WO2014157507A1 - ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法 - Google Patents

ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法 Download PDF

Info

Publication number
WO2014157507A1
WO2014157507A1 PCT/JP2014/058831 JP2014058831W WO2014157507A1 WO 2014157507 A1 WO2014157507 A1 WO 2014157507A1 JP 2014058831 W JP2014058831 W JP 2014058831W WO 2014157507 A1 WO2014157507 A1 WO 2014157507A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
polylactic acid
resin
acid
based polyester
Prior art date
Application number
PCT/JP2014/058831
Other languages
English (en)
French (fr)
Inventor
奈穂子 小田
田中 秀樹
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2015508690A priority Critical patent/JP6319300B2/ja
Publication of WO2014157507A1 publication Critical patent/WO2014157507A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • C09D11/104Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds

Definitions

  • the present invention has a high degree of biomass, and is described in ISO 14855 (JIS K6953) “How to determine the degree of aerobic ultimate biodegradation and disintegration under controlled composting conditions”, except that the temperature condition is 28 ⁇ 2 ° C.
  • the biodegradable polylactic acid-based polyester resin that becomes 90% or more by the 365th day, the resin varnish composition containing the same, the aqueous dispersion resin composition, the adhesive composition, the ink , A laminate formed by an adhesive / ink, a packaging material, and a method for producing an aqueous dispersion.
  • biodegradable resins are attracting attention as “environmentally friendly materials” that are expected to reduce environmental impact.
  • Various biodegradable resins such as biodegradable plant materials that have been made into biodegradable plastics by chemical synthesis, or those that use microorganisms or biodegradable polymer materials produced by microorganisms, etc. Is disclosed.
  • polylactic acid-based resins are biodegradable and can be decomposed into water and carbon dioxide within several years in soil and seawater, and their use to the environment is relatively low when released into the environment.
  • the polylactic acid-based resin is a resin mainly composed of plant-derived components that can be produced using lactic acid and / or lactide as raw materials, which can be produced using plants such as corn and potato as raw materials.
  • Patent Documents 1 to 5 examples of the biodegradable resin include Patent Documents 1 to 5.
  • Patent Document 1 describes a polyvinyl alcohol-based polymerization composition exhibiting biodegradability. It is shown that a biodegradable polyvinyl alcohol polymer composition can be obtained by mixing a polyvinyl alcohol polymer with a degrading enzyme or a microorganism.
  • Patent Document 2 sticky biodegradable natural materials can be obtained by adding, culturing, and collecting microorganisms belonging to the genus Bacillus, using starch as a culture raw material, and they have the characteristics of polypropylene. It has been shown.
  • Patent Document 3 discloses a foam and a molded body using polylactic acid as a biodegradable polymer.
  • Patent Document 4 describes a biodegradable polyester-based water-dispersed adhesive. It has been shown that a polyisocyanate compound is added to an aqueous dispersion of biodegradable polyester in order to exhibit adhesiveness.
  • the degrading enzyme is always in contact with the resin, and the decomposition proceeds from the contact portion. Furthermore, since it is sensitive to moisture, it is recommended to be used in a dry environment. Since its range of use and applications are limited, it cannot be used as a general-purpose product.
  • the invention disclosed in Patent Document 2 is composed of plant-derived components and exhibits biodegradability, but there is a problem in stable production at an industrial level.
  • lactic acid which can be supplied in large quantities and at low cost, is used as a raw material, but in order to exhibit biodegradability, a high temperature of 58 ° C. is required, In order to actually proceed biodegradation, a large heating facility such as a heater is required, and there is room for improvement from the viewpoint of expanding the use of biodegradable materials.
  • the present invention has been made against the background of the problems of the prior art. That is, the problem to be solved by the present invention is a polylactic acid-based polyester resin that exhibits biodegradability at 30 ° C. or lower, a resin solution containing the resin, an aqueous dispersion resin composition, an adhesive composition thereof, an ink
  • Another object of the present invention is to provide a laminate, a packaging material, and a method for producing an aqueous dispersion formed of an adhesive / water-based ink.
  • the present invention ⁇ 1> A random copolymer mainly composed of one or both of D-lactic acid and ⁇ -6-hydroxycaproic acid and L-lactic acid, wherein the L-lactic acid content is 90% by weight or less, and the acid value is 300 to 2,500 eq / 10 6 g, number average molecular weight 2,000 to 50,000, Tg ⁇ 50 to 50 ° C., lactic acid content 40% by weight or more, and ISO 14855 (JISK6953) “Controlled Composting Conditions The degree of biodegradation at a temperature condition of 28 ⁇ 2 ° C.
  • a biodegradable polylactic acid-based polyester resin is 90% or more by the 365th day described in “How to determine the degree of aerobic ultimate biodegradation and decay”.
  • a biodegradable polylactic acid-based polyester resin ⁇ 2> A polylactic acid polyester resin aqueous dispersion containing the polylactic acid polyester resin of ⁇ 1> and water.
  • a polylactic acid-based polyester having a step of obtaining a polylactic acid-based polyester resin aqueous dispersion by mixing the polylactic acid-based polyester resin described in ⁇ 1> and water without adding a surfactant and an organic solvent. Manufacturing method of resin water dispersion.
  • a resin composition comprising the polylactic acid-based polyester resin according to ⁇ 1> and a curing agent having reactivity with a carboxyl group.
  • ⁇ 8> The resin composition according to claim 7, wherein the curing agent is one or more selected from the group consisting of a polyvalent epoxy compound, an oxazoline resin, a carbodiimide resin, and a polyvalent metal salt.
  • a resin composition comprising the polylactic acid-based polyester resin according to ⁇ 1> and a curing agent having reactivity with a hydroxyl group.
  • An adhesive comprising the resin composition according to any one of ⁇ 7> to ⁇ 10>.
  • ⁇ 12> A paint comprising the resin composition according to any one of ⁇ 7> to ⁇ 10>.
  • ⁇ 13> An ink comprising the resin composition according to any one of ⁇ 7> to ⁇ 10> and a color material.
  • a laminate comprising a layer (A layer) comprising the polylactic acid-based polyester resin according to ⁇ 1> and a layer (B layer) selected from the group consisting of a film, a sheet, a woven fabric, a nonwoven fabric and paper.
  • B layer a layer selected from the group consisting of a film, a sheet, a woven fabric, a nonwoven fabric and paper.
  • a packaging material having the laminate according to ⁇ 14> or ⁇ 15> as a constituent element.
  • a sustained release biodegradable coating agent comprising the resin composition according to any one of ⁇ 7> to ⁇ 10>.
  • ⁇ 18> A sustained-release biodegradable coated body in which a component to be coated is coated with the biodegradable coating agent according to ⁇ 17>.
  • ⁇ 19> The sustained-release biodegradable coating according to ⁇ 18>, wherein the component to be coated has one or more functions of insecticidal, herbicidal, sterilizing, antifungal, biological attraction and biological repellent. body.
  • the sustained-release biodegradable coating according to ⁇ 18>, wherein the component to be coated has one or more functions of biological activity, growth promotion, and nutritional supplementation for living organisms.
  • the polylactic acid-based polyester resin of the present invention contains a polylactic acid segment at a high concentration, the degree of biomass is high and biodegradation is good even at low temperatures.
  • the polylactic acid-based polyester resin of the present invention can be an aqueous dispersion, or can be dissolved in an organic solvent to form a polylactic acid-based polyester resin varnish.
  • the polylactic acid-type polyester resin aqueous dispersion of this invention can be prepared without using an emulsifier, it is excellent in adhesiveness.
  • an adhesive layer and ink having excellent adhesion and water resistance can be easily obtained. Can do.
  • a laminated body with a high biomass degree can be obtained by combining various biomass materials and the adhesive and / or ink of the present invention.
  • the polylactic acid-based polyester resin of the present invention is a random copolymer mainly composed of one or both of D-lactic acid and ⁇ -6-hydroxycaproic acid and L-lactic acid, and the content of L-lactic acid residues Is preferably 90% by weight or less, more preferably 85% by weight or less, and still more preferably 80% by weight or less.
  • L-lactic acid residues Is preferably 90% by weight or less, more preferably 85% by weight or less, and still more preferably 80% by weight or less.
  • the L-lactic acid content is too high, crystallinity appears remarkably, and biodegradability tends to be poor.
  • the L-lactic acid content exceeds 90% by weight when used as an adhesive, crystallization progresses with time and a significant decrease in adhesive strength may be observed. Moreover, it becomes difficult to make an aqueous dispersion.
  • the acid value of the polylactic acid-based polyester resin of the present invention is 300 eq / ton or more and 2500 eq / ton or less, preferably 400 eq / ton or more and 2300 eq / ton or less, more preferably 500 eq / ton or more and 2100 eq / ton or less.
  • the acid value of the polylactic acid-based polyester resin of the present invention is mainly derived from a large number of carboxyl groups contained at the molecular chain terminals, attracts moisture to the resin due to the presence of the acid value, and the pH tends to be acidic. Thus, there is an effect of promoting hydrolysis that triggers biodegradation.
  • the hydrolysis of the resin tends not to proceed.
  • hydrolysis tends to be promoted by increasing the resin acid value.
  • the acid value is greater than 2500 eq / ton, the water absorption of the resin increases and the resin is easily hydrolyzed even in a solid resin state. There is a tendency for stability to deteriorate. Moreover, the water resistance of the cured coating film using this resin also tends to deteriorate.
  • the number average molecular weight of the polylactic acid-based polyester resin of the present invention is preferably from 2,000 to 50,000, more preferably from 3,000 to 45,000, still more preferably from 4,000 to 40,000. It is as follows. If the number average molecular weight is too low, the cohesive force of the resin tends to be small and the adhesiveness tends to be poor. On the other hand, if the number average molecular weight is too high, decomposition by microorganisms becomes difficult and the biodegradation rate tends to be slow.
  • the Tg of the polylactic acid-based polyester resin of the present invention is preferably ⁇ 50 ° C. or higher and 50 ° C. or lower, more preferably ⁇ 40 ° C. or higher and 45 ° C. or lower, and further preferably ⁇ 30 ° C. or higher and 40 ° C. or lower.
  • Tg is too high, there is no flexibility of the resin, and decomposition by microorganisms becomes difficult and the biodegradation rate tends to be slow.
  • the Tg is too low, the L-lactic acid content is inevitably low.
  • the lactic acid content of the polylactic acid-based polyester resin of the present invention is preferably 40% by weight or more, more preferably 50% by weight or more, and still more preferably 60% by weight or more. If it is less than 40% by weight, it is difficult to say that the degree of biomass is low and the environment has a large effect of reducing carbon dioxide emissions and has a low load on the environment.
  • Equation (4) (5) Z— (O— (CO—Y—O) q —X) r (4)
  • Z is a residue of a compound having r hydroxyl groups
  • Y is —CH (CH 3 ) —, or —CH (CH 3 ) — and a mixture of a linear or branched alkylene group having 2 to 10 carbon atoms
  • X, Y and Z may be a single species or a mixture of a plurality of species.
  • q and r are positive integers, the average value of q is 5 or more, and the average value of r is 1 or more and 15 or less.
  • the polylactic acid-based polyester resin represented by the formula (4) is obtained by, for example, ring-opening addition polymerization of a cyclic compound having lactic acid such as lactide as a constituent using alcohol as an initiator, and then adding a polybasic acid to a terminal hydroxyl group. It can manufacture by making it react and introduce
  • the polylactic acid-based polyester resin represented by the formula (4) is one or two selected from a cyclic compound having a hydroxycarboxylic acid other than lactic acid such as glycolic acid as a constituent and a lactone such as ⁇ -caprolactone.
  • Examples of the compound having r hydroxyl groups include alcohol and derivatives thereof. Examples thereof include 1,3-propylene glycol, neopentyl glycol, polyethylene glycol, trimethylolpropane, glycerin, pentaerythritol, diglycerin, polyglycerin, xylitol, sorbitol, glucose, fructose, mannose and the like. Among these, glycerin, pentaerythritol, xylitol, sorbitol, glucose, fructose, and mannose are preferable because they are biomass raw materials.
  • the Y is a mixture of —CH (CH 3 ) — or —CH (CH 3 ) — and a linear or branched alkylene group having 2 to 10 carbon atoms.
  • the — (CO—Y—O) q — can be easily obtained by subjecting lactides or a mixture of lactides and lactones to ring-opening addition polymerization using a polyol as an initiator.
  • lactides for example, lactide (a cyclic dimer of lactic acid), glycolide (a cyclic dimer of glycolic acid) and the like can be used.
  • lactones examples include ⁇ -propionlactone, ⁇ -butyrolactone, pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • these compounds do not necessarily need to be used alone, and a plurality of types can be copolymerized.
  • q in the — (CO—YO) q — is a positive integer, and the average value of q is 5 or more, more preferably 7 or more, and still more preferably 10 or more. is there.
  • the average value of q is preferably 50 or less. If the average value of q is too high, the number average molecular weight of the resin is increased, and the biodegradation rate by microorganisms may be reduced.
  • the — (CO—YO) q — is typically a ring-opening addition polymerization of D-lactide and / or ⁇ -caprolactone and L-lactide.
  • the main component may be a random copolymer obtained by the above process, and other components may be copolymerized.
  • a random copolymer mainly composed of one or both of D-lactide and ⁇ -caprolactone and L-lactide can be prepared, for example, using a polyol as an initiator in the presence or absence of a conventionally known ring-opening polymerization catalyst.
  • D-lactide, ⁇ -caprolactone, or both, and L-lactide can be obtained by heating and stirring.
  • the X is a residue of a compound having a carboxyl group or hydrogen.
  • the compound having a carboxyl group one aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and its acid anhydride, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid , Aliphatic dicarboxylic acids such as dodecanedioic acid and dimer acid and their acid anhydrides, unsaturated dicarboxylic acids such as maleic acid, fumaric acid and terpene-maleic acid adducts and their acid anhydrides, 1,4-cyclohexanedicarboxylic acid , Alicyclic dicarboxylic acids such as tetrahydrophthalic acid, hexahydroisophthalic acid, 1,2-cyclohexene dicarboxylic
  • trimellitic anhydride can be easily reacted by an addition reaction, and since two carboxyl groups can be introduced per molecule, a large amount of acid value can be introduced, and anhydrous biomass which is a biomass raw material Succinic acid is also preferable because the reaction is easy and a high degree of biomass can be maintained.
  • PMDA pyromellitic anhydride
  • ODPA oxydiphthalic dianhydride
  • BTDA 4,4′-benzophenone tetracarboxylic dianhydride
  • BPDA 4,4′- Diphenyltetracarboxylic dianhydride
  • TMEG ethylene glycol bisanhydro trimellitate
  • DSDA 4,4′-diphenylsulfonetetracarboxylic dianhydride
  • 4′- Acid dianhydrides such as (hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2,2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA), glycerin tris anhydro trimellitate Can also be used.
  • 6FDA hexafluoroisopropylidene diphthalic dianhydride
  • BSAA 2,2′-bis [(dicarboxyphenoxy) phenyl] propane dian
  • the polylactic acid-based polyester resin of the present invention includes one or a mixture of two or more selected from cyclic compounds having a hydroxycarboxylic acid other than lactic acid such as glycolic acid as a constituent and lactones such as ⁇ -caprolactone, and lactide.
  • a cyclic compound having lactic acid as a constituent component is subjected to ring-opening addition polymerization using an alcohol having at least one hydroxyl group and a derivative thereof, and a polymer polyol having at least one hydroxyl group as an initiator, and then a terminal hydroxyl group is reacted with a polybasic acid. It can also be produced by introducing an acid value at the molecular end.
  • a polyol containing 3 or more hydroxyl groups, lactide, ⁇ -caprone lactone, and a catalyst are charged all at once, heated to 150 ° C. or higher and polymerized for 1 to 3 hours, and a polybasic acid anhydride is further added.
  • a polybasic acid anhydride is further added.
  • the polylactic acid-based polyester resin of the present invention can be obtained.
  • each raw material after reducing the water content by vacuum drying or the like in advance.
  • the polymerization is preferably performed in a vacuum or in an inert gas atmosphere.
  • the polymerization temperature is preferably 180 ° C. or less in consideration of the thermal stability of polylactic acid.
  • the polymerization rate can be increased by using a conventionally known acid addition catalyst.
  • the polylactic acid segment When polymerizing the polylactic acid-based polyester resin of the present invention, it is effective to add various antioxidants.
  • the polymerization temperature When the polymerization temperature is high or when the polymerization time is long, the polylactic acid segment has low heat resistance and may be oxidized and colored.
  • a segment having low heat resistance such as polyether is copolymerized, it may be more susceptible to oxidative degradation.
  • addition of an antioxidant is particularly effective.
  • the antioxidant include known phenolic antioxidants, phosphorus antioxidants, amine antioxidants, sulfur antioxidants, nitro compound antioxidants, inorganic compound antioxidants, and the like. .
  • a phenolic antioxidant having a relatively high heat resistance is preferable, and 0.05 to 0.5% by weight of the resin is preferably added.
  • the polylactic acid-based polyester resin of the invention can be dissolved in an organic solvent to form a polyester resin varnish.
  • the temperature at which the polylactic acid-based polyester resin of the present invention is dissolved to obtain a polylactic acid-based polyester resin varnish is most preferably 70 to 100 ° C. If the melting temperature is too low, the molecular chains of the amorphous polyester resin cannot be sufficiently entangled, and the dissolution may be insufficient. Moreover, when melt
  • Organic solvents include methyl ethyl ketone, toluene, cyclohexanone, ethyl acetate, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, 1,4-dioxane, 1,3-dioxane, 1,3-dioxolane, 1,2-hexane
  • Examples thereof include diol, ethyl carbitol butyl carbitol, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and triethylene glycol monobutyl ether.
  • methyl ethyl ketone, toluene, cyclohexanone, and the like are preferable in terms of resin solubility.
  • an organic solvent serving as a poor solvent that does not dissolve or swell the polylactic acid-based polyester resin can be used as long as the performance of the present invention is not impaired.
  • the organic solvent which is a poor solvent is preferably used in the range of 0 to 70% by mass ratio with respect to the organic solvent in which the polylactic acid-based polyester resin can be dissolved or swollen. More preferably, it is 5 to 50%. If a poor solvent exceeding 70% is used, the resin may aggregate and settle.
  • the organic solvent used in the present invention may be mixed with several kinds of solvents as required.
  • the polylactic acid-based polyester resin varnish of the present invention is preferably prepared at a resin solid content concentration of 5 to 45% by mass. More preferably, it is 10 to 40% by mass, still more preferably 15 to 35% by mass, and most preferably 20 to 30% by mass.
  • the resin solid content concentration is too high, the solution viscosity becomes high and workability is greatly reduced. If it is too low, the solution viscosity becomes low and it becomes difficult to control the thickness of the coating film.
  • a plurality of polylactic acid-based polyester resins and other film-forming resins may be included as necessary.
  • other film forming resin For example, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, a urethane resin etc. can be utilized.
  • the polylactic acid-based polyester resin of the present invention Since the polylactic acid-based polyester resin of the present invention has good water dispersibility, it can be easily dispersed in warm water.
  • the liquid temperature during the production of the aqueous dispersion is preferably 40 ° C. or higher and 95 ° C. or lower, more preferably 45 ° C. or higher and 90 ° C. or lower, and still more preferably 50 ° C. or higher and 85 ° C. or lower. Even if the water temperature is low, the dispersion proceeds, but it takes time. The higher the water temperature, the faster the dispersion.
  • examples of basic compounds used include ammonia, organic amine compounds, and inorganic basic compounds.
  • organic amine compound examples include alkylamines such as triethylamine, isopropylamine, ethylamine, diethylamine and sec-butylamine, alkoxyamines such as 3-ethoxypropylamine, propylamine and 3-methoxypropylamine, N , N-diethylethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine And morpholines such as N-ethylmorpholine.
  • alkylamines such as triethylamine, isopropylamine, ethylamine, diethylamine and sec-butylamine
  • alkoxyamines such as 3-ethoxypropylamine, propylamine and 3-methoxypropylamine
  • N , N-diethylethanolamine N, N-
  • the inorganic basic compound examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium bicarbonate and sodium carbonate, bicarbonates, And ammonium carbonate etc. can be used.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium bicarbonate and sodium carbonate, bicarbonates, And ammonium carbonate etc.
  • a basic compound of a polyvalent metal since it may cause a plurality of carboxyl groups contained in the polylactic acid-based polyester resin of the present invention and a water-insoluble salt to deteriorate the dispersibility. Is preferably limited to a small amount.
  • the basic compound requires an amount capable of neutralizing at least a part of the carboxyl groups of the polylactic acid-based polyester resin of the present invention, specifically, with respect to the acid value of the polylactic acid-based polyester resin of the present invention. It is desirable to add 0.5 equivalent to 1.0 equivalent.
  • the basic compound is additionally added to form a final base.
  • the addition amount of the functional compound may be 0.5 equivalent to 1.0 equivalent relative to the acid value.
  • the pH of the aqueous dispersion is preferably adjusted to 6.5 to 7.0 from the viewpoint of suppressing hydrolysis of the polylactic acid segment. If the addition ratio of the basic compound is too low, the water dispersibility tends to be low. If it is too high, the pH of the water dispersion becomes high and the polylactic acid polyester resin may be hydrolyzed.
  • aqueous dispersion of the polylactic acid-based polyester resin of the present invention it is not necessary to use an emulsifier or an organic solvent, but the use is not necessarily excluded.
  • the use of various nonionic emulsifiers and anionic emulsifiers may make it possible to further stabilize the aqueous dispersion.
  • a more stable aqueous dispersion may be obtained by previously dissolving the polylactic acid-based polyester resin of the present invention in an appropriate organic solvent and then causing phase transition.
  • the polylactic acid polyester resin, resin varnish, and aqueous dispersion of the present invention can be used as an adhesive.
  • an adhesive having higher adhesive strength can be obtained by adding a curing agent that reacts with a carboxyl group or a hydroxyl group.
  • curing agent various hardening
  • polyvalent epoxy compounds and polyvalent oxazoline compounds are preferable because they are highly reactive, can be cured at low temperatures, and can provide high adhesive strength. Multivalent metal salts can also be used as curing agents.
  • the content thereof is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the polylactic acid-based polyester resin of the present invention.
  • the blending amount of the curing agent is less than 5 parts by mass, the curability tends to be insufficient, and when it exceeds 50 parts by mass, the coating film tends to be too hard.
  • Examples of the epoxy compound suitable as the curing agent for the adhesive of the present invention include novolac type epoxy resins, bisphenol type epoxy resins, trisphenol methane type epoxy resins, amino group-containing epoxy resins, and copolymer type epoxy resins.
  • Examples of novolak-type epoxy resins include those obtained by reacting epichlorohydrin and / or methyl epichlorohydrin with novolaks obtained by reacting phenols such as phenol, cresol and alkylphenol with formaldehyde in the presence of an acidic catalyst. be able to.
  • Examples of bisphenol type epoxy resins include those obtained by reacting bisphenols such as bisphenol A, bisphenol F, and bisphenol S with epichlorohydrin and / or methyl epichlorohydrin, and condensates of bisphenol A diglycidyl ether and the bisphenols. And those obtained by reacting epichlorohydrin and / or methyl epichlorohydrin.
  • Examples of the trisphenol methane type epoxy resin include those obtained by reacting trisphenol methane, tris-resole methane and the like with epichlorohydrin and / or methyl epichlorohydrin.
  • amino group-containing epoxy resins examples include glycidylamines such as tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, tetraglycidylbisaminomethylcyclohexanone, N, N, N ′, N′-tetraglycidyl-m-xylenediamine and the like. Can be mentioned.
  • copolymer type epoxy resin examples include a copolymer of glycidyl methacrylate and styrene, a copolymer of glycidyl methacrylate and styrene and methyl methacrylate, or a copolymer of glycidyl methacrylate and cyclohexylmaleimide, and the like.
  • a curing catalyst can be used for the curing reaction of the epoxy compound used in the present invention.
  • imidazole compounds such as 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and triethylamine , Triethylenediamine, N'-methyl-N- (2-dimethylaminoethyl) piperazine, 1,8-diazabicyclo (5,4,0) -undecene-7 and 1,5-diazabicyclo (4,3,0)- Tertiary amines such as nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, and tertiary amines such as phenol, octylic acid and quaternized tetraphenylborate Compounds
  • the blending amount at that time is preferably 0.01 to 1.0 part by weight based on 100 parts by weight of the polyester. If it is this range, the effect with respect to reaction of polyester and an epoxy compound will increase further, and the firm adhesive performance can be acquired.
  • phenol resin suitable as the curing agent for the adhesive of the present invention include a condensate of alkylated phenols and / or cresols with formaldehyde.
  • alkylated phenols alkylated with alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, p-tert-amylphenol, 4,4'-sec-butylidenephenol, p -tert-butylphenol, o-cresol, m-cresol, p-cresol, p-cyclohexylphenol, 4,4'-isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl Examples include condensates of o-cresol, p-phenylphenol, xylenol and the like with formaldehyde.
  • suitable amino resins as curing agents for the adhesive of the present invention include formaldehyde adducts such as urea, melamine, and benzoguanamine, and alkyl ether compounds obtained by alkoxylating these compounds with alcohols having 1 to 6 carbon atoms.
  • formaldehyde adducts such as urea, melamine, and benzoguanamine
  • alkyl ether compounds obtained by alkoxylating these compounds with alcohols having 1 to 6 carbon atoms.
  • Specific examples include methoxylated methylol urea, methoxylated methylol-N, N-ethyleneurea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, and the like.
  • Preferred are methoxylated methylol mel
  • the isocyanate compound suitable as the curing agent for the adhesive of the present invention may be either a low molecular compound or a high molecular compound.
  • the low molecular weight compound include aliphatic isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, and xylylene diisocyanate, aromatic isocyanate compounds such as toluene diisocyanate and diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, and isophorone. Mention may be made of alicyclic isocyanates such as diisocyanates.
  • trimers of these isocyanate compounds can be exemplified.
  • the polymer compound include a terminal isocyanate group-containing compound obtained by reacting a compound having a plurality of active hydrogens with an excess of the low-molecular polyisocyanate compound.
  • the compound having a plurality of active hydrogens include polyhydric alcohols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin and sorbitol, polyhydric amines such as ethylenediamine, hydroxyl groups such as monoethanolamine, diethanolamine and triethanolamine
  • compounds having an amino group polyester polyols, polyether polyols, polyamides, and other active hydrogen-containing polymers.
  • the blocked isocyanate compound may be a blocked isocyanate.
  • the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, oximes such as acetoxime, methylethyl ketoxime, and cyclohexanone oxime, methanol, ethanol, propanol, Alcohols such as butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ⁇ -caprolactam, ⁇ -valero Examples include lactams such as lactam, ⁇ -butyrolactam, ⁇ -propyllactam, and other aromatic amines, imides, acetylacetone, acetoacetate este
  • Examples include active methylene compounds such as tellurium, mercaptans, imines, ureas, diaryl compounds and sodium bisulfite.
  • the blocked isocyanate is obtained by subjecting the above isocyanate compound, isocyanate compound and isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
  • a commercially available curing agent can be used.
  • Polyisocyanate compounds such as Duranate 24A-100, TPA-100, TLA-100 manufactured by Asahi Kasei, Nagase Chemitex Corporation Epoxy resins such as Denacol EX-411 and EX-321 manufactured by KK) can be used.
  • a suitable curing agent for the aqueous adhesive of the present invention a commercially available curing agent can be used, and oxazoline compounds such as Nippon Shokubai Epocros WS-500, WS-700, Epocros K-2010E, Epocros K-2020E, etc.
  • Epoxy resins, carbodiimide compounds such as Nisshinbo Carbodilite V-02, V-04, and V-10, and polyvalent metal salts such as calcium salts, zinc salts, and aluminum salts can be used.
  • An ink can be obtained by blending a color material with the polylactic acid-based polyester resin of the present invention, and further improving the water resistance of the ink by blending a curing agent having reactivity with a carboxyl group or a hydroxyl group.
  • a curing agent having reactivity with a carboxyl group or a hydroxyl group.
  • the color material a known pigment or dye can be blended. Since the polylactic acid-based polyester resin of the present invention has a high acid value of the polyester resin, the dispersibility of various pigments is large, and a high-concentration aqueous ink can be produced.
  • the curing agent those exemplified in the adhesive application can be used.
  • a coating agent can be obtained by blending the polylactic acid-based polyester resin of the present invention with various pigments and additives generally used in coating materials, and further a curing agent having reactivity to a carboxyl group or a hydroxyl group.
  • the water resistance of the coating film can be improved by blending.
  • pigments include known organic / inorganic color pigments, extender pigments such as calcium carbonate and talc, rust preventive pigments such as red lead and lead oxide, aluminum powder, and various functional pigments such as zinc sulfide (fluorescent pigment). Can be blended. Also.
  • Additives include plasticizers, dispersants, anti-settling agents, emulsifiers, thickeners, antifoaming agents, antifungal agents, antiseptics, anti-skinning agents, anti-sagging agents, delustering agents, antistatic agents, conductive agents
  • a flame retardant etc. can be mix
  • the resin varnish, water dispersion, adhesive, paint and ink of the present invention can be adjusted to a viscosity and viscosity suitable for workability by blending various thickeners. From the stability of the system due to the addition of a thickener, nonionic ones such as methylcellulose and polyalkylene glycol derivatives, and anionic ones such as polyacrylates and alginates are preferred.
  • the resin varnish, water dispersion, adhesive, paint, and ink of the present invention can be further improved in coating properties by using various surface tension adjusting agents.
  • the surface tension adjusting agent include acrylic, vinyl, silicone, and fluorine surface tension adjusting agents, and are not particularly limited.
  • vinyl surface tension modifiers are preferred. If the addition amount of the surface tension modifier is excessive, the adhesive strength tends to be impaired. Therefore, the addition amount should preferably be limited to 1% by weight or less, more preferably 0.5% by weight or less based on the resin. is there.
  • the resin varnish or aqueous dispersion obtained by the present invention is known for surface smoothing agents, antifoaming agents, antioxidants, dispersing agents, lubricants, etc. during the production thereof or for those produced. These additives may be blended.
  • the resin varnish, water dispersion, adhesive, paint, and ink of the present invention can be further improved in light resistance and oxidation resistance by adding various ultraviolet absorbers, antioxidants, and light stabilizers.
  • Light resistance is greatly improved by introducing a compound having an ultraviolet absorption effect and a light stabilization effect into the polyester skeleton, but an ultraviolet absorber, an antioxidant, an emulsion of a light stabilizer, and an aqueous solution are dispersed in a polyester resin in water. Addition to the body also improves the weather resistance.
  • the ultraviolet absorber various organic types such as benzotriazole, benzophenone, and triazine, and inorganic types such as zinc oxide can be used.
  • As the antioxidant various polymers generally used for polymers such as hindered phenols, phenothiazines and nickel compounds can be used.
  • Various light stabilizers for polymers can be used, but hindered amines are effective.
  • a layer (A layer) made of the polylactic acid-based polyester resin of the present invention and a layer (B layer) selected from the group consisting of a film, a sheet, a woven fabric, a nonwoven fabric and paper can be laminated to form a laminate.
  • the laminate is easily obtained, for example, by applying the adhesive and / or ink of the present invention to a layer (B layer) selected from the group consisting of a film, a sheet, a woven fabric, a nonwoven fabric and paper and drying it. Can do.
  • the adhesive and ink of the present invention show strong adhesion to films, sheets, woven fabrics, nonwoven fabrics and papers made of various raw materials, but polylactic acid, polyester, polyurethane, polyamide, cellulose, starch, vinyl chloride, vinylidene chloride, It shows particularly high adhesion to films and sheets made from chlorinated polyolefins and these chemically modified substances.
  • a film, sheet and paper made of biomass raw materials such as polylactic acid, cellulose and starch
  • the biomass degree of the entire laminate can be made extremely high.
  • the polylactic acid-based polyester resin water-based adhesive and water-based ink of the present invention exhibit high adhesive strength to various metal vapor-deposited films, they are used as a laminate having a three-layer structure of A layer / metal vapor-deposited layer / B layer. It is also useful.
  • the metal and B layer used for a metal vapor deposition layer are not specifically limited, Especially the adhesive force of the aluminum vapor deposition film, the polylactic acid-type polyester resin adhesive of this invention, and ink is large.
  • the high acid value of the polyester resin of the present invention is considered to be due to the fact that the polylactic acid-based polyester resin adhesive and ink of the present invention exhibit high adhesive strength to various metal deposited films. Since these laminates have a high degree of biomass and high biodegradability, they are suitable for use as materials that can be disposed of in a relatively short period of time, such as packaging materials, and are particularly suitable as food packaging materials.
  • the polylactic acid polyester resin, resin varnish, and aqueous dispersion of the present invention can be used as a sustained release biodegradable coating agent. Since the polylactic acid resin of the present invention has an appropriate biodegradation rate, when it is left in the natural environment, it is gradually biodegraded over a long period of time, and accordingly, the components to be coated can be gradually released into the environment. it can. Therefore, a coated body formed by coating a coating agent such as a fertilizer, agricultural chemical, antifungal agent, bactericidal agent, or biological repellent with the biodegradable coating agent of the present invention is excellent in sustained release of the coating agent. Moreover, the biodegradable coating agent of this invention can form the water dispersion excellent in film forming property in the preferable embodiment, and can be used with the form of a coating film.
  • a coating agent such as a fertilizer, agricultural chemical, antifungal agent, bactericidal agent, or biological repellent
  • the sustained-release biodegradable coating in the present invention is obtained by coating the component to be coated with the sustained-release biodegradable coating in the present invention.
  • the sustained-release biodegradable coating of the present invention may contain components other than the component to be coated and the sustained-release biodegradable coating of the present invention.
  • other biodegradable resins, Biodegradable resins, hydrolysis accelerators, hydrolysis inhibitors, and the like may be blended.
  • the sustained-release biodegradable coating refers to those in which the component to be coated is coated with a sustained-release biodegradable coating, but only the same component as the component to be coated is present inside the coating. Not only those that also adhere to the outer surface.
  • the sustained-release biodegradable covering in the present invention is gradually decomposed by organisms such as microorganisms in the natural environment such as the surface and the inside of soil, river lakes, and the ocean, etc. It exhibits the effect of continuously releasing over a long period. For this reason, it can be used as a sustained-release agrochemical, slow-acting fertilizer, long-lasting antifouling paint, etc. by selecting an appropriate component to be coated.
  • the component to be coated in the present invention is not particularly limited as long as it is a component that is desired to be gradually released in the natural environment.
  • Specific examples of the component to be coated in the present invention include a component that can be expected to have a biological control action such as insecticidal, herbicidal, sterilizing, antifungal, biological attraction and biological repellent, and a growth promoting action on living organisms such as bioactive substances and fertilizer And / or a component that can be expected to have a nutritional supplement.
  • the component to be coated is not limited to a single component, and may be composed of a plurality of components.
  • the manufacturing method of the sustained release biodegradable coating body of this invention is not specifically limited, It is preferable to manufacture via the polylactic acid-type polyester resin of this invention.
  • the component to be coated is dissolved or dispersed in a resin, solution, or water dispersion, and then the water dispersion itself is sprayed to evaporate the organic solvent or water to form particles, or sprayed in the presence of some carrier and the carrier surface and This is because a biodegradable coating can be easily obtained by attaching it to the inside of the carrier or by applying it to some adherend to form a coating film.
  • the polylactic acid-based biodegradable resin is a self-emulsifying agent that can form an aqueous dispersion without the addition of a surfactant, the surfactant is released into the environment during the biodegradation process. This is more preferable because the environmental load is less. Further, if the aqueous dispersion does not contain an organic solvent or uses a small amount of the organic solvent, the organic solvent will not be released into the environment in both the manufacturing process of the covering and the use of the covering, or Less, more less environmental impact, more preferable.
  • ⁇ Resin composition> A resin sample was dissolved in deuterated chloroform or deuterated dimethyl sulfoxide, and a 1 H-NMR analysis and a 13 C-NMR analysis were performed using an NMR apparatus 400-MR manufactured by VARIAN. Expressed in weight percent. The lactic acid content (% by weight), p, and q were calculated based on the resin composition on the left.
  • ⁇ L-lactic acid content> A 5 g / 100 mL chloroform solution of a resin sample was prepared, and the specific rotation was measured at a measurement temperature of 25 ° C. and a measurement light source wavelength of 589 nm to obtain [ ⁇ ] obs. Further, in the sample composition obtained by the above method, a resin having a composition in which all of the lactic acid components are substituted with L-lactic acid components is polymerized, and the specific rotation is measured by the same method as [ ⁇ ] obs, and [ ⁇ ] 100 It was.
  • ⁇ Number average molecular weight> A resin sample was dissolved in tetrahydrofuran so that the resin concentration was about 0.5% by weight and filtered through a polytetrafluoroethylene membrane filter having a pore size of 0.5 ⁇ m, and tetrahydrofuran was used as the mobile phase.
  • the molecular weight was measured by gel permeation chromatography (GPC) using a differential refractometer as a detector. The flow rate was 1 mL / min and the column temperature was 30 ° C. KF-802, 804L and 806L manufactured by Showa Denko were used for the column. Monodisperse polystyrene was used as the molecular weight standard.
  • ⁇ Glass transition temperature> It measured with the temperature increase rate of 20 degree-C / min using the differential scanning calorimeter (DSC).
  • ⁇ Preparation of adhesive evaluation sample> An adhesive was applied to a corona-treated surface of a 25 ⁇ m thick PET film (manufactured by Toyobo Co., Ltd.) so that the thickness after drying was 5 ⁇ m, and dried at 80 ° C. for 5 minutes.
  • the corona-treated surface of another 25 ⁇ m thick PET film was bonded to the adhesive surface, pressed at 80 ° C. under a pressure of 3 kgf / cm 2 for 30 seconds, cured by heat treatment at 40 ° C. for 8 hours, and peeled off.
  • a sample for strength evaluation was obtained (for initial evaluation).
  • Example A-1 Polylactic acid polyester resin No. Production of 1 In a 500 ml glass flask equipped with a thermometer, stirrer, and Liebig condenser, 1.8 parts of sorbitol, 62.8 parts of L-lactide, 26.7 parts of ⁇ -caprolactone and 0.028 parts of tin octylate as a catalyst And nitrogen gas was circulated at 60 ° C. for 30 minutes. Subsequently, the pressure was reduced at 60 ° C. for 30 minutes to further dry the contents. The temperature of the polymerization system was raised to 180 ° C. while flowing nitrogen gas again, and the mixture was stirred for 3 hours after reaching 180 ° C.
  • Polylactic acid polyester resin No. No. 7 has a low resin acid value and is outside the scope of the present invention.
  • Polylactic acid polyester resin No. No. 8 has a high resin acid value and is outside the scope of the present invention.
  • Polylactic acid polyester resin No. No. 9 has a large number average molecular weight and is outside the scope of the present invention.
  • Polylactic acid polyester resin No. No. 10 is not worthy to be called a material having a low lactic acid content and a low environmental load.
  • Polylactic acid polyester resin No. 11 has a high content of L-lactic acid residues in — (CO—Y—O) q —, which is outside the scope of the present invention.
  • Example C-1 Production of polylactic acid-based polyester resin varnish
  • Polylactic acid-based polyester resin No. 1 was added to a 500 ml glass flask equipped with a thermometer, a stirrer and a Liebig condenser. 20 parts of ME 1 and 80 parts of MEK were charged, heated to 70 ° C. and stirred for 1 hour, then the contents were taken out and cooled to produce polylactic acid-based polyester resin varnish 1.
  • Production and Evaluation of Polylactic Acid Polyester Resin Aqueous Dispersion and Adhesive Polylactic acid polyester resin No. 1 was added to a 500 ml glass flask equipped with a thermometer, a stirrer and a Liebig condenser.
  • Examples C-2 to C-6 In the same manner as in Example 1, except that the raw materials and the ratios thereof were changed, and the polylactic acid-based polyester resin varnish and the aqueous dispersion were produced, and the polylactic acid-based polyester resin varnish and the aqueous dispersions 2 to 6 were produced. did. Further, in the same manner as in Example 1, a curing agent was added to the polylactic acid-based polyester resin aqueous dispersions 2 to 6, and the adhesion and water resistance of the obtained coating film were evaluated. The results are shown in Table 3. All showed high water dispersibility, and the cured coating film showed high adhesion and water resistance.
  • Comparative Examples C-7 to C-13 In the same manner as in Example 1, except that the raw materials and the ratios thereof were changed and production of a polylactic acid-based polyester resin aqueous dispersion was attempted, and the water dispersion was obtained for the water dispersion obtained. In the case where the resin was not obtained, a resin varnish was used, a curing agent was blended in the same manner as in Example 1, and the adhesion and water resistance of the obtained coating film were evaluated. The results are shown in Table 4.
  • Comparative Example C-7 the degree of biodegradation on day 365 was 90% or less, and the water dispersion was poor.
  • Polylactic acid-based polyester resin No. used in Comparative Example C-7 No. 7 has a small acid value of the resin and is outside the scope of the present invention. It is estimated that the biodegradability and water dispersibility were low because the acid value of the resin was small.
  • Comparative Example C-8 was poor in water resistance.
  • Resin No. used in Comparative Example C-8 No. 8 has a large acid value of the resin and is outside the scope of the present invention. Since the acid value is high, the degree of biodegradation is high, but it is presumed that it is susceptible to half-surface hydrolysis.
  • Comparative Example C-9 had poor adhesion.
  • Resin No. used in Comparative Example C-9 No. 9 has a large molecular weight of the resin and is outside the scope of the present invention. Since the molecular weight is large, it is estimated that the decomposition by microorganisms becomes difficult and the biodegradation rate becomes slow.
  • Polylactic acid-based polyester resin No. used in Comparative Example C-10 No. 10 is not worthy to be called a material having a low lactic acid content and a low environmental load.
  • Polylactic acid-based polyester resin No. used in Comparative Example C-11 11 has a high content of L-lactic acid residues in — (CO—Y—O) q —, which is outside the scope of the present invention. It is presumed that since the L-lactic acid content is 90% or more, crystallization of the resin occurred and the biodegradability was low.
  • Polylactic acid-based polyester resin No. used in Comparative Example C-12 No. 12 has a high Tg and is outside the scope of the present invention. Since Tg is high, there is no flexibility of the resin, it is presumed that the biodegradation rate became slow due to difficulty in degradation by microorganisms.
  • Boiling water test The coated film appearance (blister occurrence state) after the coated steel sheet was immersed in boiling water for 2 hours was evaluated. ⁇ : No blister ⁇ : Blister generation area within 10% ⁇ : Blister generation area 10-50% ⁇ : Blister generation area 50% or more
  • Adhesion In accordance with JISK-5400 grid-tape method, draw 11 straight vertical and horizontal lines at 1mm intervals to reach the substrate surface with a cutter knife on the surface of the test plate, 1mm x 1mm 100 squares were made. A cellophane pressure-sensitive adhesive tape was adhered to the surface, and the degree of cell peeling when the tape was rapidly peeled was observed and evaluated according to the following criteria.
  • Double-circle Coating film peeling is not seen at all. ⁇ : Although the coating film was slightly peeled, 90 or more squares remained.
  • Inks (e-1) and (e-2) were applied to a corona-treated surface of a 25 ⁇ m-thick PET film (manufactured by Toyobo Co., Ltd.) so that the thickness after drying was 2 ⁇ m. It dried for 30 minutes and was set as the sample for water resistance evaluation.
  • Laminate (f-1) A polylactic acid polyester resin No. 1 was added to a 500 ml glass flask equipped with a thermometer, a stirrer, and a Liebig condenser. 1 was charged with 100 parts, TEA 6.3 parts, and water 233 parts. After heating to 60 ° C. and stirring for 30 minutes, the mixture was cooled to 30 ° C.
  • Laminate (f-2) Polylactic acid-based polyester resin No. 1 was added to a 500 ml glass flask equipped with a thermometer, a stirrer, and a Liebig condenser. 3 and 100 parts of MEK and 233 parts of MEK were charged, heated to 70 ° C. and stirred for 1 hour, cooled to 30 ° C. or less, and 66 parts of colloidal silica (Snowtex MEK-ST manufactured by Nissan Chemical Co., Ltd.) was added.
  • colloidal silica Snowtex MEK-ST manufactured by Nissan Chemical Co., Ltd.
  • ⁇ Slow release biodegradable coating agent> In a 500 ml glass flask equipped with a thermometer, a stirrer, and a Liebig condenser, a polylactic acid-based polyester resin no. 1 was charged with 100 parts, TEA 6.3 parts, and water 233 parts. After heating to 60 ° C. and stirring for 30 minutes, the mixture was cooled to 30 ° C. or less to obtain colloidal silica (Snowtech C, Nissan Chemical Co., Ltd.) 100 Then, the mixture was further stirred for 1 hour, and then filtered through a 100 mesh filter cloth.
  • colloidal silica Snowtech C, Nissan Chemical Co., Ltd.
  • the filtrate is spray-coated on a nitrogen-based granular fertilizer component having an average particle diameter of 4 mm using a jet coating apparatus, and moisture is evaporated and dried with hot hot air to obtain a coated granular sustained-release biodegradable coating G1. It was.
  • the filtrate was applied to a polypropylene film, dried in a hot air dryer at 60 ° C., and then peeled off from the polypropylene sheet to prepare a sheet made of polylactic acid polyester resin H1 having a dry thickness of about 20 ⁇ m. Using this sheet, biodegradability in an aerobic dark place was evaluated.
  • the specific evaluation method was based on ASTM-D5338. The evaluation results are shown in Table 8.
  • the decomposition rate of this sheet was faster than that of a sheet made of polylactic acid-based polyester resin H2 described later, but was found to be slower than that of cellulose.
  • the polylactic acid-based polyester resin H1 is suitable for a coating material and a coated body that exhibit sustained release properties and want to finish the release of the component to be coated in a relatively short period of time.
  • ⁇ Slow release biodegradable coating agent> In a 500 ml glass flask equipped with a thermometer, a stirrer, and a Liebig condenser, a polylactic acid-based polyester resin no. 2 was charged with 100 parts, TEA 9.6 parts, and water 233 parts. After heating to 60 ° C. and stirring for 30 minutes, the mixture was cooled to 30 ° C. or lower to obtain colloidal silica (Snowtech C, Nissan Chemical Co., Ltd.) 100 Then, the mixture was further stirred for 1 hour, and then filtered through a 100 mesh filter cloth.
  • colloidal silica Snowtech C, Nissan Chemical Co., Ltd.
  • the filtrate is spray-coated on a nitrogen-based granular fertilizer component having an average particle diameter of 4 mm using a jet coating apparatus, and moisture is evaporated and dried with hot hot air to obtain a coated granular sustained-release biodegradable coating G2. It was.
  • the filtrate was applied to a polypropylene film, dried in a hot air dryer at 60 ° C., and then peeled off from the polypropylene sheet to prepare a sheet made of polylactic acid-based polyester resin H2 having a dry thickness of about 20 ⁇ m. Using this sheet, biodegradability in an aerobic dark place was evaluated.
  • the specific evaluation method was based on ASTM-D5338. The evaluation results are shown in Table 8. The degradation rate of this sheet is relatively slow and is suitable for coatings and coatings where release of the coated component over a relatively long period is required.
  • the polylactic acid-based polyester resin of the present invention has a high degree of biomass and can provide an environmentally friendly resin, resin varnish, and aqueous dispersion that exhibit good biodegradability even under low temperature conditions (28 ⁇ 2 ° C.). it can. Moreover, a coating film with high water resistance can be provided by mix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】バイオマス度が高く、ISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における生分解性試験の結果が、該求め方において、365日目までに90%以上となる生分解性ポリ乳酸系ポリエステル樹脂、これを含有する樹脂ワニス組成物、水分散体樹脂組成物、接着剤組成物、インキ、接着剤/インキによって形成される積層体、包装材料、及び水分散体の製造方法を提供する。 【解決手段】酸価が200~2,500eq/106g、数平均分子量が2,000~50,000、Tgが-50~40℃、乳酸含有率が40重量%以上であり、ISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における生分解性試験の結果が、該求め方において、365日目までに90%以上となる生分解性ポリ乳酸系ポリエステル樹脂。

Description

ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
 本発明はバイオマス度が高く、ISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における生分解性試験の結果が、該求め方において、365日目までに90%以上となる生分解性ポリ乳酸系ポリエステル樹脂、これを含有する樹脂ワニス組成物、水分散体樹脂組成物、接着剤組成物、インキ、接着剤/インキによって形成される積層体、包装材料、及び水分散体の製造方法に関する。
現在、ポリエチレンやポリプロピレンなどの合成樹脂が様々な用途で使用されている。これら合成樹脂は、自由度の高い成形加工性を有しているために様々な用途で多用されている。しかしながら、このような樹脂を素材とする成形体等は、生分解性を有しないため、使用後に自然界へ廃棄もしくは放流する場合、環境に与える負荷が懸念されている。したがって、自然界へ拡散する可能性のある成形体等としては、環境負荷を低減する観点から生分解性を有する素材が好ましく、その開発が望まれている。
このような背景から、環境負荷低減が期待される「環境配慮型素材」として生分解性樹脂が注目されている。生分解性樹脂としては、生分解性のある植物材料等を化学合成により生分解性プラスチック化したもの、または、微生物或いは微生物の生産する生分解性の高分子材料を用いるもの等、種々のものが開示されている。
中でもポリ乳酸系樹脂は土壌や海水中では数年内に水と二酸化炭素に分解される生分解性を持ち、環境中に放出された際に、環境に対する負荷が比較的低いことから、その利用が期待されている。ポリ乳酸系樹脂は、トウモロコシやイモなどの植物を原料として製造することができる乳酸および/またはラクチドを原料として製造することができる、植物由来成分を主体として構成されている樹脂である。
 生分解性樹脂の例としては、特許文献1~5を挙げることができる。特許文献1では
生分解性を示すポリビニルアルコール系重合組成物が記載されている。ポリビニルアルコール系重合体中と、分解酵素や微生物とを混合含有させることで、生分解可能なポリビニルアルコール系重合体組成物が得られると示されている。特許文献2では、デンプンを培養原料とし、バチルス属に属する微生物を添加・培養し、採取することで粘着性のある生分解性天然素材が得られ、また、それらがポリプロピレンの特徴を備えていることが示されている。特許文献3では生分解性ポリマーとしてポリ乳酸を用いた発泡体ならびに成形体が示されている。特許文献4では、生分解性ポリエステル系水分散系接着剤が記載されている。接着性を発揮するために、生分解性ポリエステルの水分散液にポリイソシアネート類化合物を配合することが示されている。
特開平6-322216号公報 特開2009-293009号公報 特開2003-286360号公報 特開2002-371259号公報
 前記背景技術について、本発明者らが検討したところ、以下のような課題があることが判明した。すなわち、特許文献1に開示されている発明においては、常に分解酵素が樹脂に接している状態となり、接触部分から分解が進行することとなる。さらに、水分に敏感なため乾燥した環境下での使用が推奨されており、使用範囲、用途が限られるため、汎用品として使用できない。特許文献2に開示されている発明においては、植物由来成分からなり生分解性を示すが、工業レベルでの安定生産に課題がある。特許文献3、4に開示されている発明においては、大量かつ安価な供給が可能な乳酸を原料として使用しているが、それらが生分解性を示すためには58℃という高温を必要とし、実際に生分解を進行させるためにはヒーター等の大掛かりな加熱設備が必要であり、生分解性素材の利用拡大の観点からは改善の余地がある。
 したがって、より低温下で生分解が進行するポリ乳酸系樹脂が得られれば、加熱設備の設置が容易でない、例えば家庭内といったでも生分解を進行させることができ、環境負荷低減に大きく貢献することができる。
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明が解決しようとする課題は、30℃以下で生分解性を示すポリ乳酸系ポリエステル樹脂、これを含有する樹脂溶解物および水分散体樹脂組成物、それらの接着剤組成物、インキ、接着剤/水性インキによって形成される積層体、包装材料、及び水分散体の製造方法を提供することにある。
本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち本発明は、
<1>  D-乳酸とε-6-ヒドロキシカプロン酸のいずれか一方または双方とL-乳酸とから主としてなるランダム共重合体であり、L-乳酸の含有率が90重量%以下、酸価が300~2,500eq/106g、数平均分子量が2,000~50,000、Tgが-50~50℃、乳酸含有率が40重量%以上かつISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における生分解度が、該求め方において、365日目までに90%以上となることを特徴とする生分解性ポリ乳酸系ポリエステル樹脂。
<2> <1>のポリ乳酸系ポリエステル樹脂と水とを含有するポリ乳酸系ポリエステル樹脂水分散体。
<3> 界面活性剤を含有しないことを特徴とする<2>に記載のポリ乳酸系ポリエステル樹脂水分散体。
<4> 有機溶剤を含有しないことを特徴とする<1>に記載のポリ乳酸系ポリエステル樹脂水分散体。
<5> <1>記載のポリ乳酸系ポリエステル樹脂と水とを、界面活性剤および有機溶剤を加えることなく混合することによってポリ乳酸系ポリエステル樹脂水分散体を得る工程を有する、ポリ乳酸系ポリエステル樹脂水分散体の製造方法。
<6> <1>記載のポリ乳酸系ポリエステル樹脂と有機溶剤とを含有するポリ乳酸系ポリエステル樹脂溶液。
<7> <1>記載のポリ乳酸系ポリエステル樹脂とカルボキシル基に対して反応性を有する硬化剤とを含有する樹脂組成物。
<8> 前記硬化剤が多価エポキシ化合物、オキサゾリン樹脂、カルボジイミド樹脂および多価金属塩からなる群から選ばれる1種または2種以上であることを特徴とする請求項7記載の樹脂組成物。
<9> <1>記載のポリ乳酸系ポリエステル樹脂と水酸基に対して反応性を有する硬化剤とを含有する樹脂組成物。
<10> 前記硬化剤が多価イソシアネート化合物であることを特徴とする<9>記載の樹脂組成物。
<11> <7>~<10>いずれかに記載の樹脂組成物からなる接着剤。
<12> <7>~<10>いずれかに記載の樹脂組成物からなる塗料。
<13> <7>~<10>いずれかに記載の樹脂組成物と色材とからなるインキ。
<14> <1>記載のポリ乳酸系ポリエステル樹脂からなる層(A層)とフィルム、シート、織布、不織布および紙からなる群から選ばれる層(B層)とからなる積層体。
<15> 前記B層がバイオマス由来物質及び/またはバイオマス由来物質の化学改質物質から主としてなるものであることを特徴とする<14>に記載の積層体。
<16> <14>または<15>に記載の積層体を構成要素として有する包装材料。
<17> <7>~<10>いずれかに記載の樹脂組成物からなる徐放性生分解性被覆剤。
<18> <17>に記載の生分解性被覆剤によって、被被覆成分を被覆した徐放性生分解性被覆体。
<19> 前記被被覆成分が、殺虫、除草、除菌、防黴、生物誘引および生物忌避のいずれか1種以上の機能を有するものである<18>に記載の徐放性生分解性被覆体。
<20> 前記被被覆成分が、生物に対する生理活性、生長促進および栄養補給のいずれか1種以上の機能を有するものである<18>に記載の徐放性生分解性被覆体。
 本発明のポリ乳酸系ポリエステル樹脂はポリ乳酸セグメントを高濃度で含むので、バイオマス度が高く、なおかつ低温下においても生分解が良好である。本発明のポリ乳酸系ポリエステル樹脂は、水分散体とすることもできるし、有機溶剤に溶解させて、ポリ乳酸系ポリエステル樹脂ワニスとすることもできる。また、本発明のポリ乳酸系ポリエステル樹脂水分散体は、乳化剤を使用することなく調製できるので、接着性に優れる。さらに、本発明のポリ乳酸系ポリエステル樹脂ワニス、あるいは水分散体にカルボキシル基に対して反応性を有する硬化剤を配合することにより、接着性および耐水性に優れる接着層やインキを容易に得ることができる。また各種バイオマス素材と本発明の接着剤および/またはインキを組み合わせることにより、バイオマス度の高い積層体を得ることができる。
  D-乳酸とε-6-ヒドロキシカプロン酸のいずれか一方または双方とL-乳酸とから主としてなるランダム共重合体であり、L-乳酸の含有率が90重量%以下、酸価が300~2,500eq/106g、数平均分子量が2,000~50,000、Tgが-50~50℃、乳酸含有率が40重量%以上のISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における生分解度が、該求め方において、365日目までに90%以上となる生分解性ポリ乳酸系ポリエステル樹脂。
 本発明のポリ乳酸系ポリエステル樹脂は、D-乳酸とε-6-ヒドロキシカプロン酸のいずれか一方または双方とL-乳酸とから主としてなるランダム共重合体であり、L-乳酸残基の含有率は90重量%以下であることが好ましく、より好ましくは85重量%以下、更に好ましくは80重量%以下である。L-乳酸含有率が高すぎると、結晶性が顕著に現われるため、生分解性が不良になる傾向にある。またL-乳酸含量が90重量%を超えると、接着剤として使用する場合、時間経過とともに結晶化が進み接着強度の著しい低下が見られる場合がある。また、水分散体とすることも困難になる。
 本発明のポリ乳酸系ポリエステル樹脂の酸価は、300eq/ton以上2500eq/ton以下であり、好ましくは400eq/ton以上2300eq/ton以下、より好ましくは500eq/ton以上2100eq/ton以下である。本発明のポリ乳酸系ポリエステル樹脂の酸価は、主に分子鎖末端に含まれる多数のカルボキシル基に由来するものであり、酸価の存在により水分を樹脂にひきつけ、またpHが酸性側に傾くことで、生分解の引き金となる加水分解を促進させる効果がある。樹脂酸価が低すぎると樹脂の加水分解が進行しにくくなる傾向にある。一方、樹脂酸価を高くすることにより加水分解は促進される傾向にあるが、酸価が2500eq/tonよりも大きくなると、樹脂の吸水性が高くなり固形樹脂の状態でも加水分解を受けやすく保存安定性が悪くなる傾向にある。またこの樹脂を用いた硬化塗膜の耐水性も悪くなる傾向にある。
 本発明のポリ乳酸系ポリエステル樹脂の数平均分子量は、2,000以上50,000以下であることが好ましく、より好ましくは3,000以上45,000以下、更に好ましくは4,000以上40,000以下である。数平均分子量が低すぎると、樹脂の凝集力が小さくなり接着性が不良になる傾向にある。一方、数平均分子量が高すぎると、微生物による分解が困難になり生分解速度が遅くなる傾向にある。
 本発明のポリ乳酸系ポリエステル樹脂のTgは、-50℃以上50℃以下であることが好ましく、より好ましくは,-40℃以上45℃以下、更に好ましくは-30℃以上40℃以下である。Tgが高すぎると、樹脂のフレキシブさがなく、微生物による分解が困難になり生分解速度が遅くなる傾向にある。一方、Tgが低すぎると必然的にL-乳酸含有量が低いものとなる。
 本発明のポリ乳酸系ポリエステル樹脂の乳酸含量は40重量%以上であることが好ましく、より好ましくは50重量%以上、更に好ましくは60重量%以上である。40重量%未満では、バイオマス度が低く、二酸化炭素排出削減効果の大きな環境に対する負荷の低い材料とは言い難い。
前述の樹脂組成、酸価、数平均分子量、Tgを全て満足することで、本願の低温での生分解性を達成することが可能である。
 本発明のポリ乳酸系ポリエステル樹脂の化学構造は特に限定されないが、例えば、以下の式(4)(5)で現される化学構造をとるものを好ましい例として挙げることができる。

 Z-(O-(CO-Y-O)-X) ・・・(4)
但し、Zは水酸基をr個持つ化合物の残基、Yは-CH(CH)-、または-CH(CH)-と炭素数2~10の直鎖または分岐アルキレン基との混合物、Xはカルボキシル基、または水素を有する化合物の残基であり、X,Y,Zは単一種からなるものでも複数種の混合物であってもよい。q,rは正の整数であり、qの平均値は5以上、rの平均値は1以上15以下である。
 前記式(4)で表されるポリ乳酸系ポリエステル樹脂は、例えば、アルコールを開始剤として、ラクチド等の乳酸を構成成分として有する環状化合物を開環付加重合させ、次いで末端水酸基に多塩基酸を反応させて分子末端の少なくとも一部にカルボキシル基を導入することにより、製造することができる。また、前記式(4)で表されるポリ乳酸系ポリエステル樹脂は、グリコール酸等の乳酸以外のヒドロキシカルボン酸を構成成分とする環状化合物およびε-カプロラクトン等のラクトン類から選ばれる1種または2種以上の混合物とラクチド等の乳酸を構成成分として有する環状化合物とをアルコールを開始剤として開環付加重合させ、次いで末端水酸基に多塩基酸を反応させて分子末端に酸価を導入することによっても、製造することができる。
 水酸基をr個持つ化合物の例としては、アルコール及びその誘導体を挙げることができる。その例としては、1,3-プロピレングリコール、ネオペンチルグリコール、ポリエチレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジグリセリン、ポリグリセリン、キシリトール、ソルビトール、グルコース、フルクトース、マンノース等を挙げることができる。これらのうち、グリセリン、ペンタエリスリトール、キシリトール、ソルビトール、グルコース、フルクトース、マンノースはバイオマス原料であるため、好ましい。
 本発明のポリ乳酸系ポリエステル樹脂において、前記Yは-CH(CH)-、または-CH(CH)-と炭素数2~10の直鎖または分岐アルキレン基との混合物である。前記-(CO-Y-O)-は、ラクチド類またはラクチド類とラクトン類の混合物を、ポリオールを開始剤として開環付加重合することによって、容易に得ることができる。ラクチド類としては、例えば、ラクチド(乳酸の環状二量体)、グリコリド(グリコール酸の環状二量体)等を用いることができる。また、ラクトン類としては、例えば、β-プロピオンラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、ε-カプロラクトン等を用いることができる。またこれらの化合物は、必ずしも単独で用いる必要はなく、複数種類を共重合することができる。なかでも、生分解性に優れ、かつ重合が容易なε-カプロラクトンおよびラクチドの使用が好ましい。
 本発明のポリ乳酸系ポリエステル樹脂において、前記-(CO-Y-O)-におけるqは正の整数であり、qの平均値は5以上、より好ましくは7以上、更に好ましくは10以上である。qの平均値が低すぎると、必然的に得られるポリ乳酸系ポリエステル樹脂の分子量が低いものとなり、樹脂の凝集力が小さくなり接着性が不良になる傾向にある。一方、qの平均値は50以下であることが好ましい。qの平均値が高すぎると、樹脂の数平均分子量が大きくなり、微生物による生分解速度が遅くなる可能性がある。
 本発明のポリ乳酸系ポリエステル樹脂において、前記-(CO-Y-O)-は、典型的には、D-ラクチドとε-カプロラクトンのいずれか一方または双方とL-ラクチドの開環付加重合によって得られるランダム共重合体から主としてなり、さらに他の成分が共重合されていても良い。D-ラクチドとε-カプロラクトンのいずれか一方または双方とL-ラクチドとから主としてなるランダム共重合体は、たとえば、従来公知の開環重合触媒の存在下あるいは不存在下に、ポリオールを開始剤として、D-ラクチドとε-カプロラクトンのいずれか一方または双方とL-ラクチドを加熱撹拌することにより、得ることができる。
 本発明のポリ乳酸系ポリエステル樹脂において、前記Xは、カルボキシル基あるいは水素を有する化合物の残基である。カルボキシル基を有する化合物としては、1個のものテレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸およびその酸無水物、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸等の脂肪族ジカルボン酸およびその酸無水物、マレイン酸、フマル酸、テルペン-マレイン酸付加体等の不飽和ジカルボン酸およびその酸無水物、1,4-シクロヘキサンジカルボン酸、テトラヒドロフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキセンジカルボン酸、などの脂環族ジカルボン酸およびその酸無水物、トリメリット酸、メチルシクロへキセントリカルボン酸、などの3価以上のカルボン酸およびその酸無水物を挙げることができる。これらのうち、無水トリメリット酸は付加反応で容易に反応させることができ、かつ1分子あたりカルボキシル基を2個導入できるので、多量の酸価の導入が可能であり、またバイオマス原料である無水コハク酸も、反応が容易であり、高いバイオマス度を維持できることから好ましい。また、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、エチレングリコールビスアンヒドロトリメリテート(TMEG)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)、グリセリントリスアンヒドロトリメリテート等の酸二無水物も使用することができる。
 本発明のポリ乳酸系ポリエステル樹脂は、グリコール酸等の乳酸以外のヒドロキシカルボン酸を構成成分とする環状化合物およびε-カプロラクトン等のラクトン類から選ばれる1種または2種以上の混合物とラクチド等の乳酸を構成成分として有する環状化合物とを、水酸基を1個以上有するアルコール及びその誘導体、水酸基を1個以上有するポリマーポリオールを開始剤として開環付加重合させ、次いで末端水酸基に多塩基酸を反応させて分子末端に酸価を導入することによっても、製造することができる。より具体的には、水酸基を3個以上含むポリオール、ラクチド、ε-カプロンラクトン、触媒を一括して仕込み、150℃以上に昇温させ1時間~3時間重合させ、さらに多塩基酸無水物を加えて1時間~2時間反応させることにより、本発明のポリ乳酸系ポリエステル樹脂を得ることができる。多塩基酸無水物が重合系中に含まれる水との反応によって開環しないように、各原料はあらかじめ真空乾燥等を行なって含水率を下げてから使用することが好ましい。また重合中の水分の影響を避けるため、真空中、または不活性ガス雰囲気下で重合を行うことが好ましい。重合温度はポリ乳酸の熱安定性を勘案すると180℃以下で行うのが好ましい。また、酸無水物を水酸基に付加反応させる場合、従来公知の酸付加触媒を使用することにより、重合速度を上げることができる。このような効果を期待できる触媒の例としては、トリエチルアミン、ベンジルジメチルアミン等のアミン類;テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の四級アンモニウム塩;2-エチル-4-イミダゾール等のイミダゾール類;4-ジメチルアミノピリジン等のピリジン類;トリフェニルホスフィン等のホスフィン類;テトラフェニルホスホニウムブロマイド等のホスホニウム塩;p-トルエンスルホン酸ナトリウム等のスルホニウム塩;p-トルエンスルホン酸等のスルホン酸類;オクチル酸亜鉛等の有機金属塩等が挙げることができる。これらのうち、アミン類、ピリジン類、ホスフィン類が開環重合反応の触媒としてより好ましく、特に4-ジメチルアミノピリジンを用いると重合反応速度を高くすることができる。
 本発明のポリ乳酸系ポリエステル樹脂を重合する際には、各種の酸化防止剤を添加することが有効である。重合温度が高い場合や重合時間が長い場合には、ポリ乳酸セグメントは耐熱性が低いため酸化劣化を受け、着色することがある。また、ポリエーテル等耐熱性の低いセグメントが共重合されているとさらに酸化劣化を受けやすくなる場合があり、このような場合、酸化防止剤の添加が特に有効である。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、ニトロ化合物系酸化防止剤、無機化合物系酸化防止剤など公知のものが例示できる。比較的耐熱性の高いフェノール系酸化防止剤が好ましく、樹脂に対して0.05重量%以上0.5重量%以下の添加が好ましい。
発明のポリ乳酸系ポリエステル樹脂は、有機溶剤に溶解させてポリエステル樹脂ワニスとすることができる。
 本発明のポリ乳酸系ポリエステル樹脂を溶解してポリ乳酸系ポリエステル樹脂ワニスを得る際の温度は、70~100℃が最も好ましい。溶解温度が低すぎると、非晶性ポリエステル樹脂の分子鎖同士の絡み合いを解くことが十分にできず、溶解が不十分になることがある。また溶解温度が高すぎると、ポリ乳酸系ポリエステル樹脂の劣化を招く恐れが高まるためである。 
 有機溶剤としては、メチルエチルケトン、トルエン、シクロヘキサノン、酢酸エチル、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキサン、1,3-ジオキソラン、1,2-ヘキサンジオール、エチルカルビトールブチルカルビトール、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテルなどが挙げられる。このうち、メチルエチルケトンやトルエン、シクロヘキサノンなどが樹脂溶解性の点で好ましい。 
 本発明に使用する有機溶剤には、本発明の性能を損なわない程度において、ポリ乳酸系ポリエステル樹脂が溶解もしくは膨潤しない貧溶媒となる有機溶剤も使用することができる。ここで、貧溶媒となる有機溶剤は、ポリ乳酸系ポリエステル樹脂が溶解もしくは膨潤しうる有機溶剤に対して質量比で0~70%の範囲で用いるのが好ましい。より好ましくは5~50%である。70%を超える貧溶媒を用いると、樹脂が凝集、沈降する恐れがある。 
 本発明に使用する有機溶剤は、必要に応じて数種類の溶剤を混合してもかまわない。 
 本発明のポリ乳酸系ポリエステル樹脂ワニスは5~45質量%の樹脂固形分濃度で作成することが好ましい。より好ましくは10~40質量%であり、さらに好ましくは15~35質量%であり、最も好ましくは20~30質量%の範囲である。樹脂固形分濃度が高すぎると、溶液粘度が高くなり、作業性が大幅に低下する。また低すぎると、溶液粘度が低くなり、塗膜の厚みを制御することが困難になる。 
 本発明のポリ乳酸系ポリエステル樹脂ワニスの使用方法としては、必要により複数のポリ乳酸系ポリエステル樹脂およびその他の塗膜形成性樹脂を含んでいてもよい。その他の塗膜形成性樹脂としては、特に限定されるものではないが、例えば、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等が利用できる。 
 本発明のポリ乳酸系ポリエステル樹脂は水分散性が良好なため温水中で容易に水分散することができる。水分散体製造時の液温は40℃以上95℃以下が好ましく、より好ましくは45℃以上90℃以下であり、さらに好ましくは50℃以上85℃以下である。水温が低くても分散は進行するが、時間が掛かってしまう。水温の高い方が分散は早くなるが、水温が高すぎると、水の蒸発速度が高くなるので配合比率の制御が困難となり、また、揮発性の高い塩基性化合物を使用する場合には、塩基性化合物の揮発速度が高くなり、やはり配合比率の制御が困難となる。
 本発明のポリ乳酸系ポリエステル樹脂水分散体の製造方法において、使用される塩基性化合物としては、アンモニア、有機アミン化合物、無機塩基性化合物等が上げられる。
 前記有機アミン化合物の具体例を挙げると、トリエチルアミン、イソプロピルアミン、エチルアミン、ジエチルアミン、sec-ブチルアミン等のアルキルアミン類、3-エトキシプロピルアミン、プロピルアミン、3-メトキシプロピルアミン等のアルコキシアミン類、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、モルホリン、N-メチルモルホリン、N-エチルモルホリン等のモルホリン類である。これらの有機アミン化合物のうち、親水性の高いアルカノールアミン類、特にトリエタノールアミンを使用すると水分散性を向上させることができる。
 前記無機塩基性化合物の具体例を挙げると、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、炭酸水素ナトリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩、炭酸水素塩、及び炭酸アンモニウム等を使用することができる。多価金属の塩基性化合物は、本発明のポリ乳酸系ポリエステル樹脂中に含まれる複数のカルボキシル基と水に難溶性の塩を生成し、分散性を悪化させる可能性があるので、使用する場合は少量に限定することが好ましい。
 前記塩基性化合物は、本発明のポリ乳酸系ポリエステル樹脂が有するカルボキシル基の少なくとも一部を中和し得る量を必要とし、具体的には本発明のポリ乳酸系ポリエステル樹脂の酸価に対して0.5当量~1.0当量を添加することが望ましい。また、本発明のポリ乳酸系ポリエステル樹脂の酸価に対して1.0当量未満の塩基性化合物を用いて水分散体を形成した後、前記塩基性化合物を追加添加して、最終的な塩基性化合物の添加量を酸価に対して0.5当量~1.0当量としても良い。このとき、水分散体のpHは6.5~7.0に調整することが、ポリ乳酸セグメントの加水分解を抑制する観点で、好ましい。塩基性化合物の添加比率が低すぎると水分散性が低くなる傾向にあり、高すぎると水分散体のpHが高くなりポリ乳酸系ポリエステル樹脂が加水分解を起こす可能性がある。
 本発明のポリ乳酸系ポリエステル樹脂の水分散体を製造するためには、乳化剤や有機溶剤を使用する必要はないが、必ずしも使用を排除するものでもない。各種ノニオン性乳化剤やアニオン性乳化剤の使用により、水分散体のさらなる安定化を図ることが可能となる場合がある。また、あらかじめ本発明のポリ乳酸系ポリエステル樹脂を適当な有機溶剤に溶解したのち相転移させることにより、より安定な水分散体を得ることができる場合がある。
 本発明のポリ乳酸系ポリエステル樹脂、樹脂ワニス、水分散体を接着剤として使用することができる。この際、カルボキシル基や水酸基と反応する硬化剤を加えると、より接着力の高い接着剤を得ることができる。前記硬化剤としては、メラミン系、ベンゾグアナミン系等のアミノ樹脂、多価イソシアネート化合物、多価オキサゾリン化合物、多価エポキシ化合物、フェノール樹脂などの各種の硬化剤を使用することができる。特に、多価エポキシ化合物、多価オキサゾリン化合物は反応性が高く、低温での硬化が可能となり、また高い接着力を得ることができ、好ましい。また多価金属塩も硬化剤として使用することができる。
 これらの硬化剤を使用する場合、その含有量は本発明のポリ乳酸系ポリエステル樹脂100質量部に対し、5~50質量部であることが好ましい。硬化剤の配合量が5質量部を下回ると硬化性が不足する傾向にあり、50質量部を超えると塗膜が硬くなりすぎる傾向にある。
 本発明の接着剤の硬化剤として適切なエポキシ化合物としては、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、アミノ基含有エポキシ樹脂、共重合型エポキシ樹脂等を挙げることができる。ノボラック型エポキシ樹脂の例としては、フェノール、クレゾール、アルキルフェノールなどのフェノール類とホルムアルデヒドとを酸性触媒下で反応させて得られるノボラック類に、エピクロルヒドリン及び/又はメチルエピクロルヒドリンを反応させて得られるものを挙げることができる。ビスフェノール型エポキシ樹脂の例としては、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類にエピクロルヒドリン及び/又はメチルエピクロルヒドリンを反応させて得られるものや、ビスフェノールAのジグリシジルエーテルと前記ビスフェノール類の縮合物にエピクロルヒドリン及び/又はメチルエピクロルヒドリンを反応させて得られるものを挙げることができる。トリスフェノールメタン型エポキシ樹脂の例としては、トリスフェノールメタン、トリスクレゾールメタン等とエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるものを挙げることができる。アミノ基含有エポキシ樹脂の例としては、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサノン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等のグリシジルアミン系を挙げることができる。共重合型エポキシ樹脂の例としては、グリシジルメタクリレートとスチレンの共重合体、グリシジルメタクリレートとスチレンとメチルメタクリレートの共重合体、あるいは、グリシジルメタクリレートとシクロヘキシルマレイミドなどとの共重合体等を挙げることができる。
 本発明に使用するエポキシ化合物の硬化反応に、硬化触媒を使用することができる。例えば2-メチルイミダゾールや1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾールや2-フェニル-4-メチルイミダゾールや1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール系化合物やトリエチルアミンやトリエチレンジアミンやN’-メチル-N-(2-ジメチルアミノエチル)ピペラジンや1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5や6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の3級アミン類及びこれらの3級アミン類をフェノールやオクチル酸や4級化テトラフェニルボレート塩等でアミン塩にした化合物、トリアリルスルフォニウムヘキサフルオロアンチモネートやジアリルヨードニウムヘキサフルオロアンチモナート等のカチオン触媒、トリフェニルフォスフィン等が挙げられる。これらのうちが1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5や6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の3級アミン類及びこれらの3級アミン類をフェノールやオクチル酸等や4級化テトラフェニルボレート塩でアミン塩にした化合物が熱硬化性及び耐熱性、金属への接着性、配合後の保存安定性の点で好ましい。その際の配合量はポリエステル100重量部に対して0.01~1.0重量部の配合量であることが好ましい。この範囲であればポリエステルとエポキシ化合物の反応に対する効果が一段と増し、強固な接着性能を得ることができる。
 本発明の接着剤の硬化剤として適切なフェノール樹脂としては、たとえばアルキル化フェノール類および/またはクレゾール類とホルムアルデヒドとの縮合物を挙げることができる。具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基でアルキル化されたアルキル化フェノール、p-tert-アミルフェノール、4、4'-sec-ブチリデンフェノール、p-tert-ブチルフェノール、o-クレゾール、,m-クレゾール、,p-クレゾール、p-シクロヘキシルフェノール、4,4'-イソプロピリデンフェノール、p-ノニ
ルフェノール、p-オクチルフェノール、3-ペンタデシルフェノール、フェノール、フェニルo-クレゾール、p-フェニルフェノール、キシレノールなどとホルムアルデヒドとの縮合物を挙げることができる。
 本発明の接着剤の硬化剤として適切なアミノ樹脂としては、例えば尿素、メラミン、ベンゾグアナミンなどのホルムアルデヒド付加物、さらにこれらの化合物を炭素原子数が1~6のアルコールによりアルコキシ化したアルキルエーテル化合物を挙げることができる。具体的にはメトキシ化メチロール尿素、メトキシ化メチロール-N,N-エチレン尿素
、メトキシ化メチロールジシアンジアミド、メトキシ化メチロールメラミン、メトキシ化メチロールベンゾグアナミン、ブトキシ化メチロールメラミン、ブトキシ化メチロールベンゾグアナミンなどが挙げられるが、好ましくはメトキシ化メチロールメラミン、ブトキシ化メチロールメラミンおよびメチロール化ベンゾグアナミンであり、それぞれ単独または併用して使用することができる。
 本発明の接着剤の硬化剤として適切なイソシアネート化合物としては、低分子化合物、高分子化合物のいずれでもよい。低分子化合物としては、たとえば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等の脂肪族イソシアネート化合物、トルエンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族イソシアネート化合物、水素化ジフェニルメタンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート等の脂環族イソシアネートを挙げることができる。また、これらのイソシアネート化合物の3量体等を挙げることができる。また高分子化合物としては、複数の活性水素を有する化合物と前記低分子ポリイソシアネート化合物の過剰量とを反応させて得られる末端イソシアネート基含有化合物を挙げることができる。複数の活性水素を有する化合物としては、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール等の多価アルコール類、エチレンジアミン等の多価アミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の水酸基とアミノ基を有する化合物、ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類等の活性水素含有ポリマーを挙げることができる。 
 前記イソシアネート化合物はブロック化イソシアネートであってもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなどのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノールなどの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピルラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネート化合物とイソシアネートブロック化剤とを従来公知の適宜の方法より付加反応させて得られる。
 本発明の接着剤の適切な硬化剤としては、市販の硬化剤を使用することができ、旭化成製デュラネート24A-100、TPA-100、TLA-100等のポリイソシアネート化合物、ナガセケミッテックス(株)製のデナコールEX-411、EX-321等のエポキシ樹脂を使用することができる。
 本発明の水性接着剤の適切な硬化剤としては、市販の硬化剤を使用することができ、日本触媒製エポクロスWS-500、WS-700、エポクロスK-2010E、エポクロスK-2020E等のオキサゾリン化合物、阪本薬品工業(株)製のSR-EGM、SR-8EG、SR-GLG、SR-SEP、ナガセケミッテックス(株)製のデナコールEX-614、EX-512、EX-412等の水溶性エポキシ樹脂、日清紡製カルボジライトV-02、V-04、V-10等のカルボジイミド化合物、カルシウム塩、亜鉛塩、アルミニウム塩等の多価金属塩を使用することができる。
 本発明のポリ乳酸系ポリエステル樹脂に、色材を配合することによりインキを得ることができ、さらにカルボキシル基、あるいは水酸基に対して反応性を有する硬化剤を配合することによりインキの耐水性を向上させることができる。色材としては、公知の顔料、染料を配合することができる。本発明のポリ乳酸系ポリエステル樹脂は、ポリエステル樹脂の酸価が大きいので各種顔料の分散性が大きく、高濃度の水性インキの作製が可能である。硬化剤としては、接着剤用途で例示したしたものを使用することができる。 
 本発明のポリ乳酸系ポリエステル樹脂に、各種顔料、塗料に一般的に使用される添加剤を配合することにより塗料を得ることができ、さらにカルボキシル基、あるいは水酸基に対して反応性を有する硬化剤を配合することにより塗装膜の耐水性を向上させることができる。顔料としては、公知の有機/無機の着色顔料、炭酸カルシウム、タルク等の体質顔料、鉛丹、亜酸化鉛等の防錆顔料、アルミニウム粉、硫化亜鉛(蛍光顔料)等の各種機能性顔料を配合することができる。また。添加剤としては、可塑剤、分散剤、沈降防止剤、乳化剤、増粘剤、消泡剤、防カビ剤、防腐剤、皮張り防止剤、たれ防止剤、つや消し剤、帯電防止剤、導電剤、難燃剤等を配合することができる。本発明のポリ乳酸系ポリエステル樹脂は、ポリエステル樹脂の酸価が大きいので各種顔料の分散性が大きく、高濃度の塗料の作製が可能である。硬化剤としては、接着剤用途で例示したしたものを使用することができる。
 本発明の樹脂ワニス、水分散体、接着剤、塗料、及びインキは、各種増粘剤を配合することにより、作業性に適した粘性、粘度に調整することができる。増粘剤添加による系の安定性から、メチルセルロース、ポリアルキレングリコール誘導体などのノニオン性のもの、ポリアクリル酸塩、アルギン酸塩などのアニオン性のものが好ましい。 
 本発明の樹脂ワニス、水分散体、接着剤、塗料、及びインキは、各種表面張力調整剤を使用することにより、塗布性をさらに向上することができる。表面張力調整剤としては、たとえば、アクリル系、ビニル系、シリコーン系、フッ素系の表面張力調整剤などが例示され、特に制限されるものではないが、接着性を損ないにくいことから、上記中でもアクリル系、ビニル系の表面張力調整剤が好ましい。表面張力調整剤の添加量が過剰であると接着強度を損なう傾向にあるので、樹脂に対して、好ましくは1重量%以下、より好ましくは0.5重量%以下に添加量を制限すべきである。
 本発明により得られる樹脂ワニス、あるいは水分散体は、それらの製造の際に、あるいは製造されたものに対して、表面平滑剤、消泡剤、酸化防止剤、分散剤、潤滑剤等の公知の添加剤を配合しても良い。
 本発明の樹脂ワニス、水分散体、接着剤、塗料、及びインキは、各種紫外線吸収剤、酸化防止剤、光安定剤を添加することにより、さらに耐光性、耐酸化性を向上させることができる。紫外線吸収効果、光安定効果をもつ化合物をポリエステル骨格に導入することで、耐光性は大幅に向上するが、紫外線吸収剤、酸化防止剤、光安定剤のエマルジョン、及び水溶液を、ポリエステル樹脂水分散体に添加することによっても耐候性は向上する。紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系等各種有機系のもの、酸化亜鉛等無機系のもののいずれも使用可能である。また、酸化防止剤としては、ヒンダードフェノール、フェノチアジン、ニッケル化合物等一般的にポリマー用のもの各種が使用可能である。光安定剤もポリマー用のもの各種が使用可能であるが、ヒンダードアミン系のものが有効である。
 本発明のポリ乳酸系ポリエステル樹脂からなる層(A層)とフィルム、シート、織布、不織布および紙からなる群から選ばれる層(B層)とを積層し、積層体とすることができる。前記積層体は、例えば、フィルム、シート、織布、不織布および紙からなる群から選ばれる層(B層)に、本発明の接着剤および/またはインキを塗布し乾燥させることにより容易に得ることができる。本発明の接着剤およびインキは、各種原料からなるフィルム、シート、織布、不織布および紙と強い接着性を示すが、ポリ乳酸、ポリエステル、ポリウレタン、ポリアミド、セルロース、デンプン、塩化ビニル、塩化ビニリデン、塩素化ポリオレフィン及びこれらの化学改質物質から作製されるフィルム、シートに対して特に高い接着力を示す。これらのうち、ポリ乳酸、セルロース、デンプン等のバイオマス原料からなるフィルム、シート及び紙と組み合わせれば、積層体全体のバイオマス度を極めて高くすることができる。また、本発明のポリ乳酸系ポリエステル樹脂水性接着剤および水性インキは、各種金属蒸着フィルムにも高い接着力を示すので、前記A層/金属蒸着層/B層の3層構造の積層体として用いることも有用である。金属蒸着層に使用する金属およびB層は特に限定されないが、特にアルミ蒸着フィルムと本発明のポリ乳酸系ポリエステル樹脂接着剤およびインキとの接着力が大きい。本発明のポリ乳酸系ポリエステル樹脂接着剤およびインキが、各種金属蒸着フィルムに対して高い接着力を示すのは、本発明のポリエステル樹脂の酸価が高いことの効果であると思われる。これらの積層体は、バイオマス度が高く生分解性が高いので比較的短期間で使い捨てにされる材料、例えば包装材料としての使用に好適であり、特に食品包装材料として最適である。
 本発明のポリ乳酸系ポリエステル樹脂、樹脂ワニス、及び水分散体を徐放性生分解性被覆剤として使用することができる。本発明のポリ乳酸樹脂は、適度な生分解速度を有するので、自然環境中に放置されると長期間にわたって徐々に生分解され、それに伴って被被覆成分を環境中に徐々に放出することができる。そのため、肥料、農薬、防黴剤、殺菌剤、生物忌避剤等の被被覆剤を本発明の生分解性被覆剤で被覆して形成した被覆体は、被被覆剤の持続放出性に優れる。また、本発明の生分解性被覆剤は、その好ましい実施態様において造膜性に優れる水分散体を形成することができ、塗膜の形態で用いることができる。
<徐放性生分解性被覆体>
 本発明における徐放性生分解性被覆体は、被被覆成分を本発明における徐放性生分解性被覆剤によって被覆したものである。本発明の徐放性生分解性被覆体には、被被覆成分および本発明の徐放性生分解性被覆剤以外の成分が配合されていても良く、例えば、他の生分解性樹脂、非生分解性樹脂、加水分解促進剤、加水分解抑制剤、等が配合されていてもよい。また、徐放性生分解性被覆体とは、被被覆成分が徐放性生分解性被覆剤で被覆されているものを指すが、被被覆成分と同じ成分が被覆体の内部に存在するのみならず外表面にも付着しているものをも含む。
 本発明における徐放性生分解性被覆体は、土壌、河川湖沼および海洋等の表面及び内部等の自然環境中において、微生物等の生物により徐々に分解され、その過程で被被覆成分を長期間にわたって持続的に放出し続ける作用を示す。このため、適切な被被覆成分を選択することによって、徐放性農薬、緩効性肥料、持続性防汚塗料等として用いることができる。
<被被覆成分>
 本発明における被被覆成分は、自然環境中で徐放させることが望まれる成分であれば、とくに限定されない。本発明における被被覆成分の具体例としては、殺虫、除草、除菌、防黴、生物誘引および生物忌避等の生物の駆除作用が期待できる成分、生理活性物質や肥料等の生物に対する生長促進作用および/または栄養補給作用が期待できる成分等を挙げることができる。また、被被覆成分は、単一成分に限定されず複数成分からなるものであっても良い。
<徐放性生分解性被覆体の製造方法>
 本発明の徐放性生分解性被覆体の製造方法は特に限定されないが、本発明のポリ乳酸系ポリエステル樹脂を経由して製造されることが好ましい。被被覆成分を樹脂、溶液、あるいは水分散体に溶解または分散させ、ついで水分散体自体を噴霧し有機溶剤や水分を蒸散させて粒子状としたり、何らかの担体の共存下に噴霧し担体表面および/または担体内部に付着させたり、何らかの被着体に塗布し塗膜を形成させたりすることによって、容易に生分解性被覆体を得ることができ、好都合だからである。しかも、ポリ乳酸系生分解性樹脂が界面活性剤の添加なしに水分散体を形成することができる自己乳化性のものであると、生分解の過程で界面活性剤を環境中に放出することがなく、より環境負荷が少なくなり、より好ましい。また、有機溶剤を含有しないまたは有機溶剤の使用量が少ない水分散体であれば、被覆体の製造工程および被覆体の使用の両方の場面において、有機溶剤を環境中に放出することがないまたは少なく、より環境負荷が少なくなり、より好ましい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、もとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。
 なお、以下、特記のない場合、部は重量部を表す。また、本明細書中で採用した測定、評価方法は次の通りである。
<樹脂組成>
 樹脂試料を、重クロロホルムまたは重ジメチルスルホキシドに溶解し、VARIAN社製 NMR装置400-MRを用いて、H-NMR分析および13C-NMR分析を行ってその積分比より、樹脂組成を求め、重量%で表示した。また、左記樹脂組成を元に、乳酸含有率(重量%)、p,qを算出した。
<L-乳酸含有率>
 樹脂試料の5g/100mLクロロホルム溶液を調製し、測定温度25℃、測定光源波長589nmにおいて比旋光度を測定し、[α]obsとした。また、上述の方法で求めた試料組成において、乳酸成分をすべてL-乳酸成分に置換した組成の樹脂を重合し、[α]obsと同様の方法により比旋光度を測定し、[α]100とした。
  OP[%]= ABS([α]obs/[α]100)*100
OP=100%の時、試料に含まれる乳酸はすべてL体であり、OP=0%の時は、L体とD体の含有率は等しく各々50%であり、L乳酸/(L乳酸+D乳酸)=50+[OP]/2、との関係が成立する。左記により、L-乳酸とD-乳酸の比率を算出し、別途上述の方法で求めた乳酸含有率を考慮して、L-乳酸含有率を算出した。
<数平均分子量>
 樹脂試料を、樹脂濃度が0.5重量%程度となるようにテトラヒドロフランに溶解し、孔径0.5μmのポリ四フッ化エチレン製メンブレンフィルターで濾過したものを測定用試料として、テトラヒドロフランを移動相とし、示差屈折計を検出器とするゲル浸透クロマトグラフィー(GPC)により分子量を測定した。流速は1mL/分、カラム温度は30℃とした。カラムには昭和電工製KF-802、804L、806Lを用いた。分子量標準には単分散ポリスチレンを使用した。
<ガラス転移温度>
示差走査熱量計(DSC)を用いて20℃/分の昇温速度で測定した。
<カルボン酸価>
 樹脂試料0.8gを20mlのN,N-ジメチルホルミアミドに溶解し、フェノールフタレインを指示薬存在下、0.1Nのナトリウムメトキシドのメタノール溶液で滴定し、溶液が赤色に着色した点を中和点とし、樹脂10gあたりの当量(当量/10g)に換算して表示した。
<接着剤の調製>
 樹脂ワニスを用いる場合は、樹脂ワニスに対して、硬化剤としてポリイソシアネート樹脂コロネートHX(日本ポリウレタン工業(株)製)を表3に記載の比率で配合し、接着剤を調整した。
水分散体を用いる場合は、水分散体に対して、硬化剤として水溶性エポキシ樹脂SR-SEP(阪本薬品工業(株)製)を表3に記載の比率で配合し、水性接着剤を調整した。
<生分解性の評価>
ISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における条件下にて行なった。なお、該求め方における365日目の結果を表3に表示した。
<接着性評価用サンプルの調製>
 厚さ25μmのPETフィルム(東洋紡績(株)製)のコロナ処理面に、乾燥後の厚みが5μmとなるように接着剤を塗布し、80℃×5分間乾燥した。その接着面に、別の厚さ25μmのPETフィルムのコロナ処理面を貼り合わせ、80℃で3kgf/cm2
加圧下に30秒間プレスし、40℃で8時間熱処理して硬化させて、剥離強度評価用サンプルを得た(初期評価用)。
<接着性の評価>
 剥離強度を測定し、接着性の評価とした。25℃において、引張速度300mm/minで180°剥離試験を行ない、剥離強度を測定した。実用的性能から考慮すると2N/cm以上が良好である。但し、水分散性が△または×のものについて、上澄み液部分を用いて水性接着剤を作製し、接着性評価用サンプル作製を試みたが、有効成分が少ないため、乾燥後厚みが5μとなるように塗布が不可能であった。塗布可能量のみでサンプルを調整し剥離強度測定を行った所、剥離強度は0.1/cm以下であり、正確な測定ができな
いと判断し、「-」と表示した。
<耐水性の評価>
前記接着性評価用サンプルを25℃の水中に5時間浸漬後、表面の水を十分に拭き取り、25℃において、引張速度300mm/minで180°剥離試験を行ない、剥離強度を測定した。但し、水分散性が△または×のものについては、ほとんど接着性を示さなかったため、耐水性の測定を行わず、「-」と表示した。
以下、実施例中の本文及び表に示した化合物の略号はそれぞれ以下の化合物を示す。
 PE:ペンタエリスリトール
 DPE:ジペンタエリスリトール
 SOR:ソルビトール
 ISO:イソソルビド
 L-LD:L-ラクチド
 D-LD:D-ラクチド
 CL:ε-カプロラクトン
 TMA:無水トリメリット酸
 SC:無水コハク酸
 MA:無水マレイン酸
 TEA:トリエチルアミン
 TETA:トリエタノールアミン
 AN:アンモニア水(28%)
 NaHCO3:炭酸水素ナトリウム
 Z:水酸基をr個持つ化合物の残基
 Y:-CH(CH)-、または-CH(CH)-と炭素数2~10の直鎖または分岐アルキレン基との混合物
X・カルボキシル基、または水素を有する化合物の残基
実施例A-1
ポリ乳酸系ポリエステル樹脂No.1の製造
 温度計、撹拌機、リービッヒ冷却管を具備した500mlガラスフラスコにソルビトール1.8部、L-ラクチド62.8部、ε-カプロラクトン26.7部及び触媒としてオクチル酸錫0.028部を仕込み、60℃で30分窒素ガスを流通した。次いで60℃下に30分間減圧し、内容物を更に乾燥させた。再び窒素ガスを流通しつつ重合系を180℃に昇温し、180℃到達後3時間撹拌した。次いでリン酸0.018部を添加し、20分撹拌後、系を減圧し、未反応のラクチドおよびカプロラクトンを留去した。約20分後、未反応物の留出が収まった後、無水トリメリット酸9.2部を仕込み、180℃で2時間攪拌した後、内容物を取り出し冷却した。得られたポリ乳酸系ポリオールAの組成、数平均分子量、乳酸含有率等を表1に示した。
実施例A-1~A-6、比較例A-7~A-11
ポリ乳酸系ポリエステル樹脂No.2~11の製造
 ポリ乳酸系ポリエステル樹脂No.1と同様にして、但し、仕込み原料およびその比率を変更してポリ乳酸系ポリエステル樹脂No.2~11を合成し、ポリ乳酸系ポリエステル樹脂No.1と同様の評価を行った。評価結果を表1~表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ポリ乳酸系ポリエステル樹脂No.7は、樹脂酸価が低く、本発明の範囲外である。また、ポリ乳酸系ポリエステル樹脂No.8は、樹脂酸価が高く、本発明の範囲外である。ポリ乳酸系ポリエステル樹脂No.9は、数平均分子量が大きく、本発明の範囲外である。ポリ乳酸系ポリエステル樹脂No.10は、乳酸含有率が小さく、環境に対する負荷が低い材料と称するに値しないものになっている。ポリ乳酸系ポリエステル樹脂No.11は、―(CO-Y-O)-に占めるL-乳酸残基の含有率が高く、本発明の範囲外である。
実施例C-1
 ポリ乳酸系ポリエステル樹脂ワニスの製造
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.1を20部、MEK80部を仕込み、70℃に昇温し1時間撹拌した後、内容物を取り出し冷却し、ポリ乳酸系ポリエステル樹脂ワニス1を製造した。
ポリ乳酸系ポリエステル樹脂水分散体、接着剤の製造および評価
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.1を30部、TEA2.9部、水70部を仕込み、60℃に昇温し30分撹拌した後、内容物を取り出し冷却し、ポリ乳酸系ポリエステル樹脂水分散体1を製造した。得られた水分散体の粒子径を測定した。さらに、上述の方法で硬化剤を配合し、得られた塗膜の接着性と耐水性を評価した。結果を表3に示した。
実施例C-2~C-6
 実施例1と同様にして、但し、仕込み原料およびその比率を変更してポリ乳酸系ポリエステル樹脂ワニス、および水分散体の製造を行ない、ポリ乳酸系ポリエステル樹脂ワニス、水分散体2~6を製造した。さらに、実施例1と同様に、ポリ乳酸系ポリエステル樹脂水分散体2~6に硬化剤を配合し、得られた塗膜の接着性と耐水性を評価した。結果を表3に示した。いずれも高い水分散性を示し、また硬化塗膜は高い接着性及び耐水性を示した。
比較例C-7~C-13
 実施例1と同様にして、但し、仕込み原料およびその比率を変更してポリ乳酸系ポリエステル樹脂水分散体の製造を試み、水分散体が得られたものについては水分散体を、水分散体が得られなかったものについては樹脂ワニスを用い、実施例1と同様に硬化剤を配合し、得られた塗膜の接着性と耐水性を評価した。結果を表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 比較例C-7は365日目の生分解度が90%以下であり、さらに水分散不良であった。比較例C-7に使用したポリ乳酸系ポリエステル樹脂No.7は、樹脂の酸価が小さく、本発明の範囲外である。樹脂の酸価が小さいことから生分解性および、水分散性が低かったと推定される。
 比較例C-8は耐水性が不良であった。比較例C-8に使用した樹脂No.8は、樹脂の酸価が大きく、本発明の範囲外である。酸価が高いため、生分解度は高いが、その半面加水分解を受けやすいと推定される。
比較例C-9は接着性が不良であった。比較例C-9に使用した樹脂No.9は、樹脂の分子量が大きく、本発明の範囲外である。分子量が大きいために微生物による分解が困難になり、生分解速度が遅くなるものと推定される。
 比較例C-10に使用したポリ乳酸系ポリエステル樹脂No.10は、乳酸含有率が小さく、環境に対する負荷が低い材料と称するに値しないものになっている。
 比較例C-11に使用したポリ乳酸系ポリエステル樹脂No.11は、―(CO-Y-O)-に占めるL-乳酸残基の含有率が高く、本発明の範囲外である。L-乳酸含有量が90%以上あるため樹脂の結晶化が起こり、生分解性が低かったものと推定される。
比較例C-12に使用したポリ乳酸系ポリエステル樹脂No.12は、Tgが高く、本発明の範囲外である。Tgが高いために樹脂のフレキシブさがなく、微生物による分解が困難になり生分解速度が遅くなったと推定される。
<塗料>
水性塗料(d-1)の製造例
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.1を100部、TEA6.3部、水233部を仕込み、60℃に昇温し30分撹拌した後、内容物を取り出し冷却し、100メッシュの濾布で濾過した濾液に、硬化剤(住友化学(株)製M-40W)を20部、イオン交換水167部、酸化チタン(石原産業(株)製CR-93)50部、ドデシルベンゼンスルホン酸ナトリウムの10%ベンジルアルコール1.0部を添加し、ガラスビーズ型高速振とう機を用いて3時間振とうすることにより均一に分散し水性塗料(d-1)を得た。
塗料(d-2)の製造例
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.3を100部、アノン/ソルベッソ150=7/3溶液233部を仕込み、70℃に昇温し1時間撹拌した後、内容物を取り出し冷却し、100メッシュの濾布で濾過した濾液に、硬化剤(住友化学(株)製M-40S)を2.5部、アノン/ソルベッソ150=7/3溶液167部、酸化チタン(石原産業(株)製CR-93)50部、ドデシルベンゼンスルホン酸ナトリウムの1%MEK溶液3.0部を添加し、ガラスビーズ型高速振とう機を用いて3時間振とうすることにより均一に分散し塗料(d-2)を得た。上記塗料(d-1)、(d-2)を用いて塗膜性能試験を行った。なお塗板の作製、評価は以下の方法に従った。この結果を表5に示す。
塗板の作製
 溶融亜鉛メッキ鋼板に前記水性塗料(d-1)、(d-2)を塗装後、80℃、10分乾燥後、次いで140℃で30分間焼き付けを行った。膜厚は5μmとした。
評価方法
1.光沢
GLOSS METER(東京電飾社製)を用いて、60度での反射を測定した。
◎:90以上 ○:80~90 △:50~80 ×:50以下
2.沸水試験
塗装鋼板を沸水中に2時間浸漬したあとの塗膜外観(ブリスター発生状況)を評価した。◎:ブリスターなし
○:ブリスター発生面積10%以内
△:ブリスター発生面積10~50%
×:ブリスター発生面積50%以上
3.耐溶剤性
20℃の室内において、メチルエチルケトンをしみ込ませたガーゼにて塗面に1kg/cm2の荷重をかけ、5cmの長さの間を往復させた。下地が見えるまでの往復回数を記録した。50回の往復で下地が見えないものは>50と表示した。回数の大きいほど塗膜の硬化性が良好である。
4.密着性
 JISK-5400碁盤目-テープ法に準じて、試験板の塗膜表面にカッターナイフで素地に達するように、直行する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作成した。その表面にセロハン粘着テープを密着させ、テープを急激に剥離した際のマス目の剥がれ程度を観察し下記基準で評価した。
◎:塗膜剥離が全く見られない。
○:塗膜がわずかに剥離したが、マス目は90個以上残存。
△:塗膜が剥離し、マス目の残存数は50個以上で90個未満。
×:塗膜が剥離し、マス目の残存数は50個未満。
<インキ>
水性インキ(e-1)の製造例
 温度計、攪拌機、リービッヒ冷却管を具備した2,000mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.1を100部、TEA6.3部、水233部を仕込み、60℃に昇温し30分攪拌した後、30℃まで冷却した後、酸化鉄イエロー水分散体(大日精化工業(株)製MF-5050Yellow)19.6部、水781.0部、2-プロパノール55部を加え、さらに1時間攪拌した後、内容物を取り出し、100メッシュの濾布で濾過して水性インキ(e-1)を得た。
インキ(e-2)の製造例
 温度計、攪拌機、リービッヒ冷却管を具備した2,000mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.3を100部、アノン/ソルベッソ150=7/3溶液233部を仕込み、70℃に昇温し1時間撹拌した後、30℃まで冷却した後、銅フタロシアニン(DIC(株)製FASTOGEN Blue AE-8K)19.6部、アノン/ソルベッソ150=7/3溶液706.6部を加え、さらに1時間攪拌した後、内容物を取り出し、100メッシュの濾布で濾過してインキ(e-2)を得た。
 上記水性インキ(e-1)、(e-2)を用いてインキ塗膜性能試験を行った。なお評価サンプルの作製、評価は以下の方法に従った。この結果を表6に示す。
<インキの分散安定性評価>
上記インキ(e-1)、(e-2)を、20℃、-5℃で2週間保存し、インキの外観変化を評価した。
◎:外観変化全くなし
○:外観変化殆どなし(攪拌で再分散できる沈降物が発生)
△:わずかに沈降物が発生(攪拌で再分散できないもの若干残る)
×:沈降物発生
<耐水性評価用サンプルの調製>
 厚さ25μmのPETフィルム(東洋紡績(株)製)のコロナ処理面に、インキ(e-1)、(e-2)を各々乾燥後の厚みが2μmとなるように塗布し、80℃×30分間乾燥し、耐水性評価用サンプルとした。
<耐水性の評価>
 前記耐水性評価用サンプルを25℃の水中に5時間浸漬後、表面の水を十分に拭き取り、外観変化を確認した。
◎:外観変化全くなし
○:外観変化殆どなし(塗膜と基材の界面のごく一部に水の浸入の形跡がみられる)
△:塗膜の一部に水による膨潤がみられる。
×:全面剥離/溶解が起こった。
<積層体>
積層体(f-1)の製造例
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.1を100部、TEA6.3部、水233部を仕込み、60℃に昇温し30分撹拌した後、30℃以下に冷却し、コロイダルシリカ(日産化学(株)製スノーテックC)を100部加え、さらに1時間攪拌した後、100メッシュの濾布で濾過した濾液を、厚さ25μmのPLAフィルム(Innovia Films社製)のコロナ処理面に、乾燥後の厚みが5μmとなるように塗布し、80℃×30分間乾燥し、積層体(f-1)を得た。
積層体(f-2)の製造例
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.3を100部、MEK233部を仕込み、70℃に昇温し1時間撹拌した後、30℃以下に冷却し、コロイダルシリカ(日産化学(株)製スノーテックスMEK―ST)を66部加え、さらに1時間攪拌した後、100メッシュの濾布で濾過した濾液を、厚さ25μmのPLAフィルム(Innovia Films社製)のコロナ処理面に、乾燥後の厚みが5μmとなるように塗布し、80℃×30分間乾燥し、積層体(f-2)を得た。
 上記積層体(f-1)、(f-2)を用いて性能試験を行った。評価は以下の方法に従った。この結果を表7に示す。
<バイオマス度>
積層体全重量に含まれる、バイオマス由来成分の重量%を算出した。
<生分解性試験>
 積層体1 0 c m × 1 0 c m をコンポスター( 生ゴミ処理機、三井ホーム社製(M A M ) )中に入れ、7 日後にサンプル形態を目視にて観察し、生分解性の程度を下記の基準に従って4 段階で評価した。
◎ : サンプルの形態が完全になし
○ : サンプルの形態がほとんどなし
△ : サンプルの断片あり
× : サンプルの形態がほとんど残っている
<徐放性生分解性被覆剤>
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.1を100部、TEA6.3部、水233部を仕込み、60℃に昇温し30分撹拌した後、30℃以下に冷却し、コロイダルシリカ(日産化学(株)製スノーテックC)を100部加え、さらに1時間攪拌した後、100メッシュの濾布で濾過した。その濾液を、平均粒径4mmの窒素系粒状肥料成分に、噴流被覆装置を用いて噴霧被覆し、高温の熱風により水分を蒸発乾燥して被覆粒状の徐放性生分解性被覆体G1を得た。
また濾液をポリプロピレンフィルムに塗工し60℃の熱風乾燥機中で乾燥し、ついでポリプロピレンシートから剥離させ、乾燥厚み約20μmのポリ乳酸系ポリエステル樹脂H1からなるシートを作成した。このシートを用いて、好気性暗所下での生分解性を評価した。具体的な評価方法はASTM-D5338に準拠した。評価結果を表8に示した。
 このシートの分解速度は、後述するポリ乳酸系ポリエステル樹脂H2からなるシートと比較すれば速いものの、セルロースよりは遅いことが判明した。ポリ乳酸系ポリエステル樹脂H1は、徐放性を示し、かつ、比較的短期間で被被覆成分の放出を終了させたい場合の被覆剤および被覆体に適する。
<徐放性生分解性被覆剤>
 温度計、攪拌機、リービッヒ冷却管を具備した500mlガラスフラスコにポリ乳酸系ポリエステル樹脂No.2を100部、TEA9.6部、水233部を仕込み、60℃に昇温し30分撹拌した後、30℃以下に冷却し、コロイダルシリカ(日産化学(株)製スノーテックC)を100部加え、さらに1時間攪拌した後、100メッシュの濾布で濾過した。その濾液を、平均粒径4mmの窒素系粒状肥料成分に、噴流被覆装置を用いて噴霧被覆し、高温の熱風により水分を蒸発乾燥して被覆粒状の徐放性生分解性被覆体G2を得た。
また濾液をポリプロピレンフィルムに塗工し60℃の熱風乾燥機中で乾燥し、ついでポリプロピレンシートから剥離させ、乾燥厚み約20μmのポリ乳酸系ポリエステル樹脂H2からなるシートを作成した。このシートを用いて、好気性暗所下での生分解性を評価した。具体的な評価方法はASTM-D5338に準拠した。評価結果を表8に示した。
このシートの分解速度は比較的遅く、比較的長期間にわたる被被覆成分の放出が必要な場合の被覆剤および被覆体に適する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明のポリ乳酸系ポリエステル樹脂は、バイオマス度が高く、低温条件下(28±2℃)においても良好な生分解性を示す環境にやさしい樹脂、樹脂ワニス、および水分散体を提供することができる。また硬化剤を配合することにより、耐水性の高い塗膜を提供することができる。

Claims (20)

  1.  D-乳酸とε-6-ヒドロキシカプロン酸のいずれか一方または双方とL-乳酸とから主としてなるランダム共重合体であり、L-乳酸の含有率が90重量%以下、酸価が300~2,500eq/106g、数平均分子量が2,000~50,000、Tgが-5
    0~50℃、乳酸含有率が40重量%以上かつISO14855(JISK6953)「制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方」記載の、ただし温度条件が28±2℃における生分解度が、該求め方において、365日目までに90%以上となることを特徴とする生分解性ポリ乳酸系ポリエステル樹脂。
  2.  請求項1記載のポリ乳酸系ポリエステル樹脂と水とを含有するポリ乳酸系ポリエステル樹脂水分散体。
  3. 界面活性剤を含有しないことを特徴とする請求項2に記載のポリ乳酸系ポリエステル樹脂水分散体。
  4. 有機溶剤を含有しないことを特徴とする請求項1記載のポリ乳酸系ポリエステル樹脂水分散体。
  5. 請求項1記載のポリ乳酸系ポリエステル樹脂と水とを、界面活性剤および有機溶剤を加え
    ることなく混合することによってポリ乳酸系ポリエステル樹脂水分散体を得る工程を有する、ポリ乳酸系ポリエステル樹脂水分散体の製造方法。
  6. 請求項1記載のポリ乳酸系ポリエステル樹脂と有機溶剤とを含有するポリ乳酸系ポリエステル樹脂溶液。
  7. 請求項1記載のポリ乳酸系ポリエステル樹脂とカルボキシル基に対して反応性を有する硬化剤とを含有する樹脂組成物。
  8.  前記硬化剤が多価エポキシ化合物、オキサゾリン樹脂、カルボジイミド樹脂および多価金属塩からなる群から選ばれる1種または2種以上であることを特徴とする請求項7記載の樹脂組成物。
  9.  請求項1記載のポリ乳酸系ポリエステル樹脂と水酸基に対して反応性を有する硬化剤と
    を含有する樹脂組成物。
  10.  前記硬化剤が多価イソシアネート化合物であることを特徴とする請求項9記載の樹脂組成物。
  11.  請求項7~10いずれかに記載の樹脂組成物からなる接着剤。
  12.  請求項7~10いずれかに記載の樹脂組成物からなる塗料。
  13.  請求項7~10いずれかに記載の樹脂組成物と色材とからなるインキ。
  14.  請求項1記載のポリ乳酸系ポリエステル樹脂からなる層(A層)とフィルム、シート、織布、不織布および紙からなる群から選ばれる層(B層)とからなる積層体。
  15. 前記B層がバイオマス由来物質及び/またはバイオマス由来物質の化学改質物質から主としてなるものであることを特徴とする請求項14に記載の積層体。
  16.  請求項14または請求項15に記載の積層体を構成要素として有する包装材料。
  17.  請求項7~10いずれかに記載の樹脂組成物からなる徐放性生分解性被覆剤。
  18.  請求項17に記載の生分解性被覆剤によって、被被覆成分を被覆した徐放性生分解性被覆体。
  19.  前記被被覆成分が、殺虫、除草、除菌、防黴、生物誘引および生物忌避のいずれか1種以上の機能を有するものである請求項18に記載の徐放性生分解性被覆体。
  20.  前記被被覆成分が、生物に対する生理活性、生長促進および栄養補給のいずれか1種以上の機能を有するものである請求項18に記載の徐放性生分解性被覆体。
PCT/JP2014/058831 2013-03-28 2014-03-27 ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法 WO2014157507A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508690A JP6319300B2 (ja) 2013-03-28 2014-03-27 ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013068808 2013-03-28
JP2013-068808 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157507A1 true WO2014157507A1 (ja) 2014-10-02

Family

ID=51624468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058831 WO2014157507A1 (ja) 2013-03-28 2014-03-27 ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法

Country Status (2)

Country Link
JP (1) JP6319300B2 (ja)
WO (1) WO2014157507A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104943306A (zh) * 2015-06-23 2015-09-30 湖南工业大学 一种高强度多层共挤生物质复合包装膜
US10087326B2 (en) 2016-02-29 2018-10-02 Michelman, Inc. Aqueous-based hydrolytically stable dispersion of a biodegradable polymer
CN111334015A (zh) * 2020-03-18 2020-06-26 温州华邦安全封条股份有限公司 一种新型环保高性能塑料及其制备方法
WO2022107660A1 (ja) * 2020-11-19 2022-05-27 中京油脂株式会社 水分散体。
JP2022528565A (ja) * 2019-04-12 2022-06-14 フェルナンディ イノベーション アクチボラグ パーチメント紙および多糖類系のコーティングを含む密閉パッケージ
WO2022185934A1 (ja) * 2021-03-02 2022-09-09 Dic株式会社 生分解性樹脂組成物及び当該組成物の成形品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812310A (zh) * 2020-12-31 2021-05-18 常州博疆新材料科技有限公司 聚乳酸材料生物降解性能调节剂及原料配方、制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308765A (ja) * 1993-02-26 1994-11-04 Mitsui Toatsu Chem Inc 電子写真トナー用樹脂
JP2000007789A (ja) * 1998-04-23 2000-01-11 Dainippon Ink & Chem Inc 生分解性ポリエステルからなる自己水分散性粒子及びその製法
JP2003096281A (ja) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc 生分解性ポリエステルの水性分散体、微粒子及び塗膜、並びにそれらの製造方法
JP2004204033A (ja) * 2002-12-25 2004-07-22 Dainippon Ink & Chem Inc 熱可塑性樹脂微粒子水性分散体の製造方法および電子写真用トナー
JP2008081576A (ja) * 2006-09-27 2008-04-10 Toyobo Co Ltd ポリエステル樹脂の製造方法及びそれにより得られたポリエステル樹脂
WO2008059645A1 (fr) * 2006-11-13 2008-05-22 Toyo Boseki Kabushiki Kaisha Polymère estérique hyper-ramifié, toner électrophotographique et cuvée principale de pigments utilisant ce polymère
JP2008208196A (ja) * 2007-02-26 2008-09-11 Toyobo Co Ltd 顔料マスターバッチおよびそれを用いたトナー
JP2012172027A (ja) * 2011-02-18 2012-09-10 Japan U-Pica Co Ltd 樹脂粒子及び電子写真用トナー

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308765A (ja) * 1993-02-26 1994-11-04 Mitsui Toatsu Chem Inc 電子写真トナー用樹脂
JP2000007789A (ja) * 1998-04-23 2000-01-11 Dainippon Ink & Chem Inc 生分解性ポリエステルからなる自己水分散性粒子及びその製法
JP2003096281A (ja) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc 生分解性ポリエステルの水性分散体、微粒子及び塗膜、並びにそれらの製造方法
JP2004204033A (ja) * 2002-12-25 2004-07-22 Dainippon Ink & Chem Inc 熱可塑性樹脂微粒子水性分散体の製造方法および電子写真用トナー
JP2008081576A (ja) * 2006-09-27 2008-04-10 Toyobo Co Ltd ポリエステル樹脂の製造方法及びそれにより得られたポリエステル樹脂
WO2008059645A1 (fr) * 2006-11-13 2008-05-22 Toyo Boseki Kabushiki Kaisha Polymère estérique hyper-ramifié, toner électrophotographique et cuvée principale de pigments utilisant ce polymère
JP2008208196A (ja) * 2007-02-26 2008-09-11 Toyobo Co Ltd 顔料マスターバッチおよびそれを用いたトナー
JP2012172027A (ja) * 2011-02-18 2012-09-10 Japan U-Pica Co Ltd 樹脂粒子及び電子写真用トナー

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104943306A (zh) * 2015-06-23 2015-09-30 湖南工业大学 一种高强度多层共挤生物质复合包装膜
US10087326B2 (en) 2016-02-29 2018-10-02 Michelman, Inc. Aqueous-based hydrolytically stable dispersion of a biodegradable polymer
JP2022528565A (ja) * 2019-04-12 2022-06-14 フェルナンディ イノベーション アクチボラグ パーチメント紙および多糖類系のコーティングを含む密閉パッケージ
CN111334015A (zh) * 2020-03-18 2020-06-26 温州华邦安全封条股份有限公司 一种新型环保高性能塑料及其制备方法
WO2022107660A1 (ja) * 2020-11-19 2022-05-27 中京油脂株式会社 水分散体。
WO2022185934A1 (ja) * 2021-03-02 2022-09-09 Dic株式会社 生分解性樹脂組成物及び当該組成物の成形品
CN116670234A (zh) * 2021-03-02 2023-08-29 Dic株式会社 生物分解性树脂组合物和该组合物的成形品

Also Published As

Publication number Publication date
JP6319300B2 (ja) 2018-05-09
JPWO2014157507A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6020445B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
JP6319300B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
JP2014139265A (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
JP6163766B2 (ja) ポリエステル樹脂、ポリエステル樹脂水分散体、及びポリエステル樹脂水分散体の製造方法
JP6579292B1 (ja) ポリエステル樹脂、ポリエステル樹脂水分散体、及びポリエステル樹脂水分散体の製造方法
JP2004107413A (ja) 可塑剤含有ポリ乳酸系樹脂水分散体
EP0802940A1 (de) Biologisch abbaubare polymere, verfahren zu deren herstellung sowie deren verwendung zur herstellung bioabbaubarer formkörper
JP6146416B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、およびポリ乳酸系ポリエステル樹脂水分散体の製造方法
JPWO2013042677A1 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、水性接着剤、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
JPWO2014024939A6 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、およびポリ乳酸系ポリエステル樹脂水分散体の製造方法
Sohail et al. Aliphatic biopolymers as a sustainable green alternative to traditional petrochemical-based plastics
JP6340909B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
WO2021201185A1 (ja) 生分解性樹脂組成物及び成形体
JP2014005369A (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
JP2012233023A (ja) 徐放性生分解性被覆剤および徐放性生分解性被覆体
EP4414422A1 (en) Biodegradable resin composition, molded article, and biological degradation method
JP2022157778A (ja) 生分解性樹脂組成物及び成形体
JP4795572B2 (ja) 生分解性オーバープリントニス組成物、および、生分解性複合体
WO2024122240A1 (ja) 海洋生分解性ポリマー化合物、その製造方法及び海洋生分解性樹脂組成物
JP2003020439A (ja) 生分解性オーバープリントニス組成物、および、生分解性複合体
JP2023140314A (ja) 樹脂組成物、成形体及び生分解性樹脂用の分解促進剤
JP2023149391A (ja) 生分解性ポリエステル溶液およびその利用
JP2024130425A (ja) 樹脂組成物、成形体、生分解性樹脂用の改質剤及びロジンポリオールの使用
JP2001261949A (ja) 生分解性樹脂組成物および成型品
KR20100078439A (ko) Pccd 폴리에스테르 조성물, pccd 폴리에스테르 수지, 이를 포함하는 용제형 코팅제 및 접착제, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774619

Country of ref document: EP

Kind code of ref document: A1