WO2014155893A1 - 作業用車両の自動操舵システム - Google Patents

作業用車両の自動操舵システム Download PDF

Info

Publication number
WO2014155893A1
WO2014155893A1 PCT/JP2013/085096 JP2013085096W WO2014155893A1 WO 2014155893 A1 WO2014155893 A1 WO 2014155893A1 JP 2013085096 W JP2013085096 W JP 2013085096W WO 2014155893 A1 WO2014155893 A1 WO 2014155893A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road surface
work
feature amount
automatic steering
Prior art date
Application number
PCT/JP2013/085096
Other languages
English (en)
French (fr)
Inventor
宏臣 荒金
孝夫 佐川
岡村 信行
橋本 泰治
思緒人 田中
Original Assignee
東京計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京計器株式会社 filed Critical 東京計器株式会社
Priority to EP13879922.6A priority Critical patent/EP2980668B1/en
Priority to US14/780,493 priority patent/US9708001B2/en
Priority to JP2015507972A priority patent/JP5953426B2/ja
Publication of WO2014155893A1 publication Critical patent/WO2014155893A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/029Steering assistants using warnings or proposing actions to the driver without influencing the steering system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/006Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels using a measured or estimated road friction coefficient
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Definitions

  • the present invention relates to an automatic steering system for a working vehicle that performs automatic steering by detecting the position, speed, posture and the like of the working vehicle traveling on a work road surface.
  • a vehicle traveling direction sensor such as a geomagnetic direction sensor or a gyro detects the traveling direction, confirms a deviation value from the target direction, and steers the autonomously traveling vehicle so that the vehicle always travels toward the target direction.
  • the mechanism is controlled.
  • an automatic rice transplanter is provided with a direction sensor such as a magnetic sensor or a gyro to acquire a target direction in a learning process, and an automatic rice transplanter in a target direction acquired in a learning process in an autonomous driving process.
  • the automatic steering system controls the vehicle so that it takes the traveling direction, and the average direction obtained by averaging the currently acquired direction data is updated as the target direction, thereby improving the parallelism of reciprocating straight traveling. To improve.
  • Patent Document 3 in unmanned operation of a tractor, a deviation from a target position and a target direction on a preset work route is calculated based on position information and direction information obtained every moment by an optical fiber gyroscope and a geomagnetic direction sensor. In order to eliminate this deviation, the steering angle for steering the tractor is obtained and the steering angle control is performed every moment.
  • JP-A-7-184411 JP 2003-44136 A Japanese Patent Laid-Open No. 10-66405
  • the road surface on which the work vehicle as described above travels is not necessarily a flat paved road, but is often in various road surface environments such as unevenness, inclination, or the presence of water, grass, trees, and other foreign objects.
  • road surface environments such as unevenness, inclination, or the presence of water, grass, trees, and other foreign objects.
  • the change in the posture of the vehicle and the vibration generated by such a road surface environment have a great influence on the automatic steering.
  • the present invention has been made in view of such a problem, and provides an automatic steering system capable of stably performing automatic steering by reducing the influence of various road surface environments, aging, and individual vehicle differences. Is the purpose.
  • the present invention is an automatic steering system for a working vehicle that steers the working vehicle so as to automatically travel on a work road surface along a target traveling route,
  • a measurement unit that measures measurement values including the position, speed, direction, and attitude of the vehicle;
  • a processing unit includes a vehicle feature value calculating unit that calculates a vehicle feature value, a road surface feature value calculating unit that calculates a road surface feature value, and a steering amount calculation that calculates a steering amount using the vehicle feature value and the road surface feature value.
  • the automatic steering system includes a work mode when traveling on a work road surface, and an adjustment mode performed in advance of the work mode,
  • the vehicle feature amount calculation unit obtains a vehicle feature amount using a measurement value obtained by the measurement unit
  • the vehicle feature amount calculation unit updates the vehicle feature amount
  • the road surface feature amount calculation unit obtains a road surface feature amount using a measurement value obtained by the measurement unit. It is characterized by that.
  • the vehicle feature amount may include at least one of a steering amount-turning radius relationship, a vehicle body tilt, and a vehicle body vibration of the vehicle body itself.
  • the road surface feature amount may include at least one of road surface inclination and road surface slipperiness.
  • the processing unit may further include a danger warning unit that compares the road surface feature value obtained by the road surface feature value calculation unit with a threshold value and outputs a warning signal when the threshold value is exceeded.
  • a work mode when traveling on a work road surface and an adjustment mode performed in advance of the work mode the vehicle feature amount is obtained in the adjustment mode, and the vehicle feature amount is updated in the work mode. Since the road surface feature amount is obtained, the vehicle feature amount and the road surface feature amount can be separated and each can be obtained accurately. As a result, it is possible to grasp the aging and individual differences of the vehicle with the vehicle feature amount, grasp the influence of the road surface with the road surface feature amount, and obtain the steering amount after taking these influences into account, thereby obtaining various road surface environments and Thus, automatic steering can be stably performed by reducing the influence of factors such as aging and individual vehicle differences.
  • FIG. 1 is an overall view of an automatic steering system according to an embodiment of the present invention. It is a partial block diagram of the automatic steering system of FIG. It is a block diagram showing the time of adjustment mode. It is a block diagram showing the time of work mode. It is an example of a target travel route. It is a figure showing the relationship between the inclination of a vehicle body or a road surface, the attachment position of a GPS antenna, and the position of a vehicle.
  • the automatic steering system 10 is mounted on a work vehicle 100.
  • the work vehicle 100 can be farming, civil engineering, logging, lawn mowing, other work tractors, construction equipment, and the like.
  • the work vehicle 100 is not limited to a paved road surface, and is a work place for performing work. It travels on various road surfaces (referred to as work road surfaces) where there are unevenness, slopes, or water, grass, trees, or other foreign objects on farm fields, forests, and unpaved roads.
  • the automatic steering system 10 is mounted on the work vehicle 100 in order to reduce the driving burden of the work vehicle, and performs automatic steering of the work vehicle 100.
  • the automatic steering system 10 roughly updates the vehicle feature amount and the road surface feature amount, calculates the steering amount, and the measurement unit 14 detects motion information such as the position, speed, and posture of the vehicle.
  • a target travel route determining unit 16 that determines a target travel route on which the vehicle should travel by input or calculation and outputs the target travel route, a user interface 18 that performs input from the user and an output to the user,
  • a steering control mechanism 20 that controls the steering wheel 200 of the vehicle based on the obtained steering amount.
  • the main processing unit 12 includes a vehicle feature value calculation unit 122 that calculates a vehicle feature value, a road surface feature value calculation unit 124 that calculates a road surface feature value, and a steering amount calculation that calculates a steering value.
  • Unit 126, acceleration vibration calculation unit 128, angular velocity vibration calculation unit 130, danger warning unit 136, and automatic steering stop means 138 Details of these will be described later.
  • the measurement unit 14 includes a plurality of measurement units, includes a GPS antenna and a GPS receiver that form a satellite navigation system, and a position / speed measurement unit 141 that measures the position, speed, and traveling direction of the vehicle, and 3 Attitude / azimuth measurement that measures acceleration, angular velocity, attitude, and azimuth of a vehicle with a gyro that detects angular velocity around each axis, an accelerometer that detects acceleration in each of three axes, and a magnetic azimuth sensor that detects magnetic azimuth And a handle rotation angle sensor 144 formed of a rotary encoder that measures the rotation angle of the vehicle handle 200, and is sent to the main processing unit 12 for storage and use.
  • the position / velocity measurement unit 141 and the posture / orientation measurement unit 142 can exchange the measurement values with each other and perform correction / interpolation as necessary to increase the accuracy of the measurement values.
  • the target travel route determination unit 16 determines a target travel route on which the work vehicle should travel in the workplace.
  • the target travel route can be either a straight line or a curve, and can be composed of one or more sections made up of one or more straight lines or curves as shown in FIG.
  • the plurality of sections may be continuous or discontinuous.
  • a straight section it can be specified by the positions of a plurality of way points WP including at least a start point and an end point.
  • a curve section it can be specified by the position of a plurality of waypoints WP including at least a start point and an end point, a type of curve (arc, clothoid, etc.), a radius of curvature, and the like.
  • the user interface 18 can receive an input of known vehicle information and the like from the user, and can output a warning or the like when a danger occurs to the user visually or acoustically.
  • the input vehicle information or the like is sent to the main processing unit 12 to be stored and used, and is used by the vehicle feature amount calculation unit 122 to derive an initial value or initial value of the vehicle feature amount.
  • the steering control mechanism 20 includes an electric motor or the like that is driven via a motor driver based on the steering amount calculated by the steering amount calculation unit 126, and rotates the electric motor via the handle 200 or the steering rod via the transmission mechanism. And is rotated by the calculated steering amount.
  • the automatic steering system 10 has modes such as “adjustment mode” and “work mode”.
  • the adjustment mode is performed in advance of the work mode, and as shown in the block diagram shown in FIG. 3, the vehicle is operated, and the vehicle is driven manually or by automatic steering on the road surface that is as flat as possible in the work place or other place.
  • the measurement value from the measurement unit 14 is applied to the vehicle model, the vehicle model is updated, and the vehicle feature value c c is obtained.
  • this adjustment mode at least clockwise and counterclockwise steering are performed, respectively, so that the vehicle turns right and left. At this time, the estimation accuracy of the feature amount can be improved by steering to the limit in the left and right directions.
  • the work mode is traveling by automatic steering control of the actual work road surface, as shown in the block diagram of FIG.
  • the vehicle is operated, the steering is automatically performed at the work place, the measurement value from the measurement unit 14 is applied to the vehicle model, the vehicle model is updated, and the vehicle feature value c c is obtained and applied to the road surface model. and updates the road model, obtains the road characteristic quantity c r.
  • the main processing unit 12 handles the following variables, for example.
  • the vehicle feature quantity computing unit 122 obtains a vehicle feature quantity that is a feature quantity that represents a state of the vehicle that does not change greatly during work in the workplace. Therefore, the vehicle feature amount characterizes secular change or individual vehicle difference.
  • the initial value of the vehicle feature amount is applied to the vehicle model based on the measurement value measured by the measurement unit 14 in the adjustment mode before work, and the vehicle model is updated.
  • the vehicle feature amount is appropriately updated in the work mode.
  • vehicle feature amount examples include a steering wheel rotation angle (steering amount) -turning radius relationship, vehicle tilt, and vehicle body vibration due to the motion of the vehicle itself.
  • Steering wheel rotation angle (steering amount)-turning radius relationship The relationship between the steering wheel rotation angle and the turning radius, that is, the feature value indicating how much the vehicle turns in the standard state when the vehicle handle is rotated.
  • the following four feature quantities can be mentioned.
  • the initial value is an input value input to the user interface 18 by a user or the like, or a standard value.
  • the following formula is derived from the steering wheel rotation angle and the turning radius input in the adjustment mode.
  • the turning radius is obtained from the trajectory of the vehicle position measured by the position / speed measuring unit 141. The same can be obtained for the left and right.
  • g ⁇ / (sin -1 (l / R))
  • the value is updated based on a polynomial expression based on a plurality of input steering wheel rotation angles and the turning radius measured thereby.
  • the first and second steering wheel rotation angles and turning radii are ⁇ 1 , ⁇ 2 , R 1 and R 2 , respectively.
  • the following two formulas for the estimated steering wheel-tire rotation angle ratio g x and the estimated wheel base l x are as follows: stand.
  • R 1 l x / (sin ( ⁇ 1 / g x ))
  • R 2 l x / (sin ( ⁇ 2 / g x ))
  • the estimated steering wheel-tire rotation angle ratio g x and the estimated wheelbase l x are obtained. Each value is updated according to the error between these values and the current value.
  • ⁇ g and ⁇ l are update amounts.
  • Steering wheel rotation limit (steering amount limit): ⁇ Rr , ⁇ Rl (Dimension: rad) This is a feature amount representing the angle between the right rotation limit and the left rotation limit of the handle.
  • the handle 200 is operated up to the limit of the left / right rotation of the handle, and is obtained from the measured value of the handle rotation angle of the handle rotation angle sensor 144 at that time.
  • the reference value for the origin of the handle that is the middle point can be determined from the right rotation limit and the left rotation limit.
  • Steering wheel asymmetry (steering asymmetry): ⁇ (Dimension: rad) This is a feature value representing the amount by which the origin of the handle is deviated from the middle point of the left and right handle rotation limit. The initial value is 0.
  • the steering wheel Since the steering wheel is symmetric in nature, the steering wheel should be the midpoint of the left and right rotation limits when the vehicle is traveling straight on a flat uniform road surface. The origin of may be misaligned.
  • ( ⁇ i ⁇ [i]) / I- ⁇ C
  • i a sample in a range where straight travel is permitted, and the total number is I.
  • ⁇ [i] is a measured value of the steering wheel rotation angle at time i
  • ⁇ C is a steering wheel rotation angle necessary for correcting a positional deviation corresponding to (3-4) slope side slip amount C, which will be described later.
  • Body tilt: b a (b ⁇ b ⁇ ) (Dimension: (rad rad)) It is a feature amount that always represents the inclination applied to the vehicle body due to tire pressure, mounting position distortion, and the like, and includes a roll angle and a pitch angle.
  • the derivation of the feature amount is performed by obtaining an average of the roll angle and pitch angle measured by the posture / orientation measuring unit 142 in the measurement section in the adjustment mode.
  • b a ( ⁇ i a [i]) / I
  • i all samples in the adjustment mode
  • the total number is I.
  • a [i] is a posture measurement value at time i.
  • This feature amount can be compared with a threshold value in the danger warning unit 136, and if the threshold value is exceeded, the danger warning unit 136 outputs a warning signal, indicating that there is a problem in the vehicle / tire mounting in the user interface 18. The warning is output visually or acoustically to inform the user.
  • n indicates an update time
  • ⁇ a is an update amount
  • This feature value is fed back to the measurement unit 14 and can be used to correct the mounting position of the sensor. That is, as shown in FIG. 6 (a), a position P1 obtained by projecting the GPS antenna mounting position whose position is determined by the position / velocity measurement unit 141 onto the ground, and a vehicle position P2 (usually the center position in the vehicle width direction, For example, since the deviation between the center of the left and right front wheels or the center of the left and right rear wheels is affected by the tilt of the vehicle body, the position output from the position / speed measuring unit 141 can be corrected by the obtained tilt of the vehicle body. .
  • V [i] [k] ( ⁇ i V [i] [k]) / I
  • i all samples in the adjustment mode, and the total number is I.
  • V [i] [k] is the body vibration at time i.
  • This feature amount can be compared with a threshold value in the danger warning unit 136, and if the threshold value is exceeded, the danger warning unit 136 outputs a warning signal, indicating that there is a problem in the vehicle / tire mounting in the user interface 18. The warning is output visually or acoustically to inform the user.
  • the vehicle body vibration is updated according to the error between the vehicle body vibration due to the movement of the vehicle itself and the current vehicle body vibration.
  • b v [n] [k] b v [n] [k] + ⁇ bv (V [k] -b v [n] [k])
  • n indicates the update time
  • ⁇ bv is the update amount.
  • the road surface feature amount calculation unit 124 obtains a road surface feature amount that is a feature amount that represents a state of the road surface that constantly changes during work in the workplace. Specifically, in the work mode, the road surface feature amount is calculated according to the road surface model based on the measurement value measured by the measurement unit 14, so that it is immediately adapted according to the traveling state and the speed response is improved.
  • road surface features include road surface inclination, amount of change in road surface inclination, measured slip ease, vehicle body vibration due to road surface conditions, estimated slip ease, estimated instability, slope side slip amount, etc. Can do.
  • This feature amount is fed back to the measurement unit 14 and can be used for correcting the mounting position of the sensor, as in the case of the vehicle body tilt. That is, as shown in FIG. 6 (b), a position P1 obtained by projecting the GPS antenna mounting position obtained by the position / velocity measuring unit 141 onto the ground and a vehicle position P2 (usually the center position in the width direction of the vehicle, For example, since the deviation from the center of the left and right front wheels or the center of the left and right rear wheels is affected by the road surface inclination, the position output from the position / speed measuring unit 141 can be corrected by the obtained road surface inclination. .
  • This feature amount can be compared with a threshold value in the danger warning unit 136, and when the threshold value is exceeded, the danger warning unit 136 outputs a warning signal to the user interface 18, and the user interface 18 warns that there is a danger. Is output visually or acoustically to inform the user. Further, automatic steering can be stopped by the automatic steering stop means 138.
  • S R (Dimension: None) This is a feature amount that represents a ratio between the measured turning radius of the vehicle and the desired turning radius. This represents the difference between the expected turning radius and the actual turning radius.
  • the derivation of the feature amount is obtained by dividing the measured value of the turning radius obtained from the trajectory of the vehicle position obtained by the position / speed measuring unit 141 by the desired turning radius.
  • S R R m / R
  • R m is a measured value of the turning radius
  • R is a desired turning radius to be obtained by the steering wheel rotation angle being controlled. Therefore, after correcting the desired turning radius by the ease of measurement slip, the desired turning radius can be obtained by obtaining the handle operation amount corresponding to the corrected turning radius.
  • This feature value is obtained from the measured value by calculating the power spectrum up to a certain time before the three-axis acceleration and the three-axis angular velocity output from the posture / orientation measuring unit 142 by the acceleration vibration calculating unit 128 and the angular velocity vibration calculating unit 130. -3) Reduce body vibration caused by the vehicle's own movement.
  • g v [k] V [k]-b v [k]. It is used for the derivation of the estimated slipperiness (2-5) below and the estimation instability (2-6).
  • This feature amount is obtained by extracting a high frequency component from the vehicle body vibration due to the road surface condition.
  • S v ⁇ k W S [k] g v [k]
  • W S [k] is a window function for extracting a high frequency component
  • ⁇ k represents that the values of all the bands are summed.
  • is a parameter for converting the high frequency component amount into slipperiness. It is used for the derivation of slope side slip amount in (2-7) below.
  • This feature amount is obtained by extracting a low frequency component from the vehicle body vibration due to the road surface condition.
  • D v ⁇ k W D [k] g v [k]
  • W D [k] is a window function for extracting a low frequency component
  • ⁇ k represents that the values of all bands are summed.
  • This feature amount can be compared with a threshold value in the danger warning unit 136, and when the threshold value is exceeded, the danger warning unit 136 outputs a warning signal to the user interface 18, and the user interface 18 warns that there is a danger. Is output visually or acoustically to inform the user. Further, automatic steering can be stopped by the automatic steering stop means 138.
  • the steering amount calculation unit 126 obtains the steering wheel rotation angle, which is the steering amount, from the above feature amount by the following procedure.
  • the target travel route determined by the target travel route determination unit 16 is input to the steering amount calculation unit 126, and from the current vehicle position obtained by the measurement unit 14, the target travel route is determined. Identify the current section.
  • (3-2) Determination of Target Traveling Direction Steering amount calculation unit 126 obtains a position deviation w between the current section of the identified target travel route and the current vehicle position obtained by measurement unit 14.
  • the position deviation w can be the distance between the current vehicle position and the target travel route measured along the perpendicular to the target travel route from the current vehicle position.
  • the distance between the straight line passing through the end point of the straight section and orthogonal to the section and the current vehicle position is obtained, and the distance between the current vehicle position and the position before the end point of the straight section corresponding to the distance can be obtained.
  • the distance is obtained by integrating the speed of the vehicle from the time passing through the point corresponding to the section start point to the current time, and the point (this point is determined from the start point of the curve section corresponding to the distance). The distance between the current vehicle position and the “target position”.
  • the proportionality constant aw is a constant that determines the convergence speed to the target travel route, and is a value that is determined in consideration of safety and the like.
  • the upper limit of a w w is 90 [deg].
  • the target azimuth is a straight azimuth if the target travel route is a straight section, and can be a tangential azimuth at the target position if the target travel route is a curved section.
  • the steering amount calculation unit 126 determines a desired vehicle direction from the deviation ⁇ d of the target traveling direction ⁇ w and the vehicle traveling direction ⁇ w measured by the position / speed measuring unit 141. Determine the turning radius.
  • the proportionality constant a d is a constant that determines the convergence speed in the target traveling direction, and is a value that is determined in consideration of safety and the like.
  • R is restricted by the characteristics of the vehicle (R smaller than a certain value cannot be obtained).
  • ⁇ C is a steering wheel rotation angle necessary for correcting the positional deviation of the slope side slip C.
  • a steering wheel rotation angle necessary for correcting a positional shift due to the slope side slip amount C is obtained and subtracted.
  • the required handle rotation angle can be performed according to (3-2) and (3-3) above.
  • ⁇ C g R Sin -1 (S R a w C / a d ) Can be obtained from
  • the steering wheel rotation angle ⁇ obtained as described above can be output to the steering control mechanism 20 for automatic steering. Further, when a danger is detected by the danger warning unit 136, the automatic steering stop means 138 automatically cancels the automatic steering, so that the danger can be avoided. By the automatic release, for example, the torque of the electric motor of the steering control mechanism 20 can be made zero. Alternatively, the automatic steering stop means 138 may output a signal for stopping the vehicle.
  • Each threshold value used by the danger warning unit 136 to detect whether there is danger may be a fixed value or a variable value.
  • the vehicle can be guided to the target travel route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

目標走行経路に沿って作業路面を自動走行するように作業用車両を操舵する作業用車両の自動操舵システムであって、様々な路面環境や、経年変化、個体差といった要因の影響を低減して、自動操舵を安定的に行うことができるようにする。自動操舵システム(10)は、調整モードと、作業路面を走行するときの作業モードを備え、調整モードにおいて、車両特徴量演算部(122)は、計測部(14)によって得られた計測値を用いて車両特徴量を求め、作業モードにおいて、車両特徴量演算部(122)は、車両特徴量の更新を行い、路面特徴量演算部(124)は、計測部(14)によって得られた計測値を用いて路面特徴量を求める。

Description

作業用車両の自動操舵システム
 本発明は、作業路面を走行する作業用車両の位置、速度、姿勢等を検出して、自動操舵を行う作業用車両の自動操舵システムに関する。
 従来、この種の作業用車両の自動操舵としては、例えば、特許文献1に記載された農用自律走行車両の操舵方法が知られている。この操舵方法では、地磁気方位センサやジャイロなどの車両走行方位センサにより走行方位を検出し、目標方位との偏差値を確認して車両が常に目標方位に向って走行するように自立走行車両の操舵機構を制御している。
 また、特許文献2では、自動田植機に磁気センサまたはジャイロ等の方位センサを備えており、教習行程で目標方位を習得すると共に、自律走行行程では、教習行程で習得した目標方位に自動田植機が進行方位をとるように自動操舵装置で操縦するようになっており、さらに、現在取得した方位データの平均処理をした平均方位を目標方位として更新していくことで、往復直進走行の平行性を向上できるようにしている。
 また、特許文献3では、トラクタの無人運転において、光ファイバジャイロ及び地磁気方位センサによって時々刻々得られる位置情報と方位情報に基づいて、予め設定した作業経路上の目標位置及び目標方位に対する偏差を算出し、この偏差をなくすように、トラクタを操向する操舵角を求めて時々刻々の舵角制御を行っている。
特開平7-184411号公報 特開2003-44136号公報 特開平10-66405号公報
 しかしながら、以上のような作業用車両が走行する路面は、平坦な舗装道路とは限らず、凹凸、傾斜、または水、草、木、その他の異物の存在といった様々な路面環境にあることが多く、そのような路面環境によって発生する車両の姿勢の変化、振動が自動操舵に大きな影響を及ぼすという問題がある。
 また、様々な路面環境における長期に渡る運用が想定される作業用車両は、経年変化や車両個体差が大きく、これらが自動操舵に大きな影響を及ぼすという問題がある。
 本発明はかかる課題に鑑みなされたもので、様々な路面環境や、経年変化、車両個体差といった要因の影響を低減して、自動操舵を安定的に行うことができる自動操舵システムを提供することをその目的とする。
 上記目的を達成するために、本発明は、目標走行経路に沿って作業路面を自動走行するように作業用車両を操舵する作業用車両の自動操舵システムであって、
 車両の位置、速度、方位及び姿勢を含む計測値を計測する計測部と、
 処理部と、を備え、
 前記処理部は、車両特徴量を演算する車両特徴量演算部と、路面特徴量を演算する路面特徴量演算部と、車両特徴量と路面特徴量とを用いて操舵量を演算する操舵量演算部と、を備え、
 自動操舵システムは、作業路面を走行するときの作業モードと、作業モードの事前に行う調整モードと、を備え、
 調整モードにおいて、前記車両特徴量演算部は、前記計測部によって得られた計測値を用いて車両特徴量を求め、
 作業モードにおいて、前記車両特徴量演算部は前記車両特徴量の更新を行い、前記路面特徴量演算部は、前記計測部によって得られた計測値を用いて路面特徴量を求める、
 ことを特徴とする。
 前記車両特徴量は、操舵量-旋回半径関係、車体傾き及び車体自身の車体振動の少なくとも1つを含むことができる。
 前記路面特徴量は、路面傾き及び路面の滑りやすさの少なくとも1つを含むことができる。
 前記処理部は、さらに、路面特徴量演算部で求めた路面特徴量を閾値と比較して、閾値を超えた場合に警告信号を出力する危険警告手段を備えることができる。
 本発明によれば、作業路面を走行するときの作業モードと、作業モードの事前に行う調整モードと、を備え、調整モードにおいて車両特徴量を求め、作業モードにおいて車両特徴量の更新を行うと共に、路面特徴量を求めることにしたので、車両特徴量と路面特徴量とを分離してそれぞれを正確に求めることができるようになる。これによって、車両の経年変化や個体差を車両特徴量で把握し、路面の影響を路面特徴量で把握して、これらの影響を加味した上で操舵量を求めることにより、様々な路面環境や、経年変化、車両個体差といった要因の影響を低減して、自動操舵を安定的に行うことができる。
本発明の実施形態による自動操舵システムの全体図である。 図1の自動操舵システムの部分ブロック図である。 調整モード時を表すブロック図である。 作業モード時を表すブロック図である。 目標走行経路の一例である。 車体または路面の傾きと、GPSアンテナの取付位置と車両の位置との関係を表す図である。
 以下、図面を参照しながら、本発明の実施形態について説明する。
 図1に示すように、本実施形態による自動操舵システム10は、作業用車両100に搭載される。作業用車両100としては、農耕、土木、伐採、芝刈り、その他の作業用トラクタ、建設機器等とすることができ、作業用車両100は、舗装路面に限らず、作業を実行するために作業場である圃場、森林、未舗装道路の、凹凸、傾斜、または水、草、木その他の異物が存在するような様々な路面(作業路面と称する)を走行する。自動操舵システム10は、かかる作業用車両の運転の負担を軽減するために作業用車両100に搭載され、作業用車両100の自動操舵を行う。
 自動操舵システム10は、大まかに、車両特徴量及び路面特徴量を更新し、操舵量を演算する主処理部12と、車両の位置、速度、姿勢等の運動情報等を検出する計測部14と、車両が走行するべき目標走行経路を入力または演算により決定し、それを出力する目標走行経路決定部16と、ユーザからの入力及びユーザへの出力を行うユーザインターフェース18と、主処理部12から得られた操舵量に基づき車両のハンドル200を制御するステアリング制御機構20と、を備える。
 図2に示したように、主処理部12は、車両特徴量を演算する車両特徴量演算部122と、路面特徴量を演算する路面特徴量演算部124と、操舵量を演算する操舵量演算部126と、加速度振動演算部128と、角速度振動演算部130と、危険警告部136と、自動操舵停止手段138と、を備える。これらの詳細については後述する。
 計測部14は、複数の計測部を有しており、衛星航法システムを構成するGPSアンテナ及びGPS受信機を備え、車両の位置、速度、進行方向を計測する位置・速度計測部141と、3軸回りの角速度をそれぞれ検出するジャイロ、3軸方向の加速度をそれぞれ検出する加速度計及び磁気方位角を検出する磁気方位センサを備え、車両の加速度、角速度、姿勢、方位を計測する姿勢・方位計測部142と、車両のハンドル200の回転角を計測するロータリエンコーダからなるハンドル回転角センサ144と、を備え、主処理部12へと送られて格納・使用される。これら位置・速度計測部141と姿勢・方位計測部142とは、必要に応じて互いの計測値のやりとりをして補正・補間を行い計測値の精度を高めることができる。
 目標走行経路決定部16は、作業用車両が作業場を走行するべき目標走行経路を決定する。目標走行経路は、直線または曲線のいずれともすることができ、図5に示すように、1つ以上の直線または曲線からなる1つ以上の区間から構成することができる。複数の区間は、連続してもまたは非連続であってもよい。直線区間の場合には、少なくとも始点と終点を含む複数のウエイポイントWPの位置で特定することができる。また、曲線区間の場合には、少なくとも始点と終点を含む複数のウエイポイントWPの位置、曲線の種類(円弧、クロソイド等)、曲率半径等で特定することができる。
 ユーザインターフェース18は、ユーザからの既知の車両情報等の入力を受け付けると共に、ユーザに対して危険発生時の警報等を視覚的または音響的に出力することができる。入力された車両情報等は、主処理部12へと送られて格納・使用され、車両特徴量演算部122において車両特徴量の初期値または初期値の導出に使用される。
 ステアリング制御機構20は、前記操舵量演算部126で演算された操舵量に基づきモータドライバを介して駆動される電動モータ等を備え、伝達機構を介して電動モータからの回転をハンドル200またはステアリングロッドに伝達し、演算された操舵量だけ回転させるようになっている。
 自動操舵システム10は、「調整モード」と「作業モード」といったモードを備えている。調整モードは、作業モードの事前に行われ、図3に示すブロック図に示すように、車両を動作させ、作業場またはそれ以外の場所の可能な限り平坦な路面において、マニュアル走行または自動操舵による走行を行い、計測部14からの計測値を車両モデルに適用し、車両モデルを更新して、車両特徴量ccを求める。この調整モードの際に、少なくとも右回り及び左回りのステアリングをそれぞれ行い、車両を右旋回及び左旋回させるようにする。この時、左右回りにそれぞれ限界までステアリングを行うことで特徴量の推定精度を向上させることができる。
 また、作業モードは、図4に示すブロック図に示すように、実際の作業路面の自動操舵制御による走行である。作業モードでは、車両を動作させ、作業場で自動操舵を行い、計測部14からの計測値を車両モデルに適用し、車両モデルを更新して、車両特徴量ccを求めると共に、路面モデルに適用し、路面モデルを更新して、路面特徴量crを求める。
 以下、具体的に説明する。主処理部12では、例えば以下の変数を取り扱う。
Figure JPOXMLDOC01-appb-T000001

(1) 車両特徴量
 車両特徴量演算部122は、作業場での作業中に大きく変化しない車両の状態等を表す特徴量である車両特徴量を求める。よって、車両特徴量は、経年変化または車両個体差を特徴づけるものとなる。
 具体的には、作業前の調整モードにおいて計測部14によって計測された計測値に基づき車両特徴量の初期値を車両モデルに適用し、車両モデルを更新する。また、作業モードにおいてその車両特徴量の更新を適宜行う。作業前の調整モードにおいて車両特徴値を決定することで、走行中の更新量を小さくして安定した特性を得る。
 車両特徴量として具体的には、ハンドル回転角(操舵量)-旋回半径関係、車両傾き、車両自身の運動による車体振動等を例示することができる。
(1-1) ハンドル回転角(操舵量)-旋回半径関係
 ハンドル回転角と旋回半径の関係、すなわち、車両のハンドルを回転させた場合に標準状態でどの程度旋回するかを表す特徴量であり、以下の4つの特徴量を挙げることができる。
(1-1-1) ハンドル回転角-タイヤ回転角比:g=(glgr) (次元:なし)
 ハンドル回転角とタイヤ回転角との比であり、右回りと左回りに対してそれぞれ存在する。
(1-1-2) ホイールベース:l (次元:m)
 前輪軸と後輪軸の距離である。初期値はユーザ等によってユーザインターフェース18に入力された入力値,あるいは標準値とする。
 上記2つの特徴量は以下の手順により同時に求められる。
 調整モードにおいて入力されたハンドル回転角と旋回半径から次式にて導出する。旋回半径は、位置・速度計測部141で計測される車両の位置の軌跡から求める。左右について、同様に求めることができる。
   g=α/(sin-1(l/R))
 作業モードにおいては、入力した複数のハンドル回転角とそれにより計測された旋回半径による多項式を基に値を更新する。第一、第二のハンドル回転角と旋回半径をそれぞれα12,R1,R2とした時、推定ハンドル-タイヤ回転角比gx、推定ホイールベースlxについて以下の2式が立つ。
   R1=lx/(sin(α1/gx))
   R2=lx/(sin(α2/gx))
 上記、2式より、推定ハンドル-タイヤ回転角比gx、推定ホイールベースlxが求められる。これらの値と現在値の誤差に応じて、それぞれの値を更新する。ここで、εg、εlは更新量である。
   g[n]=g[n-1]+εg(gx-g[n-1])
   l[n]=l[n-1]+εl(lx-l[n-1])
(1-1-3) ハンドル回転限界(操舵量限界):αRr, αRl (次元:rad)
 ハンドルの右回転限界と左回転限界の角度を表す特徴量である。調整モードにおいてハンドル左右回転限界までハンドル200を操作し、その際のハンドル回転角センサ144のハンドル回転角の計測値から得る。
 作業モード中に、計測したハンドル回転角がハンドル回転限界を超えた場合には値を更新する。
 この右回転限界と左回転限界から、その中点となるハンドルの原点の基準値を決定することができる。
(1-1-4) ハンドル非対称性(操舵非対称性):β (次元:rad)
 ハンドルの原点が、左右ハンドル回転限界の中点からずれている量を表す特徴量である。初期値は0とする。
 本来、ハンドルは対称であるので、平坦な一様路面で車両が直進をしている場合には、ハンドルは左右の回転限界の中点であるはずであるが、経年変化または個体誤差によって、ハンドルの原点がずれている場合がある。
 作業モード中に、位置・速度計測部141より求められる車両位置から一定時間直進が認められるにも関わらず、ハンドル回転角センサ144で計測されるハンドル回転角が原点からずれている場合にその誤差に応じて、原点を更新する。ただし、傾斜による横滑りに対向するハンドル回転角は誤差から除外する。
    β=( Σiα[i])/I-αC
 ここで、iは直進が認められた範囲のサンプルを表し,その総数をIとする。α[i]はi時点のハンドル回転角の計測値、αCは後述する、(3-4)斜面横滑り量C分の位置ずれを補正するために必要なハンドル回転角である。
(1-2) 車体傾き:ba=( bφ bθ) (次元:(rad rad))
 タイヤの圧力や取付位置の歪み等により常に車体にかかる傾きを表す特徴量であり、ロール角とピッチ角がある。この特徴量の導出は、調整モードにおいてその計測区間内に姿勢・方位計測部142で計測されるロール角、ピッチ角の平均を求めることで行う。
   ba=(Σia[i])/I
 ここで、iは調整モード中の全サンプルを表し、その総数をIとする。a[i]はi時点の姿勢計測値である。この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号を出力し、ユーザインターフェース18で車両・タイヤ取付に問題がある旨の警告を視覚的又は音響的に出力して、ユーザに知らしめる。
 作業モード中には車体傾きと現在の傾きの誤差に応じて更新する。
   ba[n]=ba[n-1]+εa(a-ba[n-1])
 ここで、nは更新時を示し、εaは更新量である。
 この特徴量は、計測部14にフィードバックされて、センサの取付位置の補正に使用されることができる。即ち、図6(a)に示すように、位置・速度計測部141で位置を求めるGPSアンテナの取付位置を地面に投影した位置P1と、車両の位置P2(通常は車両の幅方向中心位置、例えば、左右前輪中心または左右後輪中心)との間の偏差は、車体傾きの影響を受けるために、得られた車体傾きによって位置・速度計測部141から出力される位置を補正することができる。
(1-3) 車両自身の運動による車体振動:bv[k]=(bAx[k] bAy[k] bAz[k] bΩx[k] bΩy[k] bΩz[k]) (次元:(m/s2 m/s2 m/s2 rad/s rad/s rad/s)
 エンジンやタイヤの凹凸などにより常に車体にかかる振動を表す特徴量である。この特徴量の導出は、調整モードにおいてその計測区間内の全振動の平均を求めることで行う。
   bv[k]= (ΣiV[i][k])/I
 ここで、iは調整モード中の全サンプルを表し、その総数をIとする。V[i][k]はi時点の車体振動である。この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号を出力し、ユーザインターフェース18で車両・タイヤ取付に問題がある旨の警告を視覚的又は音響的に出力して、ユーザに知らしめる。
 また、作業モード中は、車両自身の運動による車体振動と現在の車体振動の誤差に応じて車体振動を更新する。
   bv[n][k]=bv[n][k]+εbv(V[k]-bv[n][k])
 ここで、nは更新時を示し、εbvは更新量である。
(2) 路面特徴量
 路面特徴量演算部124は、作業場での作業中に常に変化する路面の状態を表す特徴量である路面特徴量を求める。具体的には、作業モードにおいて、計測部14によって計測された計測値に基づき路面特徴量を路面モデルに従って演算することで、走行中の状態に応じて即座に適応して速応性を高める。
 路面特徴量として具体的には、路面傾き、路面傾きの変化量、計測滑りやすさ、路面状態による車体による車体振動、推定滑りやすさ、推定される不安定性、斜面横滑り量等を例示することができる。
(2-1) 路面傾き:ha =( hφhθ ) (次元:(rad rad))
 土地の起伏による車体の傾斜を表す特徴量であり、ロール角とピッチ角がある。この特徴量の導出は、姿勢・方位計測部142で計測されるロール角、ピッチ角から(1-2)で求めた車体傾きbaを減ずる。
   ha=a-ba
 この特徴量は、車体傾きの場合と同様に、計測部14にフィードバックされて、センサの取付け位置の補正に使用されることができる。即ち、図6(b)に示すように、位置・速度計測部141で位置を求めるGPSアンテナの取付位置を地面に投影した位置P1と、車両の位置P2(通常は車両の幅方向中心位置、例えば、左右前輪中心または左右後輪中心)との間の偏差は、路面傾きの影響を受けるために、得られた路面傾きによって位置・速度計測部141から出力される位置を補正することができる。
(2-2) 路面傾きの変化量:Δha =( Δhφ Δhθ ) (次元:(rad rad))
 土地の起伏による車体の傾斜の変化量を表す特徴量であり、ロール角とピッチ角のそれぞれの変化量がある。この特徴量の導出は、路面傾きの前時点サンプルと現時点サンプルの差分から得る。
   Δha[n]= ha[n]- ha[n-1]
 ここで、nは現時点を表す。
 この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号をユーザインターフェース18に出力し、ユーザインターフェース18で危険がある旨の警告を視覚的又は音響的に出力してユーザに知らしめる。また、自動操舵停止手段138において自動操舵の停止を行うことができる。
(2-3) 計測滑りやすさ:SR (次元:なし)
 計測される車両の旋回半径と、所望の旋回半径の比率を表す特徴量である。期待される旋回半径に対して実際の旋回半径との差異を表す。この特徴量の導出は、位置・速度計測部141で求められる車両の位置の軌跡から求めた旋回半径の計測値を、所望の旋回半径で除することで得る。
   SR=Rm/R
 ここで、Rmは旋回半径の計測値であり、Rは制御しているハンドル回転角によって得られるべき所望の旋回半径である。よって、所望の旋回半径を計測滑りやすさで補正した後、その補正旋回半径に対応するハンドル操作量を求めることで、所望の旋回半径を得ることができる。
(2-4) 路面状態による車体振動:gv[k]=(gAx[k] gAy[k] gAz[k] gΩx[k] gΩy[k] gΩz[k]) (次元:(m/s2 m/s2m/s2rad/s rad/s rad/s))
 路面の凹凸などにより一時的に車体にかかる振動を表す特徴量である。
 この特徴量は、姿勢・方位計測部142から出力される3軸加速度及び3軸角速度の一定時間前までのパワースペクトルを加速度振動演算部128及び角速度振動演算部130において求め、計測値から(1-3)で求めた車両自身の運動による車体振動を減ずる。
   gv[k]=V[k]- bv[k].
 以下の(2-5)の推定滑りやすさの導出、(2-6)の推定不安定性の導出に使用する。
(2-5) 推定滑りやすさ :Sv (次元:なし)
 路面状態による車体振動から推定される路面の滑りやすさを表す特徴量である。砂利地等で高くなる。
 この特徴量は、路面状態による車体振動の中から高周波成分を抽出することにより求める。
   Sv=ζΣkWS[k] gv[k]
 ここで、WS[k]は高周波成分を抽出するための窓関数であり、Σkは全帯域の値を総和することを表す。また、ζは高周波成分量から滑りやすさに変換するパラメータである。以下の(2-7)の斜面横滑り量の導出に使用する。
(2-6) 推定される不安定性:Dv 次元:なし
 路面状態による車体振動から推定される路面の不安定性を表す特徴量である。凸凹した荒地などほど高くなる。
 この特徴量は、路面状態による車体振動の中から低周波成分を抽出することにより求める。
   DvkWD[k] gv[k]
 ここで、WD[k]は低周波成分を抽出するための窓関数であり、Σkは全帯域の値を総和することを表す。この特徴量は、危険警告部136において、閾値と比較することができ、閾値を超えた場合、危険警告部136が警告信号をユーザインターフェース18に出力し、ユーザインターフェース18で危険がある旨の警告を視覚的又は音響的に出力してユーザに知らしめる。また、自動操舵停止手段138において自動操舵の停止を行うことができる。
(2-7) 斜面横滑り量:C (次元:m)
 傾斜と滑りやすさから推定される横滑り量を表す特徴量である。この特徴量は、路面傾きと滑りやすさを乗ずることにより求める。
   C= Sv hφ
 この斜面横滑り量Cは、以下のハンドル回転角の算出に使用する。
(3) ハンドル回転角
 最終的な車両の自動操舵の目標は、
  ・車両を目標走行経路上に走行させる。
  ・車両を目標方向に向けさせる。
ことである。
 これらを満たすため、操舵量演算部126は、以上の特徴量から操舵量であるハンドル回転角を、以下の手順で求める。
(3-1) 目標走行経路の決定
 目標走行経路決定部16で決定された目標走行経路が操舵量演算部126へと入力され、計測部14で求めた現在車両位置から目標走行経路のうちの現在の区間を特定する。
(3-2) 目標進行方向の決定
 操舵量演算部126は、特定された目標走行経路の現在の区間と、計測部14で求めた現在車両位置との位置偏差wを求める。
 この位置偏差wは、例えば、直線区間であれば、現在車両位置から目標走行経路に対する垂線に沿って計った現在車両位置と目標走行経路との距離とすることができる。または、直線区間の終点を通り区間に直交する直線と、現在車両位置との距離を求め、その距離に対応する直線区間の終点手前の位置と、現在車両位置との距離とすることができる。
 曲線区間であれば、区間始点に対応する地点を通過した時刻から現時刻までの時間で車両の速度を積分することにより距離を求め、その距離に相当する曲線区間の始点から地点(この地点を「目標位置」とする)と、現在車両位置との距離とすることができる。
 目標進行方向θwは目標走行経路の目標方位θtに偏差をw[m]の比例定数aw倍した値を加えて求める。すなわち、
   θwt+aww
である。ここで、比例定数awは目標走行経路への収束速度を決める定数であり、安全性等を考慮して決定する値である。また、awwはその値の上限を90[deg]とする。
 目標方位は、目標走行経路が直線区間であれば直線の方位であり、曲線区間であれば、上記目標位置における接線の方位とすることができる。
(3-3) 旋回半径の決定
 次に、操舵量演算部126は、目標進行方向θwと、位置・速度計測部141によって計測された車両進行方向θwの偏差θdから車両の所望の旋回半径を決定する。
 この時、所望の旋回半径Rはθdに反比例する。すなわち、
   R=add
である。ここで、比例定数adは目標進行方向への収束速度を決める定数であり、安全性等を考慮して決定する値である。また、Rは車両の特性による制約を受ける(一定以上小さなRは取れない)。
(3-4) ハンドル回転角αの決定
 所望の旋回半径に対するハンドル回転角は次式(右旋回の場合)で求めることができる。
   α=gRSin-1(SR/R)-β+αC
 ただし、αがαRrを超える場合にはαをαRrにする。
 ここで、αCは、斜面横滑りC分の位置ずれを補正するために必要なハンドル回転角である。斜面横滑り量Cがある場合、この斜面横滑り量Cによる位置ずれを補正するために必要なハンドル回転角を求めて差し引く。必要なハンドル回転角は、上記(3-2)、(3-3)に準じて行うことができ、
   αC=gRSin-1(SR awC/ ad)
から求めることができる。
 左旋回の場合も同様に求めることができる。
 以上によって求められたハンドル回転角αをステアリング制御機構20に出力して自動操舵を行うことができる。また、危険警告部136によって危険が検出されたときには、自動操舵停止手段138が自動操舵を自動解除することで、危険を回避することができる。自動解除によって、例えばステアリング制御機構20の電動モータのトルクを0にすることができる。または、自動操舵停止手段138は、車両を停止させる信号を出力してもよい。危険警告部136が危険がどうかを検出するために使用する各閾値は、固定値としてもよいし、または可変値としてもよい。
 こうして、路面や車両の状態が変化する場合でも、目標走行経路に車両を誘導することができる。
10 自動操舵システム
12 主処理部
14 計測部
100 作業用車両
122 車両特徴量演算部
124 路面特徴量演算部
126 操舵量演算部
136 危険警告部

Claims (4)

  1.  目標走行経路に沿って作業路面を自動走行するように作業用車両を操舵する作業用車両の自動操舵システムであって、
     車両の位置、速度、方位及び姿勢を含む計測値を計測する計測部と、
     処理部と、を備え、
     前記処理部は、車両特徴量を演算する車両特徴量演算部と、路面特徴量を演算する路面特徴量演算部と、車両特徴量と路面特徴量とを用いて操舵量を演算する操舵量演算部と、を備え、
     自動操舵システムは、作業路面を走行するときの作業モードと、作業モードの事前に行う調整モードと、を備え、
     調整モードにおいて、前記車両特徴量演算部は、前記計測部によって得られた計測値を用いて車両特徴量を求め、
     作業モードにおいて、前記車両特徴量演算部は前記車両特徴量の更新を行い、前記路面特徴量演算部は、前記計測部によって得られた計測値を用いて路面特徴量を求める、
     ことを特徴とする作業用車両の自動操舵システム。
  2.  前記車両特徴量は、操舵量-旋回半径関係、車体傾き及び車体自身の車体振動の少なくとも1つを含むことを特徴とする請求項1記載の作業用車両の自動操舵システム。
  3.  前記路面特徴量は、路面傾き及び路面の滑りやすさの少なくとも1つを含むことを特徴とする請求項1または2に記載の作業用車両の自動操舵システム。
  4.  前記処理部は、さらに、路面特徴量演算部で求めた路面特徴量を閾値と比較して、閾値を超えた場合に警告信号を出力する危険警告手段を備えることを特徴とする請求項1ないし3のいずれか1項に記載の作業用車両の自動操舵システム。
PCT/JP2013/085096 2013-03-29 2013-12-27 作業用車両の自動操舵システム WO2014155893A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13879922.6A EP2980668B1 (en) 2013-03-29 2013-12-27 Work vehicle automatic steering system
US14/780,493 US9708001B2 (en) 2013-03-29 2013-12-27 Automatic steering system for working vehicle
JP2015507972A JP5953426B2 (ja) 2013-03-29 2013-12-27 作業用車両の自動操舵システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074699 2013-03-29
JP2013-074699 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014155893A1 true WO2014155893A1 (ja) 2014-10-02

Family

ID=51622924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085096 WO2014155893A1 (ja) 2013-03-29 2013-12-27 作業用車両の自動操舵システム

Country Status (4)

Country Link
US (1) US9708001B2 (ja)
EP (1) EP2980668B1 (ja)
JP (1) JP5953426B2 (ja)
WO (1) WO2014155893A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114621A (zh) * 2015-05-08 2016-11-16 克拉斯工业技术有限责任公司 农业作业机械
JP2017013560A (ja) * 2015-06-29 2017-01-19 株式会社デンソー 車線逸脱回避装置
WO2019189935A1 (ja) * 2018-03-31 2019-10-03 住友建機株式会社 ショベル
WO2020090863A1 (ja) * 2018-10-30 2020-05-07 東京計器株式会社 誤差補正装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139826B2 (en) 2015-04-24 2018-11-27 Autonomous Solutions Inc. Apparatus and method for controlling a vehicle
DE102016121523A1 (de) 2015-11-17 2017-05-18 Lacos Computerservice Gmbh Verfahren zum prädikativen Erzeugen von Daten zur Steuerung eines Fahrweges und eines Betriebsablaufes für landwirtschaftliche Fahrzeuge und Maschinen
US9779562B1 (en) * 2015-12-21 2017-10-03 Lytx, Inc. System for automatically characterizing a vehicle
CN108007417B (zh) * 2016-10-27 2021-02-05 上海华测导航技术股份有限公司 一种农机自动驾驶控制系统角度传感器自动标定方法
EP3537863B1 (de) * 2016-11-10 2024-04-03 LACOS GmbH Verfahren zum prädiktiven erzeugen von daten zur steuerung eines fahrweges und eines betriebsablaufes für landwirtschaftliche fahrzeuge und maschinen
CN106483968B (zh) * 2016-12-13 2023-05-05 桂林理工大学南宁分校 一种用于无人机自动降落的地表面识别装置
US10649457B2 (en) * 2017-05-02 2020-05-12 Cnh Industrial America Llc System and method for autonomous vehicle system planning
US10800423B2 (en) 2018-02-20 2020-10-13 Deere & Company Monitoring steering conditions of an off-road vehicle
US11224154B2 (en) * 2019-03-19 2022-01-18 Cnh Industrial America Llc Headland turn planning for a work vehicle
US11684005B2 (en) 2020-03-06 2023-06-27 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement
US11718304B2 (en) 2020-03-06 2023-08-08 Deere & Comoanv Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement
US11678599B2 (en) * 2020-03-12 2023-06-20 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
US11667171B2 (en) 2020-03-12 2023-06-06 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
US11753016B2 (en) 2020-03-13 2023-09-12 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed
US11685381B2 (en) 2020-03-13 2023-06-27 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed
CN112298354B (zh) * 2020-12-30 2022-01-28 成都信息工程大学 一种无人驾驶汽车转向系统方向盘与前轮转角的状态估计方法
CN115071822A (zh) * 2022-07-13 2022-09-20 摩登汽车有限公司 车辆转向监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399305A (ja) * 1989-09-12 1991-04-24 Toyota Motor Corp 車両用自動操縦制御装置
JPH0519853A (ja) * 1991-07-12 1993-01-29 Toyota Motor Corp 車両用誘導駐車装置
JPH05216535A (ja) * 1992-02-05 1993-08-27 Toyota Motor Corp 車両用自動操縦制御装置
JPH07184411A (ja) 1993-12-28 1995-07-25 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko 農用自律走行車両の操舵方法
JPH1066405A (ja) 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko 作業車両の無人走行による無人作業方法
JP2003022130A (ja) * 2001-07-05 2003-01-24 Tsubakimoto Chain Co 搬送台車及び搬送台車の操舵制御方法
JP2003044136A (ja) 2001-07-30 2003-02-14 Japan Aviation Electronics Industry Ltd 自律直進装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830858A1 (de) * 1998-07-10 2000-01-13 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur Bestimmung einer virtuellen Position
US7127340B2 (en) * 2004-08-17 2006-10-24 Deere & Company Variable gain logic for a GPS based automatic steering system
US8768558B2 (en) 2007-01-05 2014-07-01 Agjunction Llc Optical tracking vehicle control system and method
US8010261B2 (en) * 2007-05-23 2011-08-30 Cnh America Llc Automatic steering correction of an agricultural harvester using integration of harvester header row sensors and harvester auto guidance system
DE102007046678A1 (de) * 2007-09-27 2009-04-09 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Arbeitsfahrzeug
DE102008002699A1 (de) * 2008-06-27 2009-12-31 Robert Bosch Gmbh Vorrichtung und Verfahren zum Steuern einer automatischen Lenkung eines Fahrzeugs und Vorrichtung und Verfahren zum Überprüfen einer Ausführbarkeit einer vorgegebenen Soll-Fahrtrichtungsgröße für ein Fahrzeug
US8275516B2 (en) * 2009-07-21 2012-09-25 Trimble Navigation Limited Agricultural vehicle autopilot rollover risk assessment system
DE102010040549A1 (de) * 2010-09-10 2012-03-15 Robert Bosch Gmbh Kraftfahrzeug-Prüfgerät und Kraftfahrzeug-Prüfverfahren
US20120283909A1 (en) * 2011-05-03 2012-11-08 Dix Peter J System and method for positioning a vehicle with a hitch using an automatic steering system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399305A (ja) * 1989-09-12 1991-04-24 Toyota Motor Corp 車両用自動操縦制御装置
JPH0519853A (ja) * 1991-07-12 1993-01-29 Toyota Motor Corp 車両用誘導駐車装置
JPH05216535A (ja) * 1992-02-05 1993-08-27 Toyota Motor Corp 車両用自動操縦制御装置
JPH07184411A (ja) 1993-12-28 1995-07-25 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko 農用自律走行車両の操舵方法
JPH1066405A (ja) 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko 作業車両の無人走行による無人作業方法
JP2003022130A (ja) * 2001-07-05 2003-01-24 Tsubakimoto Chain Co 搬送台車及び搬送台車の操舵制御方法
JP2003044136A (ja) 2001-07-30 2003-02-14 Japan Aviation Electronics Industry Ltd 自律直進装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114621A (zh) * 2015-05-08 2016-11-16 克拉斯工业技术有限责任公司 农业作业机械
CN106114621B (zh) * 2015-05-08 2019-03-22 克拉斯工业技术有限责任公司 农业作业机械
JP2017013560A (ja) * 2015-06-29 2017-01-19 株式会社デンソー 車線逸脱回避装置
CN107709141A (zh) * 2015-06-29 2018-02-16 株式会社电装 车道脱离避免装置
CN107709141B (zh) * 2015-06-29 2020-11-17 株式会社电装 车道脱离避免装置
US11242088B2 (en) 2015-06-29 2022-02-08 Denso Corporation Lane departure avoidance system
WO2019189935A1 (ja) * 2018-03-31 2019-10-03 住友建機株式会社 ショベル
CN112368449A (zh) * 2018-03-31 2021-02-12 住友建机株式会社 挖土机
JPWO2019189935A1 (ja) * 2018-03-31 2021-03-25 住友建機株式会社 ショベル
EP3779059A4 (en) * 2018-03-31 2021-11-10 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. SHOVEL
JP7307051B2 (ja) 2018-03-31 2023-07-11 住友建機株式会社 ショベル
WO2020090863A1 (ja) * 2018-10-30 2020-05-07 東京計器株式会社 誤差補正装置

Also Published As

Publication number Publication date
JPWO2014155893A1 (ja) 2017-02-16
US9708001B2 (en) 2017-07-18
EP2980668A4 (en) 2017-04-26
US20160052546A1 (en) 2016-02-25
JP5953426B2 (ja) 2016-07-20
EP2980668A1 (en) 2016-02-03
EP2980668B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP5953426B2 (ja) 作業用車両の自動操舵システム
US10602654B2 (en) Auto traveling work vehicle
JP6420173B2 (ja) 自動走行圃場作業車両
US8682599B2 (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
US20180037082A1 (en) Method for compensating for an inclination
JP4127062B2 (ja) 横加速度センサのドリフト量推定装置、横加速度センサの出力補正装置及び路面摩擦状態推定装置
EP2942254B1 (en) Vehicle roll angle estimation device
US11002539B2 (en) Method for detecting a slope of a road
CN113759903A (zh) 无人驾驶车辆及其转向控制方法、电子设备及存储介质
US20190106113A1 (en) Calculation apparatus, control method, program and storage medium
JP2012126293A (ja) 車両の操舵制御装置
JP4264399B2 (ja) 無人搬送車
JP7040308B2 (ja) 無人搬送車の走行制御装置及び走行制御方法
US20090319186A1 (en) Method and apparatus for determining a navigational state of a vehicle
JP3863303B2 (ja) 移動体の位置計測装置
US20210354753A1 (en) Method of stabilization by orientation of a convoy of vehicles
JP7360976B2 (ja) センサ誤差補正装置
JP4269170B2 (ja) 軌道追従制御方法および装置
KR20230062859A (ko) 차량
JP2020164160A (ja) 自動走行圃場作業車両
JP2020080743A (ja) 車両の姿勢推定装置
CN110606088A (zh) 一种电动轮驱动防滑控制策略
JP3271955B2 (ja) 車両の路面摩擦係数推定装置
JP2668249B2 (ja) 車載航行システムにおいて相対方向変化を測定する方法及び装置
JPH0885469A (ja) 車両操舵特性制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507972

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013879922

Country of ref document: EP