WO2014156299A1 - 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法 - Google Patents

無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法 Download PDF

Info

Publication number
WO2014156299A1
WO2014156299A1 PCT/JP2014/052410 JP2014052410W WO2014156299A1 WO 2014156299 A1 WO2014156299 A1 WO 2014156299A1 JP 2014052410 W JP2014052410 W JP 2014052410W WO 2014156299 A1 WO2014156299 A1 WO 2014156299A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
resonator
supplied
value
Prior art date
Application number
PCT/JP2014/052410
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
尚 津田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201507817TA priority Critical patent/SG11201507817TA/en
Priority to US14/780,227 priority patent/US20160043564A1/en
Priority to EP14772722.6A priority patent/EP2985869A4/en
Priority to CN201480018528.XA priority patent/CN105103406A/zh
Priority to KR1020157030423A priority patent/KR20150133281A/ko
Publication of WO2014156299A1 publication Critical patent/WO2014156299A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a power receiving voltage control method for a power-supplied device supplied with power by wireless power transmission, a wireless power transmission device adjusted by the power receiving voltage control method, and a method for manufacturing the wireless power transmission device.
  • a technique of performing power transmission using electromagnetic induction between coils see, for example, Patent Document 1
  • a resonance phenomenon between resonators (coils) included in a power feeding apparatus and a power receiving apparatus A technique for performing power transmission by coupling magnetic fields using a magnetic field resonance state (see, for example, Patent Document 2).
  • a voltage (power receiving voltage) applied to a power-supplied device (stable circuit, charging circuit, rechargeable battery, etc.) including the rechargeable battery, It is required to be not less than the driving voltage (voltage at which the device exhibits performance) and not more than the withstand voltage of the power-supplied device. The reason is that if the voltage applied to the power-supplied device is smaller than the driving voltage, the power-supplied device does not operate. On the other hand, if the voltage applied to the power-supplied device is greater than the withstand voltage, There is a risk of breaking.
  • a voltage regulator such as a booster circuit or a step-down circuit in order to adjust the voltage applied to the power-supplied device.
  • the LC resonant circuits in the power feeding device and the power receiving device must be configured to maximize power transmission efficiency.
  • an object of the present invention is to control the power receiving voltage applied to the power-supplied device by freely adjusting the power supply device that performs wireless power transmission and the capacity of circuit elements provided in the power receiving device.
  • An object of the present invention is to provide a received voltage control method, a wireless power transmission device adjusted by the received voltage control method, and a method of manufacturing the wireless power transmission device.
  • One of the inventions for solving the above problem is that power is supplied from a power supply module constituting a wireless power transmission apparatus to a power receiving module by changing a magnetic field, and the supplied power is connected to the power receiving module.
  • the power supply voltage of the power-supplied device is adjusted by supplying and using each element value of a plurality of circuit elements constituting the power supply module and the power reception module as parameters.
  • each element of the plurality of circuit elements constituting the power supply module and the power reception module by supplying the drive frequency of the power supplied to the power supply module at a value that does not become the resonance frequency in the power supply module and the power reception module, each element of the plurality of circuit elements constituting the power supply module and the power reception module.
  • the value can be freely changed as a parameter for adjusting the power reception voltage of the power-supplied device.
  • the received voltage of a to-be-powered apparatus can be adjusted by changing the said parameter, respectively. If the power receiving voltage of the power-supplied device can be adjusted in this way, the power receiving voltage can be kept below the withstand voltage of the power-supplied device, and the power receiving voltage can be kept above the driving voltage of the power-supplied device.
  • each element value of a plurality of circuit elements constituting the power supply module and the power reception module can be freely set as a parameter, which increases the design flexibility of the wireless power transmission device.
  • portability, compactness, and cost reduction of the wireless power transmission device itself can be realized.
  • One of the inventions for solving the above problem is that power is supplied from a power supply module including at least a power supply coil and a power supply resonator to a power reception module including at least a power reception resonator and a power reception coil by a resonance phenomenon.
  • Z 3 , Z 4 represents the total impedance of each circuit element that includes the coil L 4 that constitutes the power receiving coil
  • Z L represents the total load impedance of the power-supplied device
  • the coil L 1 of the power feeding coil and the power feeding mutual inductance M 12 coil L 3 of the coil L 2 and the power receiving cavity of the feeding resonator between the coil L 2 of the resonator
  • the following relational expression is obtained by changing each of the power supply coil, the power supply resonator, the power reception resonator, and the element values of the plurality of circuit elements constituting the power reception coil, and the mutual inductance as parameters.
  • the power receiving voltage V L of the power-supplied device derived from the above is controlled.
  • the power-receiving voltage of the power-supplied device can be adjusted by changing the parameters so as to satisfy the above relational expression.
  • each element value of a plurality of circuit elements constituting the power feeding module and the power receiving module can be freely set to satisfy the above relational expression,
  • the degree of freedom of design of the wireless power transmission device can be increased, and portability, compactness, and cost reduction of the wireless power transmission device itself can be realized.
  • One of the inventions for solving the above problems is a coupling coefficient k 12 between the feeding coil and the feeding resonator, a coupling coefficient k 23 between the feeding resonator and the receiving resonator, and, by adjusting at least one of the values of the coupling coefficient k 34 in between the receiving coil and the power receiving resonator, with the receiving voltage control method characterized by adjusting the receiving voltage of the power-supplied device is there.
  • power is supplied from the power supply module including at least the power supply coil and the power supply resonator to the power reception module including at least the power reception resonator and the power reception coil by the resonance phenomenon, and the supplied power is supplied to the power reception coil.
  • the coupling coefficient k 12 between the power supply coil and the power supply resonator, the power supply resonator and the power reception resonator coupling coefficient k 23 between, and, by adjusting the value of the coupling coefficient k 34 between the receiving resonator and the receiving coil it is possible to adjust the receiving voltage of the power supply device.
  • the values of the coupling coefficients k 12 , k 23 , and k 34 are the distance between the feeding coil and the feeding resonator, and the feeding resonator, respectively.
  • the power receiving voltage control method is adjusted by changing at least one of a distance between the power receiving resonator and the power receiving resonator and a distance between the power receiving resonator and the power receiving coil.
  • the value of the coupling coefficient k 12 can be changed by changing the distance between the feeding coil and the feeding resonator, and the distance between the feeding resonator and the power receiving resonator is changed.
  • the value of the coupling coefficient k 23 can be varied, by varying the distance between the receiving resonator and the receiving coil, it is possible to change the value of the coupling coefficient k 34.
  • the distance between the power feeding coil and the power feeding resonator, the distance between the power feeding resonator and the power receiving resonator, and the distance between the power receiving resonator and the power receiving coil are physically changed. With a simple operation, the value of the coupling coefficient between the coils can be changed.
  • One of the inventions for solving the above problem is that when the distance between the power feeding resonator and the power receiving resonator and the distance between the power receiving resonator and the power receiving coil are fixed, the receiving voltage of the power supply device, as to shorten the distance between the feeding resonator and the feeding coil, the value of the coupling coefficient k 12 in between the feeding resonator and the feeding coil is increased,
  • the received voltage control method is characterized in that the received voltage is adjusted based on a characteristic that the received voltage of the power-supplied device decreases as the value of the coupling coefficient k 12 increases.
  • the distance between the power feeding resonator and the power receiving resonator and the power receiving coil are fixed, the distance between the power feeding coil and the power feeding resonator is shortened.
  • the value of the coupling coefficient k 12 between the power feeding coil and the power feeding resonator is increased, and the power receiving voltage of the power-supplied device can be decreased by increasing the value of the coupling coefficient k 12 .
  • the power receiving voltage of the power-supplied device can be increased.
  • the received voltage of the power-supplied device can be adjusted by a simple operation of physically changing the distance between the feeding coil and the feeding resonator.
  • the adjustment of the power reception voltage of the power-supplied device can be realized without providing a new device in the wireless power transmission device. That is, it is possible to adjust the power reception voltage of the power-supplied device without increasing the number of parts of the wireless power transmission device.
  • one of the inventions for solving the above problems is that when the distance between the power feeding coil and the power feeding resonator and the distance between the power feeding resonator and the power receiving resonator are fixed, The power receiving voltage of the power-supplied device increases as the distance between the power receiving resonator and the power receiving coil decreases, and the value of the coupling coefficient k 34 between the power receiving resonator and the power receiving coil increases. As the value of the coupling coefficient k 34 is large, a receiving voltage control method characterized by receiving voltage of the power-supplied device is adjusted based on the larger properties.
  • the distance between the power feeding coil and the power feeding resonator and the distance between the power feeding resonator and the power receiving resonator are fixed, the distance between the power receiving resonator and the power receiving coil is shortened.
  • the value of the coupling coefficient k 34 between the power receiving resonator and the power receiving coil is increased, and the power receiving voltage of the power-supplied device can be increased by increasing the value of the coupling coefficient k 34 .
  • the value of the coupling coefficient k 34 between the power receiving resonator and the power receiving coil is decreased, and the value of the coupling coefficient k 34 is decreased.
  • the power receiving voltage of the power-supplied device can be reduced.
  • the received voltage of the power-supplied device can be adjusted by a simple operation of physically changing the distance between the power receiving resonator and the power receiving coil.
  • the adjustment of the power reception voltage of the power-supplied device can be realized without providing a new device in the wireless power transmission device. That is, it is possible to adjust the power reception voltage of the power-supplied device without increasing the number of parts of the wireless power transmission device.
  • one of the inventions for solving the above problems is that by adjusting at least one of the inductance values in the coil L 1 , the coil L 2 , the coil L 3 , and the coil L 4 ,
  • the received voltage control method is characterized in that the received voltage of the power-supplied device is adjusted.
  • power is supplied from the power supply module including at least the power supply coil and the power supply resonator to the power reception module including at least the power reception resonator and the power reception coil by the resonance phenomenon, and the supplied power is supplied to the power reception coil.
  • One of the inventions for solving the above problems is that when the inductance values of the coil L 2 , the coil L 3 , and the coil L 4 are fixed, the received voltage of the power-supplied device is
  • the received voltage control method is characterized in that the received voltage is adjusted based on the characteristic that the received voltage of the power-supplied device decreases as the value of the coil L 1 increases.
  • the received voltage of the power-supplied device can be reduced by increasing the value of the coil L 1. it can. Conversely, by reducing the value of the coil L 1, it is possible to increase the receiving voltage of the power supply device.
  • One of the inventions for solving the above problems is that when the inductance values of the coil L 1 , the coil L 3 , and the coil L 4 are fixed, the power receiving voltage of the power-supplied device is
  • the received voltage control method is characterized in that the received voltage is adjusted based on a characteristic that the received voltage of the power-supplied device decreases as the value of the coil L 2 increases.
  • the received voltage of the power-supplied device can be reduced by increasing the value of the coil L 2. it can. Conversely, by reducing the value of the coil L 2, it is possible to increase the receiving voltage of the power supply device.
  • One of the inventions for solving the above problems is that when the inductance values of the coil L 1 , the coil L 2 , and the coil L 4 are fixed, the received voltage of the power-supplied device is
  • the received voltage control method is characterized in that the received voltage is adjusted based on a characteristic that the received voltage of the power-supplied device increases as the value of the coil L 3 increases.
  • the received voltage of the power-supplied device can be increased by increasing the value of the coil L 3. it can. Conversely, by reducing the value of the coil L 3 , the power receiving voltage of the power-supplied device can be reduced.
  • One of the inventions for solving the above problems is that when the inductance values of the coil L 1 , the coil L 2 , and the coil L 3 are fixed, the received voltage of the power-supplied device is
  • the received voltage control method is characterized in that the received voltage is adjusted based on a characteristic that the received voltage of the power-supplied device increases as the value of the coil L 4 increases.
  • the received voltage of the power-supplied device can be increased by increasing the value of the coil L 4. it can. Conversely, by reducing the value of the coil L 4 , the power receiving voltage of the power-supplied device can be reduced.
  • one of the inventions for solving the above problems is to change each of the parameters by using each element value of the plurality of circuit elements constituting the power feeding module and the power receiving module and the mutual inductance as parameters. Accordingly, the value of the transmission characteristic of the power supplied to the power supply module with respect to the drive frequency is set to have a peak in each of the drive frequency band lower than the resonance frequency and the drive frequency band higher than the resonance frequency,
  • the drive frequency of the power supplied to the power supply module is a band corresponding to the peak value of the transmission characteristic appearing in the drive frequency band lower than the resonance frequency, or the peak value of the transmission characteristic appearing in the drive frequency band higher than the resonance frequency.
  • the received voltage control method is characterized in that it is a band corresponding to.
  • the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module has peaks in the drive frequency band lower than the resonance frequency and the drive frequency band higher than the resonance frequency in the power supply module and the power reception module, respectively.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the outer peripheral side of the module and the power receiving module can be formed.
  • the space can be effectively used, and the wireless power transmission device itself can be reduced in size.
  • the drive frequency of the power supplied to the power supply module to a frequency in a band corresponding to the peak value of the transmission characteristic that appears in the drive frequency band higher than the resonance frequency, relatively high transmission characteristics can be secured. it can.
  • the magnetic field generated on the inner peripheral side of the power supply module and the magnetic field generated on the inner peripheral side of the power receiving module cancel each other, thereby reducing the influence of the magnetic field on the inner peripheral side of the power feeding module and the power receiving module.
  • one of the inventions for solving the above-described problems is a wireless power transmission apparatus that is adjusted by the above-described received voltage control method.
  • the adjustment of the power reception voltage of the power-supplied device can be realized without providing a new device. That is, it is possible to adjust the received voltage of the power-supplied device without increasing the number of parts of the wireless power transmission device.
  • a driving frequency of power supplied by changing a magnetic field from the power supply module to the power reception module is a value that does not become a resonance frequency in the power supply module and the power reception module.
  • the method includes a step of adjusting a power reception voltage of the power-supplied device when power is supplied to the power-supplied device.
  • a wireless power transmission device that can adjust the power reception voltage of a power-supplied device without providing a new device. That is, it is possible to manufacture a wireless power transmission device that can adjust the power reception voltage of the power-supplied device without increasing the number of parts of the wireless power transmission device.
  • a power receiving device that performs wireless power transmission and a power receiving voltage control method that can control a power receiving voltage applied to a power-supplied device by freely adjusting a capacity of a circuit element provided in the power receiving device, and the power receiving voltage
  • a wireless power transmission apparatus adjusted by a control method and a method for manufacturing the wireless power transmission apparatus can be provided.
  • 6 is a graph showing measurement results according to measurement experiments 2-1 to 2-4. It is explanatory drawing explaining the manufacturing method of a wireless power transmission apparatus. 6 is a flowchart illustrating a method for designing a wireless headset and a charger including a wireless power transmission device.
  • Embodiments of a power receiving voltage control method for a power-supplied device powered by wireless power transmission according to the present invention, a wireless power transmission device adjusted by the power receiving voltage control method, and a method for manufacturing the wireless power transmission device are described below. Will be described.
  • the wireless power transmission device 1 includes a power supply module 2 including a power supply coil 21 and a power supply resonator 22, and a power reception module 3 including a power reception coil 31 and a power reception resonator 32.
  • the power supply coil 21 of the power supply module 2 is connected to the AC power supply 6 including an oscillation circuit in which the drive frequency of the power supplied to the power supply module 2 is set to a predetermined value, and the power reception coil 31 of the power reception module 3 receives power.
  • a rechargeable battery 9 is connected via a stabilization circuit 7 that rectifies the AC power that has been generated and a charging circuit 8 that prevents overcharging.
  • the stable circuit 7, the charging circuit 8, and the rechargeable battery 9 in the present embodiment are a power-supplied device 10 that is a power supply destination of the final power. It is a general term for all devices to which power is connected to the power receiving module 3.
  • the feeding coil 21 serves to supply power obtained from the AC power source 6 to the feeding resonator 22 by electromagnetic induction.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 as elements.
  • the coil L 1 portion uses a copper wire (with an insulating coating) and the coil diameter is set to 15 mm ⁇ .
  • the total impedance of the circuit elements constituting the feeding coil 21 is Z 1.
  • the resistor R 1 , the coil L 1 and the capacitor C 1 constituting the feeding coil 21 are used as elements.
  • Z 1 be the total impedance of the RLC circuit (circuit element).
  • the current flowing through the feeding coil 21 is I 1 .
  • the current I 1 has the same meaning as the input current I in input to the wireless power transmission device 1.
  • the power receiving coil 31 receives the electric power transmitted as magnetic field energy from the power feeding resonator 22 to the power receiving resonator 32 by electromagnetic induction, and plays a role of supplying the power to the rechargeable battery 9 via the stabilization circuit 7 and the charging circuit 8.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as shown in FIG.
  • the coil L 4 portion is set to a coil diameter of 15 mm ⁇ using a copper wire (with an insulating coating).
  • the total impedance of the circuit elements constituting the power receiving coil 31 is Z 4, and in this embodiment, the resistor R 4 , the coil L 4 , and the capacitor C 4 constituting the power receiving coil 31 are used as elements.
  • Z 4 be the total impedance of the RLC circuit (circuit element).
  • the total impedance of the power-supplied devices 10 connected to the power receiving coil 31 is Z L , in this embodiment, as shown in FIG. 1, the stable circuit 7 and the charging circuit 8 connected to the power receiving coil 31.
  • a combination of the load impedances of the rechargeable battery 9 (power-supplied device 10) is a resistor R L (corresponding to Z L ) for convenience.
  • the current flowing through the power receiving coil 31 is I 4 .
  • the power feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 as elements.
  • the power receiving resonator 32 forms an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 as elements.
  • Each of the power feeding resonator 22 and the power receiving resonator 32 becomes a resonance circuit and plays a role of creating a magnetic field resonance state.
  • the magnetic field resonance state means that two or more coils resonate at the resonance frequency.
  • the total impedance of the circuit elements constituting the feed resonator 22 is Z 2.
  • the resistor R 2 , the coil L 2 , and the capacitor C 2 constituting the feed resonator 22 are elements.
  • Z 2 be the total impedance of the RLC circuit (circuit element).
  • the total impedance of the circuit elements constituting the power receiving resonator 32 is Z 3.
  • the resistor R 3 , the coil L 3 , and the capacitor C 3 constituting the power receiving resonator 32 are elements.
  • Z 3 be the total impedance of the RLC circuit (circuit element).
  • the current flowing through the power feeding resonator 22 is I 2
  • the current flowing through the power receiving resonator 32 is I 3 .
  • f is determined by (Equation 1) when the inductance is L and the capacitor capacity is C. It becomes frequency.
  • the resonant frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 in the present embodiment is 1.0 MHz. ... (Formula 1)
  • the power feeding resonator 22 and the power receiving resonator 32 use solenoid type coils with a coil diameter of 15 mm ⁇ made of a copper wire (with an insulating coating). Further, the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 are matched as described above.
  • the power feeding resonator 22 and the power receiving resonator 32 may be spiral or solenoid type coils as long as the resonators use coils.
  • the distance between the power feeding coil 21 and the power feeding resonator 22 is d12
  • the distance between the power feeding resonator 22 and the power receiving resonator 32 is d23
  • the distance between the power receiving resonator 32 and the power receiving coil 31 Is d34 (see FIG. 1).
  • the coupling coefficient between the coil L 1 and the coil L 2 is denoted as k 12
  • the coupling coefficient between the coil L 2 and the coil L 3 is denoted as k 23
  • the coil A coupling coefficient between L 3 and the coil L 4 is expressed as k 34 .
  • Resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , C 4 of the RLC circuit of the receiving coil 31 are parameters that can be changed at the design / manufacturing stage, etc. Is set so as to satisfy the relational expression (Expression 8) described later (details will be described later).
  • the wireless power transmission device 1 when the resonance frequency of the power supply resonator 22 and the power reception resonator 32 are matched, a magnetic field resonance state is created between the power supply resonator 22 and the power reception resonator 32. can do.
  • a magnetic field resonance state is created in a state where the power feeding resonator 22 and the power receiving resonator 32 resonate, it is possible to transmit electric power from the power feeding resonator 22 to the power receiving resonator 32 as magnetic field energy.
  • an equivalent circuit of the wireless power transmission device 1 (including the power-supplied device 10) configured as described above is as shown in the lower diagram of FIG.
  • this equivalent circuit has a Z in the input impedance of the whole wireless power transmission device 1.
  • the impedance of the entire power-supplied device 10 is Z L.
  • the received voltage VL of the power-supplied device 10 to be controlled in the present embodiment is a relational expression based on the currents I 4 and Z L flowing through the power receiving coil 31 including the power-supplied device 10 from the equivalent circuit of FIG. Can be expressed as (Equation 2). ... (Formula 2)
  • the power receiving voltage V L applied to the power-supplied device 10 including the rechargeable battery 9 is equal to or higher than the driving voltage because the power-supplied device 10 does not operate when the voltage applied to the power-supplied device 10 is smaller than the driving voltage. It is required to be a voltage that exhibits performance). On the other hand, if the power receiving voltage V L is larger than the withstand voltage of the power supplied device 10, the power supplied device 10 may be broken. For this reason, the power receiving voltage V L is required to be controlled in a range from the driving voltage at which the power supplied device 10 operates to the withstand voltage of the power supplied device 10.
  • the power supply device 10 in advance that the impedance Z L is defined for (ballast circuit 7, the charging circuit 8, the rechargeable battery 9) is used, the value of the impedance Z L is It is treated as a fixed value (this fixed value is determined by the configuration and specifications of the power-supplied device 10 such as the stable circuit 7, the charging circuit 8, and the rechargeable battery 9).
  • Each L can be expressed as in (Equation 9). Note that, as described above, the total impedance of the power-supplied device 10 is Z L , but the resistor R L is conveniently combined with the load impedance of the power-supplied device 10 connected to the power receiving coil 31. . ... (Formula 9)
  • the receiving voltage V L that is derived from relational expression (8) is, the driving voltage above which the power supply device 10 is operated, owned by the feeding device 10 It can be adjusted so that it is within the range of the withstand voltage or less.
  • the drive frequency of the power supplied to the power supply module 2 is set to the power supply coil 21 and power supply resonator 22 included in the power supply module 2 and the power reception coil 31 and power reception resonator included in the power reception module 3. It is generally known that the power transmission efficiency in wireless power transmission can be maximized by making it coincide with the resonance frequency of 32, and the drive frequency is set to the resonance frequency in order to maximize the power transmission efficiency. It is common to make it.
  • the power transmission efficiency refers to the ratio of the power received by the power receiving module 3 to the power supplied to the power supply module 2.
  • Equation 10 in order to adjust the value of the power reception voltage V L so that it falls within the range of the driving voltage at which the power-supplied device 10 operates and the withstand voltage of the power-supplied device 10.
  • the main parameters that can be changed are R 1 of the RLC circuit of the feeding coil 21, R 2 of the RLC circuit of the feeding resonator 22, R 3 of the RLC circuit of the receiving resonator 32, R 4 of the RLC circuit of the receiving coil 31, etc. It can be seen that there are only resistance values and coupling coefficients k 12 , k 23 , and k 34 .
  • each RLC of the power supply module 2 and the power reception module 3 are determined in advance, and the value of the received voltage V L can be adjusted mainly only by the resistance value of each RLC circuit. This means that the capacity of the capacitor or coil of the RLC circuit cannot be freely changed as a parameter for controlling the value of the received voltage V L , and the design flexibility of the wireless power transmission device 1 is reduced. Yes.
  • the drive frequency of the power supplied to the power supply module 2 is the resonance frequency of the power supply resonator 22 included in the power supply module 2 and the power reception resonator 32 included in the power reception module 3.
  • R 1 , L 1 , C 1 of the RLC circuit of the feeding coil 21, and the RLC circuit of the feeding resonator 22 are used as parameters for controlling the value of the receiving voltage V L.
  • the wireless power transmission device 1 when the wireless power transmission device 1 is configured, in order to adjust the value of the power receiving voltage V L of the power-supplied device 10, R 1 , L 1 , C 1 of the power feeding coil 21 as parameters and the power feeding resonator R 2 , L 2 , C 2 of 22, R 3 , L 3 , C 3 of the power receiving resonator 32, R 4 , L 4 , C 4, etc. of the power receiving coil 31, inductance, capacitor capacity, coupling coefficient Since k 12 , k 23 , and k 34 can be changed in balance with each other, an appropriate arrangement can be made according to the volume, shape, and total weight of the wireless power transmission device 1, and the design of the wireless power transmission device 1 is possible. The degree of freedom can be increased. That is, in the wireless power transmission device 1, there are more parameter elements for adjusting the value of the received voltage V L of the power-supplied device 10 than the conventional one that maximizes the power transmission efficiency. Fine control of the value of L is possible.
  • R 4 , L 4 , C 4, and other resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 are changed in a balanced manner and are derived by (Equation 8).
  • a power reception voltage control method capable of adjusting the power reception voltage VL of the power supplied device 10 can be realized.
  • the driving frequency of the power supplied to the power supply module 2 is set to the resonance frequency in the power supply module 2 (power supply coil 21, power supply resonator 22) and power reception module 3 (power reception coil 31, power reception resonator 32).
  • element values of a plurality of circuit elements constituting the power feeding module 2 and the power receiving module 3 R 1 , L 1 , C 1 of the power feeding coil 21, R 2 of the power feeding resonator 22, L 2 , C 2 , R 3 , L 3 , C 3 of the power receiving resonator 32, R 4 , L 4 , C 4, etc.
  • element values of a plurality of circuit elements constituting the power feeding module 2 and the power receiving module 3 (R 1 , L 1 , C 1 of the power feeding coil 21, power feeding) R 2 , L 2 , C 2 of the resonator 22, R 3 , L 3 , C 3 of the power receiving resonator 32, R 4 , L 4 , C 4, etc. of the power receiving coil 31, inductance, capacitor capacity, and , Coupling coefficients k 12 , k 23 , k 34, etc.) can be freely set as parameters, increasing the design flexibility of the wireless power transmission device 1, and making the wireless power transmission device 1 itself portable, compact, and low Cost reduction can be realized.
  • power is supplied from the power supply module 2 including at least the power supply coil 21 and the power supply resonator 22 to the power reception module 3 including at least the power reception resonator 32 and the power reception coil 31 by the resonance phenomenon.
  • the parameters are changed so as to satisfy the relational expression (Equation 8).
  • the power receiving voltage V L of the power-supplied device 10 can be adjusted.
  • the element values of the plurality of circuit elements constituting the power supply module 2 and the power reception module 3 (R 1 , L 1 , C 1 of the power supply coil 21). , R 2 , L 2 , C 2 of the power supply resonator 22, R 3 , L 3 , C 3 of the power receiving resonator 32, R 4 , L 4 , C 4 of the power receiving coil 31, resistance values, inductance, capacitor capacity , And coupling coefficients k 12 , k 23 , k 34, etc.) as parameters, can be set freely so as to satisfy the above relational expression (formula 8), and the design flexibility of the wireless power transmission device 1 is increased, Portability, compactness, and cost reduction of the wireless power transmission device 1 itself can be realized.
  • the drive frequency of the power supplied to the power supply module 2 is set to the power supply coil 21 and power supply resonator 22 included in the power supply module 2 and the power reception coil 31 and power reception resonator 32 included in the power reception module 3.
  • the power feeding coil 21 provided with the power feeding module 2 has the driving frequency of the power supplied to the power feeding module 2.
  • the wireless power transmission device 1 was connected to an oscilloscope (in this embodiment, MSO-X3054A manufactured by Agilent Technology) was used to measure the received voltage V L with respect to the coupling coefficient. (See FIG. 2).
  • a variable resistor 11 R L is connected instead of the power-supplied device 10 including the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is measured with a bimodal property.
  • the transmission characteristic “S21” represents a signal measured by connecting a network analyzer (such as E5061B manufactured by Agilent Technologies) to the wireless power transmission device 1, and is displayed in decibels and has a large numerical value. This means that the power transmission efficiency is high.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is determined by the strength of the magnetic field coupling between the power supply module 2 and the power reception module 3 (magnetic field coupling). It is divided into those having unimodal properties and those having bimodal properties.
  • the unimodality means that there is one peak of the transmission characteristic “S21” with respect to the drive frequency, and that peak appears in the resonance frequency band (fo) (see the broken line 51 in FIG. 3).
  • bimodality has two peaks of the transmission characteristic “S21” with respect to the drive frequency, and the two peaks are a drive frequency band (fL) lower than the resonance frequency and a drive frequency band (fH) higher than the resonance frequency. ) (See the solid line 52 in FIG. 3). More specifically, bimodality is defined as a state where the reflection characteristic “S11” measured by connecting the wireless power transmission device 1 to the network analyzer has two peaks. Accordingly, even if the peak of the transmission characteristic “S21” with respect to the driving frequency looks at one glance, if the measured reflection characteristic “S11” has two peaks, it has a bimodal property. Shall.
  • the transmission characteristic “S21” is maximized when the drive frequency is the resonance frequency f 0 (the power transmission efficiency is maximized), as indicated by a broken line 51 in FIG. To do).
  • the transmission characteristic “S21” has a driving frequency band (fL) lower than the resonance frequency fo and the resonance frequency fo. Is also maximized in the high drive frequency band (fH).
  • the maximum value of the transmission characteristic “S21” in the bimodality (the value of the transmission characteristic “S21” at fL or fH). Is a value lower than the maximum value of the transmission characteristic “S21” in the unimodality (the value of the transmission characteristic “S21” at f 0 ) (see the graph of FIG. 3).
  • the power supply resonator 22 and the power reception resonator 32 are set.
  • the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are the same.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are the same direction is called an in-phase resonance mode. I will decide.
  • the magnetic field generated on the outer peripheral side of the power feeding resonator 22 and the magnetic field generated on the outer peripheral side of the power receiving resonator 32 cancel each other, so that the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32.
  • the influence of the magnetic field is reduced, and the magnetic field intensity is smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 (for example, the magnetic field strength on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32).
  • a magnetic field space having strength can be formed.
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (antiphase resonance mode)
  • the power supply resonator 22 and the power reception resonator 32 are in antiphase.
  • the resonance state occurs, and the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are reversed.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are opposite to each other is referred to as an antiphase resonance mode. I will call it.
  • the magnetic field generated on the inner peripheral side of the power feeding resonator 22 and the magnetic field generated on the inner peripheral side of the power receiving resonator 32 cancel each other, so that the power feeding resonator 22 and the power receiving resonator 32 are
  • the magnetic field strength on the inner peripheral side of the power supply resonator 22 and the power receiving resonator 32 other than the inner peripheral side is reduced (for example, the magnetic field strength on the outer peripheral side of the power supply resonator 22 and the power receiving resonator 32).
  • a magnetic field space having a smaller magnetic field strength can be formed.
  • the wireless power transmission device 1 itself can be made compact and the design flexibility can be improved.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the driving frequency of the power supplied to the wireless power transmission device 1 has a bimodal property as described above, the AC power supplied to the power supply module 2 is reduced.
  • the feeding coil 21 constitutes an RLC circuit including the resistor R 1 , the coil L 1 , and the capacitor C 1 (with resonance),
  • the coil L 1 portion has a coil diameter of 15 mm ⁇ .
  • the power receiving coil 31 also constitutes an RLC circuit including the resistor R 4 , the coil L 4, and the capacitor C 4 , and the coil diameter of the coil L 4 is set to 15 mm ⁇ .
  • the feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion uses a solenoid type coil having a coil diameter of 15 mm ⁇ . is doing.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion uses a solenoid type coil having a coil diameter of 15 mm ⁇ . is doing. Then, the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used for the measurement experiment 1-1 were set to 0.8 ⁇ , respectively.
  • the values of L 1 , L 2 , L 3 and L 4 were set to 10 ⁇ H, respectively.
  • the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 1.0 MHz.
  • the inner surfaces of the power feeding coil 21 and the power feeding resonator 22 are arranged. In this way, a cylindrical magnetic sheet having a thickness of 450 ⁇ m is arranged.
  • a cylindrical magnetic sheet having a thickness of 450 ⁇ m is disposed on the inner peripheral side of the coil of the power receiving resonator 32 and the power receiving coil 31 so as to follow the inner peripheral surface of the coil of the power receiving resonator 32 and the power receiving coil 31.
  • FIG. 5A shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 890 kHz).
  • FIG. 5B shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high-frequency side in the bimodality (reverse phase resonance mode: 1170 kHz). .
  • the value of the coupling coefficient k 12 is increased in the order of 0.21, ⁇ 0.28, ⁇ 0.40, and ⁇ 0.48.
  • the value of the receiving voltage V L was decreased to 5.9V, ⁇ 4.5V, ⁇ 3.2V, ⁇ 2.7V.
  • the value of the received voltage V L of the power-supplied device 10 tends to decrease as the value of the coupling coefficient k 12 increases.
  • the value of the received voltage V L of the power-supplied device 10 tends to increase.
  • the coil shape used for the power supply coil 21, the power supply resonator 22, the power reception resonator 32, and the power reception coil 31 is a solenoid shape. Instead, it is a planar pattern coil. Specifically, an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 is configured (with resonance), The coil L 1 portion uses a 12-turn (spiral) pattern coil having a coil diameter of 35 mm ⁇ formed by etching a copper foil.
  • the power receiving coil 31 also constitutes an RLC circuit including the resistor R 4 , the coil L 4, and the capacitor C 4 , and the coil L 4 portion is a pattern coil similar to the power feeding coil 21.
  • the feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion is formed by 12 turns formed by etching a copper foil. A pattern coil having a coil diameter of 35 mm ⁇ is used.
  • the power receiving resonator 32 also constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion is a pattern coil similar to that of the power feeding resonator 22. is there. Then, the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used for the measurement experiment 1-2 were set to 1.5 ⁇ , respectively. Further, the values of L 1 , L 2 , L 3 and L 4 were set to 2.5 ⁇ H, respectively. Further, the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 1.0 MHz.
  • FIG. 6A shows measured values when the driving frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 880 kHz).
  • FIG. 6B shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (reverse phase resonance mode: 1200 kHz). .
  • the value of the coupling coefficient k 12 is increased in the order of 0.14, ⁇ 0.24, ⁇ 0.30, and ⁇ 0.45.
  • the value of the receiving voltage VL was decreased to 5.9V, ⁇ 5.4V, ⁇ 4.7V, ⁇ 3.3V, and so on.
  • the value of the received voltage V L of the power-supplied device 10 tends to decrease as the value of the coupling coefficient k 12 increases.
  • the value of the received voltage V L of the power-supplied device 10 tends to increase.
  • the wireless power transmission device 1 used for the measurement experiment 1-3 has the same configuration as that of the measurement experiment 1-1, and R 1 , R 2 , R 3 , The value of R 4 was set to 0.8 ⁇ , and the values of L 1 , L 2 , L 3 , and L 4 were set to 10 ⁇ H (same as in measurement experiment 1-1). Further, the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 1.0 MHz (same as the measurement experiment 1-1).
  • FIG. 7A shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 890 kHz).
  • FIG. 7B shows measured values when the drive frequency of AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (reverse phase resonance mode: 1170 kHz). .
  • the value of the coupling coefficient k 34 is increased in the order of 0.13, ⁇ 0.21, ⁇ 0.28, and ⁇ 0.45.
  • the value of the receiving voltage VL increased to 2.0 V, ⁇ 3.4 V, ⁇ 4.5 V, and ⁇ 7.2 V.
  • the value of the received voltage VL of the power-supplied device 10 tends to increase as the value of the coupling coefficient k 34 increases.
  • the value of the power receiving voltage V L of the power-supplied device 10 tends to decrease as the value of the coupling coefficient k 34 decreases.
  • the wireless power transmission device 1 used for the measurement experiment 1-4 has the same configuration as that of the measurement experiment 1-2, and R 1 , R 2 , R 3 , The value of R 4 was set to 1.5 ⁇ , and the values of L 1 , L 2 , L 3 , and L 4 were set to 2.5 ⁇ H (same as in measurement experiment 1-2). Further, the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 1.0 MHz (same as the measurement experiment 1-2).
  • the coupling coefficient k 12 is fixed to 0.3 and the coupling coefficient k 23 is fixed to 0.3, and then the coupling coefficient k 34 is set to 0.15, 0.25, 0.30.
  • the value of the received voltage V L of the variable resistor 11 (set to 175 ⁇ ) of the wireless power transmission device 1 is measured (see FIG. 2).
  • FIG. 8A shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 880 kHz).
  • FIG. 8B shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in bimodality (reverse phase resonance mode: 1200 kHz). .
  • the value of the coupling coefficient k 34 is increased in the order of 0.15, ⁇ 0.25, ⁇ 0.30, and ⁇ 0.45.
  • the value of the receiving voltage VL increased to 2.8V, ⁇ 4.8V, ⁇ 6.2V, ⁇ 9.5V.
  • the value of the received voltage VL of the power-supplied device 10 tends to increase as the value of the coupling coefficient k 34 increases.
  • the value of the power receiving voltage V L of the power-supplied device 10 tends to decrease as the value of the coupling coefficient k 34 decreases.
  • the coupling coefficient k 12 between the power feeding coil 21 and the power feeding resonator 22, the power feeding resonator 22 By adjusting the values of the coupling coefficient k 23 between the power receiving resonator 32 and the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31, the power receiving voltage V L of the power-supplied device 10 is adjusted. It can be seen that it can be adjusted.
  • the relationship between the distance between the coils and the coupling coefficient k is such that the value of the coupling coefficient k is reduced when the distance between the coils is shortened. It can be seen that it tends to be higher.
  • the distance d12 between the power feeding coil 21 and the power feeding resonator 22, the distance d23 between the power feeding resonator 22 and the power receiving resonator 32, and the power receiving resonator are applied to the wireless power transmission device 1 according to the present embodiment.
  • the coupling coefficient k 12 between the feeding coil 21 (coil L 1 ) and the feeding resonator 22 (coil L 2 ) By stretching the coupling coefficient k 12 between the feeding coil 21 (coil L 1 ) and the feeding resonator 22 (coil L 2 ), the feeding resonator 22 (coil L 2 ) and the receiving resonator 32 (coil L 3 ). it can lower the coupling coefficient k 23, receiving resonator 32 coupling coefficient k 34 between the (coil L 3) and the power receiving coil 31 (coil L 4) between the.
  • the distance d23 between the power supply resonator 22 and the power reception resonator 32, and the power reception resonator 32 and the power reception coil for a fixed distance d34 between 31, by shortening the distance d12 between the feeding coil 21 and the feeding resonator 22, the value of the coupling coefficient k 12 between the power supply coil 21 and the feeding resonator 22 Is increased and the value of the coupling coefficient k 12 is increased, so that the value of the received voltage V L of the power-supplied device 10 can be decreased.
  • the coupling coefficient k 12 By increasing the distance d12 between the feeding coil 21 and the feeding resonator 22, a smaller value of the coupling coefficient k 12 between the power supply coil 21 and the feeding resonator 22, the coupling coefficient k 12 By reducing the value, the value of the received voltage VL of the power-supplied device 10 can be increased.
  • the distance between the power receiving resonator 32 and the power receiving coil 31 is fixed.
  • the value of the coupling coefficient k 34 between the power-receiving resonator 32 and the receiving coil 31 is increased, by increasing the value of the coupling coefficient k 34, receiving voltage of the power supply device 10
  • the value of VL can be increased.
  • the value of the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31 is decreased, and the coupling coefficient k 34 is reduced.
  • the value of the received voltage VL of the power-supplied device 10 can be reduced.
  • the received voltage VL of the power-supplied device 10 can be adjusted by a simple operation of physically changing the distance between the power supply coil 21 and the power supply resonator 22.
  • the adjustment of the power reception voltage V L of the power-supplied device 10 can be realized without providing a new device in the wireless power transmission device 1 (the power supply can be performed without increasing the number of parts of the wireless power transmission device 1). It becomes possible to adjust the power reception voltage V L of the device 10).
  • the wireless power transmission device 1 as a method of adjusting the coupling coefficients k 12 , k 23 , and k 34 for adjusting the power reception voltage V L of the power-supplied device 10, the connection between the power supply coil 21 and the power supply resonator 22 is performed.
  • the method of changing the distance d12 and the distance d34 between the power receiving resonator 32 and the power receiving coil 31 has been described by way of example.
  • the adjustment method of the coupling coefficients k 12 , k 23 , and k 34 is not limited to this, and a method of shifting the center axis of the power feeding resonator 22 and the center axis of the power receiving resonator 32, or the coil surface of the power feeding resonator 22 And a method of changing the capacitance of each element (resistor, capacitor, coil) such as the feeding coil 21, the feeding resonator 22, the receiving resonator 32, the receiving coil 31, and the like. And a method of changing the drive frequency of the AC power supplied to the power supply module 2.
  • a coil inductance can be cited as a parameter that can be varied in order to adjust the power receiving voltage V L of the power-supplied device 10. Therefore, how the received voltage V L changes when the inductance of the coil in the wireless power transmission device 1 is changed will be described with measurement experiments 2-1 to 2-4 under different conditions.
  • the wireless power transmission device 1 is connected to an oscilloscope, and changes in the inductance values of the coils in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 are performed.
  • the received voltage V L was measured (see FIG. 2).
  • a variable resistor 11 R L was connected instead of the power-supplied device 10 composed of the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9.
  • the AC power supplied to the power supply module 2 when the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 has a bimodal property.
  • the received voltage V L is measured when the drive frequency is set to the in-phase resonance mode (fL) or the anti-phase resonance mode (fH).
  • the feeding coil 21 constitutes an RLC circuit including the resistor R 1 , the coil L 1 , and the capacitor C 1 (with resonance),
  • the coil L 1 portion has a coil diameter of 15 mm ⁇ .
  • the power receiving coil 31 also constitutes an RLC circuit including the resistor R 4 , the coil L 4, and the capacitor C 4 , and the coil diameter of the coil L 4 is set to 15 mm ⁇ .
  • the feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion uses a solenoid type coil having a coil diameter of 15 mm ⁇ . is doing.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion uses a solenoid type coil having a coil diameter of 15 mm ⁇ . is doing.
  • the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used for the measurement experiment 2-1 were each set to 0.5 ⁇ . Further, the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 1.0 MHz.
  • the coupling coefficient k 12 is fixed to 0.27
  • the coupling coefficient k 23 is fixed to 0.27
  • the coupling coefficient k 34 is fixed to 0.27
  • the values of L 2 , L 3 , and L 4 are respectively set to 4.5 ⁇ H.
  • the value of L 2 is increased in the order of 2.6 ⁇ H, ⁇ 4.5 ⁇ H, and then 8.8 ⁇ H. Then, the value of the receiving voltage V L became small such as 6.32V, ⁇ 6.24V, and ⁇ 0.65V.
  • the value of the received voltage V L of the power-supplied device 10 tends to decrease as the value of L 2 is increased even in the anti-phase resonance mode. Conversely, it can be seen that the value of the received voltage V L of the power-supplied device 10 tends to increase as the value of L 2 decreases.
  • the value of L 3 is increased in the order of 2.6 ⁇ H, ⁇ 4.5 ⁇ H, and then 8.8 ⁇ H. Then, the value of the receiving voltage V L increased to 5.60V, ⁇ 6.24V, ⁇ 7.04V.
  • the value of the received voltage V L of the power-supplied device 10 tends to increase as the value of L 3 is increased even in the anti-phase resonance mode.
  • the value of the power receiving voltage V L of the power-supplied device 10 tends to decrease as the value of L 3 decreases.
  • the value of L 4 is increased in the order of 2.6 ⁇ H, ⁇ 4.5 ⁇ H, and then 8.8 ⁇ H. Then, the value of the received voltage V L increased to 6.16V, ⁇ 6.24V, ⁇ 9.00V.
  • the value of the received voltage V L of the power-supplied device 10 tends to increase as the value of L 4 is increased even in the anti-phase resonance mode. Conversely, it can be seen that as the value of L 4 is decreased, the value of the received voltage V L of the power-supplied device 10 tends to decrease.
  • the coil L 1 a coil L 2 of the feeding resonator 22, a coil L 3 of the power receiving resonator 32, and a coil L 4 of the power receiving coil 31 of the feeding coil 21 It can be seen that by adjusting the inductance value, the value of the received voltage VL of the power-supplied device 10 can be adjusted.
  • a design method which is one process for manufacturing the wireless power transmission device 1, will be described with reference to FIGS. 11 and 12.
  • a wireless headset 200 including an earphone speaker unit 201a and a charger 201 will be described as examples of portable devices on which the wireless power transmission device 1 is mounted (see FIG. 11).
  • the wireless power transmission device 1 designed by this design method includes a power receiving module 3 (power receiving coil 31 and power receiving resonator 32) and a power feeding module 2 (power feeding coil), respectively, in the wireless headset 200 and the charger 201 shown in FIG. 21 is mounted as a feeding resonator 22).
  • the stabilizing circuit 7, the charging circuit 8, and the rechargeable battery 9 are shown outside the power receiving module 3, but actually, the solenoidal power receiving coil 31 and the coil of the power receiving resonator 32 are used. It is arranged on the inner circumference side. That is, the wireless headset 200 includes the power receiving module 3, the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9, and the charger 201 includes the power supply module 2.
  • the power supply coil 21 is used with the AC power supply 6 connected thereto.
  • the distance between the power supply module 2 and the power reception module 3 is determined (S2).
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is determined in consideration of the shapes and structures of the wireless headset 200 and the charger 201.
  • the coil diameters of the power receiving coil 31 and the power receiving resonator 32 in the power receiving module 3 are determined (S3).
  • the coil diameters of the power feeding coil 21 and the power feeding resonator 22 in the power feeding module 2 are determined (S4).
  • the minimum necessary amount of power to be supplied to the power supply module 2 is determined (S5).
  • receiving voltage V L, the power transmission efficiency of the power supply device 10, and, in light of the minimum feed amount of power needed to power the power supply module 2, L 4, receiving resonator 32 in L 3 of the power receiving coil 31, and the design value of the coupling coefficient k 34 (S6) are determined, L 2 at L 1, feed resonator 22 of the feeding coil 21, and the design value of the coupling coefficient k 12 is determined (S7).
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 and the distance d34 between the power receiving resonator 32 and the power receiving coil 31 are fixed while satisfying the relationship of (Expression 8).
  • the power receiving voltage V L of the power-supplied device 10 can be reduced, or between the power supply coil 21 and the power supply resonator 22.
  • the distance d12 and the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 are fixed, the distance d34 between the power receiving resonator 32 and the power receiving coil 31 is shortened, so that and receiving voltage V L increases characteristics, the coil L 1 of the feeding coil 21, the coil L 2 of the feeding resonator 22, a coil L 3 of the power receiving resonator 32, and the inductance value of the coil L 4 of the power receiving coil 31 Adjustment By Rukoto, based on being able to adjust the value of the receiving voltage V L of the power feeding device 10, L 4 of the power receiving coil 31, the power-receiving resonator 32 in L 3 and the design value of the coupling coefficient k 34, and , L 2 at L
  • each design of the elements constituting the wireless power transmission device 1 is such that the received voltage VL is equal to or lower than the withstand voltage of the power-supplied device 10 and within the range of the drive voltage of the power-supplied device 10. The value is determined.
  • the power receiving voltage V L of the power-supplied device 10 can be adjusted using a new device.
  • the wireless power transmission device 1 that can be provided can be manufactured. That is, the wireless power transmission device 1 that can adjust the power reception voltage V L of the power-supplied device 10 without increasing the number of components of the wireless power transmission device 1 can be manufactured.
  • the wireless headset 200 has been described as an example. However, as long as the device includes a rechargeable battery, a tablet PC, a digital camera, a mobile phone, an earphone music player, a hearing aid, and a sound collector Can also be used.
  • the wireless power transmission device 1 including the rechargeable battery 9 in the power-supplied device 10 has been described.
  • the present invention is not limited thereto, and a device that can move while consuming power directly may be employed. .
  • the wireless power transmission device 1 that performs power transmission by coupling a magnetic field using a resonance phenomenon (magnetic field resonance state) between resonators (coils) included in the power supply module 2 and the power reception module 3 is illustrated.
  • the present invention is also applicable to the wireless power transmission apparatus 1 that performs power transmission using electromagnetic induction between coils.
  • the wireless power transmission device 1 is mounted on a portable electronic device.
  • the usage is not limited to these small devices, and the specification is changed according to the required power amount.
  • it can be mounted on a wireless charging system in a relatively large electric vehicle (EV), a smaller medical wireless gastrocamera, or the like.
  • EV electric vehicle
  • a smaller medical wireless gastrocamera or the like.

Abstract

 無線電力伝送装置に設けられた回路素子の容量などを調整することにより、被給電機器に印加される受電電圧を制御することができる受電電圧制御方法、受電電圧制御方法によって調整された無線電力伝送装置、及び、その製造方法を提供する。 無線電力伝送装置1を構成する給電モジュール2から受電モジュール3に対して磁界を変化させて電力を供給し、供給された電力を受電モジュール3に接続された被給電機器10に給電する際の被給電機器10の受電電圧VLの制御方法であって、給電モジュール2に供給する電力の駆動周波数が、給電モジュール2及び受電モジュール3における共振周波数とはならない値で供給し、給電モジュール2及び受電モジュール3を構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、被給電機器10の受電電圧VLを調整する。

Description

無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
 本発明は、無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法に関する。
 近年、ノート型PC、タブレット型PC、デジタルカメラ、携帯電話、携帯ゲーム機、イヤホン型音楽プレイヤー、無線式ヘッドセット、補聴器、レコーダーなど人が携帯しながら使用できる携帯型の電子機器が急速に普及してきている。そして、これらの携帯型の電子機器の多くには充電池が搭載されており、定期的な充電が必要とされる。この電子機器の充電池への充電作業を簡易にするために、給電装置と電子機器に搭載された受電装置との間で無線による電力伝送を利用した給電技術(磁界を変化させて電力伝送を行う無線電力伝送技術)により、充電池を充電する機器が増えつつある。
 例えば、無線電力伝送技術としては、コイル間の電磁誘導を利用して電力伝送を行う技術や(例えば、特許文献1参照)、給電装置及び受電装置が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う技術が挙げられる(例えば、特許文献2参照)。
 このような無線電力伝送技術を使用することにより安定的に充電池を充電するには、充電池を含む被給電機器(安定回路、充電回路、充電池等)にかかる電圧(受電電圧)を、駆動電圧以上(機器が性能を発揮する電圧)で、且つ、被給電機器が有する耐電圧以下にすることが求められる。その理由としては、被給電機器に印加される電圧が駆動電圧より小さいと、被給電機器が動作しないこと、一方で、被給電機器に印加される電圧が耐電圧より大きいと、被給電機器が壊れてしまうおそれがある。
 上記要求に答えるために、被給電機器に印加される電圧を調整するために、別個に昇圧回路や降圧回路などの電圧調整器を設けることが考えられる。
 しかしながら、電圧調整器を新たに設けることは、携帯性・コンパクト化・低コスト化が求められる携帯電子機器においては、部品点数が多くなってしまい不都合である。
 そこで、新たな機器を設けずに、無線電力伝送を行う給電装置及び受電装置を構成する抵抗器やコンデンサやコイルなどの容量などを調整することにより、被給電機器の受電電圧を制御することが考えられる。
特許第4624768号公報 特開2010-239769号公報 特開2011-050140号公報 特開2012-182975号公報
 もっとも、特許文献3の背景技術(段落[0008]~[0010]参照)、特許文献4のワイヤレス電力伝送システムの明細書中にも記載されているように、給電装置に供給する電力の駆動周波数に、給電装置及び受電装置が備える共振器が有する共振周波数を一致させる(若しくは、駆動周波数を、給電装置及び受電装置が備える共振器が有する共振周波数に一致させる)ことにより、ワイヤレス給電における電力伝送効率を最大とすることができることが一般的に知られており(特許文献4の段落[0013]参照)、電力伝送効率の最大化を求めてこのような設定にするのが一般的である。そして、このような給電装置及び受電装置における共振器は、それぞれLC共振回路を含む構成にされているため、電力伝送効率を最大にするには、給電装置及び受電装置におけるLC共振回路はそれぞれの共振周波数が駆動周波数に一致するような値(コンデンサやコイルなどの容量:共振条件 ωL=1/ωC)に必然的に決定されてしまう(特許文献4の段落[0027]参照)。
 このように、ワイヤレス給電における電力伝送効率を最大化するために、給電装置に供給する電力の駆動周波数を共振周波数と一致させることが一般的であるが、LC共振回路のコンデンサやコイルなどの容量が予め決まってしまい、LC共振回路のコンデンサやコイルなどの容量を、被給電機器に印加される受電電圧を制御するパラメータとして自由に変更できなくなってしまう。即ち、被給電機器に印加される受電電圧を制御するために、LC共振回路のコンデンサやコイルなどの容量を自由に設定できないことは、携帯性・コンパクト化・低コスト化が求められる携帯型の電子機器の設計に対する自由度が低いことを意味する。
 そこで、本発明の目的は、無線電力伝送を行う給電装置及び受電装置に設けられた回路素子の容量などを自由に調整することにより、被給電機器に印加される受電電圧を制御することができる受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法を提供することにある。
 上記課題を解決するための発明の一つは、無線電力伝送装置を構成する給電モジュールから受電モジュールに対して磁界を変化させて電力を供給し、当該供給された電力を前記受電モジュールに接続された被給電機器に給電する際の前記被給電機器の受電電圧の制御方法であって、前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び前記受電モジュールにおける共振周波数とはならない値で供給し、前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、前記被給電機器の受電電圧を調整することを特徴としている。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給することにより、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値を、被給電機器の受電電圧を調整するパラメータとして自由に変更することができるようになる。そして、当該パラメータをそれぞれ変えることにより、被給電機器の受電電圧を調整することができる。このように被給電機器の受電電圧を調整することができれば、受電電圧を被給電機器が有する耐電圧以下、且つ、受電電圧を被給電機器が有する駆動電圧以上に保持することができる。
 また、被給電機器の受電電圧を制御するために、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値をパラメータとして自由に設定できることになり、無線電力伝送装置の設計自由度を高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記課題を解決するための発明の一つは、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給し、当該供給された電力を前記受電コイルに接続された被給電機器に給電する際の前記被給電機器の受電電圧の制御方法であって、
 前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給し、前記給電コイルを構成する、コイルL1を含む各回路素子が有する合計のインピーダンスをZ1、前記給電共振器を構成する、コイルL2を含む各回路素子が有する合計のインピーダンスをZ2、前記受電共振器を構成する、コイルL3を含む各回路素子が有する合計のインピーダンスをZ3、前記受電コイルを構成する、コイルL4を含む各回路素子が有する合計のインピーダンスをZ4、前記被給電機器の合計の負荷インピーダンスをZL、前記給電コイルのコイルL1と前記給電共振器のコイルL2との間の相互インダクタンスをM12、前記給電共振器のコイルL2と前記受電共振器のコイルL3との間の相互インダクタンスをM23、前記受電共振器のコイルL3と前記受電コイルのコイルL4との間の相互インダクタンスをM34、前記給電コイルに入力される入力電流をI1、とし、前記給電コイル、前記給電共振器、前記受電共振器、及び、前記受電コイルを構成する複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、当該パラメータをそれぞれ変えることにより、下記関係式により導出される前記被給電機器の受電電圧VLを制御することを特徴としている。
Figure JPOXMLDOC01-appb-I000002
 上記方法によれば、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給し、供給された電力を受電コイルに接続された被給電機器に給電する際の被給電機器の受電電圧の制御方法に関して、上記関係式を満たすようにパラメータをそれぞれ変えることにより、被給電機器の受電電圧を調整することができる。このように、被給電機器の受電電圧を調整するために、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、上記関係式を満たすように自由に設定できることになり、無線電力伝送装置の設計自由度を高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記課題を解決するための発明の一つは、前記給電コイルと前記給電共振器との間における結合係数k12、前記給電共振器と前記受電共振器との間における結合係数k23、及び、前記受電共振器と前記受電コイルとの間における結合係数k34の値の少なくとも1つを調整することにより、前記被給電機器の受電電圧を調整することを特徴とする受電電圧制御方法である。
 上記方法によれば、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給し、供給された電力を受電コイルに接続された被給電機器に給電する際の被給電機器の受電電圧を制御することを目的に、給電コイルと給電共振器との間における結合係数k12、給電共振器と受電共振器との間における結合係数k23、及び、受電共振器と受電コイルとの間における結合係数k34の値を調整することによって、被給電機器の受電電圧を調整することができる。
 また、上記課題を解決するための発明の一つは、前記各結合係数k12、k23、k34の値は、それぞれ前記給電コイルと前記給電共振器との間の距離、前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離の少なくとも1つを変化させることにより調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、給電コイルと給電共振器との間の距離を変化させることにより、結合係数k12の値を変化させることができ、給電共振器と受電共振器との間の距離を変化させることにより、結合係数k23の値を変化させることができ、受電共振器と受電コイルとの間の距離を変化させることにより、結合係数k34の値を変化させることができる。これによれば、給電コイルと給電共振器との間の距離、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業により、それぞれのコイル間の結合係数の値を変えることができる。即ち、給電コイルと給電共振器との間の距離、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業によって、被給電機器の受電電圧を調整することができる。
 また、上記課題を解決するための発明の一つは、前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離を固定した場合、前記被給電機器の受電電圧は、前記給電コイルと前記給電共振器との間の距離を短くするにつれて、前記給電コイルと前記給電共振器との間における前記結合係数k12の値が大きくなり、前記結合係数k12の値が大きくなるにつれて、当該被給電機器の受電電圧が小さくなる特性に基づいて調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を固定した場合、給電コイルと給電共振器との間の距離を短くすることにより、給電コイルと給電共振器との間における結合係数k12の値を大きくし、結合係数k12の値を大きくすることにより被給電機器の受電電圧を小さくすることができる。逆に、給電コイルと給電共振器との間の距離を長くすることにより、給電コイルと給電共振器との間における結合係数k12の値を小さくし、結合係数k12の値を小さくすることにより被給電機器の受電電圧を大きくすることができる。
 上記特性を利用した受電電圧制御方法では、給電コイルと給電共振器との間の距離を物理的に変化させるという簡易な作業によって、被給電機器の受電電圧を調整することができる。換言すると、被給電機器の受電電圧の調整を、無線電力伝送装置において新たな機器を設けずに実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、被給電機器の受電電圧を調整することが可能となる。
 また、上記課題を解決するための発明の一つは、前記給電コイルと前記給電共振器との間の距離、及び、前記給電共振器と前記受電共振器との間の距離を固定した場合、前記被給電機器の受電電圧は、前記受電共振器と前記受電コイルとの間の距離を短くするにつれて、前記受電共振器と前記受電コイルとの間における前記結合係数k34の値が大きくなり、前記結合係数k34の値が大きくなるにつれて、当該被給電機器の受電電圧が大きくなる特性に基づいて調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、給電コイルと給電共振器との間の距離、及び、給電共振器と受電共振器との間の距離を固定した場合、受電共振器と受電コイルとの間の距離を短くすることにより、受電共振器と受電コイルとの間における結合係数k34の値を大きくし、結合係数k34の値を大きくすることにより被給電機器の受電電圧を大きくすることができる。逆に、受電共振器と受電コイルとの間の距離を長くすることにより、受電共振器と受電コイルとの間における結合係数k34の値を小さくし、結合係数k34の値を小さくすることにより被給電機器の受電電圧を小さくすることができる。
 上記特性を利用した受電電圧制御方法では、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業によって、被給電機器の受電電圧を調整することができる。換言すると、被給電機器の受電電圧の調整を、無線電力伝送装置において新たな機器を設けずに実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、被給電機器の受電電圧を調整することが可能となる。
 また、上記課題を解決するための発明の一つは、前記コイルL1、前記コイルL2、前記コイルL3、及び、前記コイルL4におけるインダクタンスの値の少なくとも1つを調整することにより、前記被給電機器の受電電圧を調整することを特徴とする受電電圧制御方法である。
 上記方法によれば、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給し、供給された電力を受電コイルに接続された被給電機器に給電する際の被給電機器の受電電圧を制御することを目的に、給電コイルのコイルL1、給電共振器のコイルL2、受電共振器のコイルL3、及び、受電コイルのコイルL4におけるインダクタンスの値の少なくとも1つを調整することによって、被給電機器の受電電圧を調整することができる。
 また、上記課題を解決するための発明の一つは、前記コイルL2、前記コイルL3、及び、前記コイルL4におけるインダクタンスの値を固定した場合、前記被給電機器の受電電圧は、前記コイルL1の値が大きくなるにつれて、前記被給電機器の受電電圧が小さくなる特性に基づいて調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、コイルL2、コイルL3、及び、コイルL4におけるインダクタンスの値を固定した場合、コイルL1の値を大きくすることにより、被給電機器の受電電圧を小さくすることができる。逆に、コイルL1の値を小さくすることにより、被給電機器の受電電圧を大きくすることができる。
 また、上記課題を解決するための発明の一つは、前記コイルL1、前記コイルL3、及び、前記コイルL4におけるインダクタンスの値を固定した場合、前記被給電機器の受電電圧は、前記コイルL2の値が大きくなるにつれて、前記被給電機器の受電電圧が小さくなる特性に基づいて調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、コイルL1、コイルL3、及び、コイルL4におけるインダクタンスの値を固定した場合、コイルL2の値を大きくすることにより、被給電機器の受電電圧を小さくすることができる。逆に、コイルL2の値を小さくすることにより、被給電機器の受電電圧を大きくすることができる。
 また、上記課題を解決するための発明の一つは、前記コイルL1、前記コイルL2、及び、前記コイルL4におけるインダクタンスの値を固定した場合、前記被給電機器の受電電圧は、前記コイルL3の値が大きくなるにつれて、前記被給電機器の受電電圧が大きくなる特性に基づいて調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、コイルL1、コイルL2、及び、コイルL4におけるインダクタンスの値を固定した場合、コイルL3の値を大きくすることにより、被給電機器の受電電圧を大きくすることができる。逆に、コイルL3の値を小さくすることにより、被給電機器の受電電圧を小さくすることができる。
 また、上記課題を解決するための発明の一つは、前記コイルL1、前記コイルL2、及び、前記コイルL3におけるインダクタンスの値を固定した場合、前記被給電機器の受電電圧は、前記コイルL4の値が大きくなるにつれて、前記被給電機器の受電電圧が大きくなる特性に基づいて調整されることを特徴とする受電電圧制御方法である。
 上記方法によれば、コイルL1、コイルL2、及び、コイルL3におけるインダクタンスの値を固定した場合、コイルL4の値を大きくすることにより、被給電機器の受電電圧を大きくすることができる。逆に、コイルL4の値を小さくすることにより、被給電機器の受電電圧を小さくすることができる。
 また、上記課題を解決するための発明の一つは、前記給電モジュール及び前記受電モジュールを構成する前記複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、当該パラメータをそれぞれ変えることにより、前記給電モジュールに供給する電力の前記駆動周波数に対する伝送特性の値が、前記共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定し、前記給電モジュールに供給する電力の駆動周波数は、前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域、又は、前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴とする受電電圧制御方法である。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定した場合に、給電モジュールに供給する電力の駆動周波数を、共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域の周波数に設定することにより、比較的高い伝送特性を確保することができる。
 また、この場合、給電モジュールの外周側に発生する磁界と受電モジュールの外周側に発生する磁界とが打ち消し合うことにより、給電モジュール及び受電モジュールの外周側に、磁界による影響が低減されて、給電モジュール及び受電モジュールの外周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路等を格納することで、スペースの有効活用ができ、無線電力伝送装置自体の小型化を図ることが可能になる。
 一方、給電モジュールに供給する電力の駆動周波数を、共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域の周波数に設定することにより、比較的高い伝送特性を確保することができる。
 また、この場合、給電モジュールの内周側に発生する磁界と受電モジュールの内周側に発生する磁界とが打ち消し合うことにより、給電モジュール及び受電モジュールの内周側に、磁界による影響が低減されて、給電モジュール及び受電モジュールの内周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路等を格納することで、スペースの有効活用ができ、無線電力伝送装置自体の小型化を図ることが可能になる。
 また、上記課題を解決するための発明の一つは、上記に記載の受電電圧制御方法により調整されたことを特徴とする無線電力伝送装置である。
 上記構成によれば、被給電機器の受電電圧の調整を、新たな機器を設けずに実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、被給電機器の受電電圧の調整が可能となる。
 また、上記課題を解決するための発明の一つは、給電モジュールから受電モジュールに対して磁界を変化させて供給する電力の駆動周波数を、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給する無線電力伝送装置の製造方法であって、前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、前記受電モジュールに接続された被給電機器に給電する際の当該被給電機器の受電電圧を調整する工程を含むことを特徴としている。
 上記方法によれば、被給電機器の受電電圧の調整を、新たな機器を設けずにできる無線電力伝送装置を製造することができる。即ち、無線電力伝送装置の部品点数を増やさずに、被給電機器の受電電圧の調整が可能な無線電力伝送装置を製造することができる。
 無線電力伝送を行う給電装置及び受電装置に設けられた回路素子の容量などを自由に調整することにより、被給電機器に印加される受電電圧を制御することができる受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法を提供することができる。
無線電力伝送装置の等価回路の説明図である。 測定実験に係る無線電力伝送装置の説明図である。 駆動周波数に対する伝送特性『S21』の関係を示したグラフである。 駆動周波数に対する入力インピーダンスZinの関係を示したグラフである。 測定実験1-1に係る測定結果を示すグラフである。 測定実験1-2に係る測定結果を示すグラフである。 測定実験1-3に係る測定結果を示すグラフである。 測定実験1-4に係る測定結果を示すグラフである。 無線電力伝送における、コイル間距離と結合係数との関係を示すグラフである。 測定実験2-1~2-4に係る測定結果を示すグラフである。 無線電力伝送装置の製造方法を説明する説明図である。 無線電力伝送装置を含む無線式ヘッドセット及び充電器の設計方法を説明したフローチャートである。
 以下に本発明に係る無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法の実施形態について説明する。
 (実施形態)
 まず、本実施形態における無線電力伝送を実現する無線電力伝送装置1について説明する。
 (無線電力伝送装置1の構成)
 無線電力伝送装置1は、図1に示すように、給電コイル21及び給電共振器22を備える給電モジュール2と、受電コイル31及び受電共振器32を備える受電モジュール3とを備えている。そして、給電モジュール2の給電コイル21に、給電モジュール2に供給する電力の駆動周波数を所定の値に設定した発振回路を備えた交流電源6を接続し、受電モジュール3の受電コイル31に、受電された交流電力を整流化する安定回路7及び過充電を防止する充電回路8を介して充電池9を接続している。なお、本実施形態における安定回路7、充電回路8、及び、充電池9は、図1に示すように、最終的な電力の給電先となる被給電機器10であり、被給電機器10は、受電モジュール3に接続された電力の給電先の機器全体の総称である。
 給電コイル21は、交流電源6から得られた電力を電磁誘導によって給電共振器22に供給する役割を果たす。この給電コイル21は、図1に示すように、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成している。なお、コイルL1部分は、銅線材(絶縁被膜付)を使用して、コイル径を15mmφに設定している。また、給電コイル21を構成する回路素子が有する合計のインピーダンスをZ1としており、本実施形態では、給電コイル21を構成する抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ1とする。また、給電コイル21に流れる電流をI1する。なお、電流I1は、無線電力伝送装置1に入力される入力電流Iinと同義である。
 受電コイル31は、給電共振器22から受電共振器32に磁界エネルギーとして伝送された電力を電磁誘導によって受電し、安定回路7及び充電回路8を介して充電池9に供給する役割を果たす。この受電コイル31は、給電コイル21同様に、図1に示すように、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成している。なお、コイルL4部分は、銅線材(絶縁被膜付)を使用して、コイル径15mmφに設定している。また、受電コイル31を構成する回路素子が有する合計のインピーダンスをZ4としており、本実施形態では、受電コイル31を構成する抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ4とする。また、受電コイル31に接続された被給電機器10の合計のインピーダンスをZLとするが、本実施形態では、図1に示すように、受電コイル31に接続された安定回路7、充電回路8及び充電池9(被給電機器10)の各負荷インピーダンスを合わせたものを便宜的に抵抗器RL(ZLに相当)としている。また、受電コイル31に流れる電流をI4する。
 給電共振器22は、図1に示すように、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成している。また、受電共振器32は、図1に示すように、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成している。そして、給電共振器22及び受電共振器32は、それぞれ共振回路となり、磁界共鳴状態を創出する役割を果たす。ここで、磁界共鳴状態(共振現象)とは、2つ以上のコイルが共振周波数において共振することをいう。また、給電共振器22を構成する回路素子が有する合計のインピーダンスをZ2とし、本実施形態では、給電共振器22を構成する、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ2とする。また、受電共振器32を構成する回路素子が有する合計のインピーダンスをZ3とし、本実施形態では、受電共振器32を構成する、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ3とする。また、給電共振器22に流れる電流をI2とし、受電共振器32に流れる電流をI3とする。
 また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振回路としてのRLC回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。そして、本実施形態における給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31の共振周波数は、1.0MHzとしている。
Figure JPOXMLDOC01-appb-I000003
       ・・・(式1)
 また、給電共振器22及び受電共振器32は、銅線材(絶縁被膜付)により構成したコイル径15mmφのソレノイド型のコイルを使用している。また、給電共振器22及び受電共振器32における共振周波数は上記のように一致させている。なお、給電共振器22及び受電共振器32は、コイルを使用した共振器であれば、スパイラル型やソレノイド型などのコイルであってもよい。
 また、給電コイル21と給電共振器22との間の距離をd12とし、給電共振器22と受電共振器32との間の距離をd23とし、受電共振器32と受電コイル31との間の距離をd34としている(図1参照)。
 また、図1に示すように、給電コイル21のコイルL1と給電共振器22のコイルL2との間の相互インダクタンスをM12、給電共振器22のコイルL2と受電共振器32のコイルL3との間の相互インダクタンスをM23、受電共振器32のコイルL3と受電コイル31のコイルL4との間の相互インダクタンスをM34としている。また、無線電力伝送装置1において、コイルL1とコイルL2との間の結合係数をk12と表記し、コイルL2とコイルL3との間の結合係数をk23と表記し、コイルL3とコイルL4との間の結合係数をk34と表記する。
 また、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34は、設計・製造段階等で変更可能なパラメータとして、後述する(式8)の関係式を満たすように設定されている(詳細は後述する)。
 上記無線電力伝送装置1によれば、給電共振器22の共振周波数と受電共振器32の共振周波数とを一致させた場合、給電共振器22と受電共振器32との間に磁界共鳴状態を創出することができる。給電共振器22及び受電共振器32が共振した状態で磁界共鳴状態が創出されると、給電共振器22から受電共振器32に電力を磁界エネルギーとして伝送することが可能となる。
 (被給電機器の受電電圧制御方法)
 上記無線電力伝送装置1の構成を踏まえて、無線電力伝送装置1を介して給電される被給電機器10に印加される受電電圧の制御方法について説明する。
 まず、上記構成による無線電力伝送装置1(被給電機器10含む)の等価回路を示すと図1の下図のようになる。この等価回路では、無線電力伝送装置1全体における入力インピーダンスをZinとしている。また、被給電機器10全体におけるインピーダンスをZLとしている。そして、本実施形態において制御対象となる被給電機器10の受電電圧VLは、図1の等価回路より、被給電機器10を含む受電コイル31に流れる電流I4とZLを踏まえた関係式で表すと(式2)のように示せる。
Figure JPOXMLDOC01-appb-I000004
      ・・・(式2)
 ここで、受電電圧VLを制御する必要性を簡単に説明する。充電池9を含む被給電機器10に印加される受電電圧VLは、被給電機器10に印加される電圧が駆動電圧より小さいと、被給電機器10が動作しないことから駆動電圧以上(機器が性能を発揮する電圧)であることが求められる。一方、受電電圧VLは、被給電機器10が有する耐電圧より大きいと、被給電機器10が壊れてしまうおそれがあることから、被給電機器10が有する耐電圧以下にすることが求められる。そのため、受電電圧VLは、被給電機器10が動作する駆動電圧以上、被給電機器10が有する耐電圧以下の範囲で制御されることが求められる。
 上記理由から受電電圧VLの値を制御するためには、(式2)より、電流I4によって制御する必要がある。なお、本実施形態のように被給電機器10には、予めそのインピーダンスZLが規定されたもの(安定回路7、充電回路8、充電池9)が使用されるため、インピーダンスZLの値は固定値として扱っている(安定回路7、充電回路8、充電池9などの被給電機器10の構成・仕様によってこの固定値は決定される)。
 そして、(式2)における受電電圧VLを、無線電力伝送装置1への入力電流Iin、即ち、I1との関係で表すと、図1の等価回路から導かれる関係式(式3)~(式6)より、I1とI4との関係式が求められることから、(式7)を(式2)に代入して(式8)の関係式になる。
Figure JPOXMLDOC01-appb-I000005
        ・・・(式3)
Figure JPOXMLDOC01-appb-I000006
        ・・・(式4)
Figure JPOXMLDOC01-appb-I000007
        ・・・(式5)
Figure JPOXMLDOC01-appb-I000008
        ・・・(式6)
Figure JPOXMLDOC01-appb-I000009
                          ・・・(式7)
Figure JPOXMLDOC01-appb-I000010
                          ・・・(式8)
 そして、本実施形態における無線電力伝送装置1の給電コイル21、給電共振器22、受電共振器32、受電コイル31、及び、被給電機器10におけるインピーダンスZ1、Z2、Z3、Z4、ZLは、それぞれ(式9)のように表記することができる。なお、上述したように被給電機器10の合計のインピーダンスをZLとするが、受電コイル31に接続された被給電機器10に係る負荷インピーダンスを合わせたものを便宜的に抵抗器RLとする。
Figure JPOXMLDOC01-appb-I000011
             ・・・(式9)
 そして、上記(式8)及び(式9)の関係から、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を設計・製造段階等で変更可能なパラメータとして、上記(式8)の関係式から導出される受電電圧VLが、被給電機器10が動作する駆動電圧以上、被給電機器10が有する耐電圧以下の範囲内に納まるように調整することができる。
 もっとも、上記のような無線電力伝送装置では、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電コイル21・給電共振器22及び受電モジュール3が備える受電コイル31・受電共振器32が有する共振周波数と一致させることにより、無線電力伝送における電力伝送効率を最大にすることができることが一般的に知られており、電力伝送効率の最大化を求めて駆動周波数を共振周波数に設定にするのが一般的である。ここで、電力伝送効率とは、給電モジュール2に供給される電力に対する、受電モジュール3が受電する電力の比率のことをいう。
 そうすると、無線電力伝送装置1において、電力伝送効率を最大化するには、駆動周波数と、給電モジュール2及び受電モジュール3の各RLC回路のそれぞれが有する共振周波数とが一致するようなコンデンサやコイルなどの容量条件・共振条件(ωL=1/ωC)を満たすことが求められる。
 具体的に、無線電力伝送装置1において、電力伝送効率を最大にするために共振条件(ωL=1/ωC)を満たした場合における受電電圧VLを、(式8)に当てはめてみると、(ωL1-1/ωC1=0)、(ωL2-1/ωC2=0)、(ωL3-1/ωC3=0)、(ωL4-1/ωC4=0)となり、(式10)の関係式になる。
Figure JPOXMLDOC01-appb-I000012
                        ・・・(式10)
 上記関係式(式10)によれば、受電電圧VLの値を、被給電機器10が動作する駆動電圧以上、被給電機器10が有する耐電圧以下の範囲内に納まるように調整するために変更可能な主なパラメータは、給電コイル21のRLC回路のR1、給電共振器22のRLC回路のR2、受電共振器32のRLC回路のR3、受電コイル31のRLC回路のR4などの抵抗値、及び、結合係数k12、k23、k34しかないことが分かる。
 上記のように、無線電力伝送装置1における電力伝送効率を最大化するために、給電モジュール2に供給する電力の駆動周波数を共振周波数に一致させた場合、給電モジュール2及び受電モジュール3の各RLC回路のコンデンサやコイルなどの容量が予め決まってしまい、主に各RLC回路の抵抗値などでしか受電電圧VLの値を調整できなくなってしまう。これは、RLC回路のコンデンサやコイルなどの容量を、受電電圧VLの値を制御するパラメータとして自由に変更できず無線電力伝送装置1の設計的自由度が低くなってしまうことを意味している。
 一方、本実施形態に係る無線電力伝送装置1では、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させないことにより(ωL≠1/ωC)、受電電圧VLの値を制御するためのパラメータとして、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を変更可能に使用することができる。
 これにより、無線電力伝送装置1を構成する際に、被給電機器10の受電電圧VLの値を調整するために、パラメータとしての給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量や、結合係数k12、k23、k34を相互にバランスをとって変えることができるので、無線電力伝送装置1の容積・形状・総重量に合わせて適切な配置が可能となり無線電力伝送装置1の設計的自由度を高めることができるようになる。即ち、無線電力伝送装置1において、電力伝送効率を最大化することが一般的な従来のものよりも、被給電機器10の受電電圧VLの値を調整するパラメータ要素が多くなり、受電電圧VLの値のきめ細やかな制御が可能となる。
 上記より、パラメータとしての給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を相互にバランスをとって変えることにより、(式8)により導出される被給電機器10の受電電圧VLを調整することが可能な受電電圧制御方法を実現することができる。
 したがって、上記方法によれば、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2(給電コイル21、給電共振器22)及び受電モジュール3(受電コイル31、受電共振器32)における共振周波数とはならない値で供給することにより、給電モジュール2及び受電モジュール3を構成する複数の回路素子の各素子値(給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34など)を、被給電機器10の受電電圧VLを調整するパラメータとして自由に変更することができるようになる。そして、当該パラメータをそれぞれ変えることにより、被給電機器10の受電電圧VLを調整することができる。このように被給電機器10の受電電圧VLを調整することができれば、受電電圧VLを被給電機器10が有する耐電圧以下、且つ、受電電圧VLを被給電機器10が有する駆動電圧以上に保持することができる。
 また、被給電機器10の受電電圧VLを制御するために、給電モジュール2及び受電モジュール3を構成する複数の回路素子の各素子値(給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34など)をパラメータとして自由に設定できることになり、無線電力伝送装置1の設計自由度を高めて、無線電力伝送装置1自体の携帯性・コンパクト化・低コスト化を実現することができる。
 上記方法によれば、少なくとも給電コイル21及び給電共振器22を備えた給電モジュール2から、少なくとも受電共振器32及び受電コイル31を備えた受電モジュール3に対して共振現象によって電力を供給し、供給された電力を受電コイル31に接続された被給電機器10に給電する際の被給電機器10の受電電圧VLの制御方法に関して、上記関係式(式8)を満たすようにパラメータをそれぞれ変えることにより、被給電機器10の受電電圧VLを調整することができる。このように、被給電機器10の受電電圧VLを調整するために、給電モジュール2及び受電モジュール3を構成する複数の回路素子の各素子値(給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34など)をパラメータとして、上記関係式(式8)を満たすように自由に設定できることになり、無線電力伝送装置1の設計自由度を高めて、無線電力伝送装置1自体の携帯性・コンパクト化・低コスト化を実現することができる。
 (結合係数による受電電圧VLの制御)
 上記のような無線電力伝送装置1において、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電コイル21・給電共振器22及び受電モジュール3が備える受電コイル31・受電共振器32が有する共振周波数と一致させることにより、無線電力伝送における電力伝送効率を最大にした場合(式10参照)、及び、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電コイル21・給電共振器22及び受電モジュール3が備える受電コイル31・受電共振器32が有する共振周波数とはならない値で供給した場合(式8参照)であっても、被給電機器10の受電電圧VLを調整するために変更可能な主なパラメータとして、結合係数k12、k23、k34が挙げられる。
 (結合係数の変化による受電電圧VLの変化)
 そこで、無線電力伝送装置1における上記結合係数k12、k34を変化させた場合に、受電電圧VLがどのような変化をするかを、条件を変えた測定実験1-1~1-4により説明する。
 測定実験1-1~1-4では、無線電力伝送装置1をオシロスコープ(本実施形態では、Agilent Technology社製のMSO-X3054Aを使用)に接続して、結合係数に対する受電電圧VLを測定した(図2参照)。なお、測定実験1-1~1-4では、安定回路7、充電回路8、及び、充電池9で構成される被給電機器10の代わりに可変抵抗器11(RL)を接続して、無線電力伝送装置1への交流電源6からの入力電圧Vin=5V(最大値5V)、RL=175Ωのときの受電電圧VLを測定した。
 また、本測定実験においては、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有するもので測定している。
 ここで、伝送特性『S21』とは、ネットワークアナライザ(アジレント・テクノロジー株式会社製のE5061Bなど)を無線電力伝送装置1に接続して計測される信号を表しており、デシベル表示され、数値が大きいほど電力伝送効率が高いことを意味する。そして、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』は、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度により、単峰性の性質を有するものと双峰性の性質を有するものに分かれる。そして、単峰性とは、駆動周波数に対する伝送特性『S21』のピークが一つで、そのピークが共振周波数帯域(fo)において現れるものをいう(図3の破線51参照)。一方、双峰性とは、駆動周波数に対する伝送特性『S21』のピークが二つあり、その二つのピークが共振周波数よりも低い駆動周波数帯域(fL)と共振周波数よりも高い駆動周波数帯域(fH)において現れるものをいう(図3の実線52参照)。更に詳細に双峰性を定義すると、上記ネットワークアナライザに無線電力伝送装置1を接続して計測される反射特性『S11』が二つのピークを有する状態をいう。従って、駆動周波数に対する伝送特性『S21』のピークが一見して一つに見えたとしても、計測されている反射特性『S11』が二つのピークを有する場合には、双峰性の性質を有するものとする。
 上記単峰性の性質を有する無線電力伝送装置1においては、図3の破線51に示すように、駆動周波数が共振周波数f0で伝送特性『S21』が最大化する(電力伝送効率が最大化する)。
 一方、双峰性の性質を有する無線電力伝送装置1では、図3の実線52に示すように、伝送特性『S21』は、共振周波数foよりも低い駆動周波数帯域(fL)と共振周波数foよりも高い駆動周波数帯域(fH)において最大化する。
 なお、一般的に、給電共振器と受電共振器との間の距離が同じであれば、双峰性における伝送特性『S21』の最大値(fL又はfHでの伝送特性『S21』の値)は、単峰性における伝送特性『S21』の最大値(f0での伝送特性『S21』の値)よりも低い値になる(図3のグラフ参照)。
 具体的には、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード)、給電共振器22及び受電共振器32が同位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが同じ向きになる。その結果、図3のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが同じ向きとなる共振状態を同相共振モードと呼ぶことにする。
 また、上記同相共振モードでは、給電共振器22の外周側に発生する磁界と受電共振器32の外周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の外周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の外周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の内周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8や充電池9などを収納した場合、安定回路7や充電回路8や充電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。
 一方、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード)、給電共振器22及び受電共振器32が逆位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが逆向きになる。その結果、図3のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが逆向きとなる共振状態を逆相共振モードと呼ぶことにする。
 また、上記逆相共振モードでは、給電共振器22の内周側に発生する磁界と受電共振器32の内周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の内周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の内周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の外周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8や充電池9などを収納した場合、安定回路7や充電回路8や充電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。また、この逆相共振モードにより形成される磁界空間は、給電共振器22及び受電共振器32の内周側に形成されるので、この空間に安定回路7や充電回路8や充電池9などの電子部品を組み込むことにより無線電力伝送装置1自体のコンパクト化・設計自由度の向上が実現される。
 また、上記のように無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有する場合、給電モジュール2に供給する交流電力の駆動周波数を同相共振モード(fL)、又は、逆相共振モード(fH)に設定した際に、図4に示すように、無線電力伝送装置1の入力インピーダンスZinがピークを持つ(実線55の2つの山の部分参照)。そして、本測定実験1-1~1-4では、無線電力伝送装置1の入力インピーダンスZinが最大になる駆動周波数(同相共振モード(fL)、逆相共振モード(fH))における受電電圧VLを測定している。
 (測定実験1-1:結合係数k12の値を変えた場合の受電電圧VLの変化)
 測定実験1-1に使用する無線電力伝送装置1では、給電コイル21は、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、コイルL1部分は、コイル径を15mmφに設定している。同様に、受電コイル31も、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、コイル径を15mmφに設定している。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、コイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、コイル径15mmφのソレノイド型のコイルを使用している。そして、測定実験1-1に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.8Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、10μHに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は1.0MHzである。なお、給電コイル21及び給電共振器22のコイルの内周側には、無線電力伝送装置1における電力伝送効率を向上させるために、給電コイル21及び給電共振器22のコイルの内周面に沿うように円筒状の厚み450μmの磁性シートを配置している。同様に、受電共振器32及び受電コイル31のコイルの内周側にも、受電共振器32及び受電コイル31のコイルの内周面に沿うように円筒状の厚み450μmの磁性シートを配置している。
 測定実験1-1では、結合係数k23を0.27、結合係数k34を0.27にそれぞれ固定したうえで、結合係数k12の値を、0.21、0.28、0.40、0.48の4つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する(図2参照、なお、結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:890kHz)の測定値を図5(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1170kHz)の測定値を図5(B)に示す。
 図5(A)の同相共振モードの測定結果より、結合係数k12の値を0.21、→ 0.28、→ 0.40、→ 0.48の順に大きくしていくと、受電電圧VLの値は、6.0V、→5.0V、→3.7V、→3.1Vという具合に小さくなっていった。
 上記のように、同相共振モードにおいて、結合係数k12の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、結合係数k12の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 また、図5(B)の逆相共振モードの測定結果においても同様に、結合係数k12の値を0.21、→ 0.28、→ 0.40、→ 0.48の順に大きくしていくと、受電電圧VLの値は、5.9V、→4.5V、→3.2V、→2.7Vという具合に小さくなっていった。
 上記のように、逆相共振モードにおいても、結合係数k12の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、結合係数k12の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 (測定実験1-2:結合係数k12の値を変えた場合の受電電圧VLの変化)
 測定実験1-2に使用する無線電力伝送装置1では、測定実験1-1と異なり、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31に使用するコイル形状をソレノイド形状ではなく、平面状のパターンコイルとしている。具体的には、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、
コイルL1部分は、銅箔のエッチングにより形成した12回巻き(渦巻き状)、コイル径35mmφのパターンコイルを使用している。同様に、受電コイル31も、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、給電コイル21同様のパターンコイルである。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。同様に、受電共振器32も、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、給電共振器22同様のパターンコイルである。そして、測定実験1-2に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、1.5Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、2.5μHに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は1.0MHzである。
 測定実験1-2では、結合係数k23を0.3、結合係数k34を0.3にそれぞれ固定したうえで、結合係数k12の値を、0.14、0.24、0.30、0.45の4つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する(図2参照)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:880kHz)の測定値を図6(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1200kHz)の測定値を図6(B)に示す。
 図6(A)の同相共振モードの測定結果より、結合係数k12の値を0.14、→ 0.24、→ 0.30、→ 0.45の順に大きくしていくと、受電電圧VLの値は、10.2V、→8.2V、→6.8V、→5.3Vという具合に小さくなっていった。
 上記のように、同相共振モードにおいて、結合係数k12の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、結合係数k12の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 また、図6(B)の逆相共振モードの測定結果においても同様に、結合係数k12の値を0.14、→ 0.24、→ 0.30、→ 0.45の順に大きくしていくと、受電電圧VLの値は、5.9V、→5.4V、→4.7V、→3.3Vという具合に小さくなっていった。
 上記のように、逆相共振モードにおいても、結合係数k12の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、結合係数k12の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 (測定実験1-3:結合係数k34の値を変えた場合の受電電圧VLの変化)
 測定実験1-3に使用する無線電力伝送装置1は、測定実験1-1と同様の構成であり、測定実験1-3に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.8Ωに設定し、L1、L2、L3、L4の値をそれぞれ、10μHに設定した(測定実験1-1と同じである)。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は1.0MHzである(測定実験1-1と同じ)。
 測定実験1-3では、結合係数k12を0.27、結合係数k23を0.27にそれぞれ固定したうえで、結合係数k34の値を、0.13、0.21、0.28、0.45の4つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する(図2参照)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:890kHz)の測定値を図7(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1170kHz)の測定値を図7(B)に示す。
 図7(A)の同相共振モードの測定結果より、結合係数k34の値を0.13、→ 0.21、→ 0.28、→ 0.45の順に大きくしていくと、受電電圧VLの値は、2.3V、→3.8V、→5.0V、→7.6Vという具合に大きくなっていった。
 上記のように、同相共振モードにおいて、結合係数k34の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、結合係数k34の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 また、図7(B)の逆相共振モードの測定結果においても同様に、結合係数k34の値を0.13、→ 0.21、→ 0.28、→ 0.45の順に大きくしていくと、受電電圧VLの値は、2.0V、→3.4V、→4.5V、→7.2Vという具合に大きくなっていった。
 上記のように、逆相共振モードにおいても、結合係数k34の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、結合係数k34の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 (測定実験1-4:結合係数k34の値を変えた場合の受電電圧VLの変化)
 測定実験1-4に使用する無線電力伝送装置1は、測定実験1-2と同様の構成であり、測定実験1-4に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、1.5Ωに設定し、L1、L2、L3、L4の値をそれぞれ、2.5μHに設定した(測定実験1-2と同じである)。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は1.0MHzである(測定実験1-2と同じ)。
 測定実験1-4では、結合係数k12を0.3、結合係数k23を0.3にそれぞれ固定したうえで、結合係数k34の値を、0.15、0.25、0.30、0.45の4つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する(図2参照)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:880kHz)の測定値を図8(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1200kHz)の測定値を図8(B)に示す。
 図8(A)の同相共振モードの測定結果より、結合係数k34の値を0.15、→ 0.25、→ 0.30、→ 0.45の順に大きくしていくと、受電電圧VLの値は、3.4V、→5.6V、→6.8V、→9.3Vという具合に大きくなっていった。
 上記のように、同相共振モードにおいて、結合係数k34の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、結合係数k34の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 また、図8(B)の逆相共振モードの測定結果においても同様に、結合係数k34の値を0.15、→ 0.25、→ 0.30、→ 0.45の順に大きくしていくと、受電電圧VLの値は、2.8V、→4.8V、→6.2V、→9.5Vという具合に大きくなっていった。
 上記のように、逆相共振モードにおいても、結合係数k34の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、結合係数k34の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 上記測定実験1-1~1-4によれば、無線電力伝送装置1による電力の無線電力伝送を行うに際して、給電コイル21と給電共振器22との間における結合係数k12、給電共振器22と受電共振器32との間における結合係数k23、及び、受電共振器32と受電コイル31との間における結合係数k34の値を調整することによって、被給電機器10の受電電圧VLを調整することができることが分かる。
 (結合係数の調整方法)
 次に、上記無線電力伝送装置1における被給電機器10の受電電圧VLを制御するパラメータである結合係数k12、k23、k34の調整方法について説明する。
 図9に示すように、無線電力伝送において、コイルとコイルとの間の距離と結合係数kとの関係は、コイルとコイルとの間の距離を縮める(短くする)と結合係数kの値が高くなる傾向にあることが分かる。これを本実施形態に係る無線電力伝送装置1に当てはめると、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ縮めることによって、給電コイル21(コイルL1)と給電共振器22(コイルL2)との間の結合係数k12、給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23、受電共振器32(コイルL3)と受電コイル31(コイルL4)との間の結合係数k34を高めることができる。逆に、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ伸ばすことによって、給電コイル21(コイルL1)と給電共振器22(コイルL2)との間の結合係数k12、給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23、受電共振器32(コイルL3)と受電コイル31(コイルL4)との間の結合係数k34を低めることができる。
 上記結合係数の調整方法、及び、結合係数の変化による受電電圧VLの変化の測定実験より、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を固定した場合、給電コイル21と給電共振器22との間の距離d12を短くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値を大きくし、結合係数k12の値を大きくすることにより、被給電機器10の受電電圧VLの値を小さくすることができる。逆に、給電コイル21と給電共振器22との間の距離d12を長くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値を小さくし、結合係数k12の値を小さくすることにより、被給電機器10の受電電圧VLの値を大きくすることができる。
 また、給電コイル21と給電共振器22との間の距離d12、及び、給電共振器22と受電共振器32との間の距離d23を固定した場合、受電共振器32と受電コイル31との間の距離d34を短くすることにより、受電共振器32と受電コイル31との間における結合係数k34の値を大きくし、結合係数k34の値を大きくすることにより、被給電機器10の受電電圧VLの値を大きくすることができる。逆に、受電共振器32と受電コイル31との間の距離d34を長くすることにより、受電共振器32と受電コイル31との間における結合係数k34の値を小さくし、結合係数k34の値を小さくすることにより、被給電機器10の受電電圧VLの値を小さくすることができる。
 上記方法によれば、給電コイル21と給電共振器22との間の距離を物理的に変化させるという簡易な作業によって、被給電機器10の受電電圧VLを調整することができる。換言すると、被給電機器10の受電電圧VLの調整を、無線電力伝送装置1において新たな機器を設けずに実現することができる(無線電力伝送装置1の部品点数を増やさずに、被給電機器10の受電電圧VLを調整することが可能となる)。
 なお、上記では、無線電力伝送装置1において、被給電機器10の受電電圧VLを調整する結合係数k12、k23、k34の調整方法として、給電コイル21と給電共振器22との間の距離d12、及び、受電共振器32と受電コイル31との間の距離d34をそれぞれ変化させる方法を例示して説明した。しかし、結合係数k12、k23、k34の調整方法としては、これに限らず、給電共振器22の中心軸と受電共振器32の中心軸をずらす方法や、給電共振器22のコイル面と受電共振器32のコイル面に角度をつける方法や、給電コイル21・給電共振器22や受電共振器32・受電コイル31などの各素子(抵抗、コンデンサ、コイル)の容量を変化させる方法や、給電モジュール2に供給する交流電力の駆動周波数を変える方法などが挙げられる。
 (コイルのインダクタンスによる受電電圧VLの制御)
 次に、無線電力伝送装置1において、被給電機器10の受電電圧VLを調整するために可変可能なパラメータとしてコイルのインダクタンスが挙げられる。そこで、無線電力伝送装置1におけるコイルのインダクタンスを変化させた場合に、受電電圧VLがどのような変化をするかを、条件を変えた測定実験2-1~2-4により説明する。
 測定実験2-1~2-4では、無線電力伝送装置1をオシロスコープに接続して、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31におけるコイルのインダクタンスの値の変化に対する受電電圧VLを測定した(図2参照)。なお、測定実験2-1~2-4では、安定回路7、充電回路8、及び、充電池9で構成される被給電機器10の代わりに可変抵抗器11(RL)を接続して、無線電力伝送装置1への交流電源6からの入力電圧Vin=5V(最大値5V)、RL=175Ωのときの受電電圧VLを測定した。
 また、本測定実験でも、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が双峰性の性質を有する場合に、給電モジュール2に供給する交流電力の駆動周波数を同相共振モード(fL)、又は、逆相共振モード(fH)に設定した際における受電電圧VLを測定している。
 (測定実験2-1:給電コイル21のL1の値を変えた場合の受電電圧VLの変化)
 測定実験2-1に使用する無線電力伝送装置1では、給電コイル21は、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、コイルL1部分は、コイル径を15mmφに設定している。同様に、受電コイル31も、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、コイル径を15mmφに設定している。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、コイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、コイル径15mmφのソレノイド型のコイルを使用している。測定実験2-1に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.5Ωに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は1.0MHzである。
 そして、結合係数k12を0.27、結合係数k23を0.27、結合係数k34を0.27にそれぞれ固定し、L2、L3、L4の値をそれぞれ、4.5μHに設定したうえで、L1の値を、2.6μH、4.5μH、8.8μHの3つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:890kHz)の測定値(◆の点)、及び、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1170kHz)の測定値(■の点)を図10の(測定実験2-1)に示す。
 図10の(測定実験2-1)の同相共振モードの測定結果より、L1の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、5.84V、→5.60V、→3.84Vという具合に小さくなっていった。
 上記のように、同相共振モードにおいて、L1の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、L1の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 また、図10の(測定実験2-1)の逆相共振モードの測定結果においても同様に、L1の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、6.64V、→6.24V、→4.48Vという具合に小さくなっていった。
 上記のように、逆相共振モードにおいても、L1の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、L1の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 (測定実験2-2:給電共振器22のL2の値を変えた場合の受電電圧VLの変化)
 測定実験2-2に使用する無線電力伝送装置1の構成は、測定実験2-1で使用したものと同じである。
 そして、測定実験2-2では、L1、L3、L4の値をそれぞれ、4.5μHに設定したうえで、L2の値を、2.6μH、4.5μH、8.8μHの3つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:890kHz)の測定値(◆の点)、及び、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1170kHz)の測定値(■の点)を図10の(測定実験2-2)に示す。
 図10の(測定実験2-2)の同相共振モードの測定結果より、L2の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、5.84V、→5.60V、→0.98Vという具合に小さくなっていった。
 上記のように、同相共振モードにおいて、L2の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、L2の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 また、図10の(測定実験2-2)の逆相共振モードの測定結果においても同様に、L2の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、6.32V、→6.24V、→0.65Vという具合に小さくなっていった。
 上記のように、逆相共振モードにおいても、L2の値を大きくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。逆に、L2の値を小さくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。
 (測定実験2-3:受電共振器32のL3の値を変えた場合の受電電圧VLの変化)
 測定実験2-3に使用する無線電力伝送装置1の構成は、測定実験2-1で使用したものと同じである。
 そして、測定実験2-3では、L1、L2、L4の値をそれぞれ、4.5μHに設定したうえで、L3の値を、2.6μH、4.5μH、8.8μHの3つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:890kHz)の測定値(◆の点)、及び、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1170kHz)の測定値(■の点)を図10の(測定実験2-3)に示す。
 図10の(測定実験2-3)の同相共振モードの測定結果より、L3の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、4.88V、→5.60V、→6.16Vという具合に大きくなっていった。
 上記のように、同相共振モードにおいて、L3の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、L3の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 また、図10の(測定実験2-3)の逆相共振モードの測定結果においても同様に、L3の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、5.60V、→6.24V、→7.04Vという具合に大きくなっていった。
 上記のように、逆相共振モードにおいても、L3の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、L3の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 (測定実験2-4:受電コイル31のL4の値を変えた場合の受電電圧VLの変化)
 測定実験2-4に使用する無線電力伝送装置1の構成は、測定実験2-1で使用したものと同じである。
 そして、測定実験2-4では、L1、L2、L3の値をそれぞれ、4.5μHに設定したうえで、L4の値を、2.6μH、4.5μH、8.8μHの3つの値に設定した場合における、無線電力伝送装置1の可変抵抗器11(175Ωに設定)の受電電圧VLの値を測定する。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:890kHz)の測定値(◆の点)、及び、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:1170kHz)の測定値(■の点)を図10の(測定実験2-4)に示す。
 図10の(測定実験2-4)の同相共振モードの測定結果より、L4の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、5.36V、→5.60V、→6.72Vという具合に大きくなっていった。
 上記のように、同相共振モードにおいて、L4の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、L4の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 また、図10の(測定実験2-4)の逆相共振モードの測定結果においても同様に、L4の値を、2.6μH、→ 4.5μH、→ 8.8μHの順に大きくしていくと、受電電圧VLの値は、6.16V、→6.24V、→9.00Vという具合に大きくなっていった。
 上記のように、逆相共振モードにおいても、L4の値を大きくするにつれて、被給電機器10の受電電圧VLの値が大きくなる傾向にあることが分かる。逆に、L4の値を小さくするにつれて、被給電機器10の受電電圧VLの値が小さくなる傾向にあることが分かる。
 上記測定実験2-1~2-4によれば、給電コイル21のコイルL1、給電共振器22のコイルL2、受電共振器32のコイルL3、及び、受電コイル31のコイルL4におけるインダクタンスの値を調整することによって、被給電機器10の受電電圧VLの値を調整することができることが分かる。
 (製造方法)
 次に、上記無線電力伝送装置1を製造する一工程である、設計方法(設計工程)について、図11及び図12を参照して説明する。本説明では、無線電力伝送装置1を搭載する携帯機器としてイヤホンスピーカ部201aを備えた無線式ヘッドセット200、及び、充電器201を例にして説明する(図11参照)。
 本設計方法で設計される無線電力伝送装置1は、図11に示す無線式ヘッドセット200及び充電器201に、それぞれ受電モジュール3(受電コイル31・受電共振器32)及び給電モジュール2(給電コイル21・給電共振器22)として搭載されている。また、図11では、説明の都合上、安定回路7、充電回路8及び充電池9を受電モジュール3の外に記載しているが、実際は、ソレノイド状の受電コイル31及び受電共振器32のコイル内周側に配置されている。即ち、無線式ヘッドセット200には、受電モジュール3、安定回路7、充電回路8及び充電池9が搭載されており、充電器201には、給電モジュール2が搭載されており、給電モジュール2の給電コイル21に交流電源6が接続された状態で使用される。
 (設計方法)
 まず、図12に示すように、被給電機器10(安定回路7、充電回路8及び充電池9)の仕様から、被給電機器10が有する耐電圧以下であり、被給電機器10が有する駆動電圧以上の範囲内にある被給電機器10の受電電圧VLの値が決定する(S1)。
 次に、給電モジュール2と受電モジュール3との間の距離を決定する(S2)。これは、受電モジュール3を内蔵した無線式ヘッドセット200を、給電モジュール2を内蔵した充電器201に載置した際の給電共振器22と受電共振器32との間の距離d23であり、使用形態としては充電中の状態である。より詳細には、給電共振器22と受電共振器32との間の距離d23は、無線式ヘッドセット200と充電器201の形状・構造を考慮して決定される。
 また、無線式ヘッドセット200の大きさ・形状・構造を踏まえて、受電モジュール3における受電コイル31及び受電共振器32のコイル径が決定される(S3)。
 また、充電器201の大きさ・形状・構造を踏まえて、給電モジュール2における給電コイル21及び給電共振器22のコイル径が決定される(S4)。
 上記S2~S4の手順を経ることにより、無線電力伝送装置1の給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23と、電力伝送効率が決まることになる。
 上記S1で決定した受電電圧VL、及び、S2~S4の手順を経て決定された電力伝送効率より、給電モジュール2に給電する必要最低限の給電電力量が決定される(S5)。
 そして、被給電機器10の受電電圧VL、電力伝送効率、及び、給電モジュール2に給電する必要最低限の給電電力量を踏まえて、受電コイル31のL4、受電共振器32におけるL3、及び、結合係数k34の設計値(S6)が決められ、給電コイル21のL1、給電共振器22におけるL2、及び、結合係数k12の設計値が決められる(S7)。具体的には、上記(式8)の関係を満たしつつ、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を固定した場合、給電コイル21と給電共振器22との間の距離d12を短くすることにより、被給電機器10の受電電圧VLが小さくなる特性や、給電コイル21と給電共振器22との間の距離d12、及び、給電共振器22と受電共振器32との間の距離d23を固定した場合、受電共振器32と受電コイル31との間の距離d34を短くすることにより、被給電機器10の受電電圧VLが大きくなる特性や、給電コイル21のコイルL1、給電共振器22のコイルL2、受電共振器32のコイルL3、及び、受電コイル31のコイルL4におけるインダクタンスの値を調整することによって、被給電機器10の受電電圧VLの値を調整することができることに基づき、受電コイル31のL4、受電共振器32におけるL3、及び、結合係数k34の設計値、並びに、給電コイル21のL1、給電共振器22におけるL2、及び、結合係数k12の設計値が決定される。これにより、被給電機器10が有する耐電圧以下であり、被給電機器10が有する駆動電圧以上の範囲内にある受電電圧VLになるように、無線電力伝送装置1を構成する要素の各設計値が決定される。
 上記設計方法を含む無線電力伝送装置1の製造方法、及び、上記設計工程を経て製造された無線電力伝送装置1によれば、被給電機器10の受電電圧VLの調整を、新たな機器を設けずにできる無線電力伝送装置1を製造することができる。即ち、無線電力伝送装置1の部品点数を増やさずに、被給電機器10の受電電圧VLの調整が可能な無線電力伝送装置1を製造することができる。
 (その他の実施形態)
 上記製造方法の説明では、無線式ヘッドセット200を例示して説明したが、充電池を備えた機器であれば、タブレット型PC、デジタルカメラ、携帯電話、イヤホン型音楽プレイヤー、補聴器、集音器などにも使用することができる。
 また、上記では、被給電機器10に充電池9を含む無線電力伝送装置1として説明したが、これに限らず、被給電機器10に直接電力を消費しながら可動する機器を採用してもよい。
 また、上記説明では、給電モジュール2及び受電モジュール3が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う無線電力伝送装置1を例示して説明したが、コイル間の電磁誘導を利用して電力伝送を行う無線電力伝送装置1においても適用可能である。
 また、上記説明では、無線電力伝送装置1を携帯型の電子機器に搭載した場合を想定して説明したが、用途はこれら小型なものに限らず、必要電力量に合わせて仕様を変更することにより、例えば、比較的大型な電気自動車(EV)における無線充電システムや、より小型な医療用の無線式胃カメラなどにも搭載することができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態・実施例に限定されず、その他の実施形態・実施例にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力伝送装置
 2 給電モジュール
 3 受電モジュール
 6 交流電源
 7 安定回路
 8 充電回路
 9 充電池
10 被給電機器
11 可変抵抗器
21 給電コイル
22 給電共振器
31 受電コイル
32 受電共振器
200 無線式ヘッドセット
201 充電器

Claims (14)

  1.  無線電力伝送装置を構成する給電モジュールから受電モジュールに対して磁界を変化させて電力を供給し、当該供給された電力を前記受電モジュールに接続された被給電機器に給電する際の前記被給電機器の受電電圧の制御方法であって、
     前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び前記受電モジュールにおける共振周波数とはならない値で供給し、
     前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、前記被給電機器の受電電圧を調整することを特徴とする受電電圧制御方法。
  2.  少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給し、当該供給された電力を前記受電コイルに接続された被給電機器に給電する際の前記被給電機器の受電電圧の制御方法であって、
     前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給し、
     前記給電コイルを構成する、コイルL1を含む各回路素子が有する合計のインピーダンスをZ1、
     前記給電共振器を構成する、コイルL2を含む各回路素子が有する合計のインピーダンスをZ2、
     前記受電共振器を構成する、コイルL3を含む各回路素子が有する合計のインピーダンスをZ3、
     前記受電コイルを構成する、コイルL4を含む各回路素子が有する合計のインピーダンスをZ4、
     前記被給電機器の合計の負荷インピーダンスをZL、
     前記給電コイルのコイルL1と前記給電共振器のコイルL2との間の相互インダクタンスをM12、
     前記給電共振器のコイルL2と前記受電共振器のコイルL3との間の相互インダクタンスをM23、
     前記受電共振器のコイルL3と前記受電コイルのコイルL4との間の相互インダクタンスをM34、
     前記給電コイルに入力される入力電流をI1、
    とし、
     前記給電コイル、前記給電共振器、前記受電共振器、及び、前記受電コイルを構成する複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、
     当該パラメータをそれぞれ変えることにより、下記関係式により導出される前記被給電機器の受電電圧VLを制御することを特徴とする請求項1に記載の受電電圧制御方法。
    Figure JPOXMLDOC01-appb-I000001
  3.  前記給電コイルと前記給電共振器との間における結合係数k12、前記給電共振器と前記受電共振器との間における結合係数k23、及び、前記受電共振器と前記受電コイルとの間における結合係数k34の値の少なくとも1つを調整することにより、前記被給電機器の受電電圧を調整することを特徴とする請求項2に記載の受電電圧制御方法。
  4.  前記各結合係数k12、k23、k34の値は、それぞれ前記給電コイルと前記給電共振器との間の距離、前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離の少なくとも1つを変化させることにより調整されることを特徴とする請求項3に記載の受電電圧制御方法。
  5.  前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離を固定した場合、
     前記被給電機器の受電電圧は、
     前記給電コイルと前記給電共振器との間の距離を短くするにつれて、前記給電コイルと前記給電共振器との間における前記結合係数k12の値が大きくなり、前記結合係数k12の値が大きくなるにつれて、当該被給電機器の受電電圧が小さくなる特性に基づいて調整されることを特徴とする請求項4に記載の受電電圧制御方法。
  6.  前記給電コイルと前記給電共振器との間の距離、及び、前記給電共振器と前記受電共振器との間の距離を固定した場合、
     前記被給電機器の受電電圧は、
     前記受電共振器と前記受電コイルとの間の距離を短くするにつれて、前記受電共振器と前記受電コイルとの間における前記結合係数k34の値が大きくなり、前記結合係数k34の値が大きくなるにつれて、当該被給電機器の受電電圧が大きくなる特性に基づいて調整されることを特徴とする請求項4に記載の受電電圧制御方法。
  7.  前記コイルL1、前記コイルL2、前記コイルL3、及び、前記コイルL4におけるインダクタンスの値の少なくとも1つを調整することにより、前記被給電機器の受電電圧を調整することを特徴とする請求項2に記載の受電電圧制御方法。
  8.  前記コイルL2、前記コイルL3、及び、前記コイルL4におけるインダクタンスの値を固定した場合、
     前記被給電機器の受電電圧は、
     前記コイルL1の値が大きくなるにつれて、前記被給電機器の受電電圧が小さくなる特性に基づいて調整されることを特徴とする請求項7に記載の受電電圧制御方法。
  9.  前記コイルL1、前記コイルL3、及び、前記コイルL4におけるインダクタンスの値を固定した場合、
     前記被給電機器の受電電圧は、
     前記コイルL2の値が大きくなるにつれて、前記被給電機器の受電電圧が小さくなる特性に基づいて調整されることを特徴とする請求項7に記載の受電電圧制御方法。
  10.  前記コイルL1、前記コイルL2、及び、前記コイルL4におけるインダクタンスの値を固定した場合、
     前記被給電機器の受電電圧は、
     前記コイルL3の値が大きくなるにつれて、前記被給電機器の受電電圧が大きくなる特性に基づいて調整されることを特徴とする請求項7に記載の受電電圧制御方法。
  11.  前記コイルL1、前記コイルL2、及び、前記コイルL3におけるインダクタンスの値を固定した場合、
     前記被給電機器の受電電圧は、
     前記コイルL4の値が大きくなるにつれて、前記被給電機器の受電電圧が大きくなる特性に基づいて調整されることを特徴とする請求項7に記載の受電電圧制御方法。
  12.  前記給電モジュール及び前記受電モジュールを構成する前記複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、当該パラメータをそれぞれ変えることにより、前記給電モジュールに供給する電力の前記駆動周波数に対する伝送特性の値が、前記共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定し、
     前記給電モジュールに供給する電力の駆動周波数は、前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域、又は、前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴とする請求項1~11のいずれかに記載の受電電圧制御方法。
  13.  請求項1~12のいずれかに記載の受電電圧制御方法により調整されたことを特徴とする無線電力伝送装置。
  14.  給電モジュールから受電モジュールに対して磁界を変化させて供給する電力の駆動周波数を、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給する無線電力伝送装置の製造方法であって、
     前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、前記受電モジュールに接続された被給電機器に給電する際の当該被給電機器の受電電圧を調整する工程を含むことを特徴とする無線電力伝送装置の製造方法。
PCT/JP2014/052410 2013-03-25 2014-02-03 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法 WO2014156299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201507817TA SG11201507817TA (en) 2013-03-25 2014-02-03 Method for controlling receiving voltage for device to be powered by wireless power transmission, wireless power transmission device adjusted by method for controlling receiving voltage, and method for manufacturing wireless power transmission device
US14/780,227 US20160043564A1 (en) 2013-03-25 2014-02-03 Method for controlling receiving voltage for device to be powered by wireless power transmission, wireless power transmission device adjusted by method for controlling receiving voltage, and method for manufacturing wireless power transmission device
EP14772722.6A EP2985869A4 (en) 2013-03-25 2014-02-03 METHOD FOR CONTROLLING THE RECEIVING VOLTAGE FOR A DEVICE OPERATING THROUGH WIRELESS POWER TRANSMISSION, A WIRELESS POWER TRANSMISSION APPARATUS ADJUSTED BY METHOD FOR CONTROL OF THE RECEIVING VOLTAGE, AND METHOD FOR PRODUCING A WIRELESS POWER TRANSMISSION DEVICE
CN201480018528.XA CN105103406A (zh) 2013-03-25 2014-02-03 通过无线电力传输被供给电力的被供电设备的受电电压控制方法、通过该受电电压控制方法被调整的无线电力传输装置以及该无线电力传输装置的制造方法
KR1020157030423A KR20150133281A (ko) 2013-03-25 2014-02-03 무선 전력 전송에 의해 전력 공급되는 피급전 기기의 수전 전압 제어 방법, 당해 수전 전압 제어 방법에 의해 조정된 무선 전력 전송 장치, 및 그 무선 전력 전송 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-062242 2013-03-25
JP2013062242A JP6199058B2 (ja) 2013-03-25 2013-03-25 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法

Publications (1)

Publication Number Publication Date
WO2014156299A1 true WO2014156299A1 (ja) 2014-10-02

Family

ID=51623300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052410 WO2014156299A1 (ja) 2013-03-25 2014-02-03 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法

Country Status (8)

Country Link
US (1) US20160043564A1 (ja)
EP (1) EP2985869A4 (ja)
JP (1) JP6199058B2 (ja)
KR (1) KR20150133281A (ja)
CN (1) CN105103406A (ja)
SG (1) SG11201507817TA (ja)
TW (1) TW201509054A (ja)
WO (1) WO2014156299A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156726B2 (ja) 2013-03-27 2017-07-05 パナソニックIpマネジメント株式会社 給電装置および充電システム
JP2015146722A (ja) * 2014-01-06 2015-08-13 日東電工株式会社 無線電力伝送装置
CA2982802C (en) 2015-04-09 2018-05-01 Nissan Motor Co., Ltd. Wireless power supply system
JP7373995B6 (ja) 2017-03-07 2023-12-08 パワーマット テクノロジーズ リミテッド 無線電力充電用のシステム
JP7353178B2 (ja) * 2017-03-07 2023-09-29 パワーマット テクノロジーズ リミテッド 無線電力充電用のシステム
CN113302815B (zh) * 2019-02-28 2023-12-05 日特有限公司 非接触电力供给系统
WO2020187747A1 (fr) * 2019-03-15 2020-09-24 Valeo Equipements Electriques Moteur Dispositif de transmission de puissance sans contact par couplage inductif a résonance pour recharger un véhicule automobile
KR102283666B1 (ko) * 2019-10-29 2021-07-30 (주)화인파워엑스 회로변수 자동 튜닝형 무선충전 시스템 및 이를 이용한 회로변수의 자동 튜닝 방법
KR102542895B1 (ko) * 2021-07-08 2023-06-14 경희대학교 산학협력단 홀짝성-시간 대칭에 기반하여 결합계수를 조절하는 무선전력 전송 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106136A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2011050140A (ja) 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
JP2011142769A (ja) * 2010-01-08 2011-07-21 Toyota Central R&D Labs Inc 磁気共鳴電力伝送方法及びその装置
JP2012182975A (ja) 2011-03-01 2012-09-20 Tdk Corp ワイヤレス給電装置およびワイヤレス電力伝送システム
JP2012182980A (ja) * 2011-03-01 2012-09-20 Tdk Corp ワイヤレス受電装置、ワイヤレス電力伝送システムおよび電力制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664018B2 (ja) * 2009-10-30 2015-02-04 Tdk株式会社 ワイヤレス給電装置、ワイヤレス電力伝送システムおよびそれらを利用したテーブルと卓上ランプ
WO2011135571A2 (en) * 2010-04-30 2011-11-03 Powermat Ltd. System and method for transfering power inductively over an extended region
JP2012135127A (ja) * 2010-12-22 2012-07-12 Panasonic Corp 無線電力伝送システム、それに用いられる送電機器および受電機器、ならびに無線電力伝送方法
WO2012157115A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 受電装置およびそれを備える車両、給電設備、ならびに給電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2009106136A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2011050140A (ja) 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
JP2011142769A (ja) * 2010-01-08 2011-07-21 Toyota Central R&D Labs Inc 磁気共鳴電力伝送方法及びその装置
JP2012182975A (ja) 2011-03-01 2012-09-20 Tdk Corp ワイヤレス給電装置およびワイヤレス電力伝送システム
JP2012182980A (ja) * 2011-03-01 2012-09-20 Tdk Corp ワイヤレス受電装置、ワイヤレス電力伝送システムおよび電力制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985869A4

Also Published As

Publication number Publication date
SG11201507817TA (en) 2015-10-29
JP6199058B2 (ja) 2017-09-20
CN105103406A (zh) 2015-11-25
US20160043564A1 (en) 2016-02-11
TW201509054A (zh) 2015-03-01
KR20150133281A (ko) 2015-11-27
EP2985869A4 (en) 2016-10-19
EP2985869A1 (en) 2016-02-17
JP2014187843A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6199058B2 (ja) 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
JP6169380B2 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
WO2014171163A1 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
WO2014162766A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015056539A1 (ja) 磁界空間を形成可能な無線電力伝送装置及びその形成方法
WO2014132479A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015108030A1 (ja) 無線電力伝送装置及びその製造方法
WO2014199830A1 (ja) 無線電力伝送装置及び無線電力伝送装置の電力供給方法
WO2014199827A1 (ja) 無線電力伝送に用いる給電モジュール及び給電モジュールの電力供給方法
WO2014132480A1 (ja) 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法
WO2014125675A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018528.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14780227

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157030423

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014772722

Country of ref document: EP