WO2014156928A1 - 各輪独立駆動台車の制御装置 - Google Patents

各輪独立駆動台車の制御装置 Download PDF

Info

Publication number
WO2014156928A1
WO2014156928A1 PCT/JP2014/057692 JP2014057692W WO2014156928A1 WO 2014156928 A1 WO2014156928 A1 WO 2014156928A1 JP 2014057692 W JP2014057692 W JP 2014057692W WO 2014156928 A1 WO2014156928 A1 WO 2014156928A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
rotational angular
wheel
command value
wheels
Prior art date
Application number
PCT/JP2014/057692
Other languages
English (en)
French (fr)
Inventor
崇伸 吉田
裕吾 只野
野村 昌克
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2014156928A1 publication Critical patent/WO2014156928A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a wheel independent drive cart in which each wheel (four wheels or a plurality of wheels) rotates independently, and in particular, the idling / sliding re-operation when it is detected that the wheel is idling or sliding.
  • the present invention relates to adhesion control and wheel coordination control.
  • Conventional railcar drive carriages have a structure in which left and right wheels are connected by a shaft, and the left and right wheels are collectively driven by a single electric motor.
  • the left and right wheel rotational angular velocities match, but the traveling distance differs between the inside and outside of the curve due to the difference in rail length when passing through the curve.
  • a gradient is given to the wheel tread that comes into contact with the rail so that the wheel turning radius at the contact position is small inside the curve and large outside the curve.
  • each wheel independent drive bogie that can eliminate the connecting shaft between the left and right wheels and install an electric motor on each wheel and independently rotate the wheel is being studied. Since each wheel independent drive bogie can arbitrarily control the rotational angular velocity of the left and right wheels with individual electric motors, it can be expected to improve running performance when passing a curve and to reduce floor space and space by eliminating the coupling shaft.
  • the left and right rotational angular velocities are made to coincide with each other in the same manner as in the configuration with the conventional coupling shaft, thereby improving the stability during linear travel.
  • the angular velocity control is performed so as to have an arbitrary left and right rotational angular velocity difference according to the curve radius, and the resulting correction torque is added to or subtracted from the driving torque to enable smooth running.
  • FIG. 6 is a configuration diagram illustrating an example of the rotational angular velocity control system 11 for performing each wheel cooperative control.
  • the rotational angular velocity control system 11 converts the rotational angular velocity command value conversion unit 4 into a rotational angular velocity command value ⁇ * of the wheels in the carriage frame based on the notch torque command T notch * obtained from the driver's operation. Further, the rotational angular velocity command value correction unit 5 converts the rotational angular velocity command value ⁇ * into rotational angular velocity command values ⁇ FL * , ⁇ FR * , ⁇ RL * , ⁇ RR * of each wheel based on the curve radius R. .
  • Rotational angular velocity feedback control is performed based on the deviation from ⁇ RR, and motor input torque command values T FL * , T FR * , T RL * , T RR * are calculated.
  • the rotation angular velocity command value conversion unit 11 performs a process of converting the notch torque command T notch * into the rotation angular velocity command value ⁇ * .
  • the following equation (1) is used.
  • the following equation (1) shows the rotational angular velocity command value ⁇ * when the axle is mounted, but the gear ratio may be appropriately converted when the motor is mounted.
  • the motor input torque command values T FL * , T FR * , T RL * , T RR * of the respective wheels calculated by the rotational angular velocity controllers 6a to 6d of the respective wheels are transmitted to the driving devices of the respective wheels, and the respective motors. Drive.
  • JP-A-8-242506 Japanese Patent Laid-Open No. 9-233613 JP 1999-252716 A Japanese Patent Laid-Open No. 7-215229
  • Patent Document 1 does not describe the idling / sliding re-adhesion method, and a countermeasure for the idling / sliding phenomenon which is a problem peculiar to each wheel independent driving cart is not examined.
  • This system is a feedback control system in which the control for performing acceleration / deceleration is performed according to the notch torque command T notch * and the motor input torque command value T m * is obtained in the adhesive state where idling is not detected.
  • the motor input torque command value T m * is switched to the re-adhesion control torque T pattern for reducing the torque.
  • feed forward torque is input to the motor M.
  • the idling detection system 7 once detects the idling during driving and outputs the re-adhesion control torque T pattern.
  • a problem occurs when the rotational angular velocity control of the notch torque command T notch * is performed.
  • the rotational angular velocity command value conversion unit 4 shown in FIG. 6 inputs the rotational angular acceleration command converted from the notch torque command T notch * into the integrator, and calculates the rotational angular velocity command value ⁇ * .
  • the integrator continues to output the rotational angular velocity command value ⁇ * while the re-adhesion control torque T pattern that does not operate the rotational angular velocity control system 11 is output as the motor input torque command T m * .
  • ⁇ Fig. 8 is a graph showing the behavior when the rail maximum friction coefficient drops during both straight lines.
  • the maximum friction coefficient of the rail is sufficiently large, so that the rotational angular velocity detection values ⁇ FL , ⁇ FR , ⁇ RL , ⁇ RR of the wheels and the rotational angular velocity command values ⁇ FL * , ⁇ FR * , ⁇ RL * , ⁇ RR
  • the deviation of * is only the acceleration torque input.
  • the idling detection flag is set, and the motor input torque command value T m * is switched to the re-adhesion control torque T pattern .
  • the torque is increased toward the notch torque command T notch * in order to return from the idling state.
  • the maximum friction coefficient of the rail remains small, and the slip ratio increases again, so the torque is reduced again. Therefore, in the re-adhesion control torque T pattern , the torque is repeatedly raised and lowered as shown in FIG.
  • the rail maximum friction coefficient returns.
  • the idling detection flag is kept on for a certain time until time C.
  • the output torque of the rotational angular velocity control system 11 is output as a motor input torque command value T m * .
  • rotational angular velocity command values ⁇ FL * , ⁇ FR * , ⁇ RL * , ⁇ RR * and rotational angular velocity detected values ⁇ FL , ⁇ FR , ⁇ RL , ⁇ RR that are inputs to the rotational angular velocity controllers 6a to 6d Therefore, the motor input torque command value T m * that sets the deviation to 0 is input to the electric motor M, and the wheels are accelerated rapidly.
  • One aspect of the present invention is a control device for each wheel independent drive cart that independently drives and controls each wheel.
  • An idling / sliding detection unit that detects a state
  • a rotation angular velocity command value conversion unit that calculates a rotation angular velocity command value of a wheel in the carriage frame from a notch torque command, and a rotation angular velocity command value of the wheel in the carriage frame as a curve radius
  • a rotational angular velocity command value correction unit for correcting the rotational angular velocity command value of each wheel based on the rotation angular velocity control based on the deviation between the rotational angular velocity command value of each wheel and the detected rotational angular velocity value of each wheel, and a torque command If at least one of the rotating angular velocity controller to output and the wheels in the bogie frame is in the idling / sliding state, the re-adhesion control torque is output as the motor input torque command value,
  • a switch that outputs
  • the rotation angular velocity command value conversion unit converts the notch torque command into rotation angular acceleration when all the wheels in the carriage frame are in an adhesive state, and rotates the wheel rotation in the carriage frame by integrating the rotation angular acceleration. It may be output as an angular velocity command value.
  • the rotational angular velocity controller is composed of a PID controller, and the integrator may be reset when at least one of the wheels in the bogie frame is in an idling / sliding state.
  • the rapid acceleration / deceleration of the wheel at the time of switching between the re-adhesion control and the rotational angular velocity control is suppressed. Is possible.
  • FIG. It is a block diagram which shows the control apparatus of each wheel independent drive trolley
  • FIG. It is a graph which shows each operation
  • It is a block diagram which shows an example of the conventional rotational angular velocity control system. It is a block diagram which shows a general re-adhesion control system. It is a graph which shows each operation waveform of the conventional re-adhesion control system.
  • a control device for each wheel independent drive carriage in this embodiment will be described with reference to FIG.
  • the control device for each wheel independent drive carriage in this embodiment includes each wheel motor control device 1 and each wheel drive device 2a to 2d.
  • Each wheel motor control device 1 sends the motor input torque command values T FL * , T FR * , T RL * , T RR to each of the driving devices 2a to 2d based on the notch torque command T notch * obtained from the driver's operation. Send * .
  • Each of the driving devices 2a to 2d performs vector control using an inverter device, for example, and controls the motors Ma to Md so as to obtain a desired torque.
  • the motors Ma to Md of the respective wheels are provided with rotational angular velocity detectors 3a to 3d.
  • the rotational angular velocity detection values ⁇ FL , ⁇ FR , ⁇ RL , and ⁇ detected by the rotational angular velocity detectors 3a to 3d are provided.
  • RR is transmitted to each wheel motor control device 1.
  • FIG. 2 is a configuration diagram showing each wheel motor control device 1 in the present embodiment. Although FIG. 2 shows only the configuration for the front left and right wheels, the configuration is the same for the rear left and right wheels.
  • Each wheel motor control device 1 in this embodiment includes a rotation angular velocity control system 11, an idling detection system 17, and a switch 12.
  • the rotational angular velocity control system 11 calculates torque commands T FL and T FR based on the notch torque command T notch * .
  • the rotational angular velocity detection value omega FL detects the idling-sliding state of each wheel, slipping-skid detection signal Slip_ FL, it outputs the slip_ FR.
  • the idling-skid detection signal slip_ FL, slip_ FR is "0" in a tacky state, a flag for outputting "1" in the idle-sliding state.
  • a method of detecting idling / sliding for example, vehicle speed (estimated value of translation speed representative of the entire vehicle) information, wheel angular velocity r ⁇ FL obtained by multiplying the rotational angular velocity detection value ⁇ FL by the wheel nominal radius r,
  • the slip ratio is calculated by dividing the difference by the vehicle speed information, and when this slip ratio continues for a predetermined time or more and for a predetermined time or more, it is detected as an idling / sliding state.
  • Switcher 12 is idling detection system 17 from slipping-skid detection signal slip _FL, enter the slip _FR, wheel slipping-skid detection signal slip _FL within the truck frame, all slip _FR "0" (tacky)
  • the torque commands T FL and T FR are output as motor input torque command values T FL * and T FR *
  • at least one of the slip / sliding detection signals slip_FL and slip_FR of the wheels in the carriage frame is “1”.
  • "(Idling / sliding state) the re-adhesion control torque T pattern is output as motor input torque command values T FL * and T FR * .
  • a load torque estimated value is estimated from the motor input torque command values T FL * and T FR * and the rotational angular velocity detected values ⁇ FL and ⁇ FR , and this load torque estimation is performed.
  • the absolute value minimum value maximum value at the time of sliding
  • a correction constant a 0 to 1). It is done.
  • the rotational angular velocity detection values ⁇ FL , ⁇ FR are multiplied by the inertia moment of the wheel + motor rotor to perform pseudo differentiation, and the motor input torque command value T FL * .
  • a method of subtracting a pseudo-differentiated value from T FR * is conceivable.
  • the rotational angular velocity command value conversion unit 14 uses the notch torque command T notch * obtained from the driver's operation to rotate the rotational angular velocity command of the wheels in the basic carriage frame. Convert to the value ⁇ * .
  • the idling / sliding detection signals slip_FL , slip_FR and the detected rotational angular velocity values ⁇ FL , ⁇ FR are input to the rotational angular velocity command value conversion unit 14.
  • FIG. 3 is a configuration diagram showing details of the rotational angular velocity command value conversion unit 14.
  • Rotational angular velocity command value conversion unit 14 includes a maximum value selection unit 21, an average value calculation unit 22, a rotation angular acceleration conversion unit 23, an integrator 24, and a switch 25.
  • the rotational angular acceleration conversion unit 23 converts the notch torque command T notch * into the rotational angular acceleration ⁇ notch .
  • This rotational angular acceleration ⁇ notch is integrated by the integrator 24 and output as a rotational angular velocity command value ⁇ * of the wheel in the carriage frame.
  • the maximum value selection unit 21 selects the maximum value of the slip / sliding detection signals slip_FL and slip_FR , and outputs the maximum value as an integrator initial value preset command.
  • 2 and 3 show only the front left and right wheels, but when there are four moving wheels in the carriage frame, the maximum value of the four wheels is output. That is, if one of the moving wheels in the bogie frame is idling, the integrator initial value preset command is “1”.
  • the average value calculation unit 22 calculates the average value of the rotation angular velocity detection values ⁇ FL and ⁇ FR to obtain the rotation angular velocity average value ⁇ ave .
  • the rotation angular velocity average value ⁇ ave is also an average value of all four wheels when there are four moving wheels in the carriage frame.
  • the output rotation angular velocity average value ⁇ ave does not act on the integrator 24 when the integrator initial value preset command is “0”, and when it becomes “1”, the output of the integrator 24 becomes the rotation angular velocity. Preset to the average value ⁇ ave .
  • the rotation angular velocity command value correction unit 15 converts the wheel rotation angular velocity command value ⁇ * into the rotation angular velocity command values ⁇ FL * and ⁇ FR * of each wheel.
  • the rotational angular velocity command value correction unit 15 converts the rotational angular velocity command value ⁇ * into the rotational angular velocity command values ⁇ FL * and ⁇ FR * of each wheel according to the curve radius R of the center between the rail gauges (the left curve is positive) . To correct. Since real-time measurement of the wheel rotation radius R at the contact position between the wheel tread and the rail is difficult, a nominal value is used here.
  • FIG. 4 defines rails, gauges, and curve radius R. When the curve passes, there is a difference in rail length between the inner rail and the outer rail. Therefore, the rotational angular velocity command values ⁇ FL * and ⁇ FR * of each wheel (left and right) are corrected based on the following equation (2).
  • the equation (2) calculates the difference in travel distance between the inner and outer rails from the information of the curve radius R and the distance 2b between the curves in FIG. 4, and the rotational angular velocity command values ⁇ FL * and ⁇ FR for each wheel (left and right). *
  • the rotational angular velocity controllers 16a and 16b of the respective wheels take the deviation between the rotational angular velocity command values ⁇ FL * and ⁇ FR * of the respective wheels obtained from the equation (2) and the detected rotational angular velocity values ⁇ FL and ⁇ FR to obtain PID. Perform general feedback control by control. Thereby, torque command values T FL and T FR at which the rotational angular velocities become desired values are generated.
  • the PID control gains of the rotational angular velocity controllers 16a and 16b are gain-scheduled according to the vehicle state (vehicle speed and curve radius information R) in order to improve vehicle stability and performance. It is.
  • the rotation angular velocity controller 16a idles 16b-skid detection signal slip _FL rotational angular velocity control system 11 in FIG. 2, but slip _FR is inputted, slipping-skid detection signal slip _FL, slip _FR the rotational angular velocity control Used to reset the integrators of the units 16a and 16b.
  • the torque command values T FL and T FR output from the rotation angular velocity controllers 16a and 16b are not used as the motor input torque command values T FL * and T FR * , so that the rotation angular velocity controllers 16a and 16b The integrator is to be reset.
  • FIG. 5 shows a case where the maximum friction coefficient of both rails decreases during the straight line passing and then returns.
  • the rail maximum friction coefficient is sufficiently large, so that the deviation between the rotational angular velocity detection values ⁇ FL and ⁇ FR and the rotational angular velocity command values ⁇ FL * and ⁇ FR * is only the acceleration torque input.
  • the idling detection flag is set, and the motor input torque command value T m * is switched to the re-adhesion control torque T pattern .
  • the rail maximum friction coefficient returns.
  • the idling detection flag is kept on for a certain time until time C.
  • the reason why the motor input torque command values T FL * and T FR * once become 0 at time C is that the deviation between the rotational angular velocity command values ⁇ FL * and ⁇ FR * and the rotational angular velocity detection values ⁇ FL and ⁇ FR is small. This is because the deviation is different from that when accelerating with the notch torque command T notch * . However, it is smaller than the deviation between the rotational angular velocity command values ⁇ FL * , ⁇ FR * and the rotational angular velocity detected values ⁇ FL , ⁇ FR that has occurred in the problem (FIG. 8), and does not lead to sudden acceleration or sudden deceleration. This is not a problem in the present embodiment.
  • each wheel independent drive bogie when cooperatively controlling the rotational angular velocity and torque of four or multiple wheels, the idling / sliding phenomenon that may occur depending on the road surface and driving conditions is avoided. It is possible to effectively suppress and suppress the wear of the rail / wheel and the decrease in driving / braking force of the vehicle, thereby realizing stable and smooth running.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 各輪協調制御および再粘着制御を抑制した各輪独立駆動台車の制御装置において、再粘着制御と回転角速度制御との切換時における車輪の急加速,急減速を抑制する。回転角速度指令値変換部14によりノッチトルク指令Tnotch *を回転角速度指令値ω*に変換し、回転角速度指令値補正部15により回転角速度指令値ω*を曲線半径Rに基づいて各輪の回転角速度指令値ωFL *,ωFR *に補正して、回転角速度検出値ωFL,ωFRとのフィードバック制御を行う。車輪が空転・滑走状態の場合は、再粘着制御トルクTpatternを、粘着状態の場合はトルク指令値TFL,TFRを、モータ入力トルク指令値TFL *,TFR *として出力する。そして、前記回転角速度指令値変換部11は、車輪が空転・滑走状態の場合は、台車枠内における車輪の回転角速度平均値ωaveを台車枠内における車輪の回転角速度指令値ω*として出力する。

Description

各輪独立駆動台車の制御装置
 本発明は、車輪(4輪ないし複数輪)の各輪が独立して回転する各輪独立駆動台車に係り、特に、車輪が空転状態,滑走状態であることを検知した場合における空転・滑走再粘着制御および各輪協調制御に関する。
 従来の鉄道車両駆動用台車は左右の車輪が軸で結合されており、1つの電動機により左右車輪を一括して駆動する構成を採るのが一般的であった。この構成では左右の車輪回転角速度が一致するが、曲線通過時はレール長の差により曲線の内側と外側で進行距離が異なる。このレール長の差の影響を吸収するために、レールと接触する車輪踏面に勾配を付けて、接触位置における車輪回転半径が曲線内側で小さく、曲線外側で大きくなるようにしている。
 しかしながら、急曲線になると上記の踏面勾配のみではレール長の差を吸収できずに、車輪のフランジ接触やレールとのすべりを引き起こす。その結果、振動,騒音,レール・車輪の磨耗を増大させる。
 それに対し、左右車輪間の結合軸をなくして各輪に電動機を設置し、それぞれ独立に回転駆動させることが可能な各輪独立駆動台車の構成が検討されている。この各輪独立駆動台車は、左右車輪回転角速度を個別の電動機で任意に制御できるため、曲線通過時の走行性能向上とともに、結合軸をなくすことによる低床化・省スペース化が期待できる。
  一方で、各輪の電動機を協調して制御しなければスムースな走行ができない恐れもあり、その制御手法が重要な課題となる。特許文献1および特許文献2では、各輪の回転角速度を検出し、前輪左右と後輪左右のそれぞれで左右の回転角速度差を求め、左右の回転角速度差が任意の値となるように制御する方式を提案している。例えば、直線通過時は左右の回転角速度差がゼロとなるように制御することで、従来の結合軸がある構成と同様に左右の回転角速度を一致させ、直線走行時の安定性を向上させている。
 また、曲線通過時は曲線半径に応じて任意の左右の回転角速度差を持つように角速度制御を行い、その結果生じる補正卜ルクを駆動トルクに加算・減算して円滑な走行を可能としている。
 また、空転・滑走再粘着については、従来の台車構成において数多くの方法が提案されている(特許文献3,4参照)。
 図6は、各輪協調制御を行うための回転角速度制御システム11の一例を示す構成図である。回転角速度制御システム11は、回転角速度指令値変換部4において運転手の操作から得られるノッチトルク指令Tnotch *に基づき台車枠内における車輪の回転角速度指令値ω*に変換する。さらに、回転角速度指令値補正部5において、その回転角速度指令値ω*を、曲線半径Rに基づき各輪の回転角速度指令値ωFL *,ωFR *,ωRL *,ωRR *に変換する。そして、回転角速度制御器6a~6dにおいて、各輪の回転角速度指令値ωFL *,ωFR *,ωRL *,ωRR *と各輪の回転角速度検出値ωFL,ωFR,ωRL,ωRRとの偏差により、回転角速度フィードバック制御を行い、モータ入力トルク指令値TFL *,TFR *,TRL *,TRR *を算出している。
  回転角速度指令値変換部11では、ノッチトルク指令Tnotch *から回転角速度指令値ω*に変換する処理を行う。変換には、例えば下記(1)式を用いる。なお、下記(1)式は車軸取付の場合の回転角速度指令値ω*を示しているが、モータ取付の場合はギア比を適宜換算すればよい。
Figure JPOXMLDOC01-appb-M000001
 前記各輪の回転角速度制御器6a~6dで算出された各輪のモータ入力トルク指令値TFL *,TFR *,TRL *,TRR *は各輪の駆動装置に送信し、各モータを駆動する。
  以上、「特許文献1:請求項3」と同等の基本的な機能について説明した。上記のように曲線等の路面状況に応じて各輪のモータを協調制御することで円滑な走行を目指 している。
特開平8-242506号公報 特開平9-233613号公報 特開1999-252716号公報 特開平7-215229号公報
 しかしながら,上記特許文献1には空転・滑走再粘着方法が記載されておらず、この各輪独立駆動台車特有の課題となる空転・滑走現象の対応策が検討されていない。
 再粘着制御の手法としては、図7に示すような構成で再粘着を図るのが一般的である 。
 この方式は、空転未検知の粘着状態においては、ノッチトルク指令Tnotch *に従って加減速を行うための制御を行いモータ入力トルク指令値Tm *とするフィードバック制御系となっている。空転・滑走状態を検知した場合には,モータ入力トルク指令値Tm *を、トルクを絞るための再粘着制御トルクTpatternに切り替える。空転・滑走時にはモータMに対してフィードフォワードトルクが入力される形になる。
 このとき、回転角速度制御システム11として従来技術で示した図6の制御方式を用いると、走行中に空転検知システム7で一度空転を検知して再粘着制御トルクTpatternを出力してから、もう一度ノッチトルク指令Tnotch *の回転角速度制御を行う場合に問題が生じる。
 すなわち、図6に示す回転角速度指令値変換部4では、ノッチトルク指令Tnotch *から変換した回転角加速度指令を積分器に入力し、回転角速度指令値ω*を算出している。そして、回転角速度制御システム11が働かない再粘着制御トルクTpatternをモータ入力トルク指令Tm *として出力している間にも、積分器は回転角速度指令値ω*を出力し続けている。そのため、空転・滑走検知信号slipが粘着状態の信号となりモータ入力トルク指令値Tm *が回転角速度制御システム11の出力トルクとなったときに、実際の各輪の回転角速度検出値ωFL,ωFR,ωRL,ωRRと各輪の回転角速度指令値ωFL *,ωFR *,ωRL *,ωRR *に大きな偏差が生じることとなる。その偏差をなくすために実際には入力していないノッチトルク指令Tnotch *以上の加速度(滑走の場合は滅速度)でモータMが回転してしまうことが考えられる。ノッチトルク指令Tnotch *以上の加速度は危険である。実際に問題が生じる場合の波形を図8に示す。  
  図8は直線走行中に、レール最大摩擦係数が両レール低下した場合の挙動を示すグラフである。
 時刻Aまでは、レール最大摩擦係数は十分に大きいため車輪の回転角速度検出値ωFL,ωFR,ωRL,ωRRと回転角速度指令値ωFL *,ωFR *,ωRL *,ωRR *の偏差は加速トルク入力分のみである。
 時刻Aでレール最大摩擦係数が低下した場合には空転検知フラグが立ち、モータ入力トルク指令値Tm *は再粘着制御トルクTpatternに切り換わる。時刻A‐B間の再粘着制御トルクTpatternでは、トルクを絞った後、空転状態から復帰するためノッチトルク指令Tnotch *へ向かってトルクを上げていく。しかし、レールの最大摩擦係数は小さいままであり、すべり率が再び上昇するため再度トルクを絞る。そのため、再粘着制御トルクTpatternでは、図8に示すように、トルクの上げ下げを繰り返す。
 時刻Bでレール最大摩擦係数は復帰する。しかし、路面状態の推定はできないため、時刻Cまでの一定時間は空転検知フラグを立てたままとしている。
 図8に示すように、空転した時刻Aから時刻Cまでの間、回転角速度指令値ωFL *,ωFR *,ωRL *,ωRR *と回転角速度検出値ωFL,ωFR,ωRL,ωRRの偏差は徐々に大きくなっていることがわかる。
 時刻Cで、回転角速度制御システム11の出力トルクがモータ入力トルク指令値Tm *として出力される。このときに回転角速度制御器6a~6dの入力である回転角速度指令値ωFL *,ωFR *,ωRL *,ωRR *と回転角速度検出値ωFL,ωFR,ωRL,ωRRとの偏差が大きいため、偏差を0とするようなモータ入力トルク指令値Tm *が電動機Mに入力され、車輪が急加速をしてしまっている。
 以上示したようなことから、各輪協調制御および再粘着制御を用いた各輪独立駆動台車の制御装置において、再粘着制御と回転角速度制御との切換時における車輪の急加速・急減速を抑制することが課題となる。
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、各車輪をそれぞれ独立して駆動制御する各輪独立駆動台車の制御装置であって、車輪の空転・滑走状態を検知する空転・滑走検知部と、ノッチトルク指令から台車枠内における車輪の回転角速度指令値を算出する回転角速度指令値変換部と、前記台車枠内における車輪の回転角速度指令値を曲線半径に基づいて各輪の回転角速度指令値に補正する回転角速度指令値補正部と、前記各輪の回転角速度指令値と各輪の回転角速度検出値との偏差に基づき回転角速度制御を行い、トルク指令を出力する回転角速度制御器と、台車枠内における車輪のうち少なくとも一つが空転・滑走状態の場合は、再粘着制御トルクをモータ入力トルク指令値として出力し、台車枠内における車輪が全て粘着状態の場合はトルク指令値をモータ入力トルク指令値として出力する切換器と、を備え、前記回転角速度指令値変換部は、台車枠内における車輪のうち少なくとも一つが空転・滑走状態の場合は、台車枠内における車輪の回転角速度平均値を台車枠内の車輪の回転角速度指令値として出力することを特徴とする。
 また、前記回転角速度指令値変換部は、台車枠内における車輪が全て粘着状態の場合は、ノッチトルク指令を回転角加速度に変換し、この回転角加速度を積分した値を台車枠内における車輪の回転角速度指令値として出力しても良い。
 さらに、前記回転角速度制御器はPID制御器から成り、台車枠内における車輪のうち少なくとも一つが空転・滑走状態の場合は、積分器をリセットしても良い。
 本発明によれば、各輪協調制御および再粘着制御を用いた各輪独立駆動台車の制御装置において、再粘着制御と回転角速度制御との切換時における車輪の急加速・急減速を抑制することが可能となる。
実施形態における各輪独立駆動台車の制御装置を示す構成図である。 実施形態における各輪モータ制御装置を示す構成図である。 実施形態における回転角速度指令値変換部を示す構成図である。 レール,軌間,曲線半径Rを示す図である。 実施形態における各輪独立駆動台車の各動作波形を示すグラフである。 従来における回転角速度制御システムの一例を示す構成図である。 一般的な再粘着制御システムを示す構成図である。 従来の再粘着制御システムの各動作波形を示すグラフである。
  
  [実施形態]
 本実施形態における各輪独立駆動台車の制御装置を図1に基づいて説明する。本実施形態における各輪独立駆動台車の制御装置は、各輪モータ制御装置1と、各車輪の駆動装置2a~2dと、を備える。
 各輪モータ制御装置1は、運転手の操作から得られるノッチトルク指令Tnotch *を基に,各駆動装置2a~2dにモータ入力トルク指令値TFL *,TFR *,TRL *,TRR *を送信する。各駆動装置2a~2dでは、例えばインバータ装置を用いてベクトル制御などを行い、所望のトルクが得られるようにモータMa~Mdを制御する。また、各輪のモータMa~Mdには回転角速度検出器3a~3dが設けられており、その回転角速度検出器3a~3dにより検出される回転角速度検出値ωFL,ωFR,ωRL,ωRRは各輪モータ制御装置1に送信される。
 図2は、本実施形態における各輪モータ制御装置1を示す構成図である。図2では前方左右輪に対する構成のみを示しているが、後方左右輪に対しても同様に構成されている。
 本実施形態における各輪モータ制御装置1は、回転角速度制御システム11と、空転検知システム17と、切換器12と、を備えている。
 回転角速度制御システム11はノッチトルク指令Tnotch *に基づきトルク指令TFL,TFRを算出する。
 空転検知システム17は、回転角速度検出値ωFL,ωFRに基づいて、各車輪の空転・滑走状態を検知し、空転・滑走検知信号slip_FL,slip_FRを出力する。なお、空転・滑走検知信号slip_FL,slip_FRは、粘着状態で「0」、空転・滑走状態で「1」を出力するフラグである。空転・滑走を検知する方法としては、例えば、車両速度(車両全体を代表する並進速度の推定値)情報と、回転角速度検出値ωFLに車輪ノミナル半径rを乗じた車輪並進速度rωFLと、の差を車両速度情報で除算してすべり率を算出し、このすべり率が所定の閾値以上かつ、所定時間以上継続した場合、空転・滑走状態として検知する方法が挙げられる。
 切換器12は、空転検知システム17から空転・滑走検知信号slip_FL,slip_FRを入力し、台車枠内における車輪の空転・滑走検知信号slip_FL,slip_FRが全て「0」(粘着状態)の場合は、トルク指令TFL,TFRをモータ入力トルク指令値TFL *,TFR *として出力し、台車枠内における車輪の空転・滑走検知信号slip_FL,slip_FRのうち少なくとも一つが「1」(空転・滑走状態)の場合は、再粘着制御トルクTpatternをモータ入力トルク指令値TFL *,TFR *として出力する。
 再粘着制御トルクTpatternを算出する方法としては、例えば、モータ入力トルク指令値TFL *,TFR *および回転角速度検出値ωFL,ωFRから負荷トルク推定値を推定し、この負荷トルク推定値のうち絶対値の最小値(滑走時には最大値)を次回の空転・滑走検知するまでラッチし、このラッチした負荷トルク推定値に補正定数a(a=0~1)を乗算する方法が挙げられる。
 また、負荷トルク推定値を推定する方法としては、例えば、回転角速度検出値ωFL,ωFRに車輪+モータ回転子の慣性モーメントを乗算して擬似微分し、モータ入力トルク指令値TFL *,TFR *から擬似微分した値を減算する方法が考えられる。
 図2の回転角速度制御システム11では、図6と同様に、回転角速度指令値変換部14において、運転手の操作から得られるノッチトルク指令Tnotch *から基本となる台車枠内における車輪の回転角速度指令値ω*に変換する。
 ただし、回転角速度指令値変換部14には空転・滑走検知信号slip_FL,slip_FRと回転角速度検出値ωFL,ωFRが入力されている。
 図3は、回転角速度指令値変換部14の詳細を示す 構成図である。
 回転角速度指令値変換部14は、最大値選択部21と、平均値演算部22と、回転角加速度変換部23と、積分器24と、切換器25と、を備える。
 回転角加速度変換部23は、ノッチトルク指令Tnotch *を回転角加速度αnotchに変換する。この回転角加速度αnotchは、積分器24において積分され、台車枠内における車輪の回転角速度指令値ω*として出力される。
 最大値選択部21は、空転・滑走検知信号slip_FL,slip_FRの最大値を選択し、その最大値を積分器初期値プリセット指令として出力する。なお、図2,3は前方左右輪についてのみ示しているが、台車枠内に4つの動輪があるような場合おいては、4輪のうちの最大値を出力する。つまり、台車枠内の動輪で一車輪でも空転していた場合には積分器初期値プリセット指令は「1」となる。
 平均値演算部22は、回転角速度検出値ωFL,ωFRの平均値を演算し回転角速度平均値ωaveを求める。回転角速度平均値ωaveも空転・滑走検知信号slip_FL,slip_FRと同様に台車枠内に4つの動輪がある場合においては4輪全ての平均値とする。
 出力された回転角速度平均値ωaveは積分器初期値プリセット指令が「0」の場合には積分器24に対して働かずに、「1」となった場合に積分器24の出力を回転角速度平均値ωaveへとプリセットする。 
 次に、回転角速度指令値補正部15において、その車輪回転角速度指令値ω*を各輪の回転角速度指令値ωFL *,ωFR *に変換する。
  回転角速度指令値補正部15では、両レール軌間中心基準の曲線半径R(左カーブを正とする)に応じて回転角速度指令値ω*を各輪の回転角速度指令値ωFL *,ωFR *に補正する。車輪踏面とレールの接触位置における車輪回転半径Rのリアルタイム計測は困難なため、ここではノミナル値を使用している。図4は、レール,軌間,曲線半径Rを定義したものである。曲線通過時は、内側レールと外側レールでレール長の差が生じるため、下記(2)式に基づいて各輪(左右)の回転角速度指令値ωFL *,ωFR *に補正する。
Figure JPOXMLDOC01-appb-M000002
  前記(2)式は、図4の曲線半径Rと軌間距離2bの情報から内側と外側のレールの進行距離の差を求めて、各輪(左右)の回転角速度指令値ωFL *,ωFR *を導いたものである。
  各輪の回転角速度制御器16a,16bでは、前記(2)式より求めた各輪の回転角速度指令値ωFL *,ωFR *と回転角速度検出値ωFL,ωFRの偏差を取り、PID制御等による一般的なフィードバック制御を行う。これにより、回転角速度が所望の値となるトルク指令値TFL,TFRが生成される。
 なお、回転角速度制御器16a,16bのPID制御ゲインは、車両走行の安定性と性能改善のために、車両状態(車両速度や曲線半径情報R)に応じて、ゲインスケジューリングされるのが一般的である。
 また、図2では回転角速度制御システム11の回転角速度制御器16a,16bに空転・滑走検知信号slip_FL,slip_FRが入力されているが、空転・滑走検知信号slip_FL,slip_FRは回転角速度制御器16a,16bの積分器をリセットすることに用いる。再粘着制御中は回転角速度制御器16a,16bから出力されるトルク指令値TFL,TFRはモータ入力トルク指令値クTFL *,TFR *として用いないため回転角速度制御器16a,16bの積分器はリセットすることとしている。 
 実施形態における各輪独立駆動台車の制御装置の作用効果を図5に基づいて説明する。図5は直線通過中に両レールの最大摩擦係数が低下し、その後復帰する場合を示している。
  時刻Aまでは、レール最大摩擦係数は十分に大きいため回転角速度検出値ωFL,ωFRと、回転角速度指令値ωFL *,ωFR*との偏差は加速トルク入力分のみである。
 時刻Aでレール最大摩擦係数が低下した場合には、空転検知フラグが立ち、モータ入力トルク指令値Tm *は再粘着制御トルクTpatternに切り換わる。時刻Bでレール最大摩擦係数は復帰する。しかし、路面状態の推定はできないため、時刻Cまでの一定時間は、空転検知フラグを立てたままとしている。
 そして、時刻Cで空転検知フラグが降りたとき、モータ入力トルク指令値TFL *,TFR *を再粘着制御トルクTpatternからトルク指令値TFL,TFRに切り換える。
 本実施形態を適用することにより、時刻Cで再粘着制御トルクTpatternからトルク指令値TFL,TFRへと切り換わる際に、従来技術で生じていた急な加速が起こっていないことがわかる。この理由は、再粘着制御トルクTpatternを出力している間は、空転・滑走検知信号slip_FL,slip_FRが「1」であり、回転角速度指令値変換部14における積分器24の出力を回転角速度平均値ωaveにしているため、回転角速度指令値ωFL *,ωFR *と回転角速度検出値ωFL,ωFRとの偏差が大きくなることを抑制できているためである。
 時刻Cでモータ入力トルク指令値TFL *,TFR *が一度0になっている理由は、回転角速度指令値ωFL *,ωFR *と回転角速度検出値ωFL,ωFRの偏差が小さく、ノッチトルク指令Tnotch *で加速している場合の偏 差と異なるためである。しかし、問題点(図8)で生じていた回転角速度指令値ωFL *,ωFR *と回転角速度検出値ωFL,ωFRとの偏差よりも小さく急加速や急減速に繋がる偏差ではないため、本実施形態では問題としていない。
 以上示したようなことから、各輪独立駆動台車において,4輸ないし複数輪の回転角速度・トルクを協調制御している際に、路面や運転状況によって発生する可能性がある空転・滑走現象を効果的に抑制し、レール/車輪の摩耗,車両の駆動/制動力低下を抑制して、安定かつ円滑な走行を実現することが可能となる。

Claims (3)

  1.  各車輪をそれぞれ独立して駆動制御する各輪独立駆動台車の制御装置であって、
     車輪の空転・滑走状態を検知する空転・滑走検知部と、
     ノッチトルク指令から台車枠内における車輪の回転角速度指令値を算出する回転角速度指令値変換部と、
     前記台車枠内における車輪の回転角速度指令値を曲線半径に基づいて各輪の回転角速度指令値に補正する回転角速度指令値補正部と、
     前記各輪の回転角速度指令値と各輪の回転角速度検出値との偏差に基づき回転角速度制御を行い、トルク指令を出力する回転角速度制御器と、
     台車枠内における車輪のうち少なくとも一つが空転・滑走状態の場合は、再粘着制御トルクをモータ入力トルク指令値として出力し、台車枠内における車輪が全て粘着状態の場合はトルク指令値をモータ入力トルク指令値として出力する切換器と、を備え、
     前記回転角速度指令値変換部は、台車枠内における車輪のうち少なくとも一つが空転・滑走状態の場合は、台車枠内における車輪の回転角速度平均値を台車枠内の車輪の回転角速度指令値として出力することを特徴とする各輪独立駆動台車の制御装置。
  2.  前記回転角速度指令値変換部は、台車枠内における車輪が全て粘着状態の場合は、ノッチトルク指令を回転角加速度に変換し、この回転角加速度を積分した値を台車枠内における車輪の回転角速度指令値として出力することを特徴とする請求項1記載の各輪独立駆動台車の制御装置。
  3.  前記回転角速度制御器はPID制御器から成り、
     台車枠内における車輪のうち少なくとも一つが空転・滑走状態の場合は、積分器をリセットすることを特徴とする請求項1または2記載の各輪独立駆動台車の制御装置。
PCT/JP2014/057692 2013-03-26 2014-03-20 各輪独立駆動台車の制御装置 WO2014156928A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063645 2013-03-26
JP2013063645A JP6048264B2 (ja) 2013-03-26 2013-03-26 各輪独立駆動台車の制御装置

Publications (1)

Publication Number Publication Date
WO2014156928A1 true WO2014156928A1 (ja) 2014-10-02

Family

ID=51623907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057692 WO2014156928A1 (ja) 2013-03-26 2014-03-20 各輪独立駆動台車の制御装置

Country Status (2)

Country Link
JP (1) JP6048264B2 (ja)
WO (1) WO2014156928A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341497A (zh) * 2019-07-17 2019-10-18 东风汽车集团有限公司 用于提升四轮轮毂电机驱动操纵稳定性的系统和方法
CN112622604A (zh) * 2020-12-30 2021-04-09 徐工集团工程机械股份有限公司 四轮独立驱动轮架可调姿车辆转向性能提升装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799275B2 (ja) * 2016-10-27 2020-12-16 株式会社タダノ 軌陸車の鉄輪の空転滑走検出システム
JP6955865B2 (ja) * 2016-12-27 2021-10-27 キヤノン電子株式会社 被回転体の駆動制御方法及びリアクションホイール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348706A (ja) * 1996-09-25 2003-12-05 Hitachi Ltd 車両用電力変換器の制御装置
JP2006191736A (ja) * 2005-01-06 2006-07-20 Fuji Electric Systems Co Ltd 電気車の再粘着制御装置
JP2007049867A (ja) * 2005-08-12 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd 車両制御システム
JP2010161925A (ja) * 2010-04-12 2010-07-22 Hitachi Ltd 電気車の制御装置及び電力変換装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348706A (ja) * 1996-09-25 2003-12-05 Hitachi Ltd 車両用電力変換器の制御装置
JP2006191736A (ja) * 2005-01-06 2006-07-20 Fuji Electric Systems Co Ltd 電気車の再粘着制御装置
JP2007049867A (ja) * 2005-08-12 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd 車両制御システム
JP2010161925A (ja) * 2010-04-12 2010-07-22 Hitachi Ltd 電気車の制御装置及び電力変換装置の制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341497A (zh) * 2019-07-17 2019-10-18 东风汽车集团有限公司 用于提升四轮轮毂电机驱动操纵稳定性的系统和方法
CN110341497B (zh) * 2019-07-17 2021-01-08 东风汽车集团有限公司 用于提升四轮轮毂电机驱动操纵稳定性的系统和方法
CN112622604A (zh) * 2020-12-30 2021-04-09 徐工集团工程机械股份有限公司 四轮独立驱动轮架可调姿车辆转向性能提升装置及方法
CN112622604B (zh) * 2020-12-30 2022-07-19 徐工集团工程机械股份有限公司 四轮独立驱动轮架可调姿车辆转向性能提升装置及方法

Also Published As

Publication number Publication date
JP6048264B2 (ja) 2016-12-21
JP2014192927A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
EP3078539B1 (en) Control device for electric vehicle and control method for electric vehicle
JP6402783B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6402782B2 (ja) 電動車両の制御装置および電動車両の制御方法
KR101165554B1 (ko) 전기차의 제어 장치
US20180244158A1 (en) Control method and control device for electric vehicle
JP6760401B2 (ja) 電動車両の制御方法、及び、制御装置
WO2014156928A1 (ja) 各輪独立駆動台車の制御装置
JP6540716B2 (ja) 車両の制御装置および車両の制御方法
JP5994705B2 (ja) 各輪独立駆動台車の各輪モータ制御装置
WO2015080027A1 (ja) 電動車両の制御装置および電動車両の制御方法
JP6589554B2 (ja) 電動車両の制御方法、及び、制御装置
JP6079356B2 (ja) 各輪独立駆動台車の制御装置
JP7326960B2 (ja) 電動車両の制御方法および電動車両の制御装置
JP6064727B2 (ja) 各輪独立駆動台車の制御装置
JP6586158B2 (ja) 鉄道車両のブレーキ制御装置
JP2007244107A (ja) 電気車の接線力推定方法
JP2009240122A (ja) 電動機制御方法及び電動機制御装置
JP6880675B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP6003757B2 (ja) 各輪独立駆動台車の制御装置
JP6107294B2 (ja) 各輪独立駆動台車の制御装置
JP5828452B2 (ja) 電気車制御装置
JP4406476B2 (ja) 電気車制御装置
JP6111779B2 (ja) 各輪独立駆動台車の制御装置
JP4495819B2 (ja) 電気車制御装置
JP6107295B2 (ja) 各輪独立駆動台車の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775780

Country of ref document: EP

Kind code of ref document: A1