WO2014156386A1 - 電動機の診断装置および開閉装置 - Google Patents

電動機の診断装置および開閉装置 Download PDF

Info

Publication number
WO2014156386A1
WO2014156386A1 PCT/JP2014/054020 JP2014054020W WO2014156386A1 WO 2014156386 A1 WO2014156386 A1 WO 2014156386A1 JP 2014054020 W JP2014054020 W JP 2014054020W WO 2014156386 A1 WO2014156386 A1 WO 2014156386A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
monitoring
abnormality
voltage
circuit
Prior art date
Application number
PCT/JP2014/054020
Other languages
English (en)
French (fr)
Inventor
智子 田辺
誠 金丸
月間 満
大輔 石本
林 和史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015508177A priority Critical patent/JP5875734B2/ja
Priority to KR1020157026395A priority patent/KR101852246B1/ko
Publication of WO2014156386A1 publication Critical patent/WO2014156386A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/041Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature additionally responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0822Integrated protection, motor control centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage

Definitions

  • the present invention relates to a diagnostic device and a switching device for monitoring the state of a motor and protecting the motor against an abnormal state.
  • Patent Documents 1 to 4 that describe the contents below relate to the continuous monitoring of the motor and protection of the motor when an abnormality is detected.
  • each phase current of an electric motor is detected to calculate a current ratio between phases, and the calculated current ratio between phases is compared with a reference value. When the calculated current ratio is larger, a layer short is determined.
  • a vibration spectrum is generated by detecting vibration of the bearing portion of the electric motor with a vibration sensor, and when the level component of the predetermined frequency is larger than the reference value, it is determined that the bearing is damaged.
  • the temperature of the electric motor is detected by the temperature sensor and the detected temperature is higher than the reference temperature, it is determined that the motor is overheated. Therefore, the diagnosis of the electric motor is performed using various sensors, and it is not suitable for application to a motor control center.
  • equipment abnormality diagnosis is carried out from the result of frequency analysis by measuring at least one of load current and zero-phase current.
  • FFT frequency analysis
  • diagnosis of abnormalities such as coupling misalignment of the induction motor and broken bearing bearings
  • diagnosis of changes in the state of bearing lubricant and installation Diagnose bolt looseness.
  • the layer short detection is performed from the FFT of the zero phase current.
  • Patent Document 3 describes a monitoring device that detects an abnormality in a plurality of electric motors by voltage-current analysis.
  • the abnormality of the motor is determined by detecting a current phase difference different from normal. Therefore, the cause of the abnormality cannot be specified only by the phase difference, and a precise diagnosis cannot be made. Furthermore, the sampling interval is constant regardless of the state of the motor.
  • Patent Document 4 describes an insulation deterioration monitoring system that calculates the leakage current corresponding to the ground insulation resistance using the voltage, frequency, and zero-phase current of an AC circuit and monitors the deterioration of the ground insulation resistance.
  • the amount of leakage current corresponding to the ground capacitance depends on the frequency of the leakage current
  • the amount of leakage current is derived from components caused by two or more types of leakage current (for example, fundamental frequency and seventh harmonic).
  • fundamental frequency and seventh harmonic for example, fundamental frequency and seventh harmonic
  • the present invention has been made to solve the above-described problems.
  • Four types of motor abnormality detection are performed only by current-voltage analysis.
  • the electric motor diagnosis apparatus is: A phase current detector for detecting a phase current of a power supply circuit connected to a plurality of electric motors; A phase voltage detector for detecting a phase voltage of the power supply circuit; A zero phase current detector for detecting a zero phase current of the power supply circuit; From the output of the phase current detector, phase voltage detector, and zero phase current detector, a monitoring diagnosis unit that determines an abnormality of the electric motor, With According to the voltage / current analysis of the motor in the monitoring / diagnostic unit, it is detection of a ground fault, which is detection of a state where the electric circuit and the ground are electrically connected with a relatively low impedance, and detection of a short circuit between the coil layers of the motor.
  • abnormality detection includes four types of abnormality detection, including layer short detection, bearing failure detection, which is a failure detection of the rotating shaft of the motor, and torque abnormality detection, which is an abnormality detection of the moment of force around the rotating shaft of the motor.
  • layer short detection bearing failure detection
  • torque abnormality detection which is an abnormality detection of the moment of force around the rotating shaft of the motor.
  • ground fault detection is performed first.
  • the switchgear according to the present invention is A low-voltage AC circuit; A circuit breaker for protecting the low-voltage AC circuit; An electromagnetic contactor for controlling the load; A sensor for detecting an electric signal generated in the low-voltage AC circuit, an electronic controller having a display function of the output value of the sensor and a protection function for the low-voltage AC circuit; In a space closed with a metal plate, In a switching device that controls and protects a plurality of electric motors, The electronic controller that monitors and outputs the state before the insulation deterioration between the phases of the low-voltage AC circuit or between the ground, the state before the electric motor malfunctions, or the state before the device driven by the electric motor malfunctions It is characterized by comprising.
  • the electronic controller performs detection of four types of motor abnormalities (ground fault detection, layer short detection, bearing failure detection, torque abnormality detection) by only current-voltage analysis, and current-voltage analysis.
  • An electric motor diagnosis device is provided that always monitors the electric motor in consideration of the order.
  • the present invention it is possible to perform a highly accurate deterioration diagnosis of a plurality of electric motors in a plant facility by detecting abnormality of four different motors (four types described above) only by voltage-current analysis. . That is, until now, the maintenance department has performed diagnosis of the equipment with the five senses. This maintenance is usually performed by diagnosing the abnormality of the electric motor in units such as every month and after one year, not constantly monitoring. On the other hand, according to the present invention, diagnosis is performed at a stage earlier than the normal maintenance time and cannot be judged by the human senses by constantly monitoring using four types of abnormality detection techniques for the electric motor. It is also possible. In addition, since the switchgear includes the diagnostic device, it is possible to provide a motor control center that constantly monitors abnormalities of four different types of motors without adding a diagnostic instrument.
  • Embodiment 1 is a schematic diagram of a plurality of motor monitoring and diagnosis systems according to Embodiment 1 of the present invention. It is a schematic explanatory drawing which shows an example of the monitoring diagnosis of the electric motor which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the malfunction factor ratio of an electric motor. It is a flowchart for demonstrating the abnormality detection algorithm which concerns on Embodiment 1 of this invention. It is a figure which shows the actual measurement example of the stator current power spectrum which concerns on Embodiment 1 of this invention. It is another flowchart for demonstrating the abnormality detection algorithm which concerns on Embodiment 1 of this invention.
  • FIG. 1 shows a system of a plurality of electric motors managed by a motor control center.
  • a plurality of motor driving power sources 1 (1a, 1b, 1c in FIG. 1), a plurality of circuit breakers 2 (2a, 2b, 2c in FIG. 1), and a plurality of electromagnetic contactors 3 ( In FIG. 1, 3a, 3b, 3c) are connected.
  • One electric motor 7 (7a, 7b, 7c in FIG. 1) corresponding to each wiring is connected and operated.
  • the zero-phase current detector 4, the phase current detector 5, and the phase voltage detector 6 measure the three-phase electric wires connected to each motor, and the acquired voltage and current are monitored and diagnosed by the monitoring diagnostic unit 8 (in FIG. 1, 8a, 8b, 8c). Signals of results determined by the monitoring / diagnostic unit 8 are sent to the display unit 9 and the alarm unit 10 to issue a display display and an alarm, respectively, to notify the abnormality.
  • the motor diagnosis device 50 does not include a display unit or an alarm unit.
  • the motor diagnostic apparatus 50 includes at least one of a display unit and an alarm unit.
  • FIG. 2 shows the functions of the monitoring and diagnosis unit.
  • the monitoring diagnosis unit includes an analysis unit 20, an abnormality determination unit 21, an operation determination unit 22, a display command unit 23, and an alarm command unit 24.
  • the monitoring / diagnosis unit 8 receives a zero-phase current from the zero-phase current detector 4 of the input unit, a current of each phase from the phase current detector 5, and a voltage between the phases from the phase voltage detector 6. Then, a signal is transmitted from the monitoring / diagnostic unit 8 to the display unit 9 and the alarm unit 10 of the output unit to perform a predetermined operation.
  • the motor abnormality analyzed by the monitoring / diagnostic unit 8 of the present invention is assumed to be four types of abnormality: ground fault detection, layer short detection, bearing failure detection, and torque abnormality detection.
  • the reason for selecting these four types of abnormalities will be described with reference to FIG. FIG. 3 shows the trouble factor ratio of the low-voltage motor provided by the kite maintenance company.
  • the trouble with the bearing (bearing) is the largest at 60%, and the trouble with the winding (coil burnout) accounts for 13%. And the insulation decrease is 6%, and when the three are combined, it accounts for the majority of the causes of motor failure. Therefore, it is important to analyze four types of abnormalities, namely ground fault detection, layer short detection, bearing failure detection, and torque abnormality detection, as motor abnormality detection. Therefore, in the present invention, these four types of abnormalities are analyzed by focusing on these four types of abnormalities.
  • the analysis of the abnormality detection is performed by the monitoring diagnosis unit 8 in FIG.
  • Ior ⁇ 0 and it is determined that the motor is abnormal.
  • Nf turns out of the number of turns N in each phase
  • the following relational expression is derived between the positive phase voltage Vsp and the negative phase voltage Vsn, and the positive phase current Isp and the negative phase current Isn.
  • Yp, Yn, Ypn admittance
  • power supply angular velocity
  • rs stator resistance
  • rf short circuit resistance
  • Ls stator leakage inductance
  • Lm excitation inductance
  • short circuit rate.
  • the non-diagonal component Ypn of the admittance Y can be used as an indicator of the layer short, it is not easy to calculate Ypn in the actual field.
  • a method of monitoring both Isn and Vsn is adopted.
  • the off-diagonal component (Ypn) of Y is zero. It is.
  • And Isn change.
  • the layer short is determined by monitoring ⁇ in equation (6).
  • At least one of the currents (Iu, Iv, Iw) measured by the phase current detector 5 is extracted, and only a specific frequency signal component is extracted using a band pass filter and compared with a reference value. (Step 3). And when it is larger than the reference value, it is determined that the motor is abnormal.
  • FIG. 5A shows a result of measuring a stator current power spectrum when a bearing in which a grease is completely removed is incorporated in a test motor and operated.
  • FIG. 5B shows a healthy stator current power spectrum of the motor.
  • FIG. 5 50s data is acquired at a sampling rate of 2 kS / s, and 35 waveforms are added and averaged. Only the frequency band between 40Hz and 80Hz is extracted using a bandpass filter, and the motor is determined to be abnormal when it is determined to be abnormal by comparing with the reference value in other frequency bands except the power supply frequency of 60Hz (in the figure, The frequency range indicated by “X” corresponds to the abnormality determination part).
  • torque abnormality detection it calculates with the theoretical formula of the following torque Te using a stator electric current and a linkage magnetic flux, and determines abnormality of an electric motor (step 4).
  • the flux linkage ⁇ is calculated from the following equations (8) and (9).
  • Pp number of magnetic poles
  • ⁇ d, ⁇ q coil interlinkage magnetic flux of the stator
  • id, iq stator current
  • vd, vq stator voltage
  • Rs stator resistance.
  • Suffixes d and q indicate direction components in the d-axis direction and the q-axis direction when the current voltage is dq-converted, respectively.
  • Torque can be calculated from the above equation, but in practice it is not always a constant value, and the torque varies with time depending on the plant equipment such as pumps, fans, blowers, and conveyors installed in power plants and chemical plants. For this reason, the torque abnormality detection is preferably performed using a neural network. Since the torque of the electric motor in the plant equipment constantly changes, it is difficult to determine the threshold value of the abnormal torque. Therefore, it is necessary to detect an abnormality with a torque variation pattern.
  • One of the techniques for realizing this is a neural network. More specifically, a learning period is provided to store the temporal variation of torque. Predict the torque fluctuation of the day from the stored torque fluctuation, compare the predicted torque fluctuation with the estimated torque calculated from Equations (7) and (8), and the error Judge whether or not there is.
  • the present invention focuses on an algorithm for detecting an abnormality (an abnormality detection procedure). This is to clarify the cause of the abnormality of the electric motor and to increase the accuracy of abnormality detection. For example, even if the load torque abnormality determination is performed at the beginning of the algorithm, the torque is not abnormal, and it may be determined that the torque is abnormal due to the occurrence of a ground fault. Therefore, since it is necessary not to cause an erroneous determination of the cause of the abnormality, the order of the abnormality detection algorithm is important. This is because the abnormality detection accuracy can detect an event for which it was not known whether or not it could be detected.
  • the order of the abnormality detection algorithm is 1) ground fault detection, 2) layer short detection, 3) bearing failure detection, 4) torque abnormality detection, or 1) ground fault detection, 2) bearing failure detection, 3) layer short detection. , 4) We think that it is optimal to perform in order of torque abnormality detection.
  • the second algorithm for detecting an abnormality is layer short detection or bearing failure detection as shown in FIG. 4 or FIG.
  • a layer short occurs, the inductance of the coil inside the motor is different in three phases, so an unbalance occurs and an abnormality occurs in the torque.
  • a normal motor cannot be rotated due to a bearing failure and normal torque cannot be generated. For this reason, at least the layer short detection and the bearing failure detection must be determined before the torque abnormality detection.
  • the first embodiment it is possible to detect abnormalities of four different types of motors only by voltage-current analysis. Further, by optimizing the order of the algorithms for detecting an abnormality, it is possible to detect an abnormality with high accuracy, that is, it is easy to identify an abnormal part and an abnormal cause.
  • Embodiment 2 In the electric motor, as described above, when the deterioration starts, the deterioration progresses at an acceleration, and therefore, it is necessary to follow a sudden change in the electric motor. Therefore, as shown in FIG. 7, a monitoring interval adjustment unit 30 is further provided in the monitoring diagnosis unit.
  • the monitoring interval adjustment unit 30 includes an abnormal level detection unit 31, an interval change unit 32, an operation history measurement unit 33, and an electric motor management unit 34.
  • the analysis unit 20 analyzes the signal sent from the zero-phase current detector 4, the phase current detector 5, or the phase voltage detector 6 constituting the input unit, and detects an abnormality of the motor. .
  • the analysis unit 20 analyzes the abnormality level, and the abnormality determination unit 21 determines whether there is an abnormality.
  • Exceptional levels are classified and analyzed in three stages as shown in FIG.
  • the white circle is “sound”, the hatched circle is “caution”, and the black circle is “danger”.
  • the life of an electric motor is more than 10 years, and the “sound” period is usually shorter than the period from “caution” to “danger”.
  • the operation determination unit 22 the operation of the electric motor is continued during the “sound” and “caution” periods.
  • the motor operation is immediately stopped to prevent major malfunctions.
  • the display command unit 23 transmits the abnormal motor number, the location of the abnormal motor, and the level of the abnormal motor to the display unit 9 of the output unit.
  • the presence / absence of an alarm is transmitted from the alarm command unit 24 to the alarm unit 10 of the output unit.
  • the principle of the monitoring interval which is one of the functions of monitoring and diagnosing motors, is shown in FIG.
  • the monitoring interval time becomes shorter after the abnormality is detected by the abnormality level detecting unit 31 and the monitoring interval is adjusted by the interval changing unit 32.
  • the monitoring interval is adjusted only for the motor that has detected an abnormality (motor 2 in FIG. 9), and the monitoring interval is not changed for other healthy motors (motors 1 and 3 in FIG. 9).
  • the basic rated life of 10 6 revolutions of the motor will be described as a specified value
  • an electric motor of 10 6 revolutions or more will have a long operation history
  • an electric motor of 10 6 revolutions or less will be described as having a short operation history.
  • the longer the operation history the closer the life of the motor is inevitably, and the longer the operation history, the higher the possibility of failure, as compared with the motor with the shorter operation history.
  • TBM Time Based Management
  • the operation history measuring unit 33 calculates the number of rotations of the motor. (It is defined as 10 6 revolutions of the rated life.)
  • the monitoring interval is shortened when the rated life is exceeded (compared to the monitoring interval time when the motor is healthy). Thus, the monitoring interval can be controlled according to the state of the electric motor.
  • the importance described here is determined by whether or not it is connected to a facility that has a large influence on the production line, and refers to an overhauled motor regardless of the state of the device, or a redundantly used motor.
  • a mechanic inspects a motor with high importance more frequently than a motor with low importance.
  • the motor management unit 34 divides the importance of a plurality of motors into three levels of low, medium and high, and the motor with high importance as shown in FIG. 11 (motor 2 in this figure) has a short monitoring interval and has low importance. (The motors 1 and 3 in this figure) lengthen the monitoring interval.
  • the second embodiment it is possible to detect abnormalities of four different types of motors by only voltage-current analysis, as in the first embodiment, and by optimizing the order of algorithms for detecting abnormalities. It is possible to detect the abnormality of the motor with high accuracy, that is, it is easy to identify the abnormal part and the cause of the abnormality. Further, in the second embodiment, by changing the monitoring interval time depending on the abnormal level of the motor, the operation history, or the importance of the motor, even if the deterioration of the motor progresses at an accelerated rate (here, Even if the deterioration progresses at an accelerated rate, it is possible to detect abnormalities in the motor by constantly monitoring and changing the monitoring interval time, which means that accuracy can be detected at any time) .
  • Embodiment 3 FIG.
  • one monitoring diagnosis unit 8 is provided for each electric motor.
  • the controller 11 is used to analyze the voltage / current signals of a plurality of electric motors to determine abnormality. Similar to the first and second embodiments, four different types of abnormality can be detected from the voltage / current signal, and the algorithm (the order of the four types of abnormality detection) is also determined.
  • the monitoring interval adjustment unit 30 of the second embodiment is included. It has a function of detecting an abnormal level of the motor and controlling the monitoring interval, a function of controlling the monitoring interval based on the operation history of the motor, and a function of controlling the monitoring interval based on the importance of the motor.
  • the respective principles are shown in FIGS.
  • the third embodiment similar to the first embodiment, it is possible to detect abnormalities of four different types of motors only by voltage-current analysis.
  • by optimizing the order of the algorithms for detecting an abnormality it is possible to detect an abnormality with high accuracy (it is easy to identify an abnormal part and an abnormal cause).
  • by changing the monitoring interval time according to the abnormal level of the motor, the operation history, or the importance of the motor as in the second embodiment even if the deterioration of the motor is accelerated (here, Even if the progress of deterioration progresses at an accelerated rate, it is possible to detect abnormalities in the motor by means of continuous monitoring and changing the monitoring interval time, which means that it is possible to detect abnormalities at any time. To do.
  • a single monitoring diagnosis unit can perform a plurality of motor monitoring diagnoses.
  • Embodiment 4 It is assumed that the switchgear in Embodiment 4 is a motor control center.
  • a low-voltage AC circuit including a plurality of motor driving power sources 1 (1a, 1b, and 1c in FIG. 16) and a plurality of wiring breakers 2 (FIG. 16).
  • One electric motor 7 (7a, 7b, 7c in FIG. 16) corresponding to each wiring is connected and operated.
  • a zero-phase current detector 4 and a phase current detector 5 are installed on the three-phase electric wires connected to each electric motor, and the physical quantities that can be detected by the respective detectors are measured. (In FIG. 16, 48a, 48b, 48c). Signals of results determined by the monitoring / diagnostic unit 48 are sent to the display unit 9 and the alarm unit 10 to issue a display display and an alarm, respectively, to notify the abnormality. Note that the monitoring / diagnostic unit 48 may analyze current signals of a plurality of electric motors using the central control unit 11 as shown in FIG.
  • the monitoring / diagnosis unit 48 receives the zero-phase current from the zero-phase current detector 4 of the input unit and the current of each phase from the phase current detector 5. Then, a signal is transmitted from the monitoring / diagnostic unit 48 to the display unit 9 and the alarm unit 10 of the output unit to perform a predetermined operation.
  • the motor abnormality analyzed by the monitoring / diagnostic unit 48 is the same four types of abnormalities as in the first to third embodiments: ground fault detection, layer short detection, bearing failure detection, and torque abnormality detection. The detection shall be determined.
  • the processing of the monitoring diagnosis unit 48 after the zero-phase current and the current of each phase are sent from the input unit is shown in the flowcharts of FIGS.
  • I or ⁇ a ground fault occurs in the power circuit of the motor, I or ⁇ 0, and the motor is determined to be abnormal.
  • the bearing failure detection is the same as in the first embodiment, detailed description is omitted, but at least one of the currents (I u , I v , I w ) measured by the phase current detector 5 is extracted, and the band pass is detected. Only a specific frequency signal component is extracted using a filter and compared with a reference value (step 3). And when it is larger than the reference value, it is determined that the motor is abnormal.
  • the torque failure detection determines an abnormality of the electric motor (Step 4). However, since the voltage is unknown, it is calculated from the current (I u , I v , I w ) and the inductance.
  • Torque can be calculated from the above equation, but in practice it is not always a constant value, and the torque varies with time depending on the plant equipment such as pumps, fans, blowers, and conveyors installed in power plants and chemical plants. Therefore, in the torque abnormality detection, the torque abnormality is preferably detected using a neural network. That is, since the torque of the electric motor in the plant equipment constantly varies, it is difficult to determine the threshold value of the abnormal torque. Therefore, it is necessary to detect an abnormality with a torque variation pattern.
  • One of the techniques for realizing this is a neural network. More specifically, a learning period is provided to store the temporal variation of torque. Predict the daily torque fluctuation from the stored torque fluctuation, compare the predicted torque fluctuation with the estimated torque calculated from Equation (7), and determine if there is an error. To do.
  • the monitoring and diagnosis unit 48 in the fourth embodiment monitors four different abnormalities of the motor by analyzing the current values detected by the zero-phase current detector 4 and the phase current detector 5 respectively. Can do.
  • the order of the abnormality detection algorithm is the same as in the first embodiment: 1) ground fault detection, 2) layer short detection, 3) bearing failure detection, 4) torque abnormality detection, or 1) ground fault detection, 2) bearing failure detection. Since 3) layer short detection and 4) torque abnormality detection are performed in this order (see FIG. 20), it is easy to identify the abnormality location and the cause of the abnormality.
  • the zero-phase current detector and the phase current detector are used in the fourth embodiment, the same effect can be obtained even with only the phase current detector.
  • the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.
  • 1 Motor drive power supply 2 Circuit breaker, 3 Magnetic contactor, 4 Zero phase current detector, 5 phase current detector, 6 phase voltage detector, 7 Electric motor, 8 Monitoring and diagnosis unit, 9 Display unit, 10 Alarm unit, 11 central control unit, 20 analysis unit, 21 abnormality determination unit, 22 operation determination unit, 23 display command unit, 24 alarm command unit, 30 monitoring interval adjustment unit, 31 abnormal level detection unit, 32 interval changing unit, 33 driving history measuring unit, 34 Electric motor management section, 48 Monitoring diagnosis section, 50 Electric motor diagnosis device, 100 Opening and closing device.

Abstract

 各電動機に、零相電流検出器と相電流検出器と相電圧検出器を取り付け、電圧電流分析のみで4種類の異なる電動機の異常を検出する。そして、この4種類の異なる電動機の異常を検出するための電圧電流分析の手順を所定の順番に定める。さらに、監視診断装置に備えられた監視インターバル調整部で、電動機の異常判定のレベル、運転履歴の長さ、あるいは電動機の重要度に応じて監視インターバルを変える。

Description

電動機の診断装置および開閉装置
 本発明は、電動機の状態を監視し異常状態に対して電動機を保護する診断装置および開閉装置に関わる。
 プラントには電動機が多数存在しており、その設備の診断はメンテナンス部門が五感診断により判定している。特に重要度の高い電動機に関しては、定期的な診断が必要になるためコストが高い。さらに、電動機では、その劣化が始まると加速度的に劣化の進行が起こる。交流機の場合には機械的ストレスと熱劣化で生じた絶縁物の空隙や損傷部が放電等でレヤショート(層間短絡)を誘発し、突然、絶縁破壊に至る場合があるため、一度電動機が劣化すると劣化が進展する状態にしか進まない(例えば、北都電機株式会社、「回転機の保守・点検・補修」、オーム社、2010、p.32参照)。
 そこで、電動機の常時監視技術に関心が高まっている。しかしながら、電動機の常時監視の多くは、電動機毎に様々なセンサを取り付けることを前提としている。例えば、トルクメータやエンコーダ、加速度センサ等である。ただし、数百~数千台のモータを集中管理するモータコントロールセンタへの適用は配線の数が多くなることから、その適用は現実的ではない。そのため、特殊なセンサを用いずにモータコントロールセンタで計測される電流と電圧の情報から電動機の状態を簡易的に診断し、信頼性、生産性、安全性を向上する装置が必要である。
 電動機の常時監視および異常を検出した場合の電動機の保護に関しては、以下に内容を説明する特許文献1~4に開示されている。
特許文献1では、電動機の各相電流を検出して各相間電流比率を算出し、算出した各相間電流比率を基準値と比較し、算出電流比率の方が大きい場合にレヤショートと判定する。次に振動センサで電動機の軸受部の振動を検出して振動スペクトラムを作成し、所定周波数のレベル成分が基準値より大きい場合に、軸受が損傷していると判定する。さらに、温度センサで電動機の温度を検出し、検出温度が基準温度より大きい場合に、過熱しているとの判定が行われている。そのため、多様なセンサを用いて電動機の診断をしておりモータコントロールセンタへの適用には不向きである。
 特許文献2では、負荷電流及び零相電流の少なくともいずれか一方を測定し、周波数解析した結果から設備の異常診断を実施している。トルク変動時の負荷電流の波形とその周波数解析(FFT)から、誘導電動機のカップリングの芯ずれやベアリング軸受が破損しているなどの異常診断および、軸受の潤滑油の状態変化の診断、据え付けボルトの緩み診断を行う。また、零相電流のFFTからレヤショート検出をしている。各解析技術の説明がされているが、アルゴリズムの順番について最適化されておらず、またモータコントロールセンタに装置するマイコンにFFT解析は好ましくない。なぜならば、マイコンは処理能力が低いためFFT解析などの高度な解析を行うのには適さないためである。仮に処理能力が高いマイコンを使うにしても、コストが高くなる問題がある。
 特許文献3では、複数台の電動機を電圧電流解析で異常を検出する監視装置について記載されている。通常と異なる電流位相差を検出することで電動機の異常判定をする。そのため、位相差だけでは異常原因を特定することができず精密な診断ができない。さらにサンプリング間隔が電動機の状態に依らず一定である。
 特許文献4では、交流回路の電圧、周波数、零相電流を利用して対地絶縁抵抗分の漏洩電流を計算し、対地絶縁抵抗の劣化を監視する絶縁劣化監視システムについて記載されている。対地静電容量分の漏洩電流量が漏洩電流の周波数に依存する特性を利用して、漏洩電流の2種類以上の周波数(例えば、基本周波数と7次高調波)に起因する成分から漏洩電流量を計算するが、高調波を算出するために高速サンプリングする必要がある。
特開2007-14151号公報 特開2010-288352号公報 特開2011-147317号公報 特開2012-251817号公報
 電動機の状態を監視するために、電動機毎に異なるセンサを取り付けることを前提としており、複数の電動機を診断するのに不向きである。さらに、重要度の高い設備もしくは連続運転設備に効率的な監視システムが必要となる。
 そこで、本発明は上記の課題を解決するためになされたもので、電流電圧分析のみで4種類の異なる電動機の異常の検出(地絡検出、レヤショート検出、ベアリング不良検出、トルク異常検出の4種類の検出)ができ、加えて電流電圧分析の順番を考慮し電動機を常時監視することで電動機の保護を高めた診断装置を提供することを目的とする。
 また、この電動機の診断装置を開閉装置に備えることにより、振動センサなどの専用計測器を設置することなく電動機を制御可能なモータコントロールセンタを提供することを目的とする。
 本発明に関わる電動機の診断装置は、
複数の電動機に接続される電源回路の相電流を検出するための相電流検出器と、
前記電源回路の相電圧を検出するための相電圧検出器と、
前記電源回路の零相電流を検出するための零相電流検出器と、
前記相電流検出器、相電圧検出器、零相電流検出器の出力から、前記電動機の異常を判定する監視診断部と、
を備え、
前記監視診断部での前記電動機の電圧電流解析により、電気回路と大地が相対的に低いインピーダンスで電気的に接続される状態の検出である地絡検出、電動機のコイル層間の短絡の検出であるレヤショート検出、電動機の回転軸の軸受の不良検出であるベアリング不良検出、電動機の回転軸まわりの力のモーメントの異常検出であるトルク異常検出の異なる4種類の異常の検出を含む、電動機の異常の検出を行うとともに、最初に地絡検出を行うようにしたことを特徴とするものである。
 また、本発明に関わる開閉装置は、
低圧交流回路と、
前記低圧交流回路を保護するための配線用遮断器と、
負荷を制御するための電磁接触器と、
前記低圧交流回路で生じる電気信号を検知するセンサおよび前記センサの出力値の表示と前記低圧交流回路の保護機能を備えた電子コントローラと、
を金属板で閉鎖された空間の中に備え、
複数の電動機を制御、保護する開閉装置において、
前記低圧交流回路の相間または対地間の絶縁劣化に至る前の状態、電動機が動作不良に至る前の状態、あるいは電動機で駆動する装置が動作不良に至る前の状態を監視および出力する前記電子コントローラを備えたことを特徴とするものである。
 また前記電子コントローラは、電流電圧分析のみで4種類の異なる電動機の異常の検出(地絡検出、レヤショート検出、ベアリング不良検出、トルク異常検出の4種類の検出)を行い、かつ、電流電圧分析の順番を考慮し電動機を常時監視することを特徴とする電動機の診断装置を備えている。
 この発明によれば、電圧電流分析のみで4種類(上述した4種類)の異なる電動機の異常を検出することで、プラント設備内の複数台ある電動機の精度高い劣化診断を行うことが可能となる。すなわち、これまで設備の診断はメンテナンス部門が五感により行っていた。このメンテナンスは、通常、常時監視ではなく、1ヶ月毎、1年後などの単位で、電動機の異常を診断することにより行われていた。それに対して、本発明によれば、4種類の異なる電動機の異常検出技術を用いて常時監視することで、通常行われるメンテナンス時期より早い段階で、かつ人の五感では判断できないことの診断を行うことも可能となる。
 また、開閉装置が上記診断装置を備えることで、診断用の計測器を追加することなく4種類の異なる電動機の異常を常時監視するモータコントロールセンタを提供することができる。
本発明の実施の形態1に係る複数台の電動機監視診断システムの概略図である。 本発明の実施の形態1に係る電動機の監視診断の一例を示す概略説明図である。 電動機の不具合要因比率の一例を示す図である。 本発明の実施の形態1に係る異常検出アルゴリズムを説明するためのフロー図である。 本発明の実施の形態1に係る固定子電流パワースペクトルの実測例を示す図である。 本発明の実施の形態1に係る異常検出アルゴリズムを説明するための別のフロー図である。 本発明の実施の形態2に係る電動機の監視診断の別の例を示す概略説明図である。 本発明の実施の形態2に係る異常レベルと監視インターバルの関係を説明するための図である。 本発明の実施の形態2に係る各電動機の監視インターバルの調整の一例を示す図である。 本発明の実施の形態2に係る電動機の運転履歴による監視インターバルの調整の一例を示す図である。 本発明の実施の形態2に係る電動機の重要度による監視インターバルの調整の一例を示す図である。 本発明の実施の形態3に係る中央制御部を利用した複数台の電動機監視診断システムの概略図である。 本発明の実施の形態3に係る各電動機の監視インターバルの調整を説明するための図である。 本発明の実施の形態3に係る電動機の運転履歴による監視インターバルの調整を説明するための図である。 本発明の実施の形態3に係る電動機の重要度による監視インターバルの調整を説明するための図である。 本発明の実施の形態4に係る複数台の電動機監視診断システムの概略図である。 本発明の実施の形態4に係る中央制御部を利用した複数台の電動機監視診断システムの概略図である。 本発明の実施の形態4に係る電動機の監視診断の一例を示す概略説明図である。 本発明の実施の形態4に係る異常検出アルゴリズムを説明するためのフロー図である。 本発明の実施の形態4に係る異常検出アルゴリズムを説明するための別のフロー図である。 本発明の実施の形態1に係る複数台の別の電動機監視診断システムの概略図である。
実施の形態1.
 本発明の実施の形態1である電動機の診断装置50について、以下、図を用いて説明する。なお、各図間において、同一符号は、同一あるいは相当のものであることを表す。
 図1は、モータコントロールセンタが管理する複数の電動機のシステムである。複数個の電動機駆動用電源1(図1では、1a、1b、1c)と、複数個の配線用遮断器2(図1では、2a、2b、2c)と、複数個の電磁接触器3(図1では、3a、3b、3c)が接続されている。各配線には一つずつ対応する電動機7(図1では、7a、7b、7c)が接続され運転する。各電動機に接続されている3相電線に零相電流検出器4、相電流検出器5、相電圧検出器6で計測しており、取得した電圧と電流を監視診断部8(図1では、8a、8b、8c)に送信する。監視診断部8で判定した結果の信号を、表示部9と警報部10に送り、それぞれディスプレイ表示と警報として発令し異常を知らせる。図1に示す例においては、電動機の診断装置50は、表示部あるいは警報部を含まない。これに対し、図21に示す例においては、電動機の診断装置50は、表示部あるいは警報部のうち、少なくとも一方を備える。
 図2に監視診断部の機能を示す。監視診断部は解析部20、異常判定部21、運転判定部22、表示指令部23、警報指令部24からなる。監視診断部8には、入力部の零相電流検出器4から零相電流、相電流検出器5から各相の電流、相電圧検出器6から各相間の電圧が入力される。そして、監視診断部8から、出力部の表示部9と警報部10に信号が伝送され所定の動作をする。
 本発明の監視診断部8で解析する電動機の異常は、地絡検出、レヤショート検出、ベアリング不良検出、トルク異常検出の4種類の異常とする。この4種類の異常を選択した理由について図3を用いて説明する。図3は、某整備会社の提供する低圧電動機のトラブル要因比率である。軸受(ベアリング)に関する不具合が60%と最も大きく、巻線に関するが不具合(コイル焼損)が13%を占める。そして、絶縁低下も6%であり、三者を合わせると電動機の不良要因の大半を占めている。そのため、電動機の異常検出として、地絡検出、レヤショート検出、ベアリング不良検出、トルク異常検出の4種類の異常を解析することは重要である。そこで本発明では、特にこれら4種類の異常に的を絞って、これら4種類の異常について解析することとした。この異常検出の解析は、図2の監視診断部8で実施される。
 電圧と電流が入力部から送られてきた後の監視診断部8の処理を図4のフロー図に示し、以下この図4に基づいて説明する。図4において、零相電流検出器4から零相電流I0が更新され、絶縁劣化由来の成分(Ior)を抽出し、Ior=0を判定する(ステップ1)。電動機が健全なときには三相電流が平衡であるためIor=0となる。一方、電動機の電源回路等で地絡した際にはIor≠0となり、電動機が異常と判定する。
 次に、相電流検出器5と相電圧検出器6から電流(Iu、Iv、Iw)電圧(Vuv、Vvw、Vwu)が更新され不平衡率Δ=0を判定する(ステップ2)。レヤショートはコイル素線間の短絡現象で、レヤショートが発生すると3相固定子電流は非対称となるため、逆相成分により検出できる。3相誘導電動機の固定子巻線の一部がレヤショートした場合の短絡率をμ(=Nf/N。各相の巻数NのうちNfターン分が短絡)とすると、μ≪1を仮定して、正相電圧Vspと逆相電圧Vsn、正相電流Ispと逆相電流Isnの間に以下の関係式が導かれる。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

ここで、Yp、Yn、Ypn:アドミッタンス、ω:電源角速度、rs:固定子抵抗、rf:短絡抵抗、Ls:固定子漏れインダクタンス、Lm:励磁インダクタンス、μ:短絡率である。
 アドミッタンスYの非対角成分Ypnはレヤショートの指標にできるが、実フィールドにおいてYpn を算出することは容易ではない。ここではIsnとVsnの両方をモニタする方法を採用する。レヤショートが発生しないとき(μ=0)はYの非対角成分(Ypn)はゼロであるため、
Figure JPOXMLDOC01-appb-M000004

である。レヤショートが発生すると、
Figure JPOXMLDOC01-appb-M000005

とIsnが変化する。IsnとVsnの両方をモニタすることで、
Figure JPOXMLDOC01-appb-M000006

を指標とすれば、レヤショート発生と電源電圧の不平衡発生(Vsnの変化)とを区別できると考えられる。導入初期はレヤショート未発生として初期化(Ynを計算)した後、式(6)のΔを監視することでレヤショートを判定する。
 ベアリング不良検出については、相電流検出器5で測定した電流(Iu、Iv、Iw)の少なくとも一つを抽出し、バンドパスフィルタを用いて特定の周波数信号成分のみを取り出し、基準値と比較する(ステップ3)。そして、基準値よりも大きかったときに電動機が異常と判定する。
 一般にベアリングの振動と固定子電流パワースペクトルには相関がある。これは、回転軸がベアリング内部で径方向に微小変位することにより電動機の空隙磁束が変化するためである。例えば、極端な例として、グリースを完全に除去したベアリングを供試電動機に組み込んで、運転したときの固定子電流パワースペクトルを測定した結果を図5(a)に示す。比較として図5(b)に健全な電動機の固定子電流パワースペクトルを示す。
 図5では、サンプリング速度2kS/sで50sデータを取得し、35個の波形を足し合わせて平均したものを示している。バンドパスフィルタを用いて40Hz~80Hzの間の周波数帯域のみを抽出し、電源周波数60Hzを除く他の周波数帯域で基準値と比較し異常と判断したときに電動機が異常と判定する(図中、“X”で示した周波数の範囲が異常判定箇所に対応)。
 トルク異常検出については、下記トルクTeの理論式で、固定子電流と鎖交磁束を用いて計算し、電動機の異常を判定する(ステップ4)。
Figure JPOXMLDOC01-appb-M000007

 また、鎖交磁束φは下記の式(8)、(9)から計算される。
Figure JPOXMLDOC01-appb-M000008

Figure JPOXMLDOC01-appb-M000009

 ここで、Pp:磁極数、φd、φq:固定子のコイル鎖交磁束、id、iq:固定子電流、vd、vq:固定子電圧、Rs:固定子抵抗である。なおサフィックスd、qは、それぞれ電流電圧をdq変換した際のd軸方向およびq軸方向の方向成分であることを示す。
 上式からトルクを算出できるが、実際には常に一定値ではなく、電力プラントや化学プラントに設置されるポンプ、ファン、ブロア、コンベアなどのプラント設備によって、トルクは時間的に変動する。そのため、トルク異常検出において好ましくはニューラルネットワークを用いてトルク異常を検出する。プラント設備内の電動機のトルクは常時変動するため、異常トルクのしきい値を決めることが難しい。そこで、トルクの変動パターンで異常を検知することが必要となる。それを実現する手法の1つがニューラルネットワークである。具体的には、学習期間を設けてトルクの時間的変動を記憶させる。記憶させたトルクの時間的変動から、1日のトルクの時間的変動を予測し、予測したトルクの時間的変動と式(7)、(8)から算出したトルク推定値を比較し、誤差がないか否かを判定する。
 本発明は、異常検出するアルゴリズム(異常検出の手順)に着目した。これは、電動機の異常原因を明確にするためと、異常検出の精度を高めるためである。例えば、負荷トルク異常判定をアルゴリズムの最初に実施したとしても、トルクが異常なのではなく、地絡が発生したことによってトルク異常と判定してしまう可能性がある。そこで、異常原因の誤判定を引き起こさないことが必要となるため、異常検出のアルゴリズムの順番が重要となる。異常検出の精度としては、検出できるかどうかが判らなかった事象を検出することができることになるためである。そこで、異常検出アルゴリズムの順番は、1)地絡検出、2)レヤショート検出、3)ベアリング不良検出、4)トルク異常検出、もしくは、1)地絡検出、2)ベアリング不良検出、3)レヤショート検出、4)トルク異常検出の順で行うのが最適と考える。
 なぜならば、地絡が発生するとアースに対して漏れ電流が流れるため、電動機を含む電源回路内に正常な電流が流れなくなる。そのため、不平衡率を計算するレヤショート検出に異常が発生する。また、電流の周波数成分を解析するベアリング不良検出についても、地絡によるノイズや電流の振動が重畳される可能性があるため、ベアリング不良検出に異常が発生する。さらに、トルク異常検出についても正常な電流が流れないため必然的にトルクにも影響が出る。
 異常検出するアルゴリズムの2番目は、図4または図6のように、レヤショート検出もしくはベアリング不良検出となる。レヤショートが発生すると電動機内部のコイルのインダクタンスが3相で異なるため不平衡が発生し、トルクに異常が発生する。また、ベアリング不良に伴い健全な電動機の回転ができず正常なトルクを発生できない可能性を有する。そのため、少なくともレヤショート検出とベアリング不良検出はトルク異常検出よりも先に異常判定しなければならない。
 上述のように実施の形態1では、電圧電流分析のみで4種類の異なる電動機の異常を検出することが可能である。また、異常検出するアルゴリズムの順番を最適化することで、精度の良い、すなわち異常個所および異常原因を特定しやすい、異常検出が可能となる。
実施の形態2.
 電動機では、先に述べたように、その劣化が始まると加速度的に劣化の進行が起こるため、電動機の急な変化に対して追従する必要がある。そこで、図7に示すように、監視診断部の中に、さらに監視インターバル調整部30を備えるようにする。監視インターバル調整部30は、異常レベル検出部31、インターバル変更部32、運転履歴計測部33、電動機管理部34で構成される。解析部20は、入力部を構成する零相電流検出器4、相電流検出器5、あるいは相電圧検出器6から送られてきた信号を解析し、電動機の異常を検出することを特徴とする。解析部20で異常レベルを解析し、異常判定部21で異常の有無を判定する。
 異常レベルについては図8に示すように3段階に分類して解析することとする。白丸の「健全」、ハッチングを付した丸の「注意」、黒丸の「危険」である。電動機の寿命は10年以上あり、通常「健全」期間は、「注意」から「危険」に至るまでの期間よりも短い。運転判定部22において、「健全」と「注意」の期間は電動機の運転を継続させる。「危険」の期間は、直ちに電動機の運転を停止させ、大きな不具合が起きることを防止する。表示指令部23から、出力部の表示部9に異常電動機の番号、異常電動機の場所、異常電動機のレベルを送信する。また、警報指令部24から出力部の警報部10に警報の有無を送信する。
 次に、電動機の監視診断の一つの機能である監視インターバルについて、その原理を図9に示す。電動機が健全なときの監視インターバル時間と比較して、異常レベル検出部31で異常を検出しインターバル変更部32で監視インターバルを調整した後の方が、監視インターバル時間は短くなる。このとき、図9に示すように異常検出した電動機(図9では電動機2)のみ監視インターバルを調整し、他の健全な電動機(図9では電動機1、3)に関しては、監視インターバルを変更しない。
 本発明では、電動機の基本定格寿命の10回転を規定値として、10回転以上の電動機を運転履歴が長いとし、10回転以下の電動機を運転履歴が短いとして以下説明する。運転履歴が長いほど、電動機の寿命に必然的に近づくこととなり、運転履歴が長い電動機の方が運転履歴の短い電動機と比較して、通常、故障の可能性が高い。一般的に、電動機の寿命については、TBM(Time Based Management)で判断してその寿命を見積もっており、寿命に近づくと電動機を交換するようにしている。
 本発明では、図10のように運転履歴が長いほど異常が発生しやすいと考え、運転履歴計測部33で電動機の回転回数を算出し、運転履歴が規定値(ここでは、規定値とは基本定格寿命の10回転と定義します。)を超えたときに監視インターバルを短くする(電動機が健全なときの監視インターバル時間と比較して短くする)こととする。このように、電動機の状態に応じて監視インターバルを制御することができる。
 電力プラントや化学プラントに設置されるポンプ、ファン、ブロア、コンベアなどのプラント設備においては、電動機毎に繋がる設備が異なっており、それぞれ重要度が異なる。ここで述べる重要度とは、生産ラインへ影響の大きい設備に繋がれているかどうかで決まり、機器の状態如何に関わらずオーバーホールする電動機、もしくは電動機を冗長して使用しているものを指す。実際の現場では、重要度の高い電動機は重要度の低い電動機よりも頻繁に整備士が点検をする。電動機管理部34で複数台の電動機の重要度を低中高の3段階に分け、図11のように重要度の高い電動機(この図では電動機2)に関しては監視インターバルを短く、重要度の低い電動機(この図では電動機1、3)は監視インターバルを長くする。
 上述のように実施の形態2では実施の形態1と同様に電圧電流分析のみで4種類の異なる電動機の異常を検出することが可能で、また、異常検出するアルゴリズムの順番を最適化することで精度の良い、つまり、異常個所および異常原因を特定しやすい、電動機の異常検出が可能である。さらに、実施の形態2では電動機の異常レベル、もしくは運転履歴、もしくは電動機の重要度によって監視インターバル時間を変化させることで、電動機の劣化が加速度的に進行しても、精度のよい(ここでは、劣化の進行が加速度的に進展したとしても常時監視でかつ監視インターバル時間を変化させることで、いつでも異常を検出可能とする点で精度が良いことを意味する)、電動機の異常検出を可能とする。
実施の形態3.
 実施の形態1と実施の形態2では、個々の電動機に対して1つずつ監視診断部8を供えていたが、実施の形態3の電動機の診断装置50では、図12に示すように、中央制御部11を用いて複数台の電動機の電圧電流信号を解析し異常判定する。実施の形態1及び実施の形態2と同様に、電圧電流信号から4種類の異なる異常を検出でき、アルゴリズム(4種類の異常検出の順番)も決められている。
 また、実施の形態2の監視インターバル調整部30を含む。電動機の異常レベルを検出し監視インターバルを制御する機能と電動機の運転履歴により監視インターバルを制御する機能と電動機の重要度により監視インターバルを制御する機能を有する。それぞれの原理を図13~図15に示す。
 上述のように、実施の形態3では実施の形態1と同様に電圧電流分析のみで4種類の異なる電動機の異常を検出することが可能である。また、異常検出するアルゴリズムの順番を最適化することで精度良い(異常個所および異常原因を特定しやすい)異常検出が可能である。さらに、実施の形態2と同様に電動機の異常レベル、もしくは運転履歴、もしくは電動機の重要度によって監視インターバル時間を変化させることで、電動機の劣化が加速度的に進行しても精度良く(ここでは、劣化の進行が加速度的に進展したとしても常時監視でかつ監視インターバル時間を変化させることで、いつ何時でも異常を検出可能とする点で精度が良いことを意味する)電動機の異常検出を可能とする。加えて、複数台の電動機の異常判定を集約して解析し電動機の異常を判定することで1つの監視診断部で複数の電動機監視診断が可能となる。
実施の形態4.
 実施の形態4における開閉装置はモータコントロールセンタであるとする。実施の形態4におけるモータコントロールセンタの内部には、複数個の電動機駆動用電源1(図16では、1a、1b、1c)を含む低圧交流回路と、複数個の配線用遮断器2(図16では、2a、2b、2c)と、複数個の電磁接触器3(図16では、3a、3b、3c)がある。各配線には一つずつ対応する電動機7(図16では、7a、7b、7c)が接続され運転する。各電動機に接続されている三相電線に零相電流検出器4、相電流検出器5が設置され、それぞれの検出器で検知可能な物理量を計測しており、取得した電流を監視診断部48(図16では、48a、48b、48c)に送信する。監視診断部48で判定した結果の信号を、表示部9と警報部10に送り、それぞれディスプレイ表示と警報として発令し異常を知らせる。なお、監視診断部48は、図17に示すように中央制御部11を用いて複数台の電動機の電流信号を解析してもよい。
 実施の形態4における監視診断部48の機能は実施の形態1と同様であるから、説明は省略する。実施の形態4における監視診断部48には、図18に示すように、入力部の零相電流検出器4から零相電流、相電流検出器5から各相の電流が入力される。そして、監視診断部48から、出力部の表示部9と警報部10に信号が伝送され所定の動作をする。なお監視診断部48で解析する電動機の異常は、実施の形態1~3と同様に地絡検出、レヤショート検出、ベアリング不良検出、トルク異常検出の4種類の異常であり、かつ、最初に地絡検出について判定するものとする。
 零相電流と各相の電流が入力部から送られてきた後の監視診断部48の処理を図19、図20のフロー図に示す。以下では図19に基づいて説明する。図19において、零相電流検出器4から零相電流I0が更新され、絶縁劣化由来の成分(Ior)を抽出し、Ior=0を判定する(ステップ1)。電動機が健全なときには三相電流が平衡であるためIor=0となる。一方、電動機の電源回路等で地絡した際にはIor≠0となり、電動機が異常と判定する。
 次に、相電流検出器5から電流(Iu、Iv、Iw)が更新され、不平衡率Δ=0を判定する(ステップ2)。ただし電圧は未知であるため、電流(Iu、Iv、Iw)とインダクタンスから算出する。
 ベアリング不良検出は実施の形態1と同様であるので詳細な説明は省略するが、相電流検出器5で測定した電流(Iu、Iv、Iw)の少なくとも一つを抽出し、バンドパスフィルタを用いて特定の周波数信号成分のみを取り出し、基準値と比較する(ステップ3)。そして、基準値よりも大きかったときに電動機が異常と判定する。
 トルク異常検出については、式(7)に示したトルクTeの理論式で固定子電流と鎖交磁束を用いて計算し、電動機の異常を判定する(ステップ4)。ただし、電圧は未知であるため、電流(Iu、Iv、Iw)とインダクタンスから算出する。
 上式からトルクを算出できるが、実際には常に一定値ではなく、電力プラントや化学プラントに設置されるポンプ、ファン、ブロア、コンベアなどのプラント設備によって、トルクは時間的に変動する。そのため、トルク異常検出において、好ましくはニューラルネットワークを用いてトルク異常を検出する。つまり、プラント設備内の電動機のトルクは常時変動するため、異常トルクのしきい値を決めることが難しい。そこで、トルクの変動パターンで異常を検知することが必要となる。それを実現する手法の1つがニューラルネットワークである。具体的には、学習期間を設けてトルクの時間的変動を記憶させる。記憶させたトルクの時間的変動から、1日のトルクの時間的変動を予測し、予測したトルクの時間的変動と式(7)から算出したトルク推定値を比較し、誤差がないかを判定する。
 上述のように、実施の形態4における監視診断部48は、零相電流検出器4と相電流検出器5がそれぞれ検知する電流値を分析することにより、電動機の4つの異なる異常を監視することができる。異常検出アルゴリズムの順番は実施の形態1と同様に、1)地絡検出、2)レヤショート検出、3)ベアリング不良検出、4)トルク異常検出、もしくは、1)地絡検出、2)ベアリング不良検出、3)レヤショート検出、4)トルク異常検出の順(図20参照)で行うため、異常個所および異常原因を特定しやすい。
 なお、実施の形態4では零相電流検出器と相電流検出器とを用いているが、相電流検出器のみであっても同様の効果を得ることができる。また本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 電動機駆動用電源、2 配線用遮断器、3 電磁接触器、
4 零相電流検出器、5 相電流検出器、6 相電圧検出器、
7 電動機、8 監視診断部、9 表示部、10 警報部、
11 中央制御部、20 解析部、21 異常判定部、
22 運転判定部、23 表示指令部、24 警報指令部、
30 監視インターバル調整部、31 異常レベル検出部、
32 インターバル変更部、33 運転履歴計測部、
34 電動機管理部、48 監視診断部、
50 電動機の診断装置、100 開閉装置。

Claims (13)

  1.  複数の電動機に接続される電源回路の相電流を検出するための相電流検出器と、
    前記電源回路の相電圧を検出するための相電圧検出器と、
    前記電源回路の零相電流を検出するための零相電流検出器と、
    前記相電流検出器、相電圧検出器、零相電流検出器の出力から、前記電動機の異常を判定する監視診断部と、を備え、
    前記監視診断部での前記電動機の電圧電流解析により、電気回路と大地が相対的に低いインピーダンスで電気的に接続される状態の検出である地絡検出、電動機のコイル層間の短絡の検出であるレヤショート検出、電動機の回転軸の軸受の不良検出であるベアリング不良検出、電動機の回転軸まわりの力のモーメントの異常検出であるトルク異常検出の異なる4種類の異常の検出を含む、電動機の異常の検出を行うとともに、最初に地絡検出を行うようにしたことを特徴とする電動機の診断装置。
  2.  前記監視診断部は、電動機の異常を検出したときに異常であることを表示する表示部および電動機の異常を検出したときに異常であることを知らせる警報部の少なくとも一方を備えたことを特徴とする請求項1に記載の電動機の診断装置。
  3.  前記監視診断部で電動機の異常を検出する場合において、前記4種類の異常の検出の手順が、前記地絡検出、レヤショート検出、ベアリング不良検出、トルク異常検出の順であるか、または前記地絡検出、ベアリング不良検出、レヤショート検出、トルク異常検出の順であることを特徴とする請求項1または請求項2に記載の電動機の診断装置。
  4.  前記監視診断部に、前記電動機の異常監視の時間間隔を調整する監視インターバル調整部を設け、この監視インターバル調整部で、前記電動機の異常判定のレベル、電動機の運転履歴の長さ、あるいは電動機の重要度によって、前記電動機の異常監視の時間間隔である監視インターバルを変えることを特徴とする請求項1から3のいずれか1項に記載の電動機の診断装置。
  5.  前記監視診断部の監視インターバル調整部での異常判定のレベルを、健全、注意、危険の3種類に分類し、前記異常判定のレベルが注意である場合には前記電動機の異常監視の時間間隔である監視インターバルを短くし、前記異常判定のレベルが健全である場合には前記監視インターバルを長くすることを特徴とする請求項1から4のいずれか1項に記載の電動機の診断装置。
  6.  前記監視診断部の監視インターバル調整部で、運転履歴の長い電動機については前記電動機の異常監視の時間間隔である監視インターバルを短くし、運転履歴の短い電動機については前記監視インターバルを長くすることを特徴とする請求項1から4のいずれか1項に記載の電動機の診断装置。
  7.  前記監視診断部の監視インターバル調整部で、重要度の高い電動機については前記電動機の異常監視の時間間隔である監視インターバルを短くし、重要度の低い電動機については前記監視インターバルを長くすることを特徴とする請求項1から4のいずれか1項に記載の電動機の診断装置。
  8.  前記監視診断部で複数台の前記電動機の異常判定を集約して行い、電動機の異常判定をすることを特徴とする請求項1から4のいずれか1項に記載の電動機の診断装置。
  9.  低圧交流回路と、
    前記低圧交流回路を保護するための配線用遮断器と、
    負荷を制御するための電磁接触器と、
    前記低圧交流回路で生じる電気信号を検知するセンサおよび前記センサの出力値の表示と前記低圧交流回路の保護機能を備えた電子コントローラと、
    を金属板で閉鎖された空間の中に備えた複数の電動機を制御する開閉装置において、
    前記低圧交流回路の相間または対地間の絶縁劣化に至る前の状態、電動機が動作不良に至る前の状態、あるいは電動機で駆動する装置が不良に至る前の状態、
    を監視および出力する前記電子コントローラを備えたことを特徴とする開閉装置。
  10.  前記センサは、
    前記低圧交流回路の相電流を検出するための電流センサと、
    前記低圧交流回路の零相電流を検出するための零相電流検出器と、
    であることを特徴とする請求項9に記載の開閉装置。
  11.  前記センサは、
    前記低圧交流回路の相電流を検出するための電流センサと、
    前記低圧交流回路の零相電流を検出するための零相電流検出器と、
    前記低圧交流回路の電圧出力器と、
    であることを特徴とする請求項9に記載の開閉装置。
  12.  前記低圧交流回路の相間または対地間の絶縁劣化に至る前の状態、または前記電動機が動作不良に至る前の状態は、
    前記低圧交流回路の零相電流を検出するための零相電流検出器の出力および、前記低圧交流回路の相電流を検出するための電流センサの出力または前記低圧交流回路の電圧出力器の情報、あるいは、前記零相電流検出器の出力および前記電流センサの出力と前記電圧出力器の情報の両方、から監視、出力し、
    前記電動機で駆動する装置が不良に至る前の状態は、
    前記電流センサの出力または、前記電流センサの出力と前記電圧出力器の情報の両方と、から監視、出力する前記電子コントローラを備えたことを特徴とする請求項9から11のいずれか1項に記載の開閉装置。
  13.  前記電子コントローラは、前記センサの出力から前記低圧交流回路または前記電動機または前記電動機で駆動する装置の異常を監視、診断する監視診断部と、
    前記監視診断部で前記低圧交流回路の相間または対地間の絶縁劣化、前記電動機の動作不良、あるいは前記電動機で駆動する装置の不良を検出したときに異常であることを表示する表示部と、
    前記監視診断部で前記低圧交流回路の相間または対地間の絶縁劣化、前記電動機の動作不良、あるいは前記電動機で駆動する装置の不良を検出したときに異常であることを知らせる警報部と、
    を備えたことを特徴とする請求項9から12のいずれか1項に記載の開閉装置。
PCT/JP2014/054020 2013-03-29 2014-02-20 電動機の診断装置および開閉装置 WO2014156386A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015508177A JP5875734B2 (ja) 2013-03-29 2014-02-20 電動機の診断装置および開閉装置
KR1020157026395A KR101852246B1 (ko) 2013-03-29 2014-02-20 전동기의 진단 장치 및 개폐 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071774 2013-03-29
JP2013071774 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156386A1 true WO2014156386A1 (ja) 2014-10-02

Family

ID=51623387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054020 WO2014156386A1 (ja) 2013-03-29 2014-02-20 電動機の診断装置および開閉装置

Country Status (3)

Country Link
JP (1) JP5875734B2 (ja)
KR (1) KR101852246B1 (ja)
WO (1) WO2014156386A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502757A (zh) * 2014-12-16 2015-04-08 河北工业大学 智能电动机保护器性能状态监测装置
WO2016092871A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 電動機の診断装置
JP5985099B1 (ja) * 2016-03-31 2016-09-06 株式会社高田工業所 回転機械系の異常検知方法、その異常検知方法を用いた回転機械系の異常監視方法、及びその異常監視方法を用いた回転機械系の異常監視装置
JP2017020913A (ja) * 2015-07-10 2017-01-26 株式会社日立産機システム 絶縁監視装置およびインバータ装置
JP6113384B1 (ja) * 2015-11-11 2017-04-12 三菱電機株式会社 電動機の診断装置
WO2017081908A1 (ja) * 2015-11-11 2017-05-18 三菱電機株式会社 電動機の診断装置
US9702938B2 (en) 2015-03-18 2017-07-11 Caterpillar Inc. Method and apparatus for detecting phase imbalance of an electrical component in a machine
CN107219418A (zh) * 2017-05-25 2017-09-29 国家电网公司 一种配电网运行状态监测终端
JPWO2016129338A1 (ja) * 2015-02-12 2017-12-07 日立オートモティブシステムズ株式会社 モータ駆動制御装置
CN108195396A (zh) * 2017-12-21 2018-06-22 北京理工大学 一种新能源汽车车辆数据的有效性的检测方法及系统
WO2020039661A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 異常診断装置
US20200166575A1 (en) * 2017-07-04 2020-05-28 Mitsubishi Electric Corporation Monitoring device for electric vehicles
KR20200072496A (ko) * 2017-11-22 2020-06-22 미쓰비시덴키 가부시키가이샤 설비의 열화 진단 장치
WO2020144965A1 (ja) 2019-01-10 2020-07-16 株式会社日立産機システム 電力変換装置、回転機システム、及び診断方法
WO2020208743A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
WO2020238582A1 (zh) * 2019-05-31 2020-12-03 维沃移动通信有限公司 步进电机检测方法、装置和系统
WO2021038829A1 (ja) 2019-08-30 2021-03-04 株式会社日立産機システム 電力変換装置及びそれに用いる予兆診断方法
WO2021145222A1 (ja) * 2020-01-16 2021-07-22 株式会社日立産機システム 電力変換装置、回転機システム、及び診断方法
WO2021166042A1 (ja) * 2020-02-17 2021-08-26 三菱電機株式会社 永久磁石同期モータの診断装置およびこれを備えたインバータ
WO2022085425A1 (ja) * 2020-10-21 2022-04-28 住友電気工業株式会社 モータ監視装置、モータ監視方法及びコンピュータプログラム
DE102022110638A1 (de) 2021-06-01 2022-12-01 Fuji Electric Co., Ltd. Diagnosevorrichtung, diagnoseverfahren, diagnoseprogramm und stromrichter mit diagnosevorrichtung
TWI810774B (zh) * 2021-06-25 2023-08-01 日商日立產機系統股份有限公司 劣化診斷裝置及劣化診斷方法、與電動機控制裝置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878810B1 (ko) * 2017-03-08 2018-07-16 엘지전자 주식회사 모터의 고장 진단 방법
CN108196118A (zh) * 2018-02-14 2018-06-22 武汉大学 一种隔离开关电机输出功率检测装置
JP6936759B2 (ja) * 2018-03-30 2021-09-22 三菱重工業株式会社 診断装置、駆動システム、診断方法及びプログラム
KR102315492B1 (ko) * 2021-08-30 2021-10-21 (주)텔레스퀘어 모터 수명 예측 시스템 및 이의 실행 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048116A (ja) * 1990-04-24 1992-01-13 Mitsubishi Electric Corp 電気機器劣化監視装置
JPH05153723A (ja) * 1991-03-01 1993-06-18 Siemens Ag 開閉装置の制御装置
JP3561882B2 (ja) * 2001-09-03 2004-09-02 エイテック株式会社 電気機器の劣化診断法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014151A (ja) * 2005-07-01 2007-01-18 Hisahiro Sasaki 電動機診断装置
KR100810651B1 (ko) * 2007-11-09 2008-03-06 삼화디에스피주식회사 전력감시형 다기능 모터보호계전기
JP2009210722A (ja) * 2008-03-03 2009-09-17 Fuji Xerox Co Ltd 診断タイミング制御装置、画像形成装置、診断タイミング決定処理プログラム
KR101001138B1 (ko) * 2008-11-14 2010-12-15 삼화디에스피주식회사 절연저항측정을 겸한 모터보호 장치 및 그 방법
JP4782218B2 (ja) * 2009-06-10 2011-09-28 新日本製鐵株式会社 設備の異常診断方法
JP5491210B2 (ja) * 2010-01-18 2014-05-14 東芝三菱電機産業システム株式会社 交流電動機の監視装置
JP5618910B2 (ja) * 2011-06-01 2014-11-05 三菱電機株式会社 絶縁劣化監視システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048116A (ja) * 1990-04-24 1992-01-13 Mitsubishi Electric Corp 電気機器劣化監視装置
JPH05153723A (ja) * 1991-03-01 1993-06-18 Siemens Ag 開閉装置の制御装置
JP3561882B2 (ja) * 2001-09-03 2004-09-02 エイテック株式会社 電気機器の劣化診断法

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155353A (zh) * 2014-12-10 2017-09-12 三菱电机株式会社 电动机的诊断装置
WO2016092871A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 電動機の診断装置
KR101946743B1 (ko) 2014-12-10 2019-02-11 미쓰비시덴키 가부시키가이샤 전동기의 진단 장치
EP3232215A4 (en) * 2014-12-10 2018-08-15 Mitsubishi Electric Corporation Electric motor diagnosis device
JP6099852B2 (ja) * 2014-12-10 2017-03-22 三菱電機株式会社 電動機の診断装置
JPWO2016092871A1 (ja) * 2014-12-10 2017-04-27 三菱電機株式会社 電動機の診断装置
CN104502757A (zh) * 2014-12-16 2015-04-08 河北工业大学 智能电动机保护器性能状态监测装置
JPWO2016129338A1 (ja) * 2015-02-12 2017-12-07 日立オートモティブシステムズ株式会社 モータ駆動制御装置
US9702938B2 (en) 2015-03-18 2017-07-11 Caterpillar Inc. Method and apparatus for detecting phase imbalance of an electrical component in a machine
JP2017020913A (ja) * 2015-07-10 2017-01-26 株式会社日立産機システム 絶縁監視装置およびインバータ装置
WO2017081908A1 (ja) * 2015-11-11 2017-05-18 三菱電機株式会社 電動機の診断装置
JP6113384B1 (ja) * 2015-11-11 2017-04-12 三菱電機株式会社 電動機の診断装置
JP2017181437A (ja) * 2016-03-31 2017-10-05 株式会社高田工業所 回転機械系の異常検知方法、その異常検知方法を用いた回転機械系の異常監視方法、及びその異常監視方法を用いた回転機械系の異常監視装置
WO2017168796A1 (ja) * 2016-03-31 2017-10-05 株式会社高田工業所 回転機械系の異常検知方法、その異常検知方法を用いた回転機械系の異常監視方法、及びその異常監視方法を用いた回転機械系の異常監視装置
JP5985099B1 (ja) * 2016-03-31 2016-09-06 株式会社高田工業所 回転機械系の異常検知方法、その異常検知方法を用いた回転機械系の異常監視方法、及びその異常監視方法を用いた回転機械系の異常監視装置
CN107219418B (zh) * 2017-05-25 2019-06-18 国家电网公司 一种配电网运行状态监测终端
CN107219418A (zh) * 2017-05-25 2017-09-29 国家电网公司 一种配电网运行状态监测终端
US20200166575A1 (en) * 2017-07-04 2020-05-28 Mitsubishi Electric Corporation Monitoring device for electric vehicles
US11762021B2 (en) * 2017-07-04 2023-09-19 Mitsubishi Electric Corporation Monitoring device for electric vehicles
KR20200072496A (ko) * 2017-11-22 2020-06-22 미쓰비시덴키 가부시키가이샤 설비의 열화 진단 장치
CN111344946A (zh) * 2017-11-22 2020-06-26 三菱电机株式会社 设备劣化诊断装置
EP3716469A4 (en) * 2017-11-22 2020-12-02 Mitsubishi Electric Corporation EQUIPMENT DEGRADATION DIAGNOSIS DEVICE
KR102475739B1 (ko) * 2017-11-22 2022-12-08 미쓰비시덴키 가부시키가이샤 설비의 열화 진단 장치
CN108195396A (zh) * 2017-12-21 2018-06-22 北京理工大学 一种新能源汽车车辆数据的有效性的检测方法及系统
CN108195396B (zh) * 2017-12-21 2020-01-21 北京理工大学 一种新能源汽车车辆数据的有效性的检测方法及系统
JPWO2020039661A1 (ja) * 2018-08-23 2021-08-10 三菱電機株式会社 異常診断装置
WO2020039661A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 異常診断装置
JP6999823B2 (ja) 2018-08-23 2022-01-19 三菱電機株式会社 異常診断装置
WO2020144965A1 (ja) 2019-01-10 2020-07-16 株式会社日立産機システム 電力変換装置、回転機システム、及び診断方法
JP7109656B2 (ja) 2019-04-10 2022-07-29 三菱電機株式会社 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
JPWO2020208743A1 (ja) * 2019-04-10 2021-10-14 三菱電機株式会社 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
CN113647013A (zh) * 2019-04-10 2021-11-12 三菱电机株式会社 电动机设备的异常诊断装置、电动机设备的异常诊断方法和电动机设备的异常诊断系统
WO2020208743A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
WO2020238582A1 (zh) * 2019-05-31 2020-12-03 维沃移动通信有限公司 步进电机检测方法、装置和系统
WO2021038829A1 (ja) 2019-08-30 2021-03-04 株式会社日立産機システム 電力変換装置及びそれに用いる予兆診断方法
WO2021145222A1 (ja) * 2020-01-16 2021-07-22 株式会社日立産機システム 電力変換装置、回転機システム、及び診断方法
WO2021166042A1 (ja) * 2020-02-17 2021-08-26 三菱電機株式会社 永久磁石同期モータの診断装置およびこれを備えたインバータ
JP7379652B2 (ja) 2020-02-17 2023-11-14 三菱電機株式会社 永久磁石同期モータの診断装置およびこれを備えたインバータ
JPWO2022085425A1 (ja) * 2020-10-21 2022-04-28
WO2022085425A1 (ja) * 2020-10-21 2022-04-28 住友電気工業株式会社 モータ監視装置、モータ監視方法及びコンピュータプログラム
JP7276617B2 (ja) 2020-10-21 2023-05-18 住友電気工業株式会社 モータ監視装置、モータ監視方法及びコンピュータプログラム
DE102022110638A1 (de) 2021-06-01 2022-12-01 Fuji Electric Co., Ltd. Diagnosevorrichtung, diagnoseverfahren, diagnoseprogramm und stromrichter mit diagnosevorrichtung
TWI810774B (zh) * 2021-06-25 2023-08-01 日商日立產機系統股份有限公司 劣化診斷裝置及劣化診斷方法、與電動機控制裝置

Also Published As

Publication number Publication date
KR20150125690A (ko) 2015-11-09
JP5875734B2 (ja) 2016-03-02
KR101852246B1 (ko) 2018-04-25
JPWO2014156386A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5875734B2 (ja) 電動機の診断装置および開閉装置
US8405339B2 (en) System and method for detecting fault in an AC machine
US10883895B2 (en) Abnormality diagnostic device for power transmission mechanism and abnormality diagnostic method for power transmission mechanism
US9810743B2 (en) Deterioration diagnosis system
US9910093B2 (en) Generator neutral ground monitoring device utilizing direct current component measurement and analysis
US7042229B2 (en) System and method for on line monitoring of insulation condition for DC machines
US7253634B1 (en) Generator protection methods and systems self-tuning to a plurality of characteristics of a machine
EP3232215B1 (en) Electric motor diagnosis device
JP7109656B2 (ja) 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
US20160216334A1 (en) Fault detection and diagnosis
KR101169796B1 (ko) 유도 전동기의 회전자바 고장 진단시스템
US20050218906A1 (en) System and method for monitoring of insulation condition
WO2019202651A1 (ja) 電動機の診断装置
KR20200053579A (ko) 이상 진단 장치, 이상 진단 방법 및 이상 진단 시스템
EP2851698B1 (en) A method for detecting a fault in an electrical machine
CN113228442A (zh) 用于确定发电机布置中的短路故障的位置的方法、发电机布置、风力涡轮机、计算机程序和电可读介质
KR100810979B1 (ko) 유도전동기의 결함 검출 방법
US10778135B2 (en) Motor parallel winding differential current protection
KR102212084B1 (ko) 동기전동기의 고장 진단 방법
Stojcic et al. Detecting incipient stator winding conductor faults in inverter fed machines
Cheang A new research for the symptoms and diagnosis schemes of the inner-faults for three-phase induction motors
Grubic Online monitoring of turn insulation deterioration in mains-fed induction machines using online surge testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508177

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201505999

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157026395

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774094

Country of ref document: EP

Kind code of ref document: A1