロピレン系樹脂粒子16kgを12kgに、第1の重合におけるスチレン単量体6.72kgを5.04kg、ジクミルパーオキサイド14gを10gに、第2の重合におけるスチレン単量体17.28kgを22.96kg、ジクミルパーオキサイド72gを84gにし、(ポリプロピレン系樹脂粒子とスチレン系樹脂との質量比:3/7)にすること以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
(実施例4)
 第1の重合で、重合開始剤としてジクミルパーオキサイド14gをジ-t-ブチルパーオキサイド14gに、反応系の保持条件を温度120℃、1時間を温度130℃、1時間にすること以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
(実施例5)
 ポリプロピレン系樹脂粒子16kgを20kgに、第1の重合におけるスチレン単量体6.72kgを8.40kg、ジクミルパーオキサイド14gを17gに、第2の重合におけるスチレン単量体17.28kgを11.60kg、ジクミルパーオキサイド72gを60gにし、(ポリプロピレン系樹脂粒子とスチレン系樹脂との質量比:1/1)にすること以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
(実施例6)
 ポリプロピレン系樹脂粒子16kgを8kgに、第1の重合におけるスチレン単量体6.72kgを3.36kg、ジクミルパーオキサイド14gを7gに、第2の重合におけるスチレン単量体17.28kgを28.64kg、ジクミルパーオキサイド72gを96gにし、(ポリプロピレン系樹脂粒子とスチレン系樹脂との質量比:2/8)にすること以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
(比較例1)
 ポリプロピレン系樹脂の代わりに、エチレン-酢酸ビニル共重合体(EVA、日本ポリエチレン製、商品名:LV-115、融点:105℃)を用いること以外は実施例1と同様にして、ポリエチレン系樹脂粒子を得た。得られたポリエチレン系樹脂粒子の平均質量は約0.4mgであった。
 次に、ポリプロピレン系樹脂粒子の代わりに、ポリエチレン系樹脂粒子を用い、攪拌所要動力を1.05kg/m3にしたこと以外は実施例1と同様にして、水性懸濁液を得た。
 次に、実施例1と同様にして、得られた水性懸濁液中に、重合開始剤としてジクミルパーオキサイド14gを溶解させたスチレン単量体6.72kgを30分掛けて滴下した。
滴下後30分間保持し、ポリエチレン系樹脂粒子にスチレン単量体を吸収させた。
 次に、反応系の温度を130℃に昇温して2時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。
 次に、第1の重合の反応液をポリエチレン系樹脂粒子の融点より15℃低い90℃にして、この反応液中に、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム60gを加えた後、重合開始剤としてジクミルパーオキサイド72gを溶解させたスチレン単量体17.28kgを3時間掛けて滴下し、スチレン単量体をポリエチレン系樹脂粒子に吸収させながら重合(第2の重合)させた。
 滴下終了後、反応系の温度を140℃に昇温して3時間保持して重合を完結させた(ポリエチレン系樹脂粒子とスチレン系樹脂との質量比:4/6)。
 以降は、成形型に0.10MPaの水蒸気を20秒間導入して加熱したこと以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
(比較例2)
 第1の重合において反応系を120℃で1時間保持しないこと、以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
 図3は、比較例2の複合樹脂粒子の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
 図4は、比較例2の発泡成形体の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
(比較例3)
 第1の重合で、反応系の保持条件を120℃に昇温して1時間保持から温度135℃に昇温して1時間保持すること以外は、実施例1と同様にして発泡成形体を得て、途中の複合樹脂粒子と共に発泡成形体を評価した。
 図5は、比較例3の複合樹脂粒子の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
 図6は、比較例3の発泡成形体の(a)最表層部および表層部ならびに(b)内部のTEM画像である。
 実施例1~6および比較例1~3の結果を表1および2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2の結果から、実施例1~6の複合樹脂粒子は、耐薬品性や耐熱性、曲げ強度に優れ、省エネルギー成形が可能で発泡成形性に優れることがわかる。
 また、表2の結果から、実施例1~6の複合樹脂粒子は、発泡剤を含ませたときに発泡粒ライフが良好であることがわかる。

Claims (5)

  1.  ポリプロピレン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子であり、
     前記ポリスチレン系樹脂の含有量が、ポリプロピレン系樹脂100質量部に対して100~400質量部であり、
     前記複合樹脂粒子の表面から0.2μmを超え1.0μmまでの表層部は、前記ポリプロピレン系樹脂中に、粒子径0.3μm以下のポリスチレン系樹脂が分散された状態であり、
     前記複合樹脂粒子の表面から0.2μmまでの最表層部は、前記ポリプロピレン系樹脂中に、粒子径0.3~1.5μmのポリスチレン系樹脂が分散された状態であり、
     前記複合樹脂粒子の表面の赤外線吸収スペクトルから得られるポリスチレン系樹脂由来の698cm-1の吸光度(D698)とポリプロピレン系樹脂由来の1376cm-1の吸光度(D1376)との吸光度比(D698/D1376)が、0.5~2.5である複合樹脂粒子。
  2.  前記複合樹脂粒子が、着色剤としてカーボンブラックを含有する請求項1に記載の複合樹脂粒子。
  3.  請求項1に記載の複合樹脂粒子と発泡剤とを含む発泡性複合樹脂粒子。
  4.  請求項3に記載の発泡性複合樹脂粒子を発泡させて得られた予備発泡粒子。
  5.  請求項4に記載の予備発泡粒子を発泡成形させて得られた発泡成形体であり、
     前記発泡成形体の表面から0.2μmを超え1.0μmまでの表層部は、前記ポリプロピレン系樹脂中に、粒子長径0.5μm以下のポリスチレン系樹脂が分散された状態であり、
     前記発泡成形体の表面から0.2μmまでの最表層部は、前記ポリプロピレン系樹脂中に、粒子長径0.5~2.5μmのポリスチレン系樹脂が分散された状態である発泡成形体。
PCT/JP2014/059224 2013-03-29 2014-03-28 複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体 WO2014157647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14776551.5A EP2980145B1 (en) 2013-03-29 2014-03-28 Composite resin particles and foamable composite resin particles, pre-foamed resin particles, and molded foam body using same
JP2015508777A JP5918905B2 (ja) 2013-03-29 2014-03-28 複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体
CN201480019158.1A CN105073861B (zh) 2013-03-29 2014-03-28 复合树脂颗粒及其发泡性复合树脂颗粒、预发泡颗粒和发泡成型体
US14/778,799 US20160060444A1 (en) 2013-03-29 2014-03-28 Composite resin particles, and foamable composite resin particles, pre-foamed resin particles, and molded foam body using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073416 2013-03-29
JP2013073416 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157647A1 true WO2014157647A1 (ja) 2014-10-02

Family

ID=51624603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059224 WO2014157647A1 (ja) 2013-03-29 2014-03-28 複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体

Country Status (5)

Country Link
US (1) US20160060444A1 (ja)
EP (1) EP2980145B1 (ja)
JP (1) JP5918905B2 (ja)
CN (1) CN105073861B (ja)
WO (1) WO2014157647A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190991A (ja) * 2015-03-31 2016-11-10 積水化成品工業株式会社 シード重合用種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び複合樹脂発泡成形体
AU2015235182B2 (en) * 2014-03-27 2016-12-08 Jsp Corporation Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
WO2017056743A1 (ja) * 2015-09-29 2017-04-06 積水化成品工業株式会社 スチレン改質ポリオレフィン系樹脂粒子とその製造方法、発泡性粒子、発泡粒子および発泡成形体
JP2017066359A (ja) * 2015-09-29 2017-04-06 積水化成品工業株式会社 スチレン改質ポリオレフィン系樹脂粒子とその製造方法、発泡性粒子、発泡粒子および発泡成形体
JPWO2017169260A1 (ja) * 2016-03-31 2019-02-07 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体、ならびにその製造方法
JP2021063194A (ja) * 2019-10-16 2021-04-22 株式会社ジェイエスピー ポリプロピレン系樹脂着色発泡粒子、ポリプロピレン系樹脂着色発泡粒子成形体及び該ポリプロピレン系樹脂着色発泡粒子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415042B1 (en) * 2016-02-08 2021-04-07 Sekisui Kasei Co., Ltd. Vehicle seat member, vehicle seat, and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302837A (ja) * 2000-04-24 2001-10-31 Jsp Corp 成形用発泡粒子
WO2007099833A1 (ja) 2006-02-28 2007-09-07 Sekisui Plastics Co., Ltd. スチレン改質ポリプロピレン系樹脂粒子、発泡性スチレン改質ポリプロピレン系樹脂粒子、スチレン改質ポリプロピレン系樹脂発泡粒子、スチレン改質ポリプロピレン系樹脂発泡成形体及びそれらの製造方法
WO2008117504A1 (ja) 2007-03-27 2008-10-02 Sekisui Plastics Co., Ltd. カーボン含有改質ポリスチレン系樹脂粒子、発泡性カーボン含有改質ポリスチレン系樹脂粒子、カーボン含有改質ポリスチレン系樹脂発泡粒子、カーボン含有改質ポリスチレン系樹脂発泡成形体およびこれらの製造方法
JP2010222546A (ja) * 2009-03-25 2010-10-07 Sekisui Plastics Co Ltd カーボン含有改質ポリスチレン系樹脂発泡粒子とその製造方法、カーボン含有改質ポリスチレン系樹脂発泡成形体とその製造方法
JP2010270284A (ja) 2009-05-25 2010-12-02 Kaneka Corp スチレン改質ポリエチレン系樹脂発泡成形体
JP2011074152A (ja) * 2009-09-29 2011-04-14 Sekisui Plastics Co Ltd 予備発泡粒子及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004024415D1 (de) * 2003-08-29 2010-01-14 Sekisui Plastics Vorexpandiertes teilchen aus olefinmodifiziertem poylstyrolharz, herstellungsverfahren dafür und formschaumstoff
CN101636423B (zh) * 2007-03-27 2013-03-27 积水化成品工业株式会社 含碳改性聚苯乙烯系树脂颗粒、发泡性含碳改性聚苯乙烯系树脂颗粒、含碳改性聚苯乙烯系树脂发泡颗粒、含碳改性聚苯乙烯系树脂发泡成形体以及它们的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302837A (ja) * 2000-04-24 2001-10-31 Jsp Corp 成形用発泡粒子
WO2007099833A1 (ja) 2006-02-28 2007-09-07 Sekisui Plastics Co., Ltd. スチレン改質ポリプロピレン系樹脂粒子、発泡性スチレン改質ポリプロピレン系樹脂粒子、スチレン改質ポリプロピレン系樹脂発泡粒子、スチレン改質ポリプロピレン系樹脂発泡成形体及びそれらの製造方法
WO2008117504A1 (ja) 2007-03-27 2008-10-02 Sekisui Plastics Co., Ltd. カーボン含有改質ポリスチレン系樹脂粒子、発泡性カーボン含有改質ポリスチレン系樹脂粒子、カーボン含有改質ポリスチレン系樹脂発泡粒子、カーボン含有改質ポリスチレン系樹脂発泡成形体およびこれらの製造方法
JP2010222546A (ja) * 2009-03-25 2010-10-07 Sekisui Plastics Co Ltd カーボン含有改質ポリスチレン系樹脂発泡粒子とその製造方法、カーボン含有改質ポリスチレン系樹脂発泡成形体とその製造方法
JP2010270284A (ja) 2009-05-25 2010-12-02 Kaneka Corp スチレン改質ポリエチレン系樹脂発泡成形体
JP2011074152A (ja) * 2009-09-29 2011-04-14 Sekisui Plastics Co Ltd 予備発泡粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preformed Cellular Plastics Thermal Insulation Materials", JIS A 9511, 1995

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015235182B2 (en) * 2014-03-27 2016-12-08 Jsp Corporation Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
JP2016190991A (ja) * 2015-03-31 2016-11-10 積水化成品工業株式会社 シード重合用種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び複合樹脂発泡成形体
WO2017056743A1 (ja) * 2015-09-29 2017-04-06 積水化成品工業株式会社 スチレン改質ポリオレフィン系樹脂粒子とその製造方法、発泡性粒子、発泡粒子および発泡成形体
JP2017066359A (ja) * 2015-09-29 2017-04-06 積水化成品工業株式会社 スチレン改質ポリオレフィン系樹脂粒子とその製造方法、発泡性粒子、発泡粒子および発泡成形体
JPWO2017169260A1 (ja) * 2016-03-31 2019-02-07 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体、ならびにその製造方法
JP2021063194A (ja) * 2019-10-16 2021-04-22 株式会社ジェイエスピー ポリプロピレン系樹脂着色発泡粒子、ポリプロピレン系樹脂着色発泡粒子成形体及び該ポリプロピレン系樹脂着色発泡粒子の製造方法
JP7307655B2 (ja) 2019-10-16 2023-07-12 株式会社ジェイエスピー ポリプロピレン系樹脂着色発泡粒子、ポリプロピレン系樹脂着色発泡粒子成形体及び該ポリプロピレン系樹脂着色発泡粒子の製造方法

Also Published As

Publication number Publication date
EP2980145A1 (en) 2016-02-03
EP2980145A4 (en) 2016-10-05
CN105073861B (zh) 2018-01-02
US20160060444A1 (en) 2016-03-03
JPWO2014157647A1 (ja) 2017-02-16
JP5918905B2 (ja) 2016-05-18
EP2980145B1 (en) 2018-02-28
CN105073861A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5918905B2 (ja) 複合樹脂粒子ならびにその発泡性複合樹脂粒子、予備発泡粒子および発泡成形体
JP5138254B2 (ja) 自己消火性カーボン含有改質ポリスチレン系樹脂粒子、発泡性自己消火性カーボン含有改質ポリスチレン系樹脂粒子、自己消火性カーボン含有改質ポリスチレン系樹脂発泡粒子、自己消火性カーボン含有改質ポリスチレン系樹脂発泡成形体およびこれらの製造方法
JP6170703B2 (ja) ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体
JP5254103B2 (ja) カーボン含有改質ポリスチレン系樹脂発泡粒子とその製造方法、カーボン含有改質ポリスチレン系樹脂発泡成形体とその製造方法
TWI391435B (zh) 含碳之改質聚苯乙烯系樹脂粒子、發泡性之含碳之改質聚苯乙烯系樹脂粒子、含碳之改質聚苯乙烯系樹脂發泡粒子、含碳之改質聚苯乙烯系樹脂發泡成形體,以及此等之製造方法
JP5345329B2 (ja) カーボン含有改質ポリスチレン系樹脂粒子、発泡性カーボン含有改質ポリスチレン系樹脂粒子、カーボン含有改質ポリスチレン系樹脂発泡粒子、カーボン含有改質ポリスチレン系樹脂発泡成形体およびこれらの製造方法
JP6251409B2 (ja) 複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子、発泡成形体及び自動車内装材
JP5837450B2 (ja) 発泡性改質樹脂粒子、予備発泡粒子及び発泡成形体
WO2016136460A1 (ja) 複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体
JP6081267B2 (ja) ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体
WO2016047526A1 (ja) 発泡性スチレン複合ポリオレフィン系樹脂粒子とその製造方法、予備発泡粒子および発泡成形体
JP5690632B2 (ja) シード重合用ポリプロピレン系樹脂粒子、その製造方法、複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体
JP2013117037A (ja) 発泡成形体
JP6404164B2 (ja) シード重合用種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び複合樹脂発泡成形体
JP5337442B2 (ja) 発泡成形体、およびその製造方法
JP6031614B2 (ja) カーボンブラック含有複合樹脂予備発泡粒子とその製造方法及び発泡成形体
JP6262114B2 (ja) 複合樹脂粒子の製造方法
JP6228610B2 (ja) ポリスチレン系複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子及び発泡成形体の製造方法
JP6214448B2 (ja) カーボンブラック含有複合樹脂粒子の製造方法
JP2017179243A (ja) カーボンブラック含有複合樹脂粒子、発泡性粒子、発泡粒子および発泡成形体
WO2017056743A1 (ja) スチレン改質ポリオレフィン系樹脂粒子とその製造方法、発泡性粒子、発泡粒子および発泡成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019158.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508777

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14778799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014776551

Country of ref document: EP