WO2014155893A1 - 作業用車両の自動操舵システム - Google Patents
作業用車両の自動操舵システム Download PDFInfo
- Publication number
- WO2014155893A1 WO2014155893A1 PCT/JP2013/085096 JP2013085096W WO2014155893A1 WO 2014155893 A1 WO2014155893 A1 WO 2014155893A1 JP 2013085096 W JP2013085096 W JP 2013085096W WO 2014155893 A1 WO2014155893 A1 WO 2014155893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- road surface
- work
- feature amount
- automatic steering
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 238000004364 calculation method Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims description 11
- 230000032683 aging Effects 0.000 abstract description 4
- 230000008859 change Effects 0.000 description 8
- 238000009795 derivation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
- A01B69/007—Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
- A01B69/008—Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/029—Steering assistants using warnings or proposing actions to the driver without influencing the steering system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
- B62D6/006—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels using a measured or estimated road friction coefficient
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/027—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
Definitions
- the present invention relates to an automatic steering system for a working vehicle that performs automatic steering by detecting the position, speed, posture and the like of the working vehicle traveling on a work road surface.
- a vehicle traveling direction sensor such as a geomagnetic direction sensor or a gyro detects the traveling direction, confirms a deviation value from the target direction, and steers the autonomously traveling vehicle so that the vehicle always travels toward the target direction.
- the mechanism is controlled.
- an automatic rice transplanter is provided with a direction sensor such as a magnetic sensor or a gyro to acquire a target direction in a learning process, and an automatic rice transplanter in a target direction acquired in a learning process in an autonomous driving process.
- the automatic steering system controls the vehicle so that it takes the traveling direction, and the average direction obtained by averaging the currently acquired direction data is updated as the target direction, thereby improving the parallelism of reciprocating straight traveling. To improve.
- Patent Document 3 in unmanned operation of a tractor, a deviation from a target position and a target direction on a preset work route is calculated based on position information and direction information obtained every moment by an optical fiber gyroscope and a geomagnetic direction sensor. In order to eliminate this deviation, the steering angle for steering the tractor is obtained and the steering angle control is performed every moment.
- JP-A-7-184411 JP 2003-44136 A Japanese Patent Laid-Open No. 10-66405
- the road surface on which the work vehicle as described above travels is not necessarily a flat paved road, but is often in various road surface environments such as unevenness, inclination, or the presence of water, grass, trees, and other foreign objects.
- road surface environments such as unevenness, inclination, or the presence of water, grass, trees, and other foreign objects.
- the change in the posture of the vehicle and the vibration generated by such a road surface environment have a great influence on the automatic steering.
- the present invention has been made in view of such a problem, and provides an automatic steering system capable of stably performing automatic steering by reducing the influence of various road surface environments, aging, and individual vehicle differences. Is the purpose.
- the present invention is an automatic steering system for a working vehicle that steers the working vehicle so as to automatically travel on a work road surface along a target traveling route,
- a measurement unit that measures measurement values including the position, speed, direction, and attitude of the vehicle;
- a processing unit includes a vehicle feature value calculating unit that calculates a vehicle feature value, a road surface feature value calculating unit that calculates a road surface feature value, and a steering amount calculation that calculates a steering amount using the vehicle feature value and the road surface feature value.
- the automatic steering system includes a work mode when traveling on a work road surface, and an adjustment mode performed in advance of the work mode,
- the vehicle feature amount calculation unit obtains a vehicle feature amount using a measurement value obtained by the measurement unit
- the vehicle feature amount calculation unit updates the vehicle feature amount
- the road surface feature amount calculation unit obtains a road surface feature amount using a measurement value obtained by the measurement unit. It is characterized by that.
- the vehicle feature amount may include at least one of a steering amount-turning radius relationship, a vehicle body tilt, and a vehicle body vibration of the vehicle body itself.
- the road surface feature amount may include at least one of road surface inclination and road surface slipperiness.
- the processing unit may further include a danger warning unit that compares the road surface feature value obtained by the road surface feature value calculation unit with a threshold value and outputs a warning signal when the threshold value is exceeded.
- a work mode when traveling on a work road surface and an adjustment mode performed in advance of the work mode the vehicle feature amount is obtained in the adjustment mode, and the vehicle feature amount is updated in the work mode. Since the road surface feature amount is obtained, the vehicle feature amount and the road surface feature amount can be separated and each can be obtained accurately. As a result, it is possible to grasp the aging and individual differences of the vehicle with the vehicle feature amount, grasp the influence of the road surface with the road surface feature amount, and obtain the steering amount after taking these influences into account, thereby obtaining various road surface environments and Thus, automatic steering can be stably performed by reducing the influence of factors such as aging and individual vehicle differences.
- FIG. 1 is an overall view of an automatic steering system according to an embodiment of the present invention. It is a partial block diagram of the automatic steering system of FIG. It is a block diagram showing the time of adjustment mode. It is a block diagram showing the time of work mode. It is an example of a target travel route. It is a figure showing the relationship between the inclination of a vehicle body or a road surface, the attachment position of a GPS antenna, and the position of a vehicle.
- the automatic steering system 10 is mounted on a work vehicle 100.
- the work vehicle 100 can be farming, civil engineering, logging, lawn mowing, other work tractors, construction equipment, and the like.
- the work vehicle 100 is not limited to a paved road surface, and is a work place for performing work. It travels on various road surfaces (referred to as work road surfaces) where there are unevenness, slopes, or water, grass, trees, or other foreign objects on farm fields, forests, and unpaved roads.
- the automatic steering system 10 is mounted on the work vehicle 100 in order to reduce the driving burden of the work vehicle, and performs automatic steering of the work vehicle 100.
- the automatic steering system 10 roughly updates the vehicle feature amount and the road surface feature amount, calculates the steering amount, and the measurement unit 14 detects motion information such as the position, speed, and posture of the vehicle.
- a target travel route determining unit 16 that determines a target travel route on which the vehicle should travel by input or calculation and outputs the target travel route, a user interface 18 that performs input from the user and an output to the user,
- a steering control mechanism 20 that controls the steering wheel 200 of the vehicle based on the obtained steering amount.
- the main processing unit 12 includes a vehicle feature value calculation unit 122 that calculates a vehicle feature value, a road surface feature value calculation unit 124 that calculates a road surface feature value, and a steering amount calculation that calculates a steering value.
- Unit 126, acceleration vibration calculation unit 128, angular velocity vibration calculation unit 130, danger warning unit 136, and automatic steering stop means 138 Details of these will be described later.
- the measurement unit 14 includes a plurality of measurement units, includes a GPS antenna and a GPS receiver that form a satellite navigation system, and a position / speed measurement unit 141 that measures the position, speed, and traveling direction of the vehicle, and 3 Attitude / azimuth measurement that measures acceleration, angular velocity, attitude, and azimuth of a vehicle with a gyro that detects angular velocity around each axis, an accelerometer that detects acceleration in each of three axes, and a magnetic azimuth sensor that detects magnetic azimuth And a handle rotation angle sensor 144 formed of a rotary encoder that measures the rotation angle of the vehicle handle 200, and is sent to the main processing unit 12 for storage and use.
- the position / velocity measurement unit 141 and the posture / orientation measurement unit 142 can exchange the measurement values with each other and perform correction / interpolation as necessary to increase the accuracy of the measurement values.
- the target travel route determination unit 16 determines a target travel route on which the work vehicle should travel in the workplace.
- the target travel route can be either a straight line or a curve, and can be composed of one or more sections made up of one or more straight lines or curves as shown in FIG.
- the plurality of sections may be continuous or discontinuous.
- a straight section it can be specified by the positions of a plurality of way points WP including at least a start point and an end point.
- a curve section it can be specified by the position of a plurality of waypoints WP including at least a start point and an end point, a type of curve (arc, clothoid, etc.), a radius of curvature, and the like.
- the user interface 18 can receive an input of known vehicle information and the like from the user, and can output a warning or the like when a danger occurs to the user visually or acoustically.
- the input vehicle information or the like is sent to the main processing unit 12 to be stored and used, and is used by the vehicle feature amount calculation unit 122 to derive an initial value or initial value of the vehicle feature amount.
- the steering control mechanism 20 includes an electric motor or the like that is driven via a motor driver based on the steering amount calculated by the steering amount calculation unit 126, and rotates the electric motor via the handle 200 or the steering rod via the transmission mechanism. And is rotated by the calculated steering amount.
- the automatic steering system 10 has modes such as “adjustment mode” and “work mode”.
- the adjustment mode is performed in advance of the work mode, and as shown in the block diagram shown in FIG. 3, the vehicle is operated, and the vehicle is driven manually or by automatic steering on the road surface that is as flat as possible in the work place or other place.
- the measurement value from the measurement unit 14 is applied to the vehicle model, the vehicle model is updated, and the vehicle feature value c c is obtained.
- this adjustment mode at least clockwise and counterclockwise steering are performed, respectively, so that the vehicle turns right and left. At this time, the estimation accuracy of the feature amount can be improved by steering to the limit in the left and right directions.
- the work mode is traveling by automatic steering control of the actual work road surface, as shown in the block diagram of FIG.
- the vehicle is operated, the steering is automatically performed at the work place, the measurement value from the measurement unit 14 is applied to the vehicle model, the vehicle model is updated, and the vehicle feature value c c is obtained and applied to the road surface model. and updates the road model, obtains the road characteristic quantity c r.
- the main processing unit 12 handles the following variables, for example.
- the vehicle feature quantity computing unit 122 obtains a vehicle feature quantity that is a feature quantity that represents a state of the vehicle that does not change greatly during work in the workplace. Therefore, the vehicle feature amount characterizes secular change or individual vehicle difference.
- the initial value of the vehicle feature amount is applied to the vehicle model based on the measurement value measured by the measurement unit 14 in the adjustment mode before work, and the vehicle model is updated.
- the vehicle feature amount is appropriately updated in the work mode.
- vehicle feature amount examples include a steering wheel rotation angle (steering amount) -turning radius relationship, vehicle tilt, and vehicle body vibration due to the motion of the vehicle itself.
- Steering wheel rotation angle (steering amount)-turning radius relationship The relationship between the steering wheel rotation angle and the turning radius, that is, the feature value indicating how much the vehicle turns in the standard state when the vehicle handle is rotated.
- the following four feature quantities can be mentioned.
- the initial value is an input value input to the user interface 18 by a user or the like, or a standard value.
- the following formula is derived from the steering wheel rotation angle and the turning radius input in the adjustment mode.
- the turning radius is obtained from the trajectory of the vehicle position measured by the position / speed measuring unit 141. The same can be obtained for the left and right.
- g ⁇ / (sin -1 (l / R))
- the value is updated based on a polynomial expression based on a plurality of input steering wheel rotation angles and the turning radius measured thereby.
- the first and second steering wheel rotation angles and turning radii are ⁇ 1 , ⁇ 2 , R 1 and R 2 , respectively.
- the following two formulas for the estimated steering wheel-tire rotation angle ratio g x and the estimated wheel base l x are as follows: stand.
- R 1 l x / (sin ( ⁇ 1 / g x ))
- R 2 l x / (sin ( ⁇ 2 / g x ))
- the estimated steering wheel-tire rotation angle ratio g x and the estimated wheelbase l x are obtained. Each value is updated according to the error between these values and the current value.
- ⁇ g and ⁇ l are update amounts.
- Steering wheel rotation limit (steering amount limit): ⁇ Rr , ⁇ Rl (Dimension: rad) This is a feature amount representing the angle between the right rotation limit and the left rotation limit of the handle.
- the handle 200 is operated up to the limit of the left / right rotation of the handle, and is obtained from the measured value of the handle rotation angle of the handle rotation angle sensor 144 at that time.
- the reference value for the origin of the handle that is the middle point can be determined from the right rotation limit and the left rotation limit.
- Steering wheel asymmetry (steering asymmetry): ⁇ (Dimension: rad) This is a feature value representing the amount by which the origin of the handle is deviated from the middle point of the left and right handle rotation limit. The initial value is 0.
- the steering wheel Since the steering wheel is symmetric in nature, the steering wheel should be the midpoint of the left and right rotation limits when the vehicle is traveling straight on a flat uniform road surface. The origin of may be misaligned.
- ⁇ ( ⁇ i ⁇ [i]) / I- ⁇ C
- i a sample in a range where straight travel is permitted, and the total number is I.
- ⁇ [i] is a measured value of the steering wheel rotation angle at time i
- ⁇ C is a steering wheel rotation angle necessary for correcting a positional deviation corresponding to (3-4) slope side slip amount C, which will be described later.
- Body tilt: b a (b ⁇ b ⁇ ) (Dimension: (rad rad)) It is a feature amount that always represents the inclination applied to the vehicle body due to tire pressure, mounting position distortion, and the like, and includes a roll angle and a pitch angle.
- the derivation of the feature amount is performed by obtaining an average of the roll angle and pitch angle measured by the posture / orientation measuring unit 142 in the measurement section in the adjustment mode.
- b a ( ⁇ i a [i]) / I
- i all samples in the adjustment mode
- the total number is I.
- a [i] is a posture measurement value at time i.
- This feature amount can be compared with a threshold value in the danger warning unit 136, and if the threshold value is exceeded, the danger warning unit 136 outputs a warning signal, indicating that there is a problem in the vehicle / tire mounting in the user interface 18. The warning is output visually or acoustically to inform the user.
- n indicates an update time
- ⁇ a is an update amount
- This feature value is fed back to the measurement unit 14 and can be used to correct the mounting position of the sensor. That is, as shown in FIG. 6 (a), a position P1 obtained by projecting the GPS antenna mounting position whose position is determined by the position / velocity measurement unit 141 onto the ground, and a vehicle position P2 (usually the center position in the vehicle width direction, For example, since the deviation between the center of the left and right front wheels or the center of the left and right rear wheels is affected by the tilt of the vehicle body, the position output from the position / speed measuring unit 141 can be corrected by the obtained tilt of the vehicle body. .
- V [i] [k] ( ⁇ i V [i] [k]) / I
- i all samples in the adjustment mode, and the total number is I.
- V [i] [k] is the body vibration at time i.
- This feature amount can be compared with a threshold value in the danger warning unit 136, and if the threshold value is exceeded, the danger warning unit 136 outputs a warning signal, indicating that there is a problem in the vehicle / tire mounting in the user interface 18. The warning is output visually or acoustically to inform the user.
- the vehicle body vibration is updated according to the error between the vehicle body vibration due to the movement of the vehicle itself and the current vehicle body vibration.
- b v [n] [k] b v [n] [k] + ⁇ bv (V [k] -b v [n] [k])
- n indicates the update time
- ⁇ bv is the update amount.
- the road surface feature amount calculation unit 124 obtains a road surface feature amount that is a feature amount that represents a state of the road surface that constantly changes during work in the workplace. Specifically, in the work mode, the road surface feature amount is calculated according to the road surface model based on the measurement value measured by the measurement unit 14, so that it is immediately adapted according to the traveling state and the speed response is improved.
- road surface features include road surface inclination, amount of change in road surface inclination, measured slip ease, vehicle body vibration due to road surface conditions, estimated slip ease, estimated instability, slope side slip amount, etc. Can do.
- This feature amount is fed back to the measurement unit 14 and can be used for correcting the mounting position of the sensor, as in the case of the vehicle body tilt. That is, as shown in FIG. 6 (b), a position P1 obtained by projecting the GPS antenna mounting position obtained by the position / velocity measuring unit 141 onto the ground and a vehicle position P2 (usually the center position in the width direction of the vehicle, For example, since the deviation from the center of the left and right front wheels or the center of the left and right rear wheels is affected by the road surface inclination, the position output from the position / speed measuring unit 141 can be corrected by the obtained road surface inclination. .
- This feature amount can be compared with a threshold value in the danger warning unit 136, and when the threshold value is exceeded, the danger warning unit 136 outputs a warning signal to the user interface 18, and the user interface 18 warns that there is a danger. Is output visually or acoustically to inform the user. Further, automatic steering can be stopped by the automatic steering stop means 138.
- S R (Dimension: None) This is a feature amount that represents a ratio between the measured turning radius of the vehicle and the desired turning radius. This represents the difference between the expected turning radius and the actual turning radius.
- the derivation of the feature amount is obtained by dividing the measured value of the turning radius obtained from the trajectory of the vehicle position obtained by the position / speed measuring unit 141 by the desired turning radius.
- S R R m / R
- R m is a measured value of the turning radius
- R is a desired turning radius to be obtained by the steering wheel rotation angle being controlled. Therefore, after correcting the desired turning radius by the ease of measurement slip, the desired turning radius can be obtained by obtaining the handle operation amount corresponding to the corrected turning radius.
- This feature value is obtained from the measured value by calculating the power spectrum up to a certain time before the three-axis acceleration and the three-axis angular velocity output from the posture / orientation measuring unit 142 by the acceleration vibration calculating unit 128 and the angular velocity vibration calculating unit 130. -3) Reduce body vibration caused by the vehicle's own movement.
- g v [k] V [k]-b v [k]. It is used for the derivation of the estimated slipperiness (2-5) below and the estimation instability (2-6).
- This feature amount is obtained by extracting a high frequency component from the vehicle body vibration due to the road surface condition.
- S v ⁇ k W S [k] g v [k]
- W S [k] is a window function for extracting a high frequency component
- ⁇ k represents that the values of all the bands are summed.
- ⁇ is a parameter for converting the high frequency component amount into slipperiness. It is used for the derivation of slope side slip amount in (2-7) below.
- This feature amount is obtained by extracting a low frequency component from the vehicle body vibration due to the road surface condition.
- D v ⁇ k W D [k] g v [k]
- W D [k] is a window function for extracting a low frequency component
- ⁇ k represents that the values of all bands are summed.
- This feature amount can be compared with a threshold value in the danger warning unit 136, and when the threshold value is exceeded, the danger warning unit 136 outputs a warning signal to the user interface 18, and the user interface 18 warns that there is a danger. Is output visually or acoustically to inform the user. Further, automatic steering can be stopped by the automatic steering stop means 138.
- the steering amount calculation unit 126 obtains the steering wheel rotation angle, which is the steering amount, from the above feature amount by the following procedure.
- the target travel route determined by the target travel route determination unit 16 is input to the steering amount calculation unit 126, and from the current vehicle position obtained by the measurement unit 14, the target travel route is determined. Identify the current section.
- (3-2) Determination of Target Traveling Direction Steering amount calculation unit 126 obtains a position deviation w between the current section of the identified target travel route and the current vehicle position obtained by measurement unit 14.
- the position deviation w can be the distance between the current vehicle position and the target travel route measured along the perpendicular to the target travel route from the current vehicle position.
- the distance between the straight line passing through the end point of the straight section and orthogonal to the section and the current vehicle position is obtained, and the distance between the current vehicle position and the position before the end point of the straight section corresponding to the distance can be obtained.
- the distance is obtained by integrating the speed of the vehicle from the time passing through the point corresponding to the section start point to the current time, and the point (this point is determined from the start point of the curve section corresponding to the distance). The distance between the current vehicle position and the “target position”.
- the proportionality constant aw is a constant that determines the convergence speed to the target travel route, and is a value that is determined in consideration of safety and the like.
- the upper limit of a w w is 90 [deg].
- the target azimuth is a straight azimuth if the target travel route is a straight section, and can be a tangential azimuth at the target position if the target travel route is a curved section.
- the steering amount calculation unit 126 determines a desired vehicle direction from the deviation ⁇ d of the target traveling direction ⁇ w and the vehicle traveling direction ⁇ w measured by the position / speed measuring unit 141. Determine the turning radius.
- the proportionality constant a d is a constant that determines the convergence speed in the target traveling direction, and is a value that is determined in consideration of safety and the like.
- R is restricted by the characteristics of the vehicle (R smaller than a certain value cannot be obtained).
- ⁇ C is a steering wheel rotation angle necessary for correcting the positional deviation of the slope side slip C.
- a steering wheel rotation angle necessary for correcting a positional shift due to the slope side slip amount C is obtained and subtracted.
- the required handle rotation angle can be performed according to (3-2) and (3-3) above.
- ⁇ C g R Sin -1 (S R a w C / a d ) Can be obtained from
- the steering wheel rotation angle ⁇ obtained as described above can be output to the steering control mechanism 20 for automatic steering. Further, when a danger is detected by the danger warning unit 136, the automatic steering stop means 138 automatically cancels the automatic steering, so that the danger can be avoided. By the automatic release, for example, the torque of the electric motor of the steering control mechanism 20 can be made zero. Alternatively, the automatic steering stop means 138 may output a signal for stopping the vehicle.
- Each threshold value used by the danger warning unit 136 to detect whether there is danger may be a fixed value or a variable value.
- the vehicle can be guided to the target travel route.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Mathematical Physics (AREA)
- Soil Sciences (AREA)
- Environmental Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
車両の位置、速度、方位及び姿勢を含む計測値を計測する計測部と、
処理部と、を備え、
前記処理部は、車両特徴量を演算する車両特徴量演算部と、路面特徴量を演算する路面特徴量演算部と、車両特徴量と路面特徴量とを用いて操舵量を演算する操舵量演算部と、を備え、
自動操舵システムは、作業路面を走行するときの作業モードと、作業モードの事前に行う調整モードと、を備え、
調整モードにおいて、前記車両特徴量演算部は、前記計測部によって得られた計測値を用いて車両特徴量を求め、
作業モードにおいて、前記車両特徴量演算部は前記車両特徴量の更新を行い、前記路面特徴量演算部は、前記計測部によって得られた計測値を用いて路面特徴量を求める、
ことを特徴とする。
車両特徴量演算部122は、作業場での作業中に大きく変化しない車両の状態等を表す特徴量である車両特徴量を求める。よって、車両特徴量は、経年変化または車両個体差を特徴づけるものとなる。
ハンドル回転角と旋回半径の関係、すなわち、車両のハンドルを回転させた場合に標準状態でどの程度旋回するかを表す特徴量であり、以下の4つの特徴量を挙げることができる。
ハンドル回転角とタイヤ回転角との比であり、右回りと左回りに対してそれぞれ存在する。
前輪軸と後輪軸の距離である。初期値はユーザ等によってユーザインターフェース18に入力された入力値,あるいは標準値とする。
g=α/(sin-1(l/R))
R1=lx/(sin(α1/gx))
R2=lx/(sin(α2/gx))
g[n]=g[n-1]+εg(gx-g[n-1])
l[n]=l[n-1]+εl(lx-l[n-1])
ハンドルの右回転限界と左回転限界の角度を表す特徴量である。調整モードにおいてハンドル左右回転限界までハンドル200を操作し、その際のハンドル回転角センサ144のハンドル回転角の計測値から得る。
ハンドルの原点が、左右ハンドル回転限界の中点からずれている量を表す特徴量である。初期値は0とする。
ここで、iは直進が認められた範囲のサンプルを表し,その総数をIとする。α[i]はi時点のハンドル回転角の計測値、αCは後述する、(3-4)斜面横滑り量C分の位置ずれを補正するために必要なハンドル回転角である。
タイヤの圧力や取付位置の歪み等により常に車体にかかる傾きを表す特徴量であり、ロール角とピッチ角がある。この特徴量の導出は、調整モードにおいてその計測区間内に姿勢・方位計測部142で計測されるロール角、ピッチ角の平均を求めることで行う。
ここで、iは調整モード中の全サンプルを表し、その総数をIとする。a[i]はi時点の姿勢計測値である。この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号を出力し、ユーザインターフェース18で車両・タイヤ取付に問題がある旨の警告を視覚的又は音響的に出力して、ユーザに知らしめる。
ba[n]=ba[n-1]+εa(a-ba[n-1])
ここで、nは更新時を示し、εaは更新量である。
エンジンやタイヤの凹凸などにより常に車体にかかる振動を表す特徴量である。この特徴量の導出は、調整モードにおいてその計測区間内の全振動の平均を求めることで行う。
ここで、iは調整モード中の全サンプルを表し、その総数をIとする。V[i][k]はi時点の車体振動である。この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号を出力し、ユーザインターフェース18で車両・タイヤ取付に問題がある旨の警告を視覚的又は音響的に出力して、ユーザに知らしめる。
bv[n][k]=bv[n][k]+εbv(V[k]-bv[n][k])
ここで、nは更新時を示し、εbvは更新量である。
路面特徴量演算部124は、作業場での作業中に常に変化する路面の状態を表す特徴量である路面特徴量を求める。具体的には、作業モードにおいて、計測部14によって計測された計測値に基づき路面特徴量を路面モデルに従って演算することで、走行中の状態に応じて即座に適応して速応性を高める。
土地の起伏による車体の傾斜を表す特徴量であり、ロール角とピッチ角がある。この特徴量の導出は、姿勢・方位計測部142で計測されるロール角、ピッチ角から(1-2)で求めた車体傾きbaを減ずる。
ha=a-ba
土地の起伏による車体の傾斜の変化量を表す特徴量であり、ロール角とピッチ角のそれぞれの変化量がある。この特徴量の導出は、路面傾きの前時点サンプルと現時点サンプルの差分から得る。
Δha[n]= ha[n]- ha[n-1]
ここで、nは現時点を表す。
計測される車両の旋回半径と、所望の旋回半径の比率を表す特徴量である。期待される旋回半径に対して実際の旋回半径との差異を表す。この特徴量の導出は、位置・速度計測部141で求められる車両の位置の軌跡から求めた旋回半径の計測値を、所望の旋回半径で除することで得る。
SR=Rm/R
ここで、Rmは旋回半径の計測値であり、Rは制御しているハンドル回転角によって得られるべき所望の旋回半径である。よって、所望の旋回半径を計測滑りやすさで補正した後、その補正旋回半径に対応するハンドル操作量を求めることで、所望の旋回半径を得ることができる。
路面の凹凸などにより一時的に車体にかかる振動を表す特徴量である。
gv[k]=V[k]- bv[k].
以下の(2-5)の推定滑りやすさの導出、(2-6)の推定不安定性の導出に使用する。
路面状態による車体振動から推定される路面の滑りやすさを表す特徴量である。砂利地等で高くなる。
Sv=ζΣkWS[k] gv[k]
ここで、WS[k]は高周波成分を抽出するための窓関数であり、Σkは全帯域の値を総和することを表す。また、ζは高周波成分量から滑りやすさに変換するパラメータである。以下の(2-7)の斜面横滑り量の導出に使用する。
路面状態による車体振動から推定される路面の不安定性を表す特徴量である。凸凹した荒地などほど高くなる。
Dv=ΣkWD[k] gv[k]
ここで、WD[k]は低周波成分を抽出するための窓関数であり、Σkは全帯域の値を総和することを表す。この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号をユーザインターフェース18に出力し、ユーザインターフェース18で危険がある旨の警告を視覚的又は音響的に出力してユーザに知らしめる。また、自動操舵停止手段138において自動操舵の停止を行うことができる。
傾斜と滑りやすさから推定される横滑り量を表す特徴量である。この特徴量は、路面傾きと滑りやすさを乗ずることにより求める。
C= Sv hφ
この斜面横滑り量Cは、以下のハンドル回転角の算出に使用する。
最終的な車両の自動操舵の目標は、
・車両を目標走行経路上に走行させる。
・車両を目標方向に向けさせる。
ことである。
目標走行経路決定部16で決定された目標走行経路が操舵量演算部126へと入力され、計測部14で求めた現在車両位置から目標走行経路のうちの現在の区間を特定する。
操舵量演算部126は、特定された目標走行経路の現在の区間と、計測部14で求めた現在車両位置との位置偏差wを求める。
θw=θt+aww
である。ここで、比例定数awは目標走行経路への収束速度を決める定数であり、安全性等を考慮して決定する値である。また、awwはその値の上限を90[deg]とする。
次に、操舵量演算部126は、目標進行方向θwと、位置・速度計測部141によって計測された車両進行方向θwの偏差θdから車両の所望の旋回半径を決定する。
R=ad/θd
である。ここで、比例定数adは目標進行方向への収束速度を決める定数であり、安全性等を考慮して決定する値である。また、Rは車両の特性による制約を受ける(一定以上小さなRは取れない)。
所望の旋回半径に対するハンドル回転角は次式(右旋回の場合)で求めることができる。
α=gRSin-1(SR/R)-β+αC
ただし、αがαRrを超える場合にはαをαRrにする。
αC=gRSin-1(SR awC/ ad)
から求めることができる。
12 主処理部
14 計測部
100 作業用車両
122 車両特徴量演算部
124 路面特徴量演算部
126 操舵量演算部
136 危険警告部
Claims (4)
- 目標走行経路に沿って作業路面を自動走行するように作業用車両を操舵する作業用車両の自動操舵システムであって、
車両の位置、速度、方位及び姿勢を含む計測値を計測する計測部と、
処理部と、を備え、
前記処理部は、車両特徴量を演算する車両特徴量演算部と、路面特徴量を演算する路面特徴量演算部と、車両特徴量と路面特徴量とを用いて操舵量を演算する操舵量演算部と、を備え、
自動操舵システムは、作業路面を走行するときの作業モードと、作業モードの事前に行う調整モードと、を備え、
調整モードにおいて、前記車両特徴量演算部は、前記計測部によって得られた計測値を用いて車両特徴量を求め、
作業モードにおいて、前記車両特徴量演算部は前記車両特徴量の更新を行い、前記路面特徴量演算部は、前記計測部によって得られた計測値を用いて路面特徴量を求める、
ことを特徴とする作業用車両の自動操舵システム。 - 前記車両特徴量は、操舵量-旋回半径関係、車体傾き及び車体自身の車体振動の少なくとも1つを含むことを特徴とする請求項1記載の作業用車両の自動操舵システム。
- 前記路面特徴量は、路面傾き及び路面の滑りやすさの少なくとも1つを含むことを特徴とする請求項1または2に記載の作業用車両の自動操舵システム。
- 前記処理部は、さらに、路面特徴量演算部で求めた路面特徴量を閾値と比較して、閾値を超えた場合に警告信号を出力する危険警告手段を備えることを特徴とする請求項1ないし3のいずれか1項に記載の作業用車両の自動操舵システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/780,493 US9708001B2 (en) | 2013-03-29 | 2013-12-27 | Automatic steering system for working vehicle |
EP13879922.6A EP2980668B1 (en) | 2013-03-29 | 2013-12-27 | Work vehicle automatic steering system |
JP2015507972A JP5953426B2 (ja) | 2013-03-29 | 2013-12-27 | 作業用車両の自動操舵システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-074699 | 2013-03-29 | ||
JP2013074699 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014155893A1 true WO2014155893A1 (ja) | 2014-10-02 |
Family
ID=51622924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085096 WO2014155893A1 (ja) | 2013-03-29 | 2013-12-27 | 作業用車両の自動操舵システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US9708001B2 (ja) |
EP (1) | EP2980668B1 (ja) |
JP (1) | JP5953426B2 (ja) |
WO (1) | WO2014155893A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106114621A (zh) * | 2015-05-08 | 2016-11-16 | 克拉斯工业技术有限责任公司 | 农业作业机械 |
JP2017013560A (ja) * | 2015-06-29 | 2017-01-19 | 株式会社デンソー | 車線逸脱回避装置 |
WO2019189935A1 (ja) * | 2018-03-31 | 2019-10-03 | 住友建機株式会社 | ショベル |
WO2020090863A1 (ja) * | 2018-10-30 | 2020-05-07 | 東京計器株式会社 | 誤差補正装置 |
JP2022512359A (ja) * | 2018-12-11 | 2022-02-03 | セーフ エーアイ,インコーポレイテッド | 自律車両における運動挙動推定および動的挙動推定のための技術 |
WO2024150488A1 (ja) * | 2023-01-12 | 2024-07-18 | 株式会社ブリヂストン | プログラム、ユーザ端末、及び出力方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10139826B2 (en) * | 2015-04-24 | 2018-11-27 | Autonomous Solutions Inc. | Apparatus and method for controlling a vehicle |
DE102016121523A1 (de) | 2015-11-17 | 2017-05-18 | Lacos Computerservice Gmbh | Verfahren zum prädikativen Erzeugen von Daten zur Steuerung eines Fahrweges und eines Betriebsablaufes für landwirtschaftliche Fahrzeuge und Maschinen |
WO2018086764A1 (de) * | 2016-11-10 | 2018-05-17 | Lacos Computerservice Gmbh | Verfahren zum prädikativen erzeugen von daten zur steuerung eines fahrweges und eines betriebsablaufes für landwirtschaftliche fahrzeuge und maschinen |
US9779562B1 (en) * | 2015-12-21 | 2017-10-03 | Lytx, Inc. | System for automatically characterizing a vehicle |
CN108007417B (zh) * | 2016-10-27 | 2021-02-05 | 上海华测导航技术股份有限公司 | 一种农机自动驾驶控制系统角度传感器自动标定方法 |
CN106483968B (zh) * | 2016-12-13 | 2023-05-05 | 桂林理工大学南宁分校 | 一种用于无人机自动降落的地表面识别装置 |
US10649457B2 (en) * | 2017-05-02 | 2020-05-12 | Cnh Industrial America Llc | System and method for autonomous vehicle system planning |
US10800423B2 (en) | 2018-02-20 | 2020-10-13 | Deere & Company | Monitoring steering conditions of an off-road vehicle |
US11224154B2 (en) * | 2019-03-19 | 2022-01-18 | Cnh Industrial America Llc | Headland turn planning for a work vehicle |
US11718304B2 (en) | 2020-03-06 | 2023-08-08 | Deere & Comoanv | Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement |
US11684005B2 (en) | 2020-03-06 | 2023-06-27 | Deere & Company | Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement |
US11667171B2 (en) | 2020-03-12 | 2023-06-06 | Deere & Company | Method and system for estimating surface roughness of ground for an off-road vehicle to control steering |
US11678599B2 (en) * | 2020-03-12 | 2023-06-20 | Deere & Company | Method and system for estimating surface roughness of ground for an off-road vehicle to control steering |
US11685381B2 (en) | 2020-03-13 | 2023-06-27 | Deere & Company | Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed |
US11753016B2 (en) | 2020-03-13 | 2023-09-12 | Deere & Company | Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed |
WO2022038860A1 (ja) * | 2020-08-20 | 2022-02-24 | 株式会社クボタ | 作業機 |
CN112298354B (zh) * | 2020-12-30 | 2022-01-28 | 成都信息工程大学 | 一种无人驾驶汽车转向系统方向盘与前轮转角的状态估计方法 |
US12085955B2 (en) | 2021-10-19 | 2024-09-10 | Deere & Company | Methods, apparatus, and articles of manufacture to select track paths for one or more vehicles in a field |
KR20230138808A (ko) | 2022-03-24 | 2023-10-05 | 현대자동차주식회사 | 차량 제어 장치 및 방법 |
CN115071822B (zh) * | 2022-07-13 | 2024-08-16 | 摩登汽车有限公司 | 车辆转向监测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0399305A (ja) * | 1989-09-12 | 1991-04-24 | Toyota Motor Corp | 車両用自動操縦制御装置 |
JPH0519853A (ja) * | 1991-07-12 | 1993-01-29 | Toyota Motor Corp | 車両用誘導駐車装置 |
JPH05216535A (ja) * | 1992-02-05 | 1993-08-27 | Toyota Motor Corp | 車両用自動操縦制御装置 |
JPH07184411A (ja) | 1993-12-28 | 1995-07-25 | Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko | 農用自律走行車両の操舵方法 |
JPH1066405A (ja) | 1996-08-28 | 1998-03-10 | Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko | 作業車両の無人走行による無人作業方法 |
JP2003022130A (ja) * | 2001-07-05 | 2003-01-24 | Tsubakimoto Chain Co | 搬送台車及び搬送台車の操舵制御方法 |
JP2003044136A (ja) | 2001-07-30 | 2003-02-14 | Japan Aviation Electronics Industry Ltd | 自律直進装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830858A1 (de) * | 1998-07-10 | 2000-01-13 | Claas Selbstfahr Erntemasch | Vorrichtung und Verfahren zur Bestimmung einer virtuellen Position |
US7127340B2 (en) * | 2004-08-17 | 2006-10-24 | Deere & Company | Variable gain logic for a GPS based automatic steering system |
US8768558B2 (en) * | 2007-01-05 | 2014-07-01 | Agjunction Llc | Optical tracking vehicle control system and method |
US8010261B2 (en) * | 2007-05-23 | 2011-08-30 | Cnh America Llc | Automatic steering correction of an agricultural harvester using integration of harvester header row sensors and harvester auto guidance system |
DE102007046678A1 (de) * | 2007-09-27 | 2009-04-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliches Arbeitsfahrzeug |
DE102008002699A1 (de) * | 2008-06-27 | 2009-12-31 | Robert Bosch Gmbh | Vorrichtung und Verfahren zum Steuern einer automatischen Lenkung eines Fahrzeugs und Vorrichtung und Verfahren zum Überprüfen einer Ausführbarkeit einer vorgegebenen Soll-Fahrtrichtungsgröße für ein Fahrzeug |
US8275516B2 (en) * | 2009-07-21 | 2012-09-25 | Trimble Navigation Limited | Agricultural vehicle autopilot rollover risk assessment system |
DE102010040549A1 (de) * | 2010-09-10 | 2012-03-15 | Robert Bosch Gmbh | Kraftfahrzeug-Prüfgerät und Kraftfahrzeug-Prüfverfahren |
US20120283909A1 (en) * | 2011-05-03 | 2012-11-08 | Dix Peter J | System and method for positioning a vehicle with a hitch using an automatic steering system |
-
2013
- 2013-12-27 EP EP13879922.6A patent/EP2980668B1/en active Active
- 2013-12-27 WO PCT/JP2013/085096 patent/WO2014155893A1/ja active Application Filing
- 2013-12-27 US US14/780,493 patent/US9708001B2/en active Active
- 2013-12-27 JP JP2015507972A patent/JP5953426B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0399305A (ja) * | 1989-09-12 | 1991-04-24 | Toyota Motor Corp | 車両用自動操縦制御装置 |
JPH0519853A (ja) * | 1991-07-12 | 1993-01-29 | Toyota Motor Corp | 車両用誘導駐車装置 |
JPH05216535A (ja) * | 1992-02-05 | 1993-08-27 | Toyota Motor Corp | 車両用自動操縦制御装置 |
JPH07184411A (ja) | 1993-12-28 | 1995-07-25 | Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko | 農用自律走行車両の操舵方法 |
JPH1066405A (ja) | 1996-08-28 | 1998-03-10 | Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko | 作業車両の無人走行による無人作業方法 |
JP2003022130A (ja) * | 2001-07-05 | 2003-01-24 | Tsubakimoto Chain Co | 搬送台車及び搬送台車の操舵制御方法 |
JP2003044136A (ja) | 2001-07-30 | 2003-02-14 | Japan Aviation Electronics Industry Ltd | 自律直進装置 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106114621B (zh) * | 2015-05-08 | 2019-03-22 | 克拉斯工业技术有限责任公司 | 农业作业机械 |
CN106114621A (zh) * | 2015-05-08 | 2016-11-16 | 克拉斯工业技术有限责任公司 | 农业作业机械 |
CN107709141B (zh) * | 2015-06-29 | 2020-11-17 | 株式会社电装 | 车道脱离避免装置 |
JP2017013560A (ja) * | 2015-06-29 | 2017-01-19 | 株式会社デンソー | 車線逸脱回避装置 |
CN107709141A (zh) * | 2015-06-29 | 2018-02-16 | 株式会社电装 | 车道脱离避免装置 |
US11242088B2 (en) | 2015-06-29 | 2022-02-08 | Denso Corporation | Lane departure avoidance system |
JPWO2019189935A1 (ja) * | 2018-03-31 | 2021-03-25 | 住友建機株式会社 | ショベル |
CN112368449A (zh) * | 2018-03-31 | 2021-02-12 | 住友建机株式会社 | 挖土机 |
EP3779059A4 (en) * | 2018-03-31 | 2021-11-10 | Sumitomo (S.H.I.) Construction Machinery Co., Ltd. | SHOVEL |
WO2019189935A1 (ja) * | 2018-03-31 | 2019-10-03 | 住友建機株式会社 | ショベル |
JP7307051B2 (ja) | 2018-03-31 | 2023-07-11 | 住友建機株式会社 | ショベル |
US12018461B2 (en) | 2018-03-31 | 2024-06-25 | Sumitomo Construction Machinery Co., Ltd. | Shovel |
WO2020090863A1 (ja) * | 2018-10-30 | 2020-05-07 | 東京計器株式会社 | 誤差補正装置 |
JP2022512359A (ja) * | 2018-12-11 | 2022-02-03 | セーフ エーアイ,インコーポレイテッド | 自律車両における運動挙動推定および動的挙動推定のための技術 |
JP7506876B2 (ja) | 2018-12-11 | 2024-06-27 | セーフ エーアイ,インコーポレイテッド | 自律車両における運動挙動推定および動的挙動推定のための技術 |
WO2024150488A1 (ja) * | 2023-01-12 | 2024-07-18 | 株式会社ブリヂストン | プログラム、ユーザ端末、及び出力方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2980668B1 (en) | 2019-04-24 |
US9708001B2 (en) | 2017-07-18 |
EP2980668A1 (en) | 2016-02-03 |
EP2980668A4 (en) | 2017-04-26 |
US20160052546A1 (en) | 2016-02-25 |
JP5953426B2 (ja) | 2016-07-20 |
JPWO2014155893A1 (ja) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5953426B2 (ja) | 作業用車両の自動操舵システム | |
US10602654B2 (en) | Auto traveling work vehicle | |
JP6420173B2 (ja) | 自動走行圃場作業車両 | |
US8682599B2 (en) | Road surface friction coefficient estimating device and road surface friction coefficient estimating method | |
EP2942254B1 (en) | Vehicle roll angle estimation device | |
JP4127062B2 (ja) | 横加速度センサのドリフト量推定装置、横加速度センサの出力補正装置及び路面摩擦状態推定装置 | |
US9026334B2 (en) | Vehicle attitude control system | |
US11002539B2 (en) | Method for detecting a slope of a road | |
CN113759903A (zh) | 无人驾驶车辆及其转向控制方法、电子设备及存储介质 | |
US20190106113A1 (en) | Calculation apparatus, control method, program and storage medium | |
JP2019038535A (ja) | 自動走行圃場作業車両 | |
JP2012126293A (ja) | 車両の操舵制御装置 | |
JP7040308B2 (ja) | 無人搬送車の走行制御装置及び走行制御方法 | |
JP2006107027A (ja) | 無人搬送車 | |
US20090319186A1 (en) | Method and apparatus for determining a navigational state of a vehicle | |
JP3863303B2 (ja) | 移動体の位置計測装置 | |
US20210354753A1 (en) | Method of stabilization by orientation of a convoy of vehicles | |
JP7360976B2 (ja) | センサ誤差補正装置 | |
JP4269170B2 (ja) | 軌道追従制御方法および装置 | |
KR20230062859A (ko) | 차량 | |
JP2020164160A (ja) | 自動走行圃場作業車両 | |
JP2020080743A (ja) | 車両の姿勢推定装置 | |
CN110606088A (zh) | 一种电动轮驱动防滑控制策略 | |
KR20210135526A (ko) | 차량 기동 중 차량의 모션 상태를 추정하는 방법 | |
JP2668249B2 (ja) | 車載航行システムにおいて相対方向変化を測定する方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13879922 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015507972 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14780493 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013879922 Country of ref document: EP |