WO2014155889A1 - 蓄熱式排ガス浄化装置 - Google Patents

蓄熱式排ガス浄化装置 Download PDF

Info

Publication number
WO2014155889A1
WO2014155889A1 PCT/JP2013/084935 JP2013084935W WO2014155889A1 WO 2014155889 A1 WO2014155889 A1 WO 2014155889A1 JP 2013084935 W JP2013084935 W JP 2013084935W WO 2014155889 A1 WO2014155889 A1 WO 2014155889A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat storage
flow rate
gas purification
passage
Prior art date
Application number
PCT/JP2013/084935
Other languages
English (en)
French (fr)
Inventor
勝也 中山
篤史 畑
藤田 茂樹
翼 程
照彦 尾崎
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to MX2015006885A priority Critical patent/MX361604B/es
Priority to EP13880096.6A priority patent/EP2865943A4/en
Priority to US14/413,970 priority patent/US9726373B2/en
Priority to JP2015507970A priority patent/JP6194950B2/ja
Priority to CN201380025149.9A priority patent/CN104285101B/zh
Publication of WO2014155889A1 publication Critical patent/WO2014155889A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a heat storage type exhaust gas purification device, and more particularly, to a heat storage type exhaust gas purification device that performs exhaust gas purification processing using a heat storage body.
  • volatilities generated from facilities in the adhesive industry (laminate packaging, adhesive tape, etc.), facilities in the printing industry (gravure printing, offset printing), painting facilities, chemical factories, electronics / ceramics facilities, factory cleaning facilities, etc.
  • an exhaust gas purification device as described in Patent Document 1 is used.
  • the exhaust gas purification device includes, for example, an air supply / exhaust port to which an air supply / exhaust valve is attached, a plurality of heat storage chambers provided with heat storage bodies, and a combustion chamber communicating above the heat storage chamber.
  • exhaust gas purification processing is performed by switching between supply and exhaust of exhaust gas using an intake / exhaust valve of a heat storage chamber.
  • the present invention has been made to solve the problems of the prior art, and provides a regenerative exhaust gas purification apparatus that can prevent damage to the apparatus and reliably prevent uneven deposition of silica powder.
  • the purpose is that.
  • the present invention includes a combustion chamber that combusts and decomposes components contained in exhaust gas, a plurality of heat storage chambers each having one end connected to the combustion chamber and each having a heat storage body, Provided at the other end of each of the plurality of heat storage chambers, having an on-off valve and supplying exhaust gas to the heat storage chamber, and provided at the other end of each of the plurality of heat storage chambers, having an on-off valve and processed A discharge section that discharges the exhaust gas, an exhaust passage that is connected to the discharge section and discharges the treated exhaust gas to the outside, and a plurality of bypass passages that connect the combustion chamber and the exhaust passage.
  • the bypass passages are respectively connected to the combustion chambers at positions above the respective heat storage chambers, and each of the bypass passages having opening / closing valves and the exhaust gas in the combustion chambers when the temperature of the heat storage chamber is equal to or higher than a predetermined value.
  • One of gas It is characterized by having a bypass passage control unit for opening operation one or more of the on-off valve of the plurality of bypass passages so as to discharge into the bypass passage.
  • one or more bypass passages are controlled by the bypass passage control section.
  • a plurality of on-off valves are opened to discharge a part of the exhaust gas in the combustion chamber to the bypass passage.
  • the present invention damage to the combustion chamber can be prevented. Furthermore, since the plurality of bypass passages are connected to the combustion chambers at positions above the respective heat storage chambers and have respective on-off valves, the flow rates of the exhaust gas flowing into the respective heat storage bodies can be made the same. Accumulation can be prevented.
  • the plurality of bypass passages are each connected to an upper portion of the combustion chamber.
  • exhaust gas in the combustion chamber can be smoothly discharged to the bypass passage without countering the flow of the exhaust gas. Can do.
  • the present invention preferably further includes a space between the upper side of the first heat storage chamber and the upper side of the second heat storage chamber adjacent to the first heat storage chamber, which is inside the combustion chamber. And a stirring device that is provided in the space and stirs the exhaust gas in the combustion chamber.
  • the stirrer that stirs the exhaust gas in the combustion chamber is provided in the space between the upper space of the adjacent heat storage chambers. The residence time can be lengthened, whereby the decomposition efficiency of the exhaust gas component can be further increased.
  • the present invention preferably further includes a supply passage connected to the supply portion, a blower provided in the supply passage for supplying exhaust gas to the supply portion, an exhaust passage, and an upstream side of the blower in the supply passage.
  • a return passage is connected to return the processed exhaust gas in the exhaust passage to the supply passage, and a flow rate adjusting mechanism for adjusting the flow rate of the processed exhaust gas flowing in the return passage.
  • the flow rate adjusting mechanism is provided in a portion of the exhaust passage where the return passage is connected, and flows through the return passage by adjusting the flow rate of the processed exhaust gas flowing from the exhaust passage to the return passage. It is a three-way valve that adjusts the flow rate of treated exhaust gas.
  • the flow rate adjusting mechanism is provided on the downstream side of the portion to which the return passage of the exhaust passage is connected, and the processed exhaust gas flowing downstream from the portion to which the return pipe of the exhaust passage is connected. It is an adjustment valve that adjusts the flow rate of the processed exhaust gas flowing through the return passage by adjusting the flow rate.
  • the flow rate adjustment mechanism is preferably an adjustment valve that is provided in the return passage and adjusts the flow rate of the processed exhaust gas that passes through the return passage.
  • the flow rate detection unit detects the flow rate of the exhaust gas supplied to the supply unit by the blower, and the flow rate adjustment mechanism is controlled based on the detection result of the flow rate detection unit to flow to the return passage.
  • a flow rate adjusting mechanism control unit for adjusting the flow rate of the processed exhaust gas.
  • the pressure detection unit further detects a pressure in the supply passage downstream of the connection portion with the return passage of the supply passage and upstream of the blower, and the detection result of the pressure detection portion.
  • a flow rate adjusting mechanism control unit that controls the flow rate adjusting mechanism to adjust the flow rate of the processed exhaust gas flowing in the return passage.
  • the flow rate detection unit that detects the flow rate of the exhaust gas supplied to the supply unit by the blower and the connection portion between the return passage of the supply passage and the upstream side of the blower.
  • a pressure detector that detects the pressure in the supply passage, and controls the flow rate adjustment mechanism based on the detection results of the flow rate detector and the pressure detector to adjust the flow rate of the processed exhaust gas flowing in the return passage.
  • a flow rate adjusting mechanism control unit In the present invention configured as described above, it is possible to suppress the static pressure fluctuation that occurs in the apparatus during the opening / closing operation of the opening / closing valves of the supply unit and the discharge unit.
  • the on-off valve of the supply unit and the on-off valve of the discharge unit are close to the flow port forming member in which the flow port of the supplied exhaust gas is formed and the flow port forming member, respectively.
  • the valve body that is movable in the separating direction closes the flow port by contacting the flow port forming member, and contacts the valve body that is spaced from the flow port forming member and opens the flow port.
  • a common silencing tank provided so that exhaust pipes for exhausting the driving air of the air cylinders of the respective on-off valves are joined together. This silencer tank is arranged in a soundproofing device.
  • the exhaust sound of the air cylinder of the on-off valve can be silenced with higher efficiency.
  • the silencing tank of the air cylinder is disposed in the soundproofing device, it is possible to silence the exhaust sound from the exhaust pipe of the air cylinder.
  • the silencing tank is common to the exhaust pipes of all the air cylinders, it is not necessary to provide a silencing tank for each on-off valve, that is, for each air cylinder, so that the structure can be simplified.
  • the soundproofing device is provided so as to surround the blower.
  • the soundproof device of the blower is used as the soundproof device of the air cylinder that drives the on-off valve, it is not necessary to provide a soundproof device dedicated to the air cylinder.
  • a combustion chamber for combusting and decomposing components contained in exhaust gas, a plurality of heat storage chambers each having one end communicating with the combustion chamber and each having a heat storage body, and a plurality of heat storage chambers.
  • the heat storage type exhaust gas purifying apparatus of the present invention it is possible to prevent the apparatus from being damaged and to surely prevent the uneven deposition of silica powder.
  • FIG. 6A is a schematic view showing a two-column heat storage type exhaust gas purification device.
  • FIG. 6B is a schematic view showing a three-column heat storage type exhaust gas purification device. It is a figure for demonstrating the structure of the stirring apparatus provided in the thermal storage type exhaust gas purification apparatus of FIG. 6, and the stirring apparatus by the comparative example for comparing with this.
  • FIG. 7A is a cross-sectional view taken along lines A1-A1, A2-A2, and A3-A3 of FIGS.
  • FIG. 7B is a cross-sectional view taken along A4-A4 in FIG.
  • FIG.7 (c) is a figure which shows the comparative example of a stirring apparatus, and is sectional drawing from the same direction as Fig.7 (a).
  • FIG. 7D is a cross-sectional view taken along A5-A5 in FIG. It is the schematic which shows the modification of the thermal storage type exhaust gas purification apparatus of FIG.
  • FIG. 8A is a schematic view showing a two-column heat storage type exhaust gas purification device.
  • FIG. 8B is a schematic view showing a three-column heat storage type exhaust gas purification device.
  • Fig.9 (a) is the schematic which shows the other modification of the thermal storage type exhaust gas purification apparatus of FIG.
  • FIG. 9B is a schematic view showing a heat storage type exhaust gas purifying apparatus according to a modification of FIG.
  • FIG. 10B is a schematic view showing a heat storage type exhaust gas purifying apparatus according to a modification of FIG. Fig.11 (a) is the schematic which shows the thermal storage type exhaust gas purification apparatus by the other modification of the thermal storage type exhaust gas purification apparatus of FIG.
  • FIG.11 (b) is the schematic which shows the thermal storage type exhaust gas purification apparatus by the modification of Fig.11 (a).
  • FIG. 12A is a schematic view showing a heat storage type exhaust gas purification device according to another modification of the heat storage type exhaust gas purification device of FIG. FIG.
  • FIG. 12B is a schematic diagram showing a heat storage type exhaust gas purification device according to a modification of the heat storage type exhaust gas purification device of FIG.
  • Fig.13 (a) is a figure which shows the silencing structure of the exhaust air of the on-off valve provided in the thermal storage type exhaust gas purification apparatus of FIG.
  • FIG. 13B is a schematic diagram showing another example of a sound-extinguishing structure for exhaust air of an on-off valve provided at a supply port and a discharge port of a heat storage type exhaust gas purification device.
  • the regenerative exhaust gas purification apparatus 1 is suitable for processing components such as organic volatile compounds that can be combusted and oxidized.
  • the heat storage type exhaust gas purification apparatus 1 is suitable for the treatment of exhaust gas containing a large amount of silicone.
  • the heat storage type exhaust gas purification apparatus 1 includes a combustion chamber 10 provided with a burner 9, and a pair of heat storage chambers 11, 12 each having one end (upper end) coupled to and connected to the combustion chamber 10. Is provided.
  • arrows indicate the flow of outside air gas.
  • the heat storage type exhaust gas purification device 1 is provided at the other end (lower end) of each of the pair of heat storage chambers 11 and 12, and includes supply ports 20 and 21 for supplying a gas to be processed as well as on-off valves 14 and 15. . Moreover, it is provided in each other end (lower end) of a pair of heat storage chambers 11 and 12, and has opening / closing valves 17 and 18 and discharge ports 23 and 24 for discharging processed exhaust gas.
  • the heat storage type exhaust gas purification apparatus 1 includes heat storage bodies 26 and 27 provided between one end (upper end) and the other end (lower end) of each of the plurality of heat storage chambers 11 and 12.
  • the heat storage bodies 26 and 27 are arranged such that ceramic members having a plurality of through holes are adjacent to each other.
  • the heat storage type exhaust gas purification apparatus 1 includes an exhaust duct 30 connected to the discharge ports 23 and 24.
  • the exhaust duct 30 is a passage for discharging the treated gas from the regenerative exhaust gas purification apparatus 1 and leading it to a predetermined place.
  • the heat storage type exhaust gas purification apparatus 1 includes a supply duct 29 connected to the supply ports 20 and 21.
  • the supply duct 29 is a supply passage for supplying the gas to be processed into the regenerative exhaust gas purification device 1.
  • the supply duct 29 is provided with a blower 8.
  • the blower 8 guides the gas to be processed to the supply ports 20 and 21 and guides the heat storage chambers 11 and 12 and the combustion chamber 10. At the same time, the blower 8 guides the processed gas to the predetermined discharge location via the discharge ports 23 and 24 and the exhaust duct 30.
  • the heat storage type exhaust gas purification apparatus 1 includes a plurality of bypass passages 31 and 32 connected to the combustion chamber 10.
  • the plurality of bypass passages 31 and 32 communicate the combustion chamber 10 and the exhaust duct 30 respectively.
  • the plurality of bypass passages 31 and 32 are connected to the combustion chamber 10 at positions above the heat storage chambers 11 and 12, respectively.
  • the plurality of bypass passages 31 and 32 have on-off valves 34 and 35, respectively.
  • the plurality of bypass passages 31 and 32 are respectively connected to the upper portion (top plate portion) of the combustion chamber 10.
  • bypass passages 31 and 32 are connected to a top plate part here, it is not restricted to this. That is, the bypass passage may be connected to the side plate portion of the combustion chamber 10 at a position above each of the heat storage chambers 11 and 12.
  • the connection to the top plate is advantageous from the viewpoint of gas flow (can be discharged without countering the gas flow).
  • the heat storage type exhaust gas purification apparatus 1 includes temperature detectors 37 and 38 provided on the upper end sides of the heat storage chambers 11 and 12, and a control unit 40.
  • the temperature detector 37 detects the temperature on the upper side of the heat storage chamber 11.
  • the temperature detector 38 detects the temperature of the upper side of the heat storage chamber 12.
  • the control unit 40 can control the on-off valves 34 and 35 to discharge excess heat.
  • the on-off valves 34 and 35 and the bypass passages 31 and 32 can release excess heat, and can prevent damage due to a rapid rise in the temperature of the combustion chamber 10.
  • the control unit 40 also performs opening / closing control of the opening / closing valves 14, 15, 17, 18.
  • the above-described heat storage type exhaust gas purification apparatus 1 prevents uneven deposition of silica powder and releases excess heat. This point will be described using a heat storage type exhaust gas purification apparatus 301 of a comparative example shown in FIG. .
  • the regenerative exhaust gas purification apparatus 301 according to the comparative example is an apparatus having the same configuration as the regenerative exhaust gas purification apparatus 1 of FIG. 1 except that the bypass passage 31 and the on-off valve 34 are not provided, as shown in FIG. is there. That is, the apparatus 301 includes the bypass passage 32 that is located above the heat storage chamber 12 and includes the on-off valve 35.
  • the flow rate of the gas flowing from the combustion chamber 10 into the heat storage chamber 12 arranged on the side where the bypass passage 32 is provided is smaller than the flow rate of the gas flowing from the combustion chamber 10 into the heat storage chamber 11.
  • the decrease in the gas flow rate to the heat storage chamber 12 means that the flow rate of the gas passing through the heat storage body 27 decreases.
  • the exhaust gas contains silicone (gas)
  • a decrease in the flow rate of the passing gas causes silica to be easily deposited in the heat storage chamber 12.
  • silica powder is deposited on the heat storage chamber 12 more unevenly than the heat storage chamber 11.
  • the heat storage amount of the heat storage body 27 of the heat storage chamber 12 decreases after switching between the supply side and the exhaust side of the heat storage chambers 11 and 12. Since the amount of heat stored in the heat storage chamber 12 on the air supply side is not sufficient, silicone in the inflowed exhaust gas easily adheres to the heat storage body 27. As described above, silicone easily adheres to the heat storage body 27 of the heat storage chamber 12 in a tar-like viscosity state, and the gas ventilation through hole of the heat storage body 27 may be blocked. The heat storage body 27 in which the through-holes are blocked causes a problem that the heat storage function is lowered and the exhaust gas heat cannot be sufficiently recovered. Furthermore, it becomes easy to adhere silicone and has become a vicious circle. Depending on the method of switching control between the supply side and the exhaust side of the heat storage chambers 11, 12, a temperature difference between the heat storage chambers 11, 12 may occur, and the temperature in the combustion chamber 10 may become non-uniform.
  • the heat storage type exhaust gas purification device 1 described with reference to FIG. 1 has bypass passages 31 and 32 provided corresponding to the heat storage chambers 11 and 12 with respect to the device 301 of FIG.
  • the flow rate of the gas flowing into each of the heat storage bodies 26 and 27 can be made the same. Therefore, the apparatus 1 can prevent the uneven deposition of silica that occurs in the apparatus 301.
  • various problems associated with the uneven deposition of silica clogging of through holes in heat storage body”, “insufficient heat recovery”, “temperature difference between heat storage chambers 11 and 12 increases”, “combustion chamber” 10), etc.
  • PID control may be performed by the control unit 40.
  • the P value is 0 to 50%
  • the I value is 0 to 200 sec
  • the D value is 0 to 100 sec. Efficient operation can be realized by PID control.
  • PID control by preventing uneven silica deposition, high VOC decomposition efficiency is achieved as a result.
  • the on-off valves 14 and 15 of the supply ports 20 and 21 and the on-off valves 17 and 18 of the discharge ports 23 and 24 are so-called poppet dampers (poppet valves), and are used for switching the gas flow direction.
  • the on-off valves 14, 15, 17, and 18 have valve bodies 14a, 15a, 17a, and 18a, and cylinders 14b, 15b, 17b, and 18b, respectively.
  • the valve bodies 14a, 15a, 17a, 18a are movable in the vertical direction.
  • valve bodies 14a, 15a, 17a, 18a are attached to the tips of the rods 14c, 15c, 17c, 18c of the cylinders 14b, 15b, 17b, 18b, and move according to the expansion and contraction of the rods 14c, 15c, 17c, 18c. Is done.
  • the supply side (side to which the gas to be processed is supplied) and the exhaust side (the processed gas is supplied) of the heat storage chambers 11 and 12.
  • the operation is performed by switching the discharge side).
  • the switching timing of the on-off valve is measured by, for example, the inlet / outlet temperature (the temperature of the supplied and exhausted gas is measured by the temperature detector 47 provided in the supply duct 29 and the temperature detector 48 provided in the exhaust duct 30. And the temperature).
  • FIG. 1 An exhaust gas purification method using the above-described heat storage type exhaust gas purification device 1 will be described.
  • the arrows in FIG. 1 indicate the flow of the gas to be processed and the exhaust gas that has been processed by the apparatus 1 through the supply on / off valve 14 that has been opened.
  • the heat storage chamber 11 is on the supply side and the heat storage chamber 12 is on the discharge side.
  • the exhaust gas to be processed reaches the heat storage chamber 11 through the supply port 20.
  • the exhaust gas is heated by exchanging heat with the heat storage body 26 when passing through the heat storage body 26 on the heat storage chamber 11 side.
  • the heat storage body 26 is radiated and cooled.
  • the exhaust gas heated by the heat accumulator 26 and reaching the combustion chamber 10 undergoes combustion decomposition of components contained in the combustion chamber 10.
  • the treated exhaust gas after combustion passes through the heat storage body 27 of the heat storage chamber 12. At this time, the treated exhaust gas is cooled by exchanging heat with the heat storage body 27. On the other hand, the heat storage body 27 is stored. The cooled treated exhaust gas passes through the discharge port 24 and reaches the exhaust duct 30.
  • FIG. 1 in order to explain the functions of the bypass passages 31 and 32, an arrow indicating that the on-off valves 34 and 35 are opened and the processed gas is flowing is shown.
  • the on-off valves 34 and 35 are closed. That is, no gas flows in the bypass passages 31 and 32.
  • the inside of the apparatus 1 becomes high temperature, for example because the concentration of the exhaust gas supplied to the apparatus 1 is high, excess heat is released from the bypass passages 31 and 32 as necessary.
  • the heat storage body 26 of one heat storage chamber 11 is radiated and cooled, and the heat storage body 27 of the other heat storage chamber 12 is stored and heated. For this reason, after a lapse of a certain time, the on-off valve 14 of the supply port 20 of the heat storage chamber 11 is closed and the on-off valve 17 of the discharge port 23 is opened. At the same time, the opening / closing valve 15 of the supply port 21 of the heat storage chamber 12 is opened, and the opening / closing valve 18 of the discharge port 24 is closed. By this operation, the gas flow direction is reversed, and the heat storage chamber 11 is switched to the discharge side and the heat storage chamber 12 is switched to the supply side.
  • the exhaust gas to be processed next can be heated by heat exchange with the heat storage body 27 that has sufficiently stored heat.
  • the heated exhaust gas is processed in the combustion chamber 10 and is cooled and exhausted by heat exchange with the heat storage body 26.
  • the opening / closing valve 14 of the supply port 20 of the heat storage chamber 11 is opened, and the opening / closing valve 17 of the discharge port 23 is closed.
  • the opening / closing valve 15 of the supply port 21 of the heat storage chamber 12 is closed and the opening / closing valve 18 of the discharge port 24 is opened.
  • the on-off valve 34 and / or the on-off valve By switching 35, a desired bypass passage is selected from the bypass passages 31 and 32, and in some cases, excess heat is released from both bypass passages.
  • uneven deposition of silica can be prevented, and various problems associated with the uneven deposition of silica described with reference to FIG. 2 (“clogging of through-holes in heat storage body”, “insufficient heat recovery”). ”,“ The temperature difference between the heat storage chambers 11 and 12 is increased ”,“ temperature nonuniformity in the combustion chamber 10 ”, etc.) can be prevented.
  • high VOC decomposition efficiency is achieved as a result.
  • the burner 9 is provided on the top plate portion of the combustion chamber 10, but the burner 9 is provided on the side plate portion of the combustion chamber 10, that is, for example, a regenerative exhaust gas purification device shown in FIG. 3. Even if it is 41, the same effect can be obtained.
  • the apparatus 41 has the same configuration except for the position where the burner 9 is attached to the apparatus 1 (same configurations are given the same reference numerals), and thus detailed description thereof is omitted.
  • the heat storage type exhaust gas purification device 1 is a so-called two-column type, whereas the heat storage type exhaust gas purification device 51 has a substantially similar configuration except that it is a so-called three-column type having three heat storage chambers and heat storage bodies. Prepare. Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the heat storage type exhaust gas purification device 51 includes a combustion chamber 10 provided with a burner 9 and a plurality of heat storage chambers 11, 12, which are connected to one end (upper end) of the combustion chamber 10. 13.
  • the heat storage type exhaust gas purification device 51 includes supply ports 20, 21, and 22 having open / close valves 14, 15, and 16, similarly to the heat storage type exhaust gas purification device 1. Further, the heat storage type exhaust gas purification device 51 includes discharge ports 23, 24, 25 having opening / closing valves 17, 18, 19. The on-off valves 16 and 19 have the same configuration as the other on-off valves 14, 15, 17 and 18.
  • the heat storage type exhaust gas purification device 51 includes heat storage bodies 26, 27, and 28 provided in the plurality of heat storage chambers 11, 12, and 13.
  • the heat storage body 28 has the same configuration as the heat storage bodies 26 and 27.
  • the heat storage type exhaust gas purification device 51 includes a supply duct 29, an exhaust duct 30, and a blower 8.
  • the heat storage type exhaust gas purification device 51 connects the other end side of the heat storage chambers 11, 12, 13 and the supply duct 29, and before the gas on the other end side of the heat storage chambers 11, 12, 13 flows into the blower 8.
  • It has a purge pipe 53 that is a circulation pipe that joins the gas. That is, the purge pipe 53 that is a circulation pipe is connected to the supply duct 29 at a position upstream of the blower 8.
  • the purge pipe 53 functions as a return pipe that draws the gas on the other end side of the heat storage chambers 11, 12, 13 to the upstream side of the blower 8 and temporarily returns it to the supply duct 29.
  • the purge pipe 53 is provided with purge first to third on-off valves 54, 55, and 56 and an adjustment valve 57.
  • the first on-off valve 54 opens and closes the flow from the other end side of the heat storage chamber 11 to the supply duct 29.
  • the second on-off valve 55 opens and closes the flow from the other end side of the heat storage chamber 12 to the supply duct 29.
  • the third on-off valve 56 opens and closes the flow from the other end side of the heat storage chamber 13 to the supply duct 29.
  • the adjustment valve 57 is provided in the purge pipe 53 and adjusts the flow rate of the gas joined to the supply duct 29 from the other end side of the heat storage chambers 11, 12, and 13.
  • the regenerative exhaust gas purification device 51 includes a plurality of bypass passages 31, 32, 33 connected to the combustion chamber 10.
  • the plurality of bypass passages 31, 32, 33 communicate the combustion chamber 10 and the exhaust duct 30, respectively.
  • the plurality of bypass passages 31, 32, 33 are connected to the combustion chamber 10 at positions above the heat storage chambers 11, 12, 13, respectively.
  • the plurality of bypass passages 31, 32, 33 have opening / closing valves 34, 35, 36, respectively.
  • the plurality of bypass passages 31, 32 and 33 are connected to the upper part (top plate part) of the combustion chamber 10.
  • the bypass passages 31, 32, and 33 are connected to the top plate portion, but are not limited thereto.
  • the heat storage type exhaust gas purification device 51 includes temperature detectors 37, 38, 39 provided at the upper ends of the heat storage chambers 11, 12, 13 and a control unit 40.
  • the temperature detector 39 detects the temperature of the upper side of the heat storage chamber 13. Based on the temperature information from the temperature detectors 37, 38, 39, the control unit 40 can control the on-off valves 34, 35, 36 to discharge excess heat.
  • the on-off valves 34, 35, 36 and the bypass passages 31, 32, 33 release excess heat, thereby preventing damage due to a rapid rise in the temperature of the combustion chamber 10.
  • the control unit 40 also performs open / close control of the open / close valves 14-19.
  • the regenerative exhaust gas purification device 51 configured as described above includes a bypass passage at a position on the upper side corresponding to each tower (each thermal storage chamber), similarly to the regenerative exhaust gas purification device 1, Prevents uneven deposition of silica powder and releases excess heat. Furthermore, the effect similar to the effect of the heat storage type exhaust gas purifying apparatus 1 such as prevention of occurrence of various problems associated with uneven silica deposition is realized.
  • FIG. 5 indicates the flow of the gas to be processed and the processed gas.
  • FIG. 5A it is assumed that the heat storage chamber 11 is on the supply side and the heat storage chamber 13 is on the discharge side. Purge is performed in the heat storage chamber 12. The exhaust gas to be processed reaches the heat storage chamber 11 through the supply port 20.
  • the exhaust gas is heated by exchanging heat with the heat storage body 26 when passing through the heat storage body 26 of the heat storage chamber 11.
  • the heat storage body 26 is radiated and cooled.
  • the exhaust gas heated by the heat accumulator 26 and reaching the combustion chamber 10 undergoes combustion decomposition of components contained in the combustion chamber 10.
  • the treated gas after combustion passes through the heat storage body 28 in the combustion chamber 13. At this time, the treated gas is cooled by exchanging heat with the heat storage body 28. On the other hand, the heat storage body 28 is stored. The cooled treated gas passes through the discharge port 25 and reaches the exhaust duct 30.
  • the second opening / closing valve 55 for purging is opened, and the first and third opening / closing valves 54, 56 are closed.
  • a small amount of treated gas (clean air) purified in the combustion chamber is supplied to the heat storage chamber 12, and untreated gas staying inside the heat storage chamber 12 is purged from the other end side of the heat storage chamber 12. It can be returned to the supply duct 29 via the pipe 53.
  • the adjustment valve 57 is adjusted so that the flow rate of the crane air introduced into the heat storage chamber 12 and the flow rate of the untreated gas returned from the heat storage chamber 12 to the supply duct 29 become appropriate amounts (small amounts). . Since the three-column type apparatus 51 can purge the remaining heat storage chamber in addition to the supply side and discharge side heat storage chambers, it prevents the discharge of untreated gas into the exhaust duct 30 and ensures stable performance. it can.
  • the heat storage body 26 of the heat storage chamber 11 is radiated and cooled, and the heat storage body 28 of the heat storage chamber 13 is stored and heated.
  • the opening / closing valve 18 of the discharge port 24 of the heat storage chamber 12 is opened after a predetermined time has elapsed (first valve operation).
  • the on-off valve 19 of the discharge port 25 of the heat storage chamber 13 is closed (second valve operation).
  • the on-off valve 16 of the supply port 22 of the heat storage chamber 13 is opened (third valve operation).
  • the on-off valve 14 of the supply port 20 of the heat storage chamber 11 is closed (fourth valve operation). Note that the operation state shown in FIG. 5A is switched to the operation state shown in FIG.
  • the heat storage chamber 13 is on the supply side, and the heat storage chamber 12 is on the discharge side. Purge is performed in the heat storage chamber 11. Further, the first to fourth valve operations are sequentially performed at intervals of, for example, about 2 seconds, thereby preventing untreated gas from entering the exhaust duct 30 (the same applies to the case described later).
  • the purge on / off valve is also switched at the same time.
  • the first on-off valve 54 is opened, and the second and third on-off valves 55 and 56 are closed.
  • a small amount of treated gas (clean air) purified in the combustion chamber is supplied to the heat storage chamber 11, and untreated gas staying inside the heat storage chamber 11 is purged from the other end side of the heat storage chamber 11. It can be returned to the supply duct 29 via the pipe 53.
  • the exhaust gas to be processed next can be heated by heat exchange with the heat storage body 28 that has sufficiently stored heat, as shown in FIG.
  • the heated exhaust gas is processed in the combustion chamber 10 and cooled and exhausted by heat exchange with the heat storage body 27.
  • the on-off valve 17 of the outlet 23 of the heat storage chamber 11 is opened (first valve operation).
  • the on-off valve 18 of the discharge port 24 of the heat storage chamber 12 is closed (second valve operation).
  • the on-off valve 15 of the supply port 21 of the heat storage chamber 12 is opened (third valve operation).
  • the on-off valve 16 of the supply port 22 of the heat storage chamber 13 is closed (fourth valve operation). Note that the operation state shown in FIG. 5B is switched to the operation state shown in FIG. 5C by the first to fourth valve operations.
  • the thermal storage chamber 12 is a supply side
  • the thermal storage chamber 11 is a discharge side. Purge is performed in the heat storage chamber 11.
  • the purge on / off valve is also switched at the same time.
  • the third on-off valve 56 is opened, and the first and second on-off valves 54 and 55 are closed.
  • a small amount of treated gas (clean air) purified in the combustion chamber is supplied to the heat storage chamber 13, and unprocessed gas remaining in the heat storage chamber 13 is purged from the other end side of the heat storage chamber 13. It can be returned to the supply duct 29 via the pipe 53.
  • the exhaust gas to be processed next can be heated by heat exchange with the heat storage body 27 that has sufficiently stored heat, as shown in FIG.
  • the heated exhaust gas is processed in the combustion chamber 10 and is cooled and exhausted by heat exchange with the heat storage body 26.
  • the on-off valve 19 of the discharge port 25 of the heat storage chamber 13 is opened (first valve operation).
  • the on-off valve 17 of the discharge port 23 of the heat storage chamber 11 is closed (second valve operation).
  • the on-off valve 14 of the supply port 20 of the heat storage chamber 11 is opened (fourth valve operation).
  • the on-off valve 15 of the supply port 21 of the heat storage chamber 12 is closed (third valve operation). Note that the operation state shown in FIG.
  • FIG. 5C is switched to the operation state shown in FIG. 5A by the first to fourth valve operations.
  • Fig.5 (a) the thermal storage chamber 11 is a supply side, and the thermal storage chamber 13 is a discharge side. Purge is performed in the heat storage chamber 12.
  • the purge on / off valve is also switched as described above.
  • the on-off valves 34, 35, 36 is selected from the bypass passages 31, 32, and 33 by switching one or more of them, and in some cases, excess heat is released from both bypass passages.
  • the uneven deposition of silica can be prevented, and various problems associated with the uneven deposition of silica described with reference to FIG. 2 can be prevented.
  • high VOC decomposition efficiency is achieved as a result.
  • heat storage type exhaust gas purification devices 61 and 71 according to modifications of the above-described heat storage type exhaust gas purification device 1 and the like will be described with reference to FIGS. That is, a stirring plate may be provided in the combustion chamber of the above-described heat storage type exhaust gas purification device 1 or the like.
  • the heat storage type exhaust gas purification device 61 shown in FIG. 6A has the same configuration as the heat storage type exhaust gas purification device 1 except that a stirring plate 62 which is a stirring device is provided.
  • a heat storage type exhaust gas purification device 71 shown in FIG. 6B has the same configuration as the heat storage type exhaust gas purification device 51 except that a stirring plate 72 is provided. Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the combustion chamber 10 constituting the device 61 shown in FIG. 6A there is a space on the upper side of one heat storage chamber 11 and a space on the upper side of the heat storage chamber 12 adjacent to the one heat storage chamber 11.
  • a stirring plate 62 is provided in the space between the two.
  • the stirring plate 62 is supported by a support member 63 that is fixed to an upper portion and a lower portion of a casing 64 that forms this space.
  • the combustion chamber 10 and the plurality of heat storage chambers 11 and 12 are formed in the same casing, and this casing is a “casing 64 forming a space”.
  • the combustion chamber 10 and the plurality of heat storage chambers 11, 12, 13 are formed in the same casing, and this casing is a “casing 74 forming a space”.
  • this casing is a “casing 74 forming a space”.
  • the stirring plates 62 and 72 shown in FIGS. 6 and 7 can ensure a long residence time of the processing gas in the combustion chamber 10. By increasing the residence time of the processing gas in the combustion chamber 10, the decomposition efficiency of exhaust gas components can be increased.
  • formula exhaust gas purification apparatus 61 and 71 is not restricted to the stirring plate 62 and 72 mentioned above shown to Fig.7 (a), FIG.7 (b) etc., For example, FIG. The stirring plate 66 shown in c) and FIG. 7 (d) may be used.
  • stirring plates 66 are provided in a space between the upper space of one heat storage chamber and the upper space of the heat storage chamber adjacent to the one heat storage chamber.
  • a set of stirring plates is fixedly distributed.
  • the top plate portion 68a, the bottom plate portion 68b, and the pair of side surfaces 68c and 68d that form this space are cantilevered by a support member 67.
  • the stirring plate 66 shown in FIGS. 7C and 7D can also ensure a long residence time of the processing gas in the combustion chamber 10.
  • the stirring plates 62 and 72 shown in FIGS. 7 (a) and 7 (b) described above have a longer residence time than the stirring plate 66 shown in FIGS. 7 (c) and 7 (d). This is advantageous from the viewpoint of view and safety of mounting the stirring plate. That is, as shown in FIGS. 7 (a) and 7 (c), even when the cross section is elongated, the stirring plate can be appropriately arranged, the gap can be reduced, and the stirring effect can be enhanced. For example, even when the dimension in the height direction is increased, the number in the height direction may be increased, and even when the dimension in the horizontal direction is increased, the number in the horizontal direction may be increased. In addition, the stirring plates 62 and 72 can be held firmly compared to the cantilever support.
  • the heat storage type exhaust gas purification apparatuses 61 and 71 shown in FIGS. 6 and 7 have the same effects as described in the heat storage type exhaust gas purification apparatuses 1 and 51. That is, it is possible to prevent uneven deposition of silica powder and to release excess heat. In addition, various problems associated with uneven deposition of silica powder are solved.
  • the stirring plates 62 and 72 shown in FIGS. 6 to 7 are also effective when the bypass passages 31 and 32 are not provided.
  • the regenerative exhaust gas purification device 81 shown in FIG. 8A has the same configuration as the device 61 shown in FIG. 6A except that the bypass passages 31 and 32 are not provided.
  • the regenerative exhaust gas purification device 91 shown in FIG. 8B has the same configuration as the device 71 shown in FIG. 6B except that the bypass passages 31, 32, and 33 are not provided. . Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the stir plate 62 and 72 can secure the residence time of the processing gas in the combustion chamber 10. Moreover, it is advantageous also from the viewpoint of extending the residence time and from the viewpoint of safety of attaching the stirring plate.
  • the heat storage type exhaust gas purification devices 81 and 91 as described above can improve the safety of attaching the stirring plate and increase the decomposition efficiency of the exhaust gas components.
  • the regenerative exhaust gas purification apparatus 101, 111, 121 has the same configuration as that of the regenerative exhaust gas purification apparatus 1 except that it includes a configuration for suppressing the static pressure fluctuation described below. Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted. *
  • the heat storage type exhaust gas purification apparatus 101 includes a combustion chamber 10, heat storage chambers 11, 12, open / close valves 14, 15, 17, 18, supply ports 20, 21, discharge ports 23, 24, Heat storage bodies 26 and 27, supply duct 29, exhaust duct 30, blower 8, bypass passages 31 and 32, on-off valves 34 and 35, and the like (devices 111 and 121 described in FIGS. 10A and 11A). Is the same).
  • the burner 9 is provided in the combustion chamber 10 as described above, and the temperature detectors 37 and 38 are also provided in the apparatus 101 and the like.
  • the blower 8 is provided in the supply duct 29 and guides the gas to be processed to the supply ports 20 and 21.
  • the heat storage type exhaust gas purification apparatus 101 has a return pipe 102 that connects the exhaust duct 30 and the supply duct 29.
  • the return pipe 102 joins the treated gas in the exhaust duct 30 with the gas before flowing into the blower 8.
  • the device 101 has a three-way valve 103 provided at a branching portion (a portion to which the return pipe is connected) 30 a of the exhaust duct 30 to the return pipe 102.
  • the three-way valve (three way valve) 103 passes through the return pipe 102 by adjusting the flow rate of the gas flowing to the discharge side from the portion 30a to which the return pipe 102 of the exhaust duct 30 is connected by adjusting the opening of the blade. It is a regulating valve that regulates the gas flow rate.
  • the heat storage type exhaust gas purification apparatus 101 includes a flow rate detection unit 104 and a pressure detection unit 105.
  • the flow rate detection unit 104 detects the flow rate of the gas blown to the blower 8 and guided to the supply ports 20 and 21.
  • the pressure detector 105 detects the pressure in the supply duct 29 after the gas from the return pipe 102 is merged and before flowing into the blower 8.
  • the control unit 40 of the regenerative exhaust gas purification apparatus 101 controls the opening degree of the adjustment valve (three-way valve 103) based on the detection results of the flow rate detection unit 104 and the pressure detection unit 105.
  • the control unit 40 also has the same function as that described in the heat storage type exhaust gas purification device 1.
  • the flow rate detection unit 104 is, for example, an orifice flow meter, and a differential pressure transmitter 104a or the like may be provided.
  • the pressure detection unit 105 is, for example, a differential pressure transmitter.
  • the inverter 8 b provided in the electric motor 8 a of the blower 8, the differential pressure transmitter 104 a and the pressure transmitter (105) are electrically connected via the control unit (controller) 40.
  • the three-way valve 103 is provided with a positioner 103a, and the positioner 103a is electrically connected to the control unit 40.
  • the opening degree of the three-way valve 103 is adjusted via the control unit 40 based on the pressure measured by the differential pressure transmitter (pressure detection unit 105) and the differential pressure of the differential pressure transmitter 104a.
  • the regenerative exhaust gas purification apparatus 101 configured as described above suppresses the static pressure fluctuation during the opening / closing operation of the opening / closing valves 14, 15, 17, 18 provided at the supply ports 20, 21 and the discharge ports 23, 24. it can. This point will be described in detail.
  • the on-off valves 14, 15, 17, and 18 are switched, but for a moment, the on-off valve on the supply port side and the open / close side on the discharge port side are switched.
  • the valve may be open at the same time. Along with this, the pressure loss in the apparatus 101 is reduced, and there is a possibility that the static pressure fluctuation in the apparatus 101 occurs.
  • the present apparatus 101 includes the return pipe 102 and the three-way valve 103, this static pressure fluctuation can be suppressed. Although it is conceivable to suppress the static pressure fluctuation by adjusting the air volume of the blower 8, the present apparatus 101 realizes the suppression of the static pressure fluctuation by adjusting the adjustment valve (three-way valve 103).
  • the three-way valve 103 is adjusted so that the opening degree toward the return pipe 102 increases when the pressure detected by the pressure detection unit 105 decreases. Further, the three-way valve 103 is adjusted so that the opening degree toward the return pipe 102 becomes large when the flow rate detected by the flow rate detection unit 104 becomes large.
  • the adjustment may be made only by the detection result of either the pressure detection unit 105 or the flow rate detection unit 104.
  • the three-way valve 103 may be adjusted at a preset timing or opening degree when the on-off valves 14, 15, 17, 18 are switched.
  • the position where the flow rate detection unit 104 and the pressure detection unit 105 are provided is not limited to this.
  • the flow rate detection unit 104 may detect the flow rate of the portion before the branching portion 30 a to the return pipe 102 of the exhaust duct 30 after being discharged from the discharge ports 23 and 24.
  • the pressure detection unit 105 may detect the pressure in the supply duct 29 before (upstream) the gas from the return pipe 102 is merged, for example.
  • the return pipe 102 can reduce not only the function of suppressing the static pressure fluctuation as described above but also the fuel cost during the warm-up operation. That is, in the heat storage type exhaust gas purification device, a temperature raising operation or a standby operation may be performed. At this time, the air is taken in and the combustion chamber and the heat storage chamber are warmed up. At this time, the fuel cost can be reduced by circulating through the return pipe 102.
  • the heat storage type exhaust gas purifying apparatus 101 it is possible to suppress the static pressure fluctuation at the time of switching of the on-off valves on the supply side and the discharge side. As a result, an increase in the amount of air flowing into the apparatus 101 from the processing target facility due to the static pressure fluctuation can be prevented, and an increase in the amount of exhaust air discharged from the exhaust duct 30 can also be prevented.
  • the regenerative exhaust gas purification apparatuses 111 and 121 described later have the same effects as the regenerative exhaust gas purification apparatus 101, but the regenerative exhaust gas purification apparatus 101 achieves this effect with the simplest configuration.
  • the heat storage type exhaust gas purification device 111 has a return pipe 102 that connects the exhaust duct 30 and the supply duct 29.
  • the regenerative exhaust gas purification device 111 has a regulating valve 113 provided at a position on the exhaust side (downstream side, that is, the exhaust side of the exhaust duct 30) in the exhaust duct 30 and a portion 30a to which the return pipe 102 is connected. .
  • the adjusting valve 113 adjusts the flow rate of the gas passing through the return pipe 102 by adjusting the flow rate of the gas flowing from the portion 30a to which the return pipe 102 of the exhaust duct 30 is connected to the discharge side. Furthermore, the regenerative exhaust gas purification device 111 has a regulating valve 114 provided in the return pipe 102. The adjustment valve 114 adjusts the flow rate of the gas passing through the return pipe 102. The regenerative exhaust gas purification device 111 can effectively suppress the static pressure fluctuation by the adjusting valves 113 and 114.
  • the heat storage type exhaust gas purification device 111 includes a flow rate detection unit 104 and a pressure detection unit 105, similarly to the heat storage type exhaust gas purification device 101.
  • the function of the control unit 40 of the heat storage type exhaust gas purification device 111 has substantially the same function as that of the heat storage type exhaust gas purification device 101.
  • the adjustment valves 113 and 114 are provided with positioners 113a and 114a, for example.
  • the positioners 113a and 114a are electrically connected to the control unit 40 and the opening degree is adjusted.
  • the regenerative exhaust gas purification device 111 configured as described above opens and closes the on-off valves 14, 15, 17, 18 provided at the supply ports 20, 21 and the exhaust ports 23, 24, similarly to the regenerative exhaust gas purification device 101. Static pressure fluctuation during operation can be suppressed. That is, the opening degree of the adjustment valves 113 and 114 is adjusted so that the flow rate toward the return pipe 102 increases when the pressure detected by the pressure detection unit 105 decreases. Moreover, the opening degree of the regulating valves 113 and 114 is adjusted so that the flow rate toward the return pipe 102 increases when the flow rate detected by the flow rate detection unit 104 increases.
  • the heat storage type exhaust gas purification device 111 it is possible to suppress the static pressure fluctuation at the time of switching between the supply-side and discharge-side on-off valves.
  • the device 121 described later also has the same effect as the device 111, but the regenerative exhaust gas purification device 111 can more effectively suppress the static pressure fluctuation.
  • the heat storage type exhaust gas purification device 121 includes a return pipe 102 that connects the exhaust duct 30 and the supply duct 29.
  • the device 121 is provided in the return pipe 102 and has a regulating valve 123.
  • the adjustment valve 123 adjusts the flow rate of the gas passing through the return pipe 102.
  • the device 121 can suppress the static pressure fluctuation by the adjusting valve 123.
  • the heat storage type exhaust gas purification device 121 includes a flow rate detection unit 104 and a pressure detection unit 105, similarly to the heat storage type exhaust gas purification device 101.
  • the function of the control unit 40 of the heat storage type exhaust gas purification device 121 has substantially the same function as that of the heat storage type exhaust gas purification device 101.
  • the adjustment valve 123 is provided with a positioner 123a. The positioner 123a is electrically connected to the control unit 40, and the opening degree is adjusted.
  • the regenerative exhaust gas purification device 121 configured as described above opens and closes the on-off valves 14, 15, 17, and 18 provided at the supply ports 20 and 21 and the exhaust ports 23 and 24, similarly to the regenerative exhaust gas purification device 101. Static pressure fluctuation during operation can be suppressed. That is, the opening degree of the adjustment valve 123 is adjusted so that the flow rate toward the return pipe 102 increases when the pressure detected by the pressure detection unit 105 decreases. Further, the opening of the adjustment valve 123 is adjusted so that the flow rate toward the return pipe 102 increases when the flow rate detected by the flow rate detection unit 104 increases.
  • the regenerative exhaust gas purification device 121 has a simple structure and has a certain effect. However, when the pressure loss inside the device is reduced, the exhaust gas is not necessarily sufficiently drawn into the suction side of the blower 8 and is externally connected from the exhaust duct 30. May be released. In contrast, the regenerative exhaust gas purification apparatuses 101 and 111 can more effectively suppress static pressure fluctuations. Further, the heat storage type exhaust gas purification apparatus 101 realizes this with the simplest configuration.
  • the above-described heat storage type exhaust gas purification devices 101, 111, 121 have the same effects as described in the devices 1, 51, etc. That is, it is possible to prevent uneven deposition of silica powder and to release excess heat. In addition, various problems associated with uneven deposition of silica powder are solved.
  • FIGS. 9 to 11 The effect of providing the return pipe 102 and the regulating valve (three-way valve 103, regulating valve 113, regulating valve 123, etc.) in FIGS. 9 to 11 is also effective when the bypass passages 31, 32, etc. are not provided. is there.
  • the regenerative exhaust gas purification device 131 shown in FIG. 9B has the same configuration as the device 101 shown in FIG. 9A except that it does not have a bypass passage.
  • the regenerative exhaust gas purification device 151 shown in FIG. 11 (b) has the same configuration as the device 121 shown in FIG. 11 (a) except that it does not have a bypass passage. Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the regenerative exhaust gas purification apparatuses 131, 141, 151 shown in FIGS. 9B, 10B, and 11B are on-off valves 14, 15 provided at the supply ports 20, 21 and the discharge ports 23, 24. , 17, and 18 can suppress the static pressure fluctuation during the opening / closing operation. As a result, an increase in the amount of air flowing into the apparatus 101 from the processing target facility due to the static pressure fluctuation can be prevented, and an increase in the amount of exhaust air discharged from the exhaust duct 30 can also be prevented.
  • the regenerative exhaust gas purification device 171 has substantially the same configuration as that of the regenerative exhaust gas purification device 1 except that it has a configuration for providing a silencing effect described below. Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the heat storage type exhaust gas purification device 171 includes a combustion chamber 10, heat storage chambers 11, 12, open / close valves 14, 15, 17, 18, supply ports 20, 21, exhaust ports 23, 24, The heat storage bodies 26 and 27, the supply duct 29, the exhaust duct 30, the air blower 8, the bypass passages 31 and 32, the on-off valves 34 and 35, and the like are provided.
  • the combustion chamber 10 is provided with the burner 9 as described above, and the device 171 is also provided with temperature detectors 37 and 38 and the like.
  • the blower 8 is provided in the supply duct 29 and guides the gas to be processed to the supply ports 20 and 21.
  • the on-off valves 14 and 15 of the supply ports 20 and 21 of the apparatus 171 and the on-off valves 17 and 18 of the discharge ports 23 and 24 are, as shown in FIG. 13A, a flow port forming member 172, a valve body 173, An air cylinder 174.
  • the on-off valves 14, 15, 17, and 18 are so-called poppet dampers (poppet valves).
  • the structure described with reference to FIG. 13 is an example of a more specific structure of the on-off valves 14, 15, 17, and 18.
  • the distribution port forming member 172 also serves as the bottom of the heat storage chambers 11 and 12.
  • the circulation port forming member 172 is provided with a circulation port 172a.
  • the valve body 173 is attached to the tip of the rod 179 of the air cylinder 174 and is movable in a direction approaching and separating from the flow port forming member 172 according to the expansion and contraction of the rod 179. Further, the valve body 173 closes the flow port 172a by contacting the flow port forming member 172, and opens the flow port 172a by being separated from the flow port forming member 172.
  • the air cylinder 174 has a solenoid valve 174a and drives the valve body 173 in a direction in which the valve body 173 is brought into contact with and separated from the air cylinder 174.
  • the exhaust pipes 175 for exhausting the drive air of the air cylinders 174 are joined together and joined to a common silencing tank 176.
  • the sound deadening tank 176 is provided with a sound absorbing material 176a on its outer surface, for example. However, the sound absorbing material may be provided on the inner surface of the silencing tank 176.
  • the silencer tank 176 main body is formed, for example, in a tubular shape or a box shape with a steel plate or the like. For example, glass wool, rock wool, rubber or the like is used for the sound absorbing material 176a.
  • the sound deadening tank 176 is disposed in a soundproof device 177 for the blower 8.
  • the soundproof device 177 is provided so as to surround the blower 8, and a soundproof material 177 a is provided on the inner surface.
  • a soundproof material may be provided on the outer surface of the soundproof device 177.
  • the soundproof device may have a panel structure in which steel panel panels are combined.
  • glass wool, rock wool, rubber or the like is used for the soundproofing material 177a.
  • the heat storage type exhaust gas purification device 171 configured as described above realizes to mute the exhaust sound of the air cylinder 174 of the on-off valve with higher efficiency. That is, by providing the soundproofing device 177 with the silencer tank 176 to which the exhaust pipe 175 of the air cylinder 174 is connected, the exhaust sound of the air cylinder 174 (exhaust sound from the exhaust pipe 175) can be silenced twice. it can.
  • the silencing tank 176 is common to all the exhaust pipes 175 and does not need to be provided for each on-off valve (for each air cylinder), so that the configuration can be simplified. Further, since the soundproofing device 177 is for the blower 8, only the sound deadening tank 176 is required for the air cylinder, and it is not necessary to provide it separately.
  • formula exhaust gas purification apparatus 171 is not only the apparatus 1 but apparatus 41,51,61,71,81,91,101, 111, 121, 131, 141, 151 are also applicable.
  • the silencer structure of the exhaust air of the on-off valve applicable to these heat storage type exhaust gas purifying devices is limited to the characteristic configuration (silencer tank 176, soundproof device 177, etc.) described with reference to FIG. Instead of this, a structure as shown in FIG. 13B may be adopted.
  • an exhaust pipe 185 for exhausting drive air of each air cylinder 174 is connected to a discharge port 185a provided in the housing 186.
  • the housing 186 is provided to hold the air cylinder 174 and surround the rod 179.
  • a sound absorbing material 186 a is provided on the outer surface of the housing 186.
  • the sound absorbing material 186a is the same material as the sound absorbing material 176a.
  • FIG. 13 (b) portions having the same configuration as in FIG. 13 (a) and the like are denoted by the same reference numerals and detailed description thereof is omitted.
  • FIG. 13 (b) can mute the exhaust sound of the air cylinder of the on-off valve by the sound absorbing material 186a on the outer surface of the housing 186.
  • the structure shown in FIG. 13A described above is a double structure of the sound deadening tank 176 and the soundproofing device 177, it is possible to realize sound silencing with higher efficiency than the structure shown in FIG. 13B.
  • the above-described heat storage type exhaust gas purification device 171 has the same effect as described in the devices 1, 51 and the like. That is, it is possible to prevent uneven deposition of silica powder and to release excess heat. In addition, various problems associated with uneven deposition of silica powder are solved.
  • the effect by providing the silencing tank 176, the soundproofing device 177, etc. of Fig.12 (a) is effective also when not having the bypass passages 31 and 32 grade
  • the regenerative exhaust gas purification device 191 shown in FIG. 12B has the same configuration as the device 171 shown in FIG. 12A except that it does not have a bypass passage. Parts having the same configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the regenerative exhaust gas purification device 191 shown in FIG. 12B realizes to mute the exhaust noise of the air cylinder 174 of the on-off valve with higher efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Abstract

 本発明の蓄熱式排ガス浄化装置は、排気ガスに含有される成分を燃焼分解する燃焼室と、それぞれ燃焼室に一端が連通しそれぞれが蓄熱体を備えた複数の蓄熱室と、複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに排気ガスを蓄熱室に供給する供給口と、複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに処理済の排気ガスを排出する排出口と、排出口に接続され処理済みの排気ガスを外部へ排出する排気ダクトと、燃焼室と排気ダクトを接続する複数のバイパス通路であって、これらの複数のバイパス通路は、それぞれ各蓄熱室の上方側の位置で燃焼室に接続されるとともに、それぞれ開閉弁を有する複数のバイパス通路と、蓄熱室の温度が所定値以上の場合には、燃焼室内の排気ガスの一部をバイパス通路へ排出するように複数のバイパス通路の一又は複数の開閉弁を開操作する制御部と、を有する。

Description

蓄熱式排ガス浄化装置
 本発明は、蓄熱式排ガス浄化装置に係り、特に、蓄熱体を用いて排ガスの浄化処理を行う蓄熱式排ガス浄化装置に関する。
 従来、接着業界(ラミネート包装、接着テープ等)の施設、印刷業界(グラビア印刷、オフセット印刷)の施設、塗装施設、化学工場、電子・セラミックス業界の施設、工場用洗浄施設等から発生する揮発性有機化合物(VOC:Volatile Organic Compounds)等の可燃性有害成分を含有する排ガスの浄化処理を行うために、例えば特許文献1に記載のような排ガス浄化装置が用いられている。
 排ガス浄化装置は、例えば、給気・排気弁が取付けられた給気口・排気口、蓄熱体を設けた複数の蓄熱室、さらに、蓄熱室の上方に連通する燃焼室を備えている。この排ガス処理装置においては、蓄熱室の給気・排気弁により排ガスの給気・排気を切り換えて運転することにより、排ガスの浄化処理が行われるようになっている。
特開2004-77017号公報
 しかしながら、従来の排ガス浄化装置において、排ガス浄化装置内の温度が高温になると装置を破損することがあり、そのために、運転中に装置から余剰熱を放出させることが必要となる場合がある。また、シリコーンを含む排ガスを処理する場合に、余剰熱の放出を行ったときに、複数の蓄熱室のうちいずれかの蓄熱室にシリカ粉が偏堆積するという問題がある。また、シリカ粉の偏堆積は、蓄熱室の蓄熱量の偏りを招き、そのため排ガスが十分昇温されないまま燃焼室に導かれるという問題もある。
 そこで、本発明は、従来技術の問題を解決するためになされたものであり、装置の破損を防止すると共にシリカ粉の偏堆積等を確実に防止することができる蓄熱式排ガス浄化装置を提供することを目的としている。
 上記の目的を達成するために、本発明は、排気ガスに含有される成分を燃焼分解する燃焼室と、それぞれ前記燃焼室に一端が連通しそれぞれが蓄熱体を備えた複数の蓄熱室と、複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに排気ガスを蓄熱室に供給する供給部と、複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに処理済の排気ガスを排出する排出部と、排出部に接続され前記処理済みの排気ガスを外部へ排出する排気通路と、燃焼室と排気通路を接続する複数のバイパス通路であって、これらの複数のバイパス通路は、それぞれ各蓄熱室の上方側の位置で燃焼室に接続されるとともに、それぞれ開閉弁を有する複数のバイパス通路と、蓄熱室の温度が所定値以上の場合には、燃焼室内の排気ガスの一部をバイパス通路へ排出するように複数のバイパス通路の一又は複数の開閉弁を開操作するバイパス通路用制御部と、を有することを特徴としている。
 このように構成された本発明においては、排気ガスの濃度が濃い等の理由により燃焼室の温度が高温になった場合であっても、バイパス通路用制御部により、複数のバイパス通路の一又は複数の開閉弁を開操作して、燃焼室内の排気ガスの一部をバイパス通路へ排出するようにしている。この結果、本発明によれば、燃焼室の破損を防止することができる。さらに、複数のバイパス通路は、それぞれ各蓄熱室の上方側の位置で燃焼室に接続されそれぞれ開閉弁を有するので、各蓄熱体に流入する排気ガスの流量を同じにできるので、シリカの偏った堆積を防止できる。
 本発明において、好ましくは、複数のバイパス通路は、それぞれ燃焼室の上部に接続される。
 このように構成された本発明においては、複数のバイパス通路が燃焼室の上部に接続されているので、燃焼室内の排気ガスを、排気ガスの流れに逆らうことなくスムーズにバイパス通路に排出することができる。
 本発明は、好ましくは、更に、燃焼室の内部である、第1の蓄熱室の上部側の空間と、第1の蓄熱室に隣接する第2の蓄熱室の上部側の空間との間の空間に設けられ、燃焼室内の排気ガスを攪拌する攪拌装置と、を有する。
 このように構成された本発明においては、隣接する蓄熱室の上部側の空間との間の空間に燃焼室内の排気ガスを攪拌する攪拌装置を設けたので、処理される排気ガスの燃焼室内の滞留時間を長くすることができ、これにより、排気ガス成分の分解効率をより高めことができる。
 本発明は、好ましくは、更に、供給部に接続される供給通路と、供給通路に設けられ、排気ガスを供給部に供給するための送風機と、排気通路と、供給通路の送風機より上流側を接続し、排気通路中の処理済の排気ガスを供給通路に戻す戻り通路と、この戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構と、を有する。
 このように構成された本発明においては、供給部及び排出部の開閉弁の開閉動作時に装置内に生じる静圧変動を抑えることができる。この結果、本発明によれば、静圧変動に伴う処理対象施設から本装置への処理される排気ガスの流入風量の増大を防ぐことができ、さらに、排気通路から排出される排出風量の増大も防ぐことができる。
 本発明において、好ましくは、流量調整機構は、排気通路の前記戻り通路が接続される部分に設けられ、排気通路から戻り通路に流れる処理済の排気ガスの流量を調整することにより戻り通路を流れる処理済の排気ガスの流量を調整する三方弁である。
 本発明において、好ましくは、流量調整機構は、排気通路の戻り通路が接続される部分より下流側に設けられ、排気通路の戻り配管が接続される部分より下流側に流れる処理済の排気ガスの流量を調整することにより戻り通路を流れる処理済の排気ガスの流量を調整する調整弁である。
 本発明において、好ましくは、流量調整機構は、戻り通路中に設けられ、戻り通路を通る処理済の排気ガスの流量を調整する調整弁である。
 本発明は、好ましくは、更に、送風機により供給部に供給される排気ガスの流量を検出する流量検出部と、この流量検出部の検出結果に基づいて流量調整機構を制御して戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構用制御部と、を有する。
 このように構成された本発明においては、供給部及び排出部の開閉弁の開閉動作時に装置内に生じる静圧変動を抑えることができる。この結果、本発明によれば、静圧変動に伴う処理対象施設から本装置への処理される排気ガスの流入風量の増大を防ぐことができ、さらに、排気通路から排出される排出風量の増大も防ぐことができる。
 本発明は、好ましくは、更に、供給通路の戻り通路との接続部よりも下流側で且つ前記送風機より上流側の供給通路中の圧力を検出する圧力検出部と、この圧力検出部の検出結果に基づいて流量調整機構を制御して戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構用制御部と、を有する。
 このように構成された本発明においては、供給部及び排出部の開閉弁の開閉動作時に装置内に生じる静圧変動を抑えることができる。この結果、本発明によれば、静圧変動に伴う処理対象施設から本装置への処理される排気ガスの流入風量の増大を防ぐことができ、さらに、排気通路から排出される排出風量の増大も防ぐことができる。
 本発明は、好ましくは、更に、送風機により供給部に供給される排気ガスの流量を検出する流量検出部と、供給通路の戻り通路との接続部よりも下流側で且つ前記送風機より上流側の供給通路中の圧力を検出する圧力検出部と、これらの流量検出部及び圧力検出部のそれぞれの検出結果に基づいて流量調整機構を制御して戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構用制御部と、を有する。
 このように構成された本発明においては、供給部及び排出部の開閉弁の開閉動作時に装置内に生じる静圧変動を抑えることができる。この結果、本発明によれば、静圧変動に伴う処理対象施設から本装置への処理される排気ガスの流入風量の増大を防ぐことができ、さらに、排気通路から排出される排出風量の増大も防ぐことができる。
 本発明において、好ましくは、供給部の開閉弁及び前記排出部の開閉弁は、それぞれ、供給される排気ガスの流通口が形成された流通口形成部材と、この流通口形成部材に対して近接及び離間する方向に移動可能であり、流通口形成部材に当接して流通口を閉とするとともに、流通口形成部材から離間して前記流通口を開とする弁体と、弁体を当接及び離間する方向に駆動するエアシリンダと、を有し、更に、開閉弁のぞれぞれのエアシリンダの駆動エアを排気する排気配管が合流するように設けられた共通の消音タンクと、を有し、この消音タンクは、防音デバイス内に配置されている。
 このように構成された本発明においては、開閉弁のエアシリンダの排気音をより高い効率で消音することができる。また、エアシリンダの消音タンクが防音デバイス内に配置されているので、エアシリンダの排気配管からの排気音を二重に消音することができる。さらに、消音タンクは全てのエアシリンダの排気配管に共通なので、開閉弁毎即ちエアシリンダ毎に消音タンクを設ける必要がないので、構造を簡素化できる。
 本発明において、好ましくは、防音デバイスは、送風機を囲むように設けられている。
 このように構成された本発明においては、開閉弁を駆動するエアシリンダの防音デバイスとして送風機の防音デバイスを使用するので、エアシリンダ専用の防音デバイスを設ける必要がない。
 本発明の第2の発明は、排気ガスに含有される成分を燃焼分解する燃焼室と、それぞれ燃焼室に一端が連通しそれぞれが蓄熱体を備えた複数の蓄熱室と、複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに排気ガスを蓄熱室に供給する供給部と、複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに処理済の排気ガスを排出する排出部と、排出部に接続され処理済みの排気ガスを外部へ排出する排気通路と、燃焼室の内部である、第1の蓄熱室の上部側の空間と、第1の蓄熱室に隣接する第2の蓄熱室の上部側の空間との間の空間に設けられ、燃焼室内の排気ガスを攪拌する攪拌装置と、を有することを特徴としている。
 本発明の蓄熱式排ガス浄化装置によれば、装置の破損を防止すると共にシリカ粉の偏堆積等を確実に防止することができる。
本発明の一実施形態による蓄熱式排ガス浄化装置を示す概略図である。 図1の蓄熱式排ガス浄化装置の比較例による蓄熱式排ガス浄化装置を示す概略図である。 図1の蓄熱式排ガス浄化装置の変形例による蓄熱式排ガス浄化装置を示す概略図である。 図1の蓄熱式排ガス浄化装置の他の変形例による3塔式の蓄熱式排ガス浄化装置を示す概略図である。 図4に示す蓄熱式排ガス浄化装置による排ガス浄化の各工程を示す図である。 図1の蓄熱式排ガス浄化装置のさらに攪拌装置を有する変形例による蓄熱式排ガス処理を示す概略図である。図6(a)は2塔式の蓄熱式排ガス浄化装置を示す概略図である。図6(b)は3塔式の蓄熱式排ガス浄化装置を示す概略図である。 図6の蓄熱式排ガス浄化装置に設けられた攪拌装置の構造と、これと比較するための比較例による攪拌装置を説明するための図である。図7(a)は、図6及び図8のA1-A1、A2-A2,A3-A3に沿って見た断面図である。図7(b)は、図7(a)のA4-A4に沿って見た断面図である。図7(c)は、攪拌装置の比較例を示す図であり図7(a)と同様の方向からの断面図である。図7(d)は、図7(c)のA5-A5に沿って見た断面図である。 図6の蓄熱式排ガス浄化装置の変形例を示す概略図である。図8(a)は、2塔式の蓄熱式排ガス浄化装置を示す概略図である。図8(b)は、3塔式の蓄熱式排ガス浄化装置を示す概略図である。 図9(a)は、図1の蓄熱式排ガス浄化装置の他の変形例を示す概略図である。図9(b)は、図9(a)の変形例による蓄熱式排ガス浄化装置を示す概略図である。 図10(a)は、図1の蓄熱式排ガス浄化装置の他の変形例による蓄熱式排ガス浄化装置を示す概略図である。図10(b)は、図10(a)の変形例による蓄熱式排ガス浄化装置を示す概略図である。 図11(a)は、図1の蓄熱式排ガス浄化装置の他の変形例による蓄熱式排ガス浄化装置を示す概略図である。図11(b)は、図11(a)の変形例による蓄熱式排ガス浄化装置を示す概略図である。 図12(a)は、図1の蓄熱式排ガス浄化装置の他の変形例による蓄熱式排ガス浄化装置を示す概略図である。図12(b)は、図12(a)の蓄熱式排ガス浄化装置の変形例による蓄熱式排ガス浄化装置を示す概略図である。 図13(a)は、図12の蓄熱式排ガス浄化装置に設けられた開閉弁の排気エアの消音構造を示す図である。図13(b)は、蓄熱式排ガス浄化装置の供給口及び排出口に設けられる開閉弁の排気エアの消音構造についての他の例を示す概略図である。
 以下、本発明の一実施形態による蓄熱式排ガス浄化装置について図面を参照して説明する。本発明の実施形態による蓄熱式排ガス浄化装置1は、有機性揮発化合物等の燃焼及び酸化できる成分等の処理に適している。また、この蓄熱式排ガス浄化装置1は、シリコーンを大量に含む排ガスの処理に適する。
 蓄熱式排ガス浄化装置1は、図1に示すように、バーナ9が設けられた燃焼室10と、それぞれ燃焼室10に一端(上端)が結合されて連通される一対の蓄熱室11,12とを備える。尚、図1中、矢印は、外気ガスの流れを示すものとする。
 また、蓄熱式排ガス浄化装置1は、一対の蓄熱室11,12のそれぞれの他端(下端)に設けられ、開閉弁14,15を有するとともに被処理ガスを供給させる供給口20,21を備える。また、一対の蓄熱室11,12のそれぞれの他端(下端)に設けられ、開閉弁17,18を有するとともに処理済の排気ガスを排出させる排出口23,24を備える。
 また、蓄熱式排ガス浄化装置1は、複数の蓄熱室11,12にそれぞれの一端(上端)及び他端(下端)の間に設けられる蓄熱体26,27を備える。蓄熱体26,27は、複数の貫通孔を有するセラミック部材が隣接されて並べられる。
 また、蓄熱式排ガス浄化装置1は、排出口23,24に接続される排気ダクト30を備える。排気ダクト30は、処理済ガスを蓄熱式排ガス浄化装置1から排出して所定の場所に導くための通路である。
 蓄熱式排ガス浄化装置1は、供給口20,21に接続される供給ダクト29を備える。供給ダクト29は、被処理ガスを蓄熱式排ガス浄化装置1内に供給するための供給通路である。この供給ダクト29には送風機8が設けられる。送風機8は、被処理ガスを供給口20,21に導くとともに、蓄熱室11,12及び燃焼室10に導く。それとともに、送風機8は、処理済ガスを排出口23,24、排気ダクト30を経由して所定の排出場所に導く。
 蓄熱式排ガス浄化装置1は、燃焼室10に接続される複数のバイパス通路31,32を備える。複数のバイパス通路31,32は、それぞれ燃焼室10と排気ダクト30とを連通する。また、複数のバイパス通路31,32は、それぞれ各蓄熱室11,12の上方側の位置で燃焼室10に接続される。それとともに、複数のバイパス通路31,32は、それぞれ開閉弁34,35を有している。さらに、複数のバイパス通路31,32は、それぞれ燃焼室10の上部(天板部)に接続される。
 尚、ここでは、バイパス通路31,32は、天板部に接続されるが、これに限られるものではない。すなわち、バイパス通路は、それぞれ各蓄熱室11,12の上方側の位置で燃焼室10の側板部に接続されるようにしてもよい。ただし、天板部に接続される方が、ガスの流れの観点から有利(ガスの流れに逆らうことなく排出できる)である。また、バイパス通路は、蓄熱室11,12を上から見たときの中心付近に設けた方がガスの流れの観点から有利(ガスの流れに逆らうことなく排出できる)である。
 蓄熱式排ガス浄化装置1は、各蓄熱室11,12の上端側に設けられる温度検出器37,38と、制御部40とを備える。温度検出器37は、蓄熱室11の上部側の温度を検出する。温度検出器38は、蓄熱室12の上部側の温度を検出する。制御部40は、温度検出器37,38からの温度情報に基づいて、開閉弁34,35を制御して余剰熱を排出することを可能とする。開閉弁34,35及びバイパス通路31,32は、余剰熱を放出させることを可能とし、燃焼室10の温度が急速に上昇することによる損傷を防止できる。また、制御部40は、開閉弁14,15,17,18の開閉制御も行う。
 上述の蓄熱式排ガス浄化装置1は、シリカ粉の偏堆積を防止するとともに余剰熱を放出するものであるが、この点について図2に示す比較例の蓄熱式排ガス浄化装置301を用いて説明する。
 比較例による蓄熱式排ガス浄化装置301は、図2に示すように、バイパス通路31及び開閉弁34を備えないことを除いて、図1の蓄熱式排ガス浄化装置1と同様の構成を有する装置である。すなわち、装置301は、蓄熱室12の上方側に位置して開閉弁35を備えるバイパス通路32を備える。
 図2の装置301は、燃焼室10内が高温になったときに、開閉弁35を開としてバイパス通路32から余剰熱を放出する。ここで、バイパス通路32が設けられた側に配置された蓄熱室12に燃焼室10から流入されるガスの流量が、燃焼室10から蓄熱室11に流入されるガスの流量より小さくなる。蓄熱室12へのガスの流量の低下は、蓄熱体27を通過するガスの流速が低下することを意味する。排ガスがシリコーン(気体)を含む場合に、通過するガスの流速の低下は、蓄熱室12へシリカが堆積しやすくなる原因となる。これにより、シリカ粉が、蓄熱室11に比べて蓄熱室12へ偏って堆積することとなる。
 さらに、蓄熱室11,12の給気側及び排気側の切換後に、蓄熱室12の蓄熱体27の蓄熱量が低下するという問題もある。給気側となった蓄熱室12の蓄熱量が十分でないので、流入された排ガス中のシリコーンが蓄熱体27に付着しやすくなる。以上のように、蓄熱室12の蓄熱体27にはシリコーンがタール状の粘性を有した状態で付着しやすく、蓄熱体27のガス通気用の貫通孔が閉塞されるおそれもある。貫通孔が閉塞された蓄熱体27は、蓄熱機能が低下して、排ガスの熱回収が十分に行えないという問題も招く。さらに、シリコーンが付着しやすくなり、悪循環になっている。蓄熱室11,12の給気側及び排気側の切換制御の方法によっては、蓄熱室11,12の温度差を発生させて、燃焼室10内も温度が不均一となるおそれがあった。
 すなわち、蓄熱室11,12の各温度を検出し、この平均値に基づいて、開閉弁14,15,17,18を切り換えるような制御を行うことが考えられる。また、この平均値に基づいて、バイパス通路32への開閉弁35を切り換えるような制御も行い得る。しかし、上述の理由で蓄熱室12の温度が低下しても、蓄熱室11の温度が高ければ正常な運転とみなされて制御が続行される。これにより蓄熱室11及び蓄熱室12の温度差が大きくなるという問題がある。さらに、燃焼室10内の温度不均一が発生する。
 この図2の装置301に対して、図1を用いて説明した蓄熱式排ガス浄化装置1は、各蓄熱室11,12に対応して設けられたバイパス通路31,32を有しているので、蓄熱体26,27のそれぞれに流入するガスの流量を同じにできる。よって、装置1では、装置301で発生したようなシリカの偏った堆積を防止できる。また、シリカの偏った堆積に伴う様々な問題(「蓄熱体の貫通孔の閉塞」、「熱回収が不十分になる」、「蓄熱室11,12の温度差が大きくなる」、「燃焼室10内の温度不均一」など)の発生を防止できる。また、これに伴い、蓄熱体の使用寿命を延ばすことができるという利点や、燃焼室の温度を均一化することによる排ガス成分の分解効率を高めることができるという利点がある。
 また、装置1においては、制御部40によりPID制御を行うようにしてもよい。例えば、P値は、0~50%であり、I値は、0~200secであり、D値は、0~100secである。PID制御により、効率的な運転が実現できる。また、シリカ偏堆積を防止することで、結果的にVOCの高い分解効率を実現する。
 供給口20,21の開閉弁14、15及び排出口23,24の開閉弁17,18は、所謂ポペットダンパ(ポペット弁)であり、ガスの流れ方向の切換に用いられる。開閉弁14,15,17,18は、それぞれ、弁体14a,15a,17a,18aと、シリンダ14b,15b,17b,18bと、を有する。弁体14a,15a,17a,18aは、鉛直方向に移動可能とされる。すなわち、弁体14a,15a,17a,18aは、シリンダ14b,15b,17b,18bのロッド14c,15c,17c,18cの先端に取り付けられ、ロッド14c,15c,17c,18cの伸縮に応じて移動される。
 以上のような開閉弁14,15,17,18を所定時間経過毎に切り換えることにより、蓄熱室11,12の給気側(被処理ガスが供給される側)と排気側(処理済みガスが排出される側)とを切換えて運転が行われる。尚、開閉弁の切り換えのタイミングは、例えば、出入口温度(給気及び排気されるガスの温度を供給ダクト29に設けられた温度検出器47及び排気ダクト30に設けられた温度検出器48により測定しその温度)に基づいて行うようにされる。
 次に、上述した蓄熱式排ガス浄化装置1による排ガス浄化方法について説明する。図1中の矢印は、開とされた供給用開閉弁14を経由して流入された被処理ガス及びこの装置1による処理済の排気ガスの流れを示す。まず、図1に示すように、蓄熱室11が供給側で、蓄熱室12が排出側であるとする。処理される排気ガスは、供給口20を通って蓄熱室11に到達する。
 次に、排気ガスは、蓄熱室11側の蓄熱体26を通過する際に、この蓄熱体26と熱交換を行うことによって加熱される。一方、蓄熱体26は、放熱・冷却される。蓄熱体26で加熱され燃焼室10に到達した排気ガスは、燃焼室内10にて、含有する成分の燃焼分解が行われる。
 次に、燃焼後の処理済の排気ガスは、蓄熱室12の蓄熱体27を通過する。このとき、処理済の排気ガスは、蓄熱体27と熱交換を行うことにより冷却される。その一方で、蓄熱体27は、蓄熱される。冷却された処理済の排気ガスは、排出口24を通り、排気ダクト30に至る。
 尚、図1では、バイパス通路31,32の機能を説明するために、開閉弁34,35が開となり、処理済ガスが流れていることを示す矢印が記載されているが、基本的には、開閉弁34,35が閉とされている。すなわち、バイパス通路31,32内には、ガスが流れていない。そして、装置1に供給される排ガスの濃度が濃い等の理由で装置1内部が高温になった場合に、必要に応じて、バイパス通路31,32から余剰熱を放出させることになる。
 この運転を継続すると、一方の蓄熱室11の蓄熱体26は、放熱・冷却され、他方の蓄熱室12の蓄熱体27は、蓄熱・加熱される。このため、一定時間経過後、蓄熱室11の供給口20の開閉弁14を閉とし、排出口23の開閉弁17を開とする。これとともに、蓄熱室12の供給口21の開閉弁15を開とし、排出口24の開閉弁18を閉とする。この動作により、ガスの流れ方向が反転し、蓄熱室11が排出側で、蓄熱室12が供給側に切り換えられる。
 これにより、次に処理される排気ガスは、十分に蓄熱された蓄熱体27との熱交換により加熱できる。加熱後の排気ガスは、燃焼室10で処理され、蓄熱体26との熱交換により冷却されて排気される。一定時間経過後、蓄熱室11の供給口20の開閉弁14を開とし、排出口23の開閉弁17を閉とする。これとともに、蓄熱室12の供給口21の開閉弁15を閉とし、排出口24の開閉弁18を開とする。この動作により、図1に示すように、ガスの流れ方向が反転し、蓄熱室11が供給側で、蓄熱室12が排出側に切り換えられる。
 以上の動作を、一定時間ごとに繰り返すことにより、運転を継続することにより、排熱を利用した効率的な燃焼処理を実現する。
 さらに、蓄熱式排ガス浄化装置1を利用した排ガス浄化方法では、温度検出器37,38により測定された温度が高すぎる場合(所定の温度より高い場合)には、開閉弁34及び/又は開閉弁35を切り換えて、バイパス通路31,32から所望のバイパス通路を選んで、場合によっては両方のバイパス通路から余剰熱を放出させる。これにより、シリカの偏った堆積を防止でき、また、図2を用いて説明したシリカの偏った堆積に伴う様々な問題(「蓄熱体の貫通孔の閉塞」、「熱回収が不十分になる」、「蓄熱室11,12の温度差が大きくなる」、「燃焼室10内の温度不均一」など)の発生を防止できる。また、シリカ偏堆積を防止することで、結果的にVOCの高い分解効率を実現する。
 尚、装置1では、バーナ9が燃焼室10の天板部に設けられているが、バーナ9が燃焼室10の側板部に設けるように、すなわち、例えば、図3に示す蓄熱式排ガス浄化装置41のようにしても同様の効果が得られる。尚、装置41は、装置1に対してバーナ9の取付位置以外は、同様の構成(同様の構成には、同じ符号を付す)であるので、詳細な説明は省略する。
 次に、上述した蓄熱式排ガス浄化装置1の変形例である蓄熱式排ガス浄化装置51について、図4及び図5を用いて説明する。蓄熱式排ガス浄化装置1が所謂2塔式であるのに対して、蓄熱式排ガス浄化装置51は、蓄熱室及び蓄熱体を3つ有する所謂3塔式であることを除いて略同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。
 蓄熱式排ガス浄化装置51は、図4に示すように、バーナ9が設けられた燃焼室10と、それぞれ燃焼室10に一端(上端)が結合されて連通される複数の蓄熱室11,12,13とを備える。
 蓄熱式排ガス浄化装置51は、蓄熱式排ガス浄化装置1と同様に、開閉弁14,15,16を有する供給口20,21,22を備える。また、蓄熱式排ガス浄化装置51は、開閉弁17,18,19を有する排出口23,24,25を備える。尚、開閉弁16,19も、他の開閉弁14,15,17,18と同様の構成を有する。
 蓄熱式排ガス浄化装置51は、複数の蓄熱室11,12,13に設けられる蓄熱体26,27,28を有する。尚、蓄熱体28も、蓄熱体26,27と同様の構成を有する。
 蓄熱式排ガス浄化装置51は、供給ダクト29、排気ダクト30及び送風機8を備える。蓄熱式排ガス浄化装置51は、蓄熱室11,12,13の他端側と、供給ダクト29とを接続し、蓄熱室11,12,13の他端側のガスを送風機8に流入する前のガスに合流させる循環配管であるパージ用配管53を有する。すなわち、循環配管であるパージ用配管53は、送風機8の上流側の位置で供給ダクト29に接続されている。パージ用配管53は、蓄熱室11,12,13の他端側のガスを送風機8の上流側に引き込んで供給ダクト29に一旦戻す戻り配管として機能する。
 パージ用配管53には、パージ用の第1~第3開閉弁54,55,56と、調整弁57とが設けられている。第1開閉弁54は、蓄熱室11の他端側から供給ダクト29への流れの開閉を行う。第2開閉弁55は、蓄熱室12の他端側から供給ダクト29への流れの開閉を行う。第3開閉弁56は、蓄熱室13の他端側から供給ダクト29への流れの開閉を行う。調整弁57は、パージ用配管53に設けられ、蓄熱室11,12,13の他端側から供給ダクト29に合流されるガスの流量を調整する。
 また蓄熱式排ガス浄化装置51は、燃焼室10に接続される複数のバイパス通路31,32,33を備える。複数のバイパス通路31,32,33は、それぞれ燃焼室10と排気ダクト30とを連通する。また、複数のバイパス通路31,32,33は、それぞれ各蓄熱室11,12,13の上方側の位置で燃焼室10に接続される。それとともに、複数のバイパス通路31,32,33は、それぞれ開閉弁34,35,36を有している。さらに、複数のバイパス通路31,32,33は、それぞれ燃焼室10の上部(天板部)に接続される。尚、ここでは、バイパス通路31,32,33は、天板部に接続されるものとしたが、これに限られるものではない。
 また、蓄熱式排ガス浄化装置51は、各蓄熱室11,12,13の上端部に設けられる温度検出器37,38,39と、制御部40を備える。温度検出器39は、蓄熱室13の上部側の温度を検出する。制御部40は、温度検出器37,38,39からの温度情報に基づいて、開閉弁34,35,36を制御して余剰熱を排出することができる。開閉弁34,35,36及びバイパス通路31,32,33は、余剰熱を放出させ、これにより、燃焼室10の温度が急速に上昇することによる損傷を防止できる。また、制御部40は、開閉弁14~19の開閉制御も行う。
 上述するように構成された蓄熱式排ガス浄化装置51は、蓄熱式排ガス浄化装置1と同様に、各塔毎(各蓄熱室毎)に対応してその上方側の位置にバイパス通路を備えるので、シリカ粉の偏堆積を防止するとともに余剰熱を放出する。さらに、シリカ偏堆積に伴う様々な問題の発生を防止できる等の蓄熱式排ガス浄化装置1の効果と同様の効果を実現する。
 次に上述した3塔式の排ガス浄化装置51による排ガス浄化方法について説明する。図5中の矢印は、被処理ガス及び処理済ガスの流れを示す。まず、図5(a)では、蓄熱室11が供給側で、蓄熱室13が排出側であるとする。蓄熱室12では、パージが行われる。処理される排気ガスは、供給口20を通って蓄熱室11に到達する。
 次に、排気ガスは、蓄熱室11の蓄熱体26を通過する際に、この蓄熱体26と熱交換を行うことによって加熱される。一方、蓄熱体26は、放熱・冷却される。蓄熱体26で加熱され燃焼室10に到達した排気ガスは、燃焼室内10にて、含有する成分の燃焼分解が行われる。
 次に、燃焼後の処理済ガスは、燃焼室13の蓄熱体28を通過する。このとき、処理済ガスは、蓄熱体28と熱交換を行うことにより冷却される。その一方で、蓄熱体28は、蓄熱される。冷却された処理済ガスは、排出口25を通り、排気ダクト30に至る。
 尚、図5では、バイパス通路31,32,33の機能を説明するために、開閉弁34,35,36が開となり、処理済ガスが流れていることを示す矢印が記載されているが、基本的には、開閉弁34,35,36が閉とされている。そして、必要に応じて、バイパス通路31,32,33から余剰熱を放出させることになる。
 また、このときパージ用の第2開閉弁55が開とされ、第1及び第3開閉弁54,56は閉とされている。これにより、蓄熱室12には、燃焼室で浄化された処理済ガス(クリーンエア)を、少量供給すると共に、蓄熱室12内部に滞留した未処理ガスを蓄熱室12の他端側からパージ用配管53を介して供給ダクト29に戻すことができる。尚、この蓄熱室12内に導入されるクレーンエアの流量及び蓄熱室12から供給ダクト29に戻される未処理ガスの流量が適切な量(少量)となるように、調整弁57が調整される。3塔式の装置51は、供給側及び排出側の蓄熱室の他に残りの蓄熱室をパージすることができるので、未処理ガスの排気ダクト30への排出を防止して安定した性能を確保できる。
 この運転を継続すると、蓄熱室11の蓄熱体26は、放熱・冷却され、蓄熱室13の蓄熱体28は、蓄熱・加熱される。このため、一定時間経過後、蓄熱室12の排出口24の開閉弁18を開とする(第1の弁操作)。また、蓄熱室13の排出口25の開閉弁19を閉とする(第2の弁操作)。また、蓄熱室13の供給口22の開閉弁16を開とする(第3の弁操作)。さらに、蓄熱室11の供給口20の開閉弁14を閉とする(第4の弁操作)。尚、この第1~第4の弁操作により、図5(a)に示した運転状態から図5(b)に示す運転状態に切り換えられる。図5(b)では、蓄熱室13が供給側で、蓄熱室12が排出側である。蓄熱室11ではパージが行われる。また、第1~第4の弁操作は、例えば2秒程度の間隔で順番に行うことで、未処理ガスの排気ダクト30側への混入を防止できる(後述の場合も同様である。)。
 図5(b)に示す状態に開閉弁が切り換えられると、それとともにパージ用の開閉弁も切り換えられる。第1開閉弁54が開とされ、第2及び第3開閉弁55,56が閉とされている。これにより、蓄熱室11には、燃焼室で浄化された処理済ガス(クリーンエア)を、少量供給すると共に、蓄熱室11内部に滞留した未処理ガスを蓄熱室11の他端側からパージ用配管53を介して供給ダクト29に戻すことができる。
 これにより、次に処理される排気ガスは、図5(b)に示すように、十分に蓄熱された蓄熱体28との熱交換により加熱できる。加熱後の排気ガスは、燃焼室10で処理され、蓄熱体27との熱交換により冷却されて排気される。一定時間経過後、蓄熱室11の排出口23の開閉弁17を開とする(第1の弁操作)。また、蓄熱室12の排出口24の開閉弁18を閉とする(第2の弁操作)。また、蓄熱室12の供給口21の開閉弁15を開とする(第3の弁操作)。さらに、蓄熱室13の供給口22の開閉弁16を閉とする(第4の弁操作)。尚、この第1~第4の弁操作により、図5(b)に示した運転状態から図5(c)に示す運転状態に切り換えられる。図5(c)では、蓄熱室12が供給側で、蓄熱室11が排出側である。蓄熱室11ではパージが行われる。
 図5(c)に示す状態に開閉弁が切り換えられると、それとともにパージ用の開閉弁も切り換えられる。第3開閉弁56が開とされ、第1及び第2開閉弁54,55が閉とされている。これにより、蓄熱室13には、燃焼室で浄化された処理済ガス(クリーンエア)を、少量供給すると共に、蓄熱室13内部に滞留した未処理ガスを蓄熱室13の他端側からパージ用配管53を介して供給ダクト29に戻すことができる。
 これにより、次に処理される排気ガスは、図5(c)に示すように、十分に蓄熱された蓄熱体27との熱交換により加熱できる。加熱後の排気ガスは、燃焼室10で処理され、蓄熱体26との熱交換により冷却されて排気される。一定時間経過後、蓄熱室13の排出口25の開閉弁19を開とする(第1の弁操作)。また、蓄熱室11の排出口23の開閉弁17を閉とする(第2の弁操作)。また、蓄熱室11の供給口20の開閉弁14を開とする(第4の弁操作)。さらに、蓄熱室12の供給口21の開閉弁15を閉とする(第3の弁操作)。尚、この第1~第4の弁操作により、図5(c)に示した運転状態から図5(a)に示す運転状態に切り換えられる。図5(a)では、蓄熱室11が供給側で、蓄熱室13が排出側である。蓄熱室12ではパージが行われる。図5(a)に示す状態に開閉弁が切り換えられると、それとともにパージ用の開閉弁も上述したように切り換えられる。
 以上の動作を、一定時間ごとに繰り返すことにより、運転を継続することで、排熱を利用した効率的な燃焼処理を実現する。
 さらに、蓄熱式排ガス浄化装置51による排ガス浄化方法においても、温度検出器37,38,39により測定された温度が高すぎる場合(所定の温度より高い場合)には、開閉弁34,35,36の一又は複数を切り換えて、バイパス通路31,32,33から所望のバイパス通路を選んで、場合によっては両方のバイパス通路から余剰熱を放出させる。これにより、シリカの偏った堆積を防止でき、また、図2を用いて説明したシリカの偏った堆積に伴う様々な問題の発生を防止できる。また、シリカ偏堆積を防止することで、結果的にVOCの高い分解効率を実現する。
 次に、上述した蓄熱式排ガス浄化装置1等の変形例による蓄熱式排ガス浄化装置61,71について、図6~図7を用いて説明する。すなわち、上述した蓄熱式排ガス浄化装置1等の燃焼室には、攪拌板を設けるようにしてもよい。図6(a)に示す蓄熱式排ガス浄化装置61は、蓄熱式排ガス浄化装置1に対して、攪拌装置である攪拌板62を設けた以外は同様の構成を備える。図6(b)に示す蓄熱式排ガス浄化装置71は、蓄熱式排ガス浄化装置51に対して、攪拌板72を設けた以外は同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。
 図6(a)に示す装置61を構成する燃焼室10の内部には、一の蓄熱室11の上部側の空間と、この一の蓄熱室11に隣接する蓄熱室12の上部側の空間との間の空間に、攪拌板62が設けられる。この攪拌板62は、図6(a)、図7(a)及び図7(b)に示すように、この空間を形成する筐体64の上部及び下部に固定される支持部材63に支持されている。ここで、燃焼室10と、複数の蓄熱室11,12とは、同一の筐体内に形成され、この筐体が、「空間を形成する筐体64」である。
 一方、図6(b)に示す装置71を構成する燃焼室10の内部には、一の蓄熱室11の上部側の空間と、この一の蓄熱室11に隣接する蓄熱室12の上部側の空間との間の空間に、攪拌板72が設けられる。また、図6(b)に示す装置71においては、燃焼部10の内部には、一の蓄熱室12の上部側の空間と、この一の蓄熱室12に隣接する蓄熱室13の上部側の空間との間の空間にも、攪拌板72が設けられる。この攪拌板72は、図6(b)、図7(a)及び図7(b)に示すように、この空間を形成する筐体74の上部及び下部に固定される支持部材73に支持されている。ここで、燃焼室10と、複数の蓄熱室11,12,13とは、同一の筐体内に形成され、この筐体が、「空間を形成する筐体74」である。図7(b)に示す上下2枚の攪拌板の角度αは、10~90度程度にすることで、好ましい攪拌性能を発揮する。
 図6及び図7に示す攪拌板62,72は、処理ガスの燃焼室10内での滞留時間を長く確保することができる。燃焼室10における処理ガスの滞留時間を長くすることにより、排ガス成分の分解効率を高めることができる。尚、蓄熱式排ガス浄化装置61,71を構成する攪拌板は、図7(a)及び図7(b)等に示す上述した攪拌板62,72に限られるものではなく、例えば、図7(c)及び図7(d)に示す攪拌板66を用いるようにしてもよい。
 図7(c)及び図7(d)に示す攪拌板66は、一の蓄熱室の上部の空間と、この一の蓄熱室に隣接する蓄熱室の上部の空間との間の空間に4枚一組の攪拌板を固定配分したものである。この空間を形成する天板部68a、底板部68b及び一対の側面68c,68dから支持部材67により片持ち支持させたものである。図7(c)及び図7(d)に示す攪拌板66も、処理ガスの燃焼室10内での滞留時間を長く確保することができる。
 尚、上述した図7(a)及び図7(b)に示す攪拌板62,72は、図7(c)及び図7(d)に示す攪拌板66に比べて、滞留時間を長くするという観点や、攪拌板の取り付けの安全性の観点から有利である。すなわち、図7(a)及び図7(c)に示すように断面が細長い場合でも攪拌板を適切な配置とでき、隙間を小さくして、攪拌効果を高めることができる。例えば、高さ方向の寸法が大きくなった場合でも、高さ方向の数を増やせばよく、横方向の寸法が大きくなった場合でも、横方向の数を増やせばよい。また、片持ち支持に比べて、強固に攪拌板62,72を保持できる。
 以上のような、図6及び図7に示す蓄熱式排ガス浄化装置61,71は、蓄熱式排ガス浄化装置1,51で説明したのと同様の効果を有する。すなわち、シリカ粉の偏堆積を防止するとともに余剰熱を放出すること等を実現する。また、シリカ粉の偏堆積に伴う様々な問題を解消する。
 尚、図6~図7の攪拌板62,72による効果は、バイパス通路31,32等を有さない場合にも有効である。ここで、上述した蓄熱式排ガス浄化装置61,71の変形例として、バイパス通路を有さない場合の例について図8を用いて説明する。すなわち、図8(a)に示す蓄熱式排ガス浄化装置81は、図6(a)に示す装置61に比べて、バイパス通路31,32を有さないことを除いて同様の構成を備える。また、図8(b)に示す蓄熱式排ガス浄化装置91は、図6(b)に示す装置71に比べて、バイパス通路31,32,33を有さないことを除いて同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。
 図8に示す蓄熱式排ガス浄化装置81,91においても、攪拌板62,72により、処理ガスの燃焼室10内での滞留時間を確保できる。また、滞留時間を長くする観点や、攪拌板の取り付け安全性の観点からも有利である。以上のような蓄熱式排ガス浄化装置81,91は、攪拌板の取り付け安全性を高めるとともに、排ガス成分の分解効率を高めることを実現できる。
 次に、上述した蓄熱式排ガス浄化装置1の変形例(静圧変動を抑える変形例)による蓄熱式排ガス浄化装置101,111,121について図9(a)、図10(a)及び図11(a)を用いて説明する。蓄熱式排ガス浄化装置101,111,121は、以下で説明する静圧変動を抑えるための構成を備えることを除いて蓄熱式排ガス浄化装置1と同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。 
 蓄熱式排ガス浄化装置101は、図9(a)に示すように、燃焼室10、蓄熱室11,12、開閉弁14,15,17,18、供給口20,21、排出口23,24、蓄熱体26,27、供給ダクト29、排気ダクト30、送風機8、バイパス通路31,32、開閉弁34,35等を備える(図10(a)及び図11(a)で説明する装置111,121も同様である。)。図示は省略するが、燃焼室10には、上述と同様にバーナ9が設けられており、装置101等には、温度検出器37,38等も設けられている。また上述したように、送風機8は、供給ダクト29に設けられ、被処理ガスを供給口20,21に導く。
 蓄熱式排ガス浄化装置101は、排気ダクト30と供給ダクト29とを接続する戻り配管102を有する。戻り配管102は、排気ダクト30中の処理済ガスを送風機8に流入する前のガスに合流させる。また、装置101は、排気ダクト30の戻り配管102への分岐部分(戻り配管が接続される部分)30aに設けられる三方弁103を有する。
 三方弁(three way valve)103は、羽根の開度が調整され、排気ダクト30の戻り配管102が接続される部分30aより排出側に流れるガスの流量を調整することで、戻り配管102を通るガスの流量を調整する調整弁である。
 また、蓄熱式排ガス浄化装置101は、流量検出部104及び圧力検出部105を備える。流量検出部104は、送風機8に送風され供給口20,21に導かれるガスの流量を検出する。圧力検出部105は、戻り配管102からのガスが合流された後であるとともに送風機8に流入する前の供給ダクト29中の圧力を検出する。蓄熱式排ガス浄化装置101の制御部40は、流量検出部104及び圧力検出部105の検出結果に基づいて調整弁(三方弁103)の開度を制御する。尚、制御部40は、蓄熱式排ガス浄化装置1で説明したのと同様の機能も有する。
 流量検出部104は、例えばオリフィス流量計であり、差圧伝送器104a等が設けられてもよい。圧力検出部105は、例えば差圧伝送器である。この場合、送風機8の電動機8aに設けたインバータ8bと、差圧伝送器104a及び圧力伝送器(105)とは、制御部(コントローラ)40を介して電気的に接続される。同様に、例えば三方弁103には、ポジショナ103aが設けられ、ポジショナ103aは、制御部40に電気的に接続される。差圧伝送器(圧力検出部105)で計測した圧力や、差圧伝送器104aの差圧に基づき、制御部40を介して三方弁103の開度を調整する。
 以上のように構成された蓄熱式排ガス浄化装置101は、供給口20,21や排出口23,24に設けた開閉弁14,15,17,18の開閉動作時の静圧変動を抑えることができる。この点について詳細に説明する。上述のように、蓄熱室の給気側・排気側を切り換える際に、開閉弁14,15,17,18を切り換えるが、一瞬ではあるが、供給口側の開閉弁と、排出口側の開閉弁とが同時に開の状態になることがある。これに伴い、装置101内の圧力損失が低下し、装置101内の静圧変動が発生してしまう可能性があった。本装置101では、戻り配管102と三方弁103を有しているので、この静圧変動を抑えることができる。尚、送風機8の風量調整により静圧変動を抑えることも考えられるが、本装置101では、調整弁(三方弁103)の調整により静圧変動を抑えることを実現する。
 具体的に、三方弁103は、圧力検出部105により検出される圧力が小さくなったときに、戻り配管102側への開度が大きくなるように調整される。また、三方弁103は、流量検出部104で検出される流量が大きくなったときに、戻り配管102側への開度が大きくなるように調整される。ここで、圧力検出部105又は流量検出部104のいずれかの検出結果のみにより調整されるようにしてもよい。尚、三方弁103は、開閉弁14,15,17,18の切換時に予め設定したタイミングや開度で調整されるようにしてもよい。
 尚、流量検出部104や圧力検出部105が設けられる位置、すなわち、開度調整のための検出位置はこれに限られるものではない。例えば、流量検出部104は、排出口23,24から排出された後で、且つ、排気ダクト30の戻り配管102への分岐部分30aの手前の部分の流量を検出するようにしてもよい。また、圧力検出部105は、例えば、戻り配管102からのガスが合流される手前(上流側)の供給ダクト29内の圧力を検出するようにしてもよい。
 また、戻り配管102は、上述のように静圧変動を抑える機能のみならず、暖気運転の際の燃料コストを低減させることを可能とする。すなわち、蓄熱式排ガス浄化装置においては、昇温運転や待機運転を行うことがある。この際、大気を取り込んで燃焼室や蓄熱室を暖気する。この際に、戻り配管102により循環させることで、燃料コストを低減させることができる。
 以上のように、蓄熱式排ガス浄化装置101によれば、供給側及び排出側の開閉弁の切換時の静圧変動を抑えることができる。これにより、静圧変動に伴う処理対象施設から装置101への流入風量の増大を防ぐことができ、排気ダクト30から排出される排出風量の増大も防ぐことができる。後述の蓄熱式排ガス浄化装置111,121も、蓄熱式排ガス浄化装置101と同様の効果を有するが、蓄熱式排ガス浄化装置101は、最も簡素な構成でこの効果を実現する。
 次に、蓄熱式排ガス浄化装置111について図10(a)を用いて説明する。蓄熱式排ガス浄化装置111は、図10(a)に示すように、排気ダクト30と供給ダクト29とを接続する戻り配管102を有する。
 また、蓄熱式排ガス浄化装置111は、排気ダクト30中で且つ戻り配管102が接続される部分30aより排出側(下流側、すなわち排気ダクト30の排出側)の位置に設けられる調整弁113を有する。
 調整弁113は、排気ダクト30の戻り配管102が接続される部分30aより排出側に流れるガスの流量を調整することで、戻り配管102を通るガスの流量を調整する。さらに、蓄熱式排ガス浄化装置111は、戻り配管102中に設けられる調整弁114を有する。調整弁114は、戻り配管102を通るガスの流量を調整する。蓄熱式排ガス浄化装置111は、この調整弁113,114により、効果的に静圧変動を抑えることができる。
 また、蓄熱式排ガス浄化装置111は、蓄熱式排ガス浄化装置101と同様に、流量検出部104及び圧力検出部105を備える。蓄熱式排ガス浄化装置111の制御部40の機能は、蓄熱式排ガス浄化装置101の場合と略同様の機能を有する。調整弁113,114には、例えばポジショナ113a,114aが設けられる。ポジショナ113a,114aは、制御部40に電気的に接続され、開度が調整される。
 以上のように構成された蓄熱式排ガス浄化装置111は、蓄熱式排ガス浄化装置101と同様に、供給口20,21や排出口23,24に設けた開閉弁14,15,17,18の開閉動作時の静圧変動を抑えることができる。すなわち、調整弁113,114は、圧力検出部105により検出される圧力が小さくなったときに、戻り配管102側への流量が大きくなるように開度が調整される。また、調整弁113,114は、流量検出部104で検出される流量が大きくなったときに、戻り配管102側への流量が大きくなるように開度が調整される。
 以上のように、蓄熱式排ガス浄化装置111によれば、供給側及び排出側の開閉弁の切換時の静圧変動を抑えることができる。後述の装置121も、装置111と同様の効果を有するが、蓄熱式排ガス浄化装置111は、より効果的に静圧変動を抑えることができる。
 次に、蓄熱式排ガス浄化装置121について図11(a)を用いて説明する。蓄熱式排ガス浄化装置121は、図11(a)に示すように、排気ダクト30と供給ダクト29とを接続する戻り配管102を有する。
 また、装置121は、戻り配管102中に設けられ、調整弁123を有する。調整弁123は、戻り配管102を通るガスの流量を調整する。装置121は、この調整弁123により、静圧変動を抑えることができる。
 また、蓄熱式排ガス浄化装置121は、蓄熱式排ガス浄化装置101と同様に、流量検出部104及び圧力検出部105を備える。蓄熱式排ガス浄化装置121の制御部40の機能は、蓄熱式排ガス浄化装置101の場合と略同様の機能を有する。調整弁123には、例えばポジショナ123aが設けられる。ポジショナ123aは、制御部40に電気的に接続され、開度が調整される。
 以上のように構成された蓄熱式排ガス浄化装置121は、蓄熱式排ガス浄化装置101と同様に、供給口20,21や排出口23,24に設けた開閉弁14,15,17,18の開閉動作時の静圧変動を抑えることができる。すなわち、調整弁123は、圧力検出部105により検出される圧力が小さくなったときに、戻り配管102側への流量が大きくなるように開度が調整される。また、調整弁123は、流量検出部104で検出される流量が大きくなったときに、戻り配管102側への流量が大きくなるように開度が調整される。
 以上のように、蓄熱式排ガス浄化装置121によれば、供給側及び排出側の開閉弁の切換時の静圧変動を抑えることができる。尚、蓄熱式排ガス浄化装置121は、簡素な構成で一定の効果はあるが、装置内部の圧力損失が低下したときに、排ガスが送風機8の吸引側に必ずしも十分に引き込まれず排気ダクト30から外部に放出する場合がある。これに対し、蓄熱式排ガス浄化装置101、111では、より効果的に静圧変動を抑えることができる。さらに、蓄熱式排ガス浄化装置101は、最も簡素な構成でこれを実現する。
 上述の蓄熱式排ガス浄化装置101,111,121は、装置1,51等で説明したのと同様の効果を有する。すなわち、シリカ粉の偏堆積を防止するとともに余剰熱を放出すること等を実現する。また、シリカ粉の偏堆積に伴う様々な問題を解消する。
 尚、図9~図11の戻り配管102及び調整弁(三方弁103、調整弁113、調整弁123等)を備えることによる効果は、バイパス通路31,32等を有さない場合にも有効である。ここで、上述した蓄熱式排ガス浄化装置101,111,121の変形例として、バイパス通路を有さない場合の例について図9(b)、図10(b)、図11(b)を用いて説明する。すなわち、図9(b)に示す蓄熱式排ガス浄化装置131は、図9(a)に示す装置101に比べて、バイパス通路を有さないことを除いて同様の構成を備える。また、図10(b)に示す蓄熱式排ガス浄化装置141は、図10(a)に示す装置111に比べて、バイパス通路を有さないことを除いて同様の構成を備える。さらに、図11(b)に示す蓄熱式排ガス浄化装置151は、図11(a)に示す装置121に比べて、バイパス通路を有さないことを除いて同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。
 図9(b)、図10(b)及び図11(b)に示す蓄熱式排ガス浄化装置131,141,151は、供給口20,21や排出口23,24に設けた開閉弁14,15,17,18の開閉動作時の静圧変動を抑えることができる。これにより、静圧変動に伴う処理対象施設から装置101への流入風量の増大を防ぐことができ、排気ダクト30から排出される排出風量の増大も防ぐことができる。
 次に、上述した蓄熱式排ガス浄化装置1の変形例(消音効果を有する変形例)による蓄熱式排ガス浄化装置171について、図12及び図13を用いて説明する。蓄熱式排ガス浄化装置171は、以下で説明する消音効果を有するための構成を備えることを除いて蓄熱式排ガス浄化装置1と略同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。
 蓄熱式排ガス浄化装置171は、図12(a)に示すように、燃焼室10、蓄熱室11,12、開閉弁14,15,17,18、供給口20,21、排出口23,24、蓄熱体26,27、供給ダクト29、排気ダクト30、送風機8、バイパス通路31,32、開閉弁34,35等を備える。図示は省略するが、燃焼室10には、上述と同様にバーナ9が設けられており、装置171には、温度検出器37,38等も設けられている。上述したように、送風機8は、供給ダクト29に設けられ、被処理ガスを供給口20,21に導く。
 装置171の供給口20,21の開閉弁14,15及び排出口23,24の開閉弁17,18は、図13(a)に示すように、流通口形成部材172と、弁体173と、エアシリンダ174とを有する。開閉弁14,15,17,18は、所謂ポペットダンパ(ポペット弁)である。尚、この図13を用いて説明する構造は、開閉弁14,15,17,18のより具体的な構造の一例である。
 流通口形成部材172は、蓄熱室11,12の底部を兼ねている。また、流通口形成部材172には、流通口172aが設けられている。弁体173は、エアシリンダ174のロッド179の先端に取り付けられロッド179の伸縮に応じて、流通口形成部材172に対して近接及び離間する方向に移動可能とされる。また、弁体173は、流通口形成部材172に当接されることで流通口172aを閉とするとともに、流通口形成部材172から離間されることで流通口172aを開とする。エアシリンダ174は、ソレノイドバルブ174aを有し、弁体173を当接及び離間する方向に駆動する。
 各エアシリンダ174の駆動エアを排気するための排気配管175は、合流して共通の消音タンク176に合流される。消音タンク176は、例えばその外面に吸音材176aが設けられる。これに限らず、消音タンク176の内面に吸音材を設けるようにしてもよい。消音タンク176本体は、例えば、鋼板等で筒状若しくは箱状に形成される。吸音材176aには、例えば、グラスウール、ロックウール、ゴム等が用いられる。
 消音タンク176は、送風機8用の防音デバイス177内に配置される。防音デバイス177は、送風機8を囲むように設けられており、内面に防音材177aが設けられている。これに限らず、防音デバイス177の外面に防音材を設けるようにしてもよい。防音デバイスは、例えば、鋼板製のパネルを組み合わせたパネル構造とされてもよい。防音材177aには、例えば、グラスウール、ロックウール、ゴム等が用いられる。
 以上のように構成された蓄熱式排ガス浄化装置171は、開閉弁のエアシリンダ174の排気音をより高い効率で消音することを実現する。すなわち、エアシリンダ174の排気配管175が接続される消音タンク176が防音デバイス177内に設けられることで、エアシリンダ174の排気音(排気配管175からの排気音)を二重に消音することができる。また、消音タンク176は、全ての排気配管175に共通にされ、開閉弁毎(エアシリンダ毎)に設ける必要がないため、構成の簡素化を実現する。また、防音デバイス177が送風機8用であるため、エアシリンダ専用としては、消音タンク176のみでよく、別途設ける必要もない。
 尚、蓄熱式排ガス浄化装置171を用いて説明した特徴的な構成(消音タンク176、防音デバイス177等)は、装置1だけでなく、装置41,51,61,71,81,91,101,111,121,131,141,151にも適用可能である。また、これらの蓄熱式排ガス浄化装置に適用可能な開閉弁の排気エアの消音構造は、図13(a)を用いて説明した特徴的な構成(消音タンク176、防音デバイス177等)に限られるものではなく、図13(b)に示すような構造を採用してもよい。
 図13(b)で示される消音デバイス181では、各エアシリンダ174の駆動エアを排気するための排気配管185が、筐体186内に設けられる排出口185aに接続されている。この筐体186は、エアシリンダ174を保持し、ロッド179を包囲するために設けられている。この筐体186の外面に、例えば吸音材186aが設けられる。吸音材186aは、吸音材176aと同様の材質である。図13(b)において、図13(a)等と同様の構成を備える部分については、同じ符号を付して詳細な説明は省略する。
 図13(b)に示す消音デバイス181は、筐体186外面の吸音材186aにより、開閉弁のエアシリンダの排気音を消音することができる。ただし、上述した図13(a)に示す構造は、消音タンク176及び防音デバイス177の二重構造であるため、この図13(b)に示す構造より、高い効率で消音することを実現する。
 上述の蓄熱式排ガス浄化装置171は、装置1,51等で説明したのと同様の効果を有する。すなわち、シリカ粉の偏堆積を防止するとともに余剰熱を放出すること等を実現する。また、シリカ粉の偏堆積に伴う様々な問題を解消する。
 尚、図12(a)の消音タンク176、防音デバイス177等を備えることによる効果は、バイパス通路31,32等を有さない場合にも有効である。ここで、上述した蓄熱式排ガス浄化装置171の変形例として、バイパス通路を有さない場合の例について図12(b)を用いて説明する。すなわち、図12(b)に示す蓄熱式排ガス浄化装置191は、図12(a)に示す装置171に比べて、バイパス通路を有さないことを除いて同様の構成を備える。同様の構成を備える部分には、同じ符号を付して詳細な説明は省略する。図12(b)に示す蓄熱式排ガス浄化装置191は、開閉弁のエアシリンダ174の排気音をより高い効率で消音することを実現する。
1,41,51,61,71,81,91,101,111,121,131,141,151,171,191 蓄熱式排ガス浄化装置
8 送風機
9 バーナー
10 燃焼室
11,12,13 蓄熱室
14,15,16,17,18,19 開閉弁
26,27,28 蓄熱体
20,21,22 供給口(供給部)
23,24,25 排出口(排出部)
29 供給ダクト(供給通路)
30 排気ダクト(排気通路)
31,32,33 バイパス通路
34,35,36 開閉弁
37,38,39 温度検出器
40 制御部(バイパス通路用制御部;流量調整機構用制御部)
62,66,72,73 攪拌板(攪拌装置)
102 戻り配管(戻り通路)
103 三方弁(流量調整機構)
104 流量検出部
105 圧力検出部
113 調整弁(流量調整機構)
123 調整弁(流量調整機構)
172 流通口形成部材
173 弁体
174 エアシリンダ
175 排気配管
176 消音タンク
177 防音デバイス

Claims (13)

  1.  排気ガスに含有される成分を燃焼分解する燃焼室と、
     それぞれ前記燃焼室に一端が連通しそれぞれが蓄熱体を備えた複数の蓄熱室と、
     前記複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに排気ガスを前記蓄熱室に供給する供給部と、
     前記複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに処理済の排気ガスを排出する排出部と、
     前記排出部に接続され前記処理済みの排気ガスを外部へ排出する排気通路と、
     前記燃焼室と前記排気通路を接続する複数のバイパス通路であって、これらの複数のバイパス通路は、それぞれ各蓄熱室の上方側の位置で前記燃焼室に接続されるとともに、それぞれ開閉弁を有する複数のバイパス通路と、
     前記蓄熱室の温度が所定値以上の場合には、前記燃焼室内の排気ガスの一部を前記バイパス通路へ排出するように前記複数のバイパス通路の一又は複数の開閉弁を開操作するバイパス通路用制御部と、
     を有することを特徴とする蓄熱式排ガス浄化装置。
  2.  前記複数のバイパス通路は、それぞれ前記燃焼室の上部に接続される請求項1記載の蓄熱式排ガス浄化装置。
  3.  更に、前記燃焼室の内部である、第1の蓄熱室の上部側の空間と、前記第1の蓄熱室に隣接する第2の蓄熱室の上部側の空間との間の空間に設けられ、前記燃焼室内の排気ガスを攪拌する攪拌装置と、を有する請求項1記載の蓄熱式排ガス浄化装置。
  4.  更に、前記供給部に接続される供給通路と、
     前記供給通路に設けられ、排気ガスを前記供給部に供給するための送風機と、
     前記排気通路と、前記供給通路の前記送風機より上流側を接続し、前記排気通路中の処理済の排気ガスを前記供給通路に戻す戻り通路と、
     この戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構と、
     を有する請求項1乃至請求項3記載の蓄熱式排ガス浄化装置。
  5.  前記流量調整機構は、前記排気通路の前記戻り通路が接続される部分に設けられ、前記排気通路から前記戻り通路に流れる処理済の排気ガスの流量を調整することにより前記戻り通路を流れる処理済の排気ガスの流量を調整する三方弁である請求項4記載の蓄熱式排ガス浄化装置。
  6.  前記流量調整機構は、前記排気通路の前記戻り通路が接続される部分より下流側に設けられ、前記排気通路の前記戻り配管が接続される部分より下流側に流れる処理済の排気ガスの流量を調整することにより前記戻り通路を流れる処理済の排気ガスの流量を調整する調整弁である請求項4記載の蓄熱式排ガス浄化装置。
  7.  前記流量調整機構は、前記戻り通路中に設けられ、前記戻り通路を通る処理済の排気ガスの流量を調整する調整弁である請求項4記載の蓄熱式排ガス浄化装置。
  8.  更に、前記送風機により前記供給部に供給される排気ガスの流量を検出する流量検出部と、
     この流量検出部の検出結果に基づいて前記流量調整機構を制御して前記戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構用制御部と、
     を有する請求項4記載の蓄熱式排ガス浄化装置。
  9.  更に、前記供給通路の前記戻り通路との接続部よりも下流側で且つ前記送風機より上流側の前記供給通路中の圧力を検出する圧力検出部と、
     この圧力検出部の検出結果に基づいて前記流量調整機構を制御して前記戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構用制御部と、
     を有する請求項4記載の蓄熱式排ガス浄化装置。
  10.  更に、前記送風機により前記供給部に供給される排気ガスの流量を検出する流量検出部と、
     前記供給通路の前記戻り通路との接続部よりも下流側で且つ前記送風機より上流側の前記供給通路中の圧力を検出する圧力検出部と、
     これらの流量検出部及び圧力検出部のそれぞれの検出結果に基づいて前記流量調整機構を制御して前記戻り通路に流れる処理済の排気ガスの流量を調整する流量調整機構用制御部と、
     を有する請求項4記載の蓄熱式排ガス浄化装置。
  11.  前記供給部の開閉弁及び前記排出部の開閉弁は、それぞれ、
     供給される排気ガスの流通口が形成された流通口形成部材と、
     この流通口形成部材に対して近接及び離間する方向に移動可能であり、前記流通口形成部材に当接して前記流通口を閉とするとともに、前記流通口形成部材から離間して前記流通口を開とする弁体と、
     前記弁体を前記当接及び離間する方向に駆動するエアシリンダと、を有し、
     更に、前記開閉弁のぞれぞれのエアシリンダの駆動エアを排気する排気配管が合流するように設けられた共通の消音タンクと、を有し、この消音タンクは、防音デバイス内に配置されている請求項4記載の蓄熱式排ガス浄化装置。
  12.  前記防音デバイスは、前記送風機を囲むように設けられている請求項11記載の蓄熱式排ガス浄化装置。
  13.  排気ガスに含有される成分を燃焼分解する燃焼室と、
     それぞれ前記燃焼室に一端が連通しそれぞれが蓄熱体を備えた複数の蓄熱室と、
     前記複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに排気ガスを前記蓄熱室に供給する供給部と、
     前記複数の蓄熱室のそれぞれの他端に設けられ、開閉弁を有するとともに処理済の排気ガスを排出する排出部と、
     前記排出部に接続され前記処理済みの排気ガスを外部へ排出する排気通路と、
     前記燃焼室の内部である、第1の蓄熱室の上部側の空間と、前記第1の蓄熱室に隣接する第2の蓄熱室の上部側の空間との間の空間に設けられ、前記燃焼室内の排気ガスを攪拌する攪拌装置と、
     を有することを特徴とする蓄熱式排ガス浄化装置。
PCT/JP2013/084935 2013-03-25 2013-12-26 蓄熱式排ガス浄化装置 WO2014155889A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2015006885A MX361604B (es) 2013-03-25 2013-12-26 Aparato de purificación de gas de desecho del tipo almacenamiento de calor.
EP13880096.6A EP2865943A4 (en) 2013-03-25 2013-12-26 EXHAUST GAS PURIFYING DEVICE OF HEAT STORAGE TYPE
US14/413,970 US9726373B2 (en) 2013-03-25 2013-12-26 Heat storage type waste gas purification apparatus
JP2015507970A JP6194950B2 (ja) 2013-03-25 2013-12-26 蓄熱式排ガス浄化装置
CN201380025149.9A CN104285101B (zh) 2013-03-25 2013-12-26 蓄热式废气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013061751 2013-03-25
JP2013-061751 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014155889A1 true WO2014155889A1 (ja) 2014-10-02

Family

ID=51622920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084935 WO2014155889A1 (ja) 2013-03-25 2013-12-26 蓄熱式排ガス浄化装置

Country Status (7)

Country Link
US (1) US9726373B2 (ja)
EP (1) EP2865943A4 (ja)
JP (1) JP6194950B2 (ja)
CN (1) CN104285101B (ja)
MX (1) MX361604B (ja)
TW (1) TWI599747B (ja)
WO (1) WO2014155889A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878838A (zh) * 2020-06-30 2020-11-03 北人伯乐氛(西安)环境技术有限公司 一种rto系统
CN112303652A (zh) * 2020-06-28 2021-02-02 东莞智源彩印有限公司 凹印车间废气减风处理系统及处理方法
CN116557882A (zh) * 2023-05-30 2023-08-08 江苏宏源中孚防水材料有限公司 一种有机废气rto蓄热氧化处理装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593921B (zh) * 2014-10-22 2017-08-01 feng-tang Zhang Regenerative incinerators for removing blockage of thermal storage bricks in furnaces and methods of removing them
CN104791777B (zh) * 2015-04-09 2017-11-21 上海嘉德环境能源科技有限公司 一种利用烟气自循环降低nox的燃烧方法
CN110013764B (zh) * 2018-01-09 2022-03-04 中国石油化工股份有限公司 离子液体相变蓄热式催化氧化装置
JP6954138B2 (ja) * 2018-01-15 2021-10-27 株式会社デンソー 蓄熱装置
CN110624405A (zh) * 2019-09-26 2019-12-31 重庆展亚环保工程有限公司 活性炭吸附—脱附催化燃烧废气处理装置
DE102020113657A1 (de) 2020-05-20 2021-11-25 Dürr Systems Ag Thermische abluftreinigungsvorrichtung
US11698232B1 (en) 2022-02-15 2023-07-11 Siemens Energy, Inc. System and method utilizing thermochemical energy storage for abatement of volatile organic compounds
CN116139661B (zh) * 2023-04-17 2023-07-11 河北力德诚信环保科技有限公司 一种可进行多级处理的voc废气处理净化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240223A (ja) * 2002-02-19 2003-08-27 Sintokogio Ltd 蓄熱燃焼装置における燃焼室構造
JP2003287215A (ja) * 2002-03-28 2003-10-10 Chugai Ro Co Ltd 蓄熱式排ガス処理設備の操業方法
JP2004077017A (ja) 2002-08-19 2004-03-11 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置
JP3112831U (ja) * 2005-05-25 2005-08-25 華懋科技股▲分▼ 有限公司 蓄熱式排ガス燃焼装置
JP2007205609A (ja) * 2006-01-31 2007-08-16 Kobelco Eco-Solutions Co Ltd 蓄熱式脱臭装置
JP2007247922A (ja) * 2006-03-14 2007-09-27 Sintokogio Ltd 排気ガス処理システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4020657A1 (de) 1990-06-29 1992-01-09 Ltg Lufttechnische Gmbh Verfahren und vorrichtung zur katalytischen abluftreinigung
US5837205A (en) * 1996-05-07 1998-11-17 Megtec Systems, Inc. Bypass system and method for regenerative thermal oxidizers
DE69716595T2 (de) * 1996-05-10 2003-03-06 Megtec Sys Inc Kontrollvorrichtung für den wirkungsgrad von wärmetauschern mittels temperaturüberwachung
TW493056B (en) * 2001-10-16 2002-07-01 Su Jia Ching Processing system for exhaust containing volatile organic compounds
JP5344043B2 (ja) 2009-09-22 2013-11-20 新東工業株式会社 蓄熱燃焼式排ガス浄化システムおよびその運転方法
JP4841679B2 (ja) * 2010-04-15 2011-12-21 川崎重工業株式会社 ガスタービンの制御装置
JP5131574B2 (ja) * 2010-10-05 2013-01-30 新東工業株式会社 排ガス浄化装置及びその温度制御方法
JP5196286B1 (ja) 2011-08-29 2013-05-15 新東工業株式会社 蓄熱式排ガス浄化装置
CN102720527A (zh) 2012-06-28 2012-10-10 中煤科工集团重庆研究院 多床式乏风瓦斯蓄热氧化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240223A (ja) * 2002-02-19 2003-08-27 Sintokogio Ltd 蓄熱燃焼装置における燃焼室構造
JP2003287215A (ja) * 2002-03-28 2003-10-10 Chugai Ro Co Ltd 蓄熱式排ガス処理設備の操業方法
JP2004077017A (ja) 2002-08-19 2004-03-11 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置
JP3112831U (ja) * 2005-05-25 2005-08-25 華懋科技股▲分▼ 有限公司 蓄熱式排ガス燃焼装置
JP2007205609A (ja) * 2006-01-31 2007-08-16 Kobelco Eco-Solutions Co Ltd 蓄熱式脱臭装置
JP2007247922A (ja) * 2006-03-14 2007-09-27 Sintokogio Ltd 排気ガス処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2865943A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303652A (zh) * 2020-06-28 2021-02-02 东莞智源彩印有限公司 凹印车间废气减风处理系统及处理方法
CN111878838A (zh) * 2020-06-30 2020-11-03 北人伯乐氛(西安)环境技术有限公司 一种rto系统
CN116557882A (zh) * 2023-05-30 2023-08-08 江苏宏源中孚防水材料有限公司 一种有机废气rto蓄热氧化处理装置
CN116557882B (zh) * 2023-05-30 2023-11-17 江苏宏源中孚防水材料有限公司 一种有机废气rto蓄热氧化处理装置

Also Published As

Publication number Publication date
TWI599747B (zh) 2017-09-21
US20150159865A1 (en) 2015-06-11
US9726373B2 (en) 2017-08-08
MX361604B (es) 2018-12-11
JPWO2014155889A1 (ja) 2017-02-16
EP2865943A1 (en) 2015-04-29
JP6194950B2 (ja) 2017-09-13
CN104285101A (zh) 2015-01-14
EP2865943A4 (en) 2016-03-02
MX2015006885A (es) 2016-02-05
CN104285101B (zh) 2018-04-20
TW201437564A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP6194950B2 (ja) 蓄熱式排ガス浄化装置
JP3866919B2 (ja) 再生式熱源完全統合型ウェブ乾燥機
JP5344043B2 (ja) 蓄熱燃焼式排ガス浄化システムおよびその運転方法
TWI565915B (zh) 蓄熱式排氣淨化裝置
JP2007183095A (ja) 完全統合型再生式熱源を備えたウェブ乾燥装置及び方法並びにそのための再生式熱酸化装置
KR20140118902A (ko) 제해 기능을 갖는 진공 펌프
TWI553276B (zh) 蓄熱式廢氣淨化裝置
JP2014222086A (ja) 圧力緩衝装置、その圧力緩衝装置を備えた蓄熱燃焼式排ガス処理装置
JP4121457B2 (ja) 2チャンバ型再生式酸化装置用モジュールvoc閉じ込めチャンバ
JP5937399B2 (ja) 蓄熱式ガス処理装置の運転方法、及び、蓄熱式ガス処理装置
JP2008157486A (ja) 蓄熱型排気処理装置
CN111630319B (zh) 流化床炉
TW201321676A (zh) 廢氣淨化裝置
JP2008045762A (ja) 弁および蓄熱式脱臭装置
KR100927887B1 (ko) 배기가스 정화 장치
KR101086118B1 (ko) 급기덕트를 급기 및 배연 겸용으로 사용하는 횡류식 터널 환기방법
JP5229600B1 (ja) 排ガス浄化装置
JP2012250238A (ja) 取鍋加熱装置及び方法
JP5675508B2 (ja) Voc除害装置
JP4584238B2 (ja) 排ガスの冷却方法及びその装置
JP4532998B2 (ja) 露光工程のケミカル対策用換気装置
JP4641158B2 (ja) クリーンルーム
JP5874662B2 (ja) 排ガス処理装置および排ガス処理方法
JP2004138358A (ja) 蓄熱燃焼式排ガス浄化装置に対する排ガス給排方法およびその装置
US8591823B2 (en) Systems and methods for treating air streams exhausted from firing kilns

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015507970

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14413970

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/006885

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506874

Country of ref document: ID