WO2014148635A1 - 緩衝装置 - Google Patents

緩衝装置 Download PDF

Info

Publication number
WO2014148635A1
WO2014148635A1 PCT/JP2014/057901 JP2014057901W WO2014148635A1 WO 2014148635 A1 WO2014148635 A1 WO 2014148635A1 JP 2014057901 W JP2014057901 W JP 2014057901W WO 2014148635 A1 WO2014148635 A1 WO 2014148635A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure
passage
valve
shock absorber
Prior art date
Application number
PCT/JP2014/057901
Other languages
English (en)
French (fr)
Inventor
崇志 寺岡
政村 辰也
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to CN201480017385.0A priority Critical patent/CN105051403B/zh
Priority to EP14767379.2A priority patent/EP2977641B1/en
Priority to KR1020157026067A priority patent/KR101710820B1/ko
Priority to US14/778,326 priority patent/US9428030B2/en
Publication of WO2014148635A1 publication Critical patent/WO2014148635A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5126Piston, or piston-like valve elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units
    • F16F9/187Bitubular units with uni-directional flow of damping fluid through the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement
    • F16F9/5165Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement by use of spherical valve elements or like free-moving bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/114Damping valves pressure regulating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness

Definitions

  • the present invention relates to an improvement of a shock absorber.
  • the shock absorber includes a cylinder, a piston, a piston rod, an extension side chamber, a pressure side chamber, an intermediate cylinder, an outer cylinder, a suction passage, a rectification passage, and a damping force variable valve.
  • the piston is slidably inserted into the cylinder.
  • the piston rod is inserted into the cylinder and connected to the piston.
  • the extension side chamber and the compression side chamber are partitioned by a piston.
  • the intermediate cylinder covers the outer periphery of the cylinder and forms a discharge passage with the cylinder.
  • the outer cylinder covers the outer periphery of the intermediate cylinder and forms a reservoir with the intermediate cylinder.
  • the suction passage allows only the flow of hydraulic oil from the reservoir toward the pressure side chamber.
  • the rectifying passage is provided in the piston and allows only the flow of hydraulic oil from the pressure side chamber toward the extension side chamber.
  • the damping force variable valve is provided between the discharge passage and the reservoir.
  • the shock absorber causes hydraulic oil to flow out from the cylinder to the reservoir through the discharge passage by the action of the rectifying passage and the suction passage, both when the shock absorber extends and contracts.
  • the damping force generated by the shock absorber can be adjusted by adjusting the resistance applied by the damping force variable valve to the hydraulic oil flow (see, for example, JP-A-2009-222136).
  • the shock absorber can adjust the damping force, it can generate the optimum damping force for the vibration of the vehicle body and improve the riding comfort in the vehicle. Further, the shock absorber having the damping force variable valve outside the cylinder has an advantage that the mounting property to the vehicle can be maintained as compared with the shock absorber having the damping force variable valve in the piston while ensuring the stroke length.
  • a solenoid is used to adjust the damping force of a shock absorber having a damping force variable valve. By adjusting the thrust applied by the solenoid to the pilot valve that controls the valve opening pressure of the damping force variable valve, the resistance that the damping force variable valve gives to the flow of hydraulic oil is adjusted.
  • an electronic control device In order for the damping device to generate the optimum damping force for suppressing the vibration of the vehicle, an electronic control device called ECU (Electronic Control Unit) detects the optimum damping force from the vehicle body vibration information detected by various sensors. And sends a control command to the driver that drives the solenoid.
  • ECU Electronic Control Unit
  • the vibration frequency of the vehicle body that can be controlled by the damping device by adjusting the damping force is currently limited to an upper limit of about several Hz depending on the response of the damping force variable valve and the calculation processing speed of the ECU. For this reason, it is difficult to suppress the vibration of the frequency more than an upper limit.
  • the frequency of the vehicle body vibration that affects the riding comfort of the vehicle is higher than the frequency band where vibration can be controlled. Since conventional shock absorbers cannot suppress such high-frequency vibrations, there is a demand for improved riding comfort in vehicles. Further, if a sufficient vibration suppressing effect can be obtained when high-frequency vibration is input and the expansion / contraction speed of the shock absorber is high, the riding comfort in the vehicle can be further improved.
  • the shock absorber includes a cylinder, a piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber, a reservoir, and the pressure side chamber from the reservoir.
  • a suction passage that allows only the flow of liquid toward the pressure side
  • a rectifying passage that allows only a flow of liquid from the compression side chamber to the extension side chamber, and only allows a flow of liquid from the extension side chamber to the reservoir.
  • a shock absorber provided with a damping force adjusting unit capable of changing a resistance applied to the liquid flow, the housing having a pressure chamber having a small cross-sectional area part and a large cross-sectional area part, and a small size of the pressure chamber
  • a small piston portion that is slidably inserted into the cross-sectional area portion, and a large piston portion that is slidably inserted into the large cross-sectional area portion of the pressure chamber.
  • Komuro A free piston that divides an outer peripheral chamber in the outer periphery of the small piston portion within the large cross-sectional area portion, and divides the large chamber by the large piston portion in the large cross-sectional area portion; and A spring element that is positioned in a neutral position with respect to the chamber and that generates a biasing force that suppresses displacement from the neutral position of the free piston; and an extension-side passage that communicates one of the small chamber or the outer peripheral chamber with the extension-side chamber; A pressure-side first passage and a pressure-side second passage communicating the large chamber and the pressure-side chamber, and a pressure-side first passage provided in the pressure-side first passage and allowing only a liquid flow from the large chamber toward the pressure-side chamber. A first valve that provides resistance to the flow; and a second valve that is provided in the pressure-side second passage and provides resistance to the flow while allowing only the flow of liquid from the pressure-side chamber toward the large chamber.
  • FIG. 1 is a longitudinal sectional view of a shock absorber according to an embodiment.
  • FIG. 2 is an attenuation characteristic diagram of the shock absorber according to the embodiment.
  • FIG. 3 is a longitudinal sectional view of an example of a specific bottom member in the shock absorber according to the embodiment.
  • FIG. 4 is a longitudinal sectional view of another example of a specific bottom member in the shock absorber according to the embodiment.
  • FIG. 5 is a longitudinal sectional view of another example of a specific bottom member in the shock absorber according to the embodiment.
  • the shock absorber D ⁇ b> 1 includes a cylinder 1, a piston 2, a reservoir R, a suction passage 3, a rectifying passage 4, a damping force variable valve V, a bottom member 11, and a free piston 5.
  • the spring element 6, the extension side passage 20, the pressure side first passage 19a, the pressure side second passage 19b, the first valve Va, and the second valve Vb are provided.
  • the piston 2 is slidably inserted into the cylinder 1 and divides the cylinder 1 into an extension side chamber R1 and a pressure side chamber R2.
  • the suction passage 3 allows only the flow of liquid from the reservoir R toward the pressure side chamber R2.
  • the rectifying passage 4 allows only the flow of liquid from the pressure side chamber R2 toward the extension side chamber R1.
  • the damping force variable valve V is a damping force adjusting unit that allows only a liquid flow from the extension side chamber R1 to the reservoir R and can change a resistance applied to the liquid flow.
  • the bottom member 11 is a housing including a pressure chamber 14 having a small cross-sectional area portion 14a and a large cross-sectional area portion 14b.
  • the free piston 5 includes a small piston portion 5b slidably inserted into the small cross-sectional area portion 14a of the pressure chamber 14 and a large piston portion 5c slidably inserted into the large cross-sectional area portion 14b of the pressure chamber 14.
  • the free piston 5 defines a small chamber 15 by a small piston portion 5b in a small cross-sectional area portion 14a, and defines an outer peripheral chamber 17 in an outer periphery of the small piston portion 5b in the large cross-sectional area portion 14b.
  • a large chamber 16 is defined by a large piston portion 5c in 14b.
  • the spring element 6 generates a biasing force that positions the free piston 5 in the neutral position with respect to the pressure chamber 14 and suppresses the displacement from the neutral position of the free piston 5.
  • the extension side passage 20 communicates one of the small chamber 15 and the outer peripheral chamber 17, that is, in the example shown in FIG. 1, the outer peripheral chamber 17 with the extension side chamber R1.
  • the pressure side first passage 19a and the pressure side second passage 19b communicate the large chamber 16 and the pressure side chamber R2.
  • the first valve Va is provided in the pressure side first passage 19a and provides resistance to the liquid flow while allowing only the liquid flow from the large chamber 16 toward the pressure side chamber R2.
  • the second valve Vb is provided in the pressure-side second passage 19b and provides resistance to the liquid flow while allowing only the liquid flow from the pressure-side chamber R2 toward the large chamber 16.
  • the shock absorber D1 includes a piston rod 21 that is movably inserted into the cylinder 1.
  • One end 21 a of the piston rod 21 is connected to the piston 2, and the upper end, which is the other end, is slidably supported by an annular rod guide 8 that seals the upper end of the cylinder 1 and protrudes outward.
  • the shock absorber D ⁇ b> 1 includes an intermediate cylinder 9 and an outer cylinder 10.
  • the intermediate cylinder 9 covers the outer periphery of the cylinder 1 and forms a discharge passage 7 between the cylinder 1 and the extension side chamber R1 and the reservoir R.
  • the bottomed cylindrical outer cylinder 10 covers the outer periphery of the intermediate cylinder 9 and forms a reservoir R with the intermediate cylinder 9.
  • the damping force variable valve V is provided between the discharge passage 7 and the reservoir R.
  • the lower ends of the cylinder 1 and the intermediate cylinder 9 are sealed with a bottom member 11.
  • the bottom member 11 is provided with a pressure chamber 14 and a suction passage 3.
  • the extension side chamber R1, the pressure side chamber R2, and the pressure chamber 14 are filled with a liquid such as hydraulic oil, and the reservoir R is filled with a gas together with the liquid.
  • a liquid such as water or an aqueous solution may be used.
  • the piston 2 is connected to one end 21a that is a lower end of a piston rod 21 that is movably inserted into the cylinder 1.
  • a space between the piston rod 21 and the rod guide 8 that supports the piston rod 21 is sealed by a seal member 12, and the inside of the cylinder 1 is kept in a liquid-tight state.
  • the outer diameter of the rod guide 8 is gradually increased so as to be fitted to the cylinder 1, the intermediate cylinder 9, and the outer cylinder 10. Upper end openings of the cylinder 1, the intermediate cylinder 9 and the outer cylinder 10 are closed by the rod guide 8.
  • the bottom member 11 is fitted to the lower end of the cylinder 1.
  • the bottom member 11 includes a small diameter portion 11a, a medium diameter portion 11b, a large diameter portion 11c, a cylindrical portion 11d, and a plurality of notches 11e.
  • the small diameter portion 11 a is fitted into the cylinder 1.
  • the intermediate diameter portion 11b has a larger outer diameter than the small diameter portion 11a and fits in the intermediate cylinder 9.
  • the large diameter portion 11c is provided on the lower end side of the medium diameter portion 11b and has a larger outer diameter than the medium diameter portion 11b.
  • the cylinder portion 11d is provided on the lower end side of the large diameter portion 11c.
  • the plurality of notches 11e are provided in the cylindrical portion 11d.
  • the bottom member 11, the cylinder 1, the intermediate cylinder 9, the rod guide 8, and the seal member 12 are accommodated in the outer cylinder 10 and the upper end of the outer cylinder 10 is crimped, the crimped portion 10 a of the outer cylinder 10 and the outer cylinder 10
  • the bottom member 11, the cylinder 1, the intermediate cylinder 9, the rod guide 8, and the seal member 12 are sandwiched between the bottom part 10 b and the outer part 10.
  • a cap that is screwed to the open end is provided, and the cap and the bottom portion 10 b include the bottom member 11, the cylinder 1, the intermediate cylinder 9, the rod guide 8, and the seal member 12. May be inserted.
  • the suction passage 3 provided in the bottom member 11 includes a passage 3a communicating the reservoir R and the pressure side chamber R2, and a check valve 3b provided in the passage 3a.
  • one of the passages 3a opens at the upper end of the small diameter portion 11a of the bottom member 11, and the other opens at the lower end of the large diameter portion 11c.
  • the passage 3a opened at the lower end of the large diameter portion 11c communicates with the reservoir R through the notch 11e.
  • the check valve 3b is opened only when the liquid flows from the reservoir R toward the pressure side chamber R2.
  • the suction passage 3 allows only the flow of liquid from the reservoir R to the pressure side chamber R2, prevents the flow in the reverse direction, and is set to be one-way.
  • the piston 2 is provided with a rectifying passage 4 that allows only the flow of liquid from the pressure side chamber R2 to the extension side chamber R1.
  • the rectifying passage 4 includes a passage 4a that communicates the pressure side chamber R2 with the expansion side chamber R1, and a check valve 4b provided in the passage 4a.
  • the check valve 4b is opened only when the liquid flows from the pressure side chamber R2 toward the extension side chamber R1.
  • the rectifying passage 4 allows only the flow of liquid from the pressure side chamber R2 to the extension side chamber R1, prevents the flow in the reverse direction, and is set to be one-way.
  • a through hole 1a facing the extension side chamber R1 is provided, and the extension side chamber R1 communicates with an annular gap formed between the cylinder 1 and the intermediate cylinder 9 through the through hole 1a. Yes.
  • An annular gap between the cylinder 1 and the intermediate cylinder 9 forms a discharge passage 7 that allows the extension side chamber R1 and the reservoir R to communicate with each other.
  • the damping force variable valve V is provided in a valve block 13 that is bridged and fixed between the outer cylinder 10 and the intermediate cylinder 9.
  • the damping force variable valve V includes a flow path 13a, a valve body 13b, a pilot passage 13c, and a pressing device 13d.
  • the flow path 13 a connects the discharge passage 7 in the intermediate cylinder 9 to the reservoir R.
  • the valve body 13b is provided in the middle of the flow path 13a.
  • the pilot passage 13c causes the pressure in the extension side chamber R1 upstream from the valve body 13b to act on the valve body 13b in the valve opening direction.
  • the pressing device 13d generates a pressing force that presses the valve body 13b in the valve closing direction and makes the pressing force variable.
  • the pressing device 13d shown in FIG. 1 controls the pressure that presses the valve body 13b in the valve closing direction by a solenoid, and can change this pressure according to the amount of current supplied from the outside to the solenoid. .
  • the pressing device 13d may directly press the valve body 13b with an actuator such as a solenoid.
  • the pressing device 13d may be of any type as long as the pressing force can be changed according to the amount of current or voltage supplied.
  • a damping force adjusting unit capable of applying a magnetic field to the flow path connecting the discharge passage 7 and the reservoir R instead of the damping force variable valve V, for example, a coil or the like May be used.
  • the resistance given to the flow of the magnetorheological fluid passing through the flow path is changed by adjusting the magnitude of the magnetic field according to the amount of current supplied from the outside.
  • the damping force adjusting unit may cause an electric field to act on the flow path that connects the discharge passage 7 and the reservoir R.
  • the resistance applied to the electrorheological fluid flowing through the flow path is changed by adjusting the magnitude of the electric field by a voltage applied from the outside.
  • the shock absorber D1 When the shock absorber D1 is contracted, the piston 2 moves downward to compress the compression side chamber R2, and the liquid in the compression side chamber R2 moves to the expansion side chamber R1 via the rectifying passage 4. During the contraction operation, the piston rod 21 enters the cylinder 1, so that an amount of liquid corresponding to the intrusion volume of the piston rod becomes excessive in the cylinder 1, and excess liquid is pushed out of the cylinder 1 and passes through the discharge passage 7. And discharged to the reservoir R.
  • the shock absorber D1 increases the pressure in the cylinder 1 by generating resistance on the flow of the liquid that passes through the discharge passage 7 and moves to the reservoir R by the damping force variable valve V, thereby generating a compression side damping force.
  • the shock absorber D1 when the shock absorber D1 is extended, the piston 2 moves upward to compress the expansion side chamber R1, and the liquid in the expansion side chamber R1 moves to the reservoir R through the discharge passage 7. At the time of the extension operation, the piston 2 moves upward and the volume of the pressure side chamber R ⁇ b> 2 increases, but the liquid commensurate with the expansion is supplied from the reservoir R through the suction passage 3.
  • the shock absorber D1 increases the pressure in the extension side chamber R1 by giving resistance to the flow of the liquid discharged from the extension side chamber R1 and passing through the discharge passage 7 to the reservoir R by the damping force variable valve V. Generates side damping force.
  • the shock absorber D1 when the shock absorber D1 exhibits an expansion / contraction operation, it always discharges the liquid from the cylinder 1 through the discharge passage 7 to the reservoir R.
  • the shock absorber D1 is a uniflow-type shock absorber in which liquid circulates in order through the pressure side chamber R2, the expansion side chamber R1, and the reservoir R in order, and the damping force on both sides of the pressure expansion is generated by a single damping force variable valve V. .
  • the cross-sectional area of the piston rod 21 By setting the cross-sectional area of the piston rod 21 to a half of the cross-sectional area of the piston 2, if the piston 2 has the same amplitude, the amount of hydraulic oil discharged from the cylinder 1 is equal on both sides of the pressure expansion. Can be set. For this reason, if the resistance applied to the flow by the damping force variable valve V is the same on both sides of the stretching, the damping force on the stretching side and the compression side can be made equal.
  • the pressure chamber 14 is formed by a hollow portion provided in the bottom member 11.
  • the pressure chamber 14 has a cross-sectional area perpendicular to the up-down direction that is different between the lower side and the upper side.
  • a portion 14b, and a step portion 14c provided in the middle of the small cross-sectional area portion 14a and the large cross-sectional area portion 14b.
  • the free piston 5 is slidably inserted in the pressure chamber 14.
  • the free piston 5 has a stepped shape and includes a plate-like base portion 5a, a tubular small piston portion 5b, and a tubular large piston portion 5c.
  • the small piston portion 5 b extends downward from the lower end of the base portion 5 a and is slidably inserted into the small cross-sectional area portion 14 a of the pressure chamber 14.
  • the large piston portion 5 c rises upward from the outer periphery of the upper end of the base portion 5 a and is slidably inserted into the large cross-sectional area portion 14 b of the pressure chamber 14.
  • the free piston 5 can move in the vertical direction.
  • the small cross-sectional area portion 14 a and the large cross-sectional area portion 14 b in the pressure chamber 14 may be formed along the sliding direction of the free piston 5.
  • the free piston 5 slidably inserts the small piston portion 5b into the small cross-sectional area portion 14a, thereby dividing the small chamber 15 in the small cross-sectional area portion 14a and below the small piston portion 5b.
  • the free piston 5 slidably inserts the large piston portion 5c into the large cross-sectional area portion 14b to partition the large chamber 16 in the large cross-sectional area portion 14b and above the large piston portion 5c.
  • the free piston 5 divides the outer peripheral chamber 17 between the base 5a and the stepped portion 14c in the large cross-sectional area portion 14b and on the outer periphery of the small piston portion 5b.
  • a seal ring 5d that is in sliding contact with the inner periphery of the large cross-sectional area portion 14b is mounted. For this reason, the large chamber 16 and the outer peripheral chamber 17 do not communicate with each other through the outer periphery of the free piston 5.
  • a seal ring may be provided on the outer periphery of the small piston portion 5b.
  • the small chamber 15 communicates with the reservoir R through the passage 18 and the notch 11e provided in the bottom member 11, a pressure derived from the reservoir R acts on the small chamber 15.
  • the large chamber 16 communicates with the pressure-side chamber R2 through a pressure-side first passage 19a and a pressure-side second passage 19b that open at the upper end of the small diameter portion 11a of the bottom member 11 and open at the upper end of the large cross-sectional area portion 14b.
  • the pressure side first passage 19a is provided with a first valve Va made of a leaf valve. The first valve Va opens when the differential pressure between the pressure in the large chamber 16 and the pressure in the pressure side chamber R2 reaches the valve opening pressure, and provides resistance to the flow of liquid from the large chamber 16 toward the pressure side chamber R2.
  • the first valve Va maintains a closed state with respect to the flow of liquid from the pressure side chamber R2 to the large chamber 16.
  • An orifice O1 is provided in the pressure side first passage 19a in parallel with the first valve Va.
  • the pressure side second passage 19b is provided with a second valve Vb made of a leaf valve.
  • the second valve Vb opens when the differential pressure between the pressure in the pressure side chamber R2 and the pressure in the large chamber 16 reaches the valve opening pressure, and provides resistance to the flow of liquid from the pressure side chamber R2 toward the large chamber 16.
  • the second valve Vb maintains a closed state with respect to the flow of liquid from the large chamber 16 toward the pressure side chamber R2.
  • the pressure side second passage 19b is provided with an orifice O2 in parallel with the second valve Vb.
  • a pressure derived from the pressure side chamber R2 acts on the large chamber 16, and the large chamber 16 functions as a pressure side pressure chamber communicating with the pressure side chamber R2.
  • the outer peripheral chamber 17 is connected to the discharge passage 7 through an extension side passage 20 provided in the bottom member 11 and a through hole 1b provided in the vicinity of the lower end of the cylinder 1 facing the extension side passage 20.
  • the outer peripheral chamber 17 communicates with the extension side chamber R1.
  • the pressure derived from the extension side chamber R1 acts on the outer peripheral chamber 17, and the outer peripheral chamber 17 functions as an extension side pressure chamber.
  • the outer peripheral chamber 17 communicates with the extension side chamber R1 by using the discharge passage 7 that guides the liquid to the damping force variable valve V provided to make the shock absorber D1 into a uniflow structure. For this reason, even if the pressure chamber 14 is provided in the bottom member 11, there is no need to provide another passage communicating with the outer peripheral chamber 17 in the extension side chamber R1, which is advantageous in terms of cost reduction and weight reduction of the shock absorber D1. .
  • the pressure in the large chamber 16 that is, the pressure introduced from the pressure side chamber R2 (pressure derived from the pressure side chamber) acts on the horizontal surface (pressure side pressure receiving area A1) of the large piston portion 5c of the free piston 5, and the small chamber 15
  • the free piston 5 is pressed downward in the direction in which the outer circumferential chamber 17 is compressed.
  • the horizontal surface is a surface perpendicular to the vertical direction in FIG.
  • the pressure side pressure receiving area A1 is an area surrounded by an outer edge of a cross section obtained by cutting the large piston portion 5c in the horizontal direction.
  • the pressure in the outer peripheral chamber 17, that is, the pressure introduced from the extension side chamber R 1 (pressure derived from the extension side chamber) acts on the horizontal surface (extension side pressure receiving area B 1) of the free piston 5 that defines the outer periphery chamber 17.
  • the pressure in the small chamber 15, that is, the pressure in the reservoir R acts on the horizontal surface (pressure receiving area C 1) of the small piston portion 5 b of the free piston 5, and is upward in the direction in which the large chamber 16 is compressed.
  • the free piston 5 is pressed.
  • the horizontal surface is a surface perpendicular to the vertical direction in FIG.
  • the extension side pressure receiving area B1 is an area surrounded by an outer edge of a cross section obtained by cutting the large piston portion 5c in the horizontal direction and an outer edge of a cross section obtained by cutting the small piston portion 5b in the horizontal direction.
  • the pressure receiving area C1 is an area surrounded by an outer edge of a cross section obtained by cutting the small piston portion 5b in the horizontal direction.
  • the pressure from the pressure side chamber is applied to the free piston 5 so as to press the free piston 5 in one of the sliding directions (downward in FIG. 1), and the free piston 5 is moved in the other of the sliding directions (in FIG. 1).
  • the pressure derived from the extension side chamber is applied to the free piston 5 so as to press upward.
  • the pressure side pressure receiving area A1 on which the pressure derived from the pressure side chamber of the free piston 5 acts is set larger than the expansion side pressure receiving area B1 on which the pressure derived from the expansion side chamber of the free piston 5 acts.
  • the pressure derived from the reservoir R acts on the pressure receiving area C1 other than the expansion side pressure receiving area B1 on which the pressure derived from the expansion side chamber acts so as to press the free piston 5 to the other side in the sliding direction, that is, the surface facing the small chamber 15. I am letting.
  • a compression side spring 6 a and an extension side spring 6 b that are coil springs as the spring element 6 are provided.
  • the compression side spring 6 a is interposed in a compressed state between the top wall of the large cross-sectional area portion 14 b and the base portion 5 a of the free piston 5.
  • the extension side spring 6 b is interposed in a compressed state between the bottom wall of the small cross-sectional area portion 14 a and the base portion 5 a of the free piston 5.
  • the spring element 6 may be a member that can position the free piston 5 in the neutral position and generate an urging force, that is, a member other than the coil spring.
  • the free piston 5 may be elastically supported using an elastic body such as a disc spring as the spring element 6. Further, when a single spring element 6 having one end connected to the free piston 5 is used, the other end is fixed to the top wall of the large cross-sectional area portion 14b or the bottom wall of the small cross-sectional area portion 14a. Good.
  • the pressure side spring 6a and the extension side spring 6b are used as the spring element 6, and a cylindrical small piston portion 5b and a large piston portion 5c are provided on both sides of the base portion 5a of the free piston 5. Therefore, the compression side spring 6a can be accommodated in the large piston portion 5c and the expansion side spring 6b can be accommodated in the small piston portion 5b. For this reason, the expansion / contraction space of the compression side spring 6a and the expansion side spring 6b is ensured, and the full length of the pressure chamber 14 can be shortened while ensuring the stroke length of the free piston 5 sufficiently.
  • the free piston 5 has a solid cylindrical small piston portion 5b and a large piston portion 5c. May be integrated.
  • the pressure chamber 14 of the shock absorber D1 is partitioned by the free piston 5 into an outer peripheral chamber 17 as an extension side pressure chamber and a large chamber 16 as a pressure side pressure chamber.
  • the free piston 5 moves, the volumes of the large chamber 16 and the outer peripheral chamber 17 change.
  • the piston 2 moves upward, so that the liquid is discharged from the expansion side chamber R1 to be compressed to the reservoir R through the damping force variable valve V, and the suction side passage to the pressure side chamber R2 to be expanded.
  • the liquid is supplied from the reservoir R through 3.
  • the pressure in the extension side chamber R1 rises, and the pressure in the pressure side chamber R2 becomes substantially equal to that in the reservoir R.
  • the outer peripheral chamber 17 communicates with the extension side chamber R1, and the pressure derived from the extension side chamber R1 acts in the outer peripheral chamber 17. Since the small chamber 15 communicates with the reservoir R, the pressure in the small chamber 15 is almost equal to that in the reservoir R.
  • the large chamber 16 communicates with the pressure side chamber R2 through the pressure side first passage 19a provided with the first valve Va. Therefore, when the free piston 5 is pressed upward due to the pressure increase in the outer peripheral chamber 17, the first valve Va is opened, and the large chamber 16 and the pressure side chamber R2 communicate with each other. At this time, the pressure in the large chamber 16 becomes higher than the pressure in the pressure side chamber R2 by an amount corresponding to the pressure loss in the first valve Va, with the pressure in the pressure side chamber R2 as a reference.
  • the pressure chamber 14 functions as an apparent flow path, and the liquid moves from the expansion side chamber R1 to the pressure side chamber R2 by bypassing the damping force variable valve V.
  • the first valve Va opens the pressure side first passage 19a accordingly, so that the large chamber 16 and the pressure side chamber R2 are communicated only with the orifices O1 and O2.
  • the degree of pressure increase in the large chamber 16 with respect to the moving speed of the free piston 5 becomes low.
  • the outer peripheral chamber 17 communicates with the extension side chamber R1 through the extension side passage 20, and the pressure derived from the extension side chamber R1 acts in the outer periphery chamber 17. Since the small chamber 15 communicates with the reservoir R, the pressure in the small chamber 15 is almost equal to that in the reservoir R.
  • the large chamber 16 communicates with the pressure side chamber R2 through the pressure side second passage 19b in which the second valve Vb is provided, and the second valve Vb is opened by the pressure increase in the pressure side chamber R2, and the large chamber is opened. 16 communicates with the pressure side chamber R2. In this case, the pressure in the large chamber 16 is lower than the pressure in the pressure side chamber R2 by an amount corresponding to the pressure loss in the second valve Vb with reference to the pressure in the pressure side chamber R2.
  • a pressure lower than the pressure in the pressure side chamber R2 acts on the pressure side pressure receiving area A1 of the free piston 5 by an amount corresponding to the pressure loss of the second valve Vb.
  • a pressure substantially equal to the pressure of the extension side chamber R1 acts on B1, and the pressure of the reservoir R acts on the pressure receiving area C1.
  • the pressure side pressure receiving area A1 is larger than the extension side pressure receiving area B1.
  • the second valve Vb is set so that the product value of the pressure in the large chamber 16 and the pressure side pressure receiving area A1 during the contraction operation of the shock absorber D1 is larger than the value of the product of the pressure in the outer circumferential chamber 17 and the expansion side pressure receiving area B1.
  • the pressure loss is set.
  • the free piston 5 is pushed downward and moves.
  • the liquid is discharged from the outer peripheral chamber 17 to the discharge passage 7, but the liquid flows into the large chamber 16 from the pressure side chamber R 2, and the liquid is discharged from the small chamber 15 to the reservoir R.
  • an amount of liquid obtained by subtracting the volume reduction amount of the outer peripheral chamber 17 from the volume expansion amount of the large chamber 16 moves from the cylinder 1 to the reservoir R. That is, the pressure chamber 14 functions as an apparent flow path, and the liquid discharged from the small chamber 15 moves from the cylinder 1 to the reservoir R by bypassing the damping force variable valve V.
  • the second valve Vb opens the pressure side second passage 19b greatly accordingly, so that the large chamber 16 and the pressure side chamber R2 communicate with each other only by the orifices O1 and O2.
  • the degree of pressure drop in the large chamber 16 with respect to the moving speed of the free piston 5 becomes small.
  • the pressure from the pressure side chamber is applied to the free piston 5 so as to press the free piston 5 in one of the sliding directions (downward in FIG. 1), and the free piston 5 is moved in the other of the sliding directions (in FIG. 1).
  • the pressure derived from the extension side chamber is applied to the free piston 5 so as to press upward.
  • the pressure side pressure receiving area A1 on which the pressure derived from the pressure side chamber of the free piston 5 acts is larger than the expansion side pressure receiving area B1 on which the pressure derived from the expansion side chamber of the free piston 5 acts.
  • the ratio of the flow rate that passes through the apparent passage (pressure chamber 14) to the flow rate that passes through the damping force variable valve V is low frequency. Since it increases more than during vibration, the damping force generated by the shock absorber D1 is reduced and reduced.
  • FIG. 2 shows the damping characteristics when the damping force variable valve V as the damping force adjusting unit is set to soft, medium, and hard damping force on the expansion side and the compression side of the shock absorber D1.
  • the broken line indicates the characteristics of the damping force when the damping force is reduced by inputting high-frequency vibrations to the shock absorber D1 in a situation where soft, medium, and hard damping characteristics are set.
  • the change in damping force can be made to depend on the input vibration frequency.
  • the shock absorber D1 generates a high damping force with respect to the input of low-frequency vibration in the resonance frequency band of the vehicle body (sprung member) of the vehicle, so that the posture of the vehicle body (sprung member) is stabilized.
  • the shock absorber D1 when high-frequency vibration in the resonance frequency band of the vehicle wheel (unsprung member) is input, the shock absorber D1 always generates a low damping force, and the vibration on the wheel side (unsprung member side) Transmission to the side (sprung member side) is prevented. In this way, the ride comfort in the vehicle can be improved.
  • the damping force can be reduced with respect to the high frequency vibration input, so that the riding comfort in the vehicle can be further improved.
  • the shock absorber D1 can adjust the damping force by adjusting the resistance that the damping force variable valve V gives to the liquid flow. That is, in the shock absorber D1, the damping force can be reduced with respect to high-frequency vibration while the damping force is adjusted by the damping force variable valve V.
  • the shock absorber D1 can suppress the vibration of the vehicle body by adjusting the damping force by controlling the damping force variable valve V as a damping force adjusting unit with respect to the vibration in a relatively low frequency band. Further, the shock absorber D1 can mechanically generate a low damping force against high-frequency vibrations that cannot be suppressed by controlling the damping force variable valve V as a damping force adjusting unit. Therefore, the vibration from the wheel side can be insulated to effectively suppress the vehicle body vibration, and the riding comfort in the vehicle can be greatly improved.
  • the first valve Va and the second valve Vb are correspondingly moved to the pressure side first passage 19a and the pressure side.
  • the second passage 19b is greatly opened.
  • the frequency band for reducing the damping force is the pressure side pressure receiving area A1, the extension side pressure receiving area B1, the pressure receiving area C1 of the free piston 5, the passage 18, the first valve Va, the second valve Vb, and the extension side passage 20. It can be arbitrarily determined by setting the resistance and the spring constant of the spring element 6 (in this case, the combined spring constant of the compression side spring 6a and the extension side spring 6b).
  • the free piston 5 is positioned to the neutral position by the spring element 6 and is returned to the neutral position by the urging force of the spring element 6. For this reason, it is possible to suppress the occurrence of a situation in which the free piston 5 stops at the stroke end and the shock absorber D1 cannot exhibit the damping force reduction effect when high-frequency vibration is input.
  • the outer peripheral chamber 17 may be communicated with the reservoir R, and the small chamber 15 may be communicated with the expansion side chamber R1 through the expansion side passage.
  • the pressure from the pressure side chamber is applied to the free piston 5 so as to press the free piston 5 in one of the sliding directions (downward in FIG. 1), and the free piston 5 is moved in the other sliding direction (FIG. 1, the pressure derived from the extension side chamber can be applied to the free piston 5 so as to press upward.
  • the pressure side pressure receiving area A1 where the pressure derived from the pressure side chamber of the free piston 5 acts is larger than the part C1 where the pressure derived from the expansion side chamber of the free piston 5 acts, the pressure chamber 14 is apparently similar to the above configuration. It can function as a flow path.
  • the small chamber 15 communicates with the outside of the shock absorber D1 to open the atmosphere, or a low-pressure gas is sealed in the small chamber 15 to use the small chamber 15 as an air chamber. You can do it. Even in such a configuration, when the shock absorber D1 is extended, the free piston 5 is pushed upward to move, and the liquid flows into the outer peripheral chamber 17 according to the amount of movement of the free piston 5, and the large chamber 16 The liquid is discharged from the pressure side chamber R2.
  • the pressure chamber 14 functions as an apparent flow path, and the liquid bypasses the damping force variable valve V and moves from the expansion side chamber R1 to the pressure side chamber R2.
  • the pressure chamber 14 can be completely accommodated in the buffer device D1, and the gas from the small chamber 15 to the outer peripheral chamber 17 or the large chamber 16 can be prevented.
  • the outer peripheral chamber 17 can be an air chamber.
  • the cross-sectional shape of the outer periphery of the free piston 5 and the cross-sectional shape of the inner wall of the pressure chamber 14 can adopt shapes other than a circle.
  • the bottom member 11 includes a case member 22, a lid member 23, a valve disk 30, and a cap 31.
  • the lid member 23 closes the case member 22 having the hollow portion 22a into which the free piston 5 is inserted, and the hollow portion 22a of the case member 22.
  • the valve disk 30 is connected to the lid member 23 via the connecting rod 26 and is disposed in the pressure side chamber R2.
  • the cap 31 is mounted on the outer periphery of the connecting rod 26 and the valve disk 30 is fitted to partition the chamber S1 in the compression side chamber R2.
  • the valve disc 30 is provided with a first valve 32 and a second valve 33 which are leaf valves.
  • the case member 22 is cylindrical and has three steps on the outer periphery, and has an outer diameter that shrinks stepwise as it goes upward.
  • the outer periphery of the second step portion from the bottom of the case member 22 is fitted into the intermediate tube 9, and the third step portion from the bottom is located in the intermediate tube 9 with a gap between the intermediate tube 9. is doing.
  • the outer diameter of the lowermost stage of the case member 22 is formed larger than the inner diameter of the intermediate cylinder 9.
  • a seal ring 24 is attached to the outer periphery of the second step from the bottom of the case member 22 to which the intermediate cylinder 9 is fitted, and the discharge passage 7 and the reservoir R communicate with each other through the outer periphery of the case member 22. To prevent that.
  • the outer periphery of the lowermost stage of the case member 22 has a cylindrical shape, and includes a plurality of notches 22b communicating between the inside and the outside.
  • the case member 22 includes a hollow portion 22a that opens at the upper end.
  • the opening of the hollow portion 22 a is closed by the lid member 23, and a pressure chamber 25 is formed inside the case member 22.
  • the hollow portion 22a has a large cross-sectional area portion 25b formed on the opening side, and a small cross-sectional area portion 25a formed below the large cross-sectional area portion 25b and having a smaller diameter than the large cross-sectional area portion 25b. .
  • a step portion 25c is formed between the small cross-sectional area portion 25a and the large cross-sectional area portion 25b.
  • the case member 22 includes a through hole 22c, a passage 22d, and a passage 22e.
  • the through hole 22c opens at the outer periphery of the third step portion from the bottom of the case member 22 and communicates with the step portion 25c.
  • the passage 22d leads from the lower end of the case member 22 to the bottom surface of the hollow portion 22a.
  • the passage 22e penetrates the case member 22 in the vertical direction.
  • the lid member 23 includes a disc-shaped bolt insertion hole 23a provided in the center along the vertical direction, a cylindrical socket 23b extending downward on the outer periphery, and a port 23c provided along the vertical direction. .
  • the socket 23 b of the lid member 23 is fitted to the tip of the case member 22, the hollow portion 22 a is closed, and the pressure chamber 25 is formed inside the case member 22.
  • the free piston 5, the compression side spring 6a, and the extension side spring 6b are accommodated.
  • the socket 23b of the lid member 23 is fitted to the tip of the case member 22, the compression side spring 6a and the extension side spring 6b are compressed, and the free piston 5 is positioned to the neutral position by the urging force of the compression side spring 6a and the extension side spring 6b. Is done.
  • the pressure chamber 25 is divided into a small chamber 15, a large chamber 16 and an outer peripheral chamber 17 by inserting the free piston 5.
  • the small chamber 15 communicates with the reservoir R through a passage 22 d provided in the case member 22.
  • the outer peripheral chamber 17 communicates with the discharge passage 7 through the through hole 22c.
  • the through hole 22c that opens to the stepped portion 25c is formed so as to maintain communication between the outer peripheral chamber 17 and the discharge passage 7 until the free piston 5 is completely in close contact with the stepped portion 25c.
  • the connecting rod 26 is inserted through the bolt insertion hole 23a.
  • the connecting rod 26 includes a shaft portion 26b having a screw portion 26a at the tip, and a head portion 26c formed at the base end of the shaft portion 26b.
  • a disc-shaped check valve 27 placed on the upper surface of the lid member 23 is mounted on the outer periphery of the shaft portion 26 b of the connecting rod 26.
  • the check valve 27 is fixed to the lid member 23 by a connecting rod 26 and a nut 28 screwed to the screw portion 26a, and opens and closes a port 23c formed in the lid member 23.
  • an in-rod passage 26d that opens at the lower end of the head portion 26c and communicates with the side portion of the shaft portion 26b is provided inside the connecting rod 26, an in-rod passage 26d that opens at the lower end of the head portion 26c and communicates with the side portion of the shaft portion 26b is provided.
  • a bottomed cylindrical cap 31 On the outer periphery of the shaft portion 26 b of the connecting rod 26, above the check valve 27, a bottomed cylindrical cap 31, a cylindrical spacer 34, a second valve 33, a valve disk 30, and a first valve 32 are assembled in order. These are clamped by the nut 28 and the head portion 26 c of the connecting rod 26 and fixed to the lid member 23.
  • the cap 31 has a bottomed cylindrical shape and is provided with a hole 31a through which the shaft portion 26b of the connecting rod 26 is inserted at the bottom.
  • the spacer 34 has a cylindrical shape with a top, and a hole 34a through which the shaft portion 26b of the connecting rod 26 is inserted is formed at the top, and a through hole 34b that communicates the inside and outside of the cylinder is formed at the cylinder.
  • the valve disc 30 has a hole 30a through which the shaft portion 26b of the connecting rod 26 is inserted in the center, and a first port 30b and a second port 30c that open from the upper end to the lower end are formed at the periphery.
  • the outer periphery of the valve disc 30 is fitted to the inner periphery of the cylindrical portion of the cap 31, so that the cap 31 is partitioned from the pressure side chamber R2.
  • a room S1 is formed.
  • the room S1 communicates with the compression side chamber R2 through the first port 30b and the second port 30c.
  • One end of the in-rod passage 26d provided in the connecting rod 26 opens at the side of the shaft portion 26b located in the cylindrical portion of the spacer 34, and the other end is a head portion 26c located in the large chamber 16. Opened at the lower end of.
  • the large chamber 16 Since the inside of the cylindrical portion of the spacer 34 communicates with the room S1 through the through-hole 34b, the large chamber 16 has the passage 26d in the rod, the inside of the spacer 34, the through-hole 34b, the room S1, the first port 30b, and the second port 30c. And communicates with the pressure side chamber R2.
  • the first valve 32 stacked on the pressure side chamber R2 side surface of the valve disk 30 is a stacked leaf valve in which annular plates are stacked, and opens and closes the upper end opening end of the first port 30b.
  • the first valve 32 is a one-way passage that allows only the flow of liquid from the large chamber 16 toward the pressure side chamber R2 via the first port 30b, and provides resistance to the flow of the passing liquid.
  • the second valve 33 laminated on the surface of the valve disk 30 on the room S1 side is a laminated leaf valve in which annular plates are laminated, and opens and closes the lower end opening end of the second port 30c.
  • the second valve 33 is a one-way passage that allows only the flow of liquid from the pressure side chamber R2 to the large chamber 16 via the second port 30c, and provides resistance to the flow of the passing liquid.
  • the pressure side first passage is formed by the first port 30b and the rod inner passage 26d
  • the pressure side second passage is formed by the second port 30c and the rod inner passage 26d. Is formed.
  • the port 23c communicates with the reservoir R through the passage 22e.
  • the check valve 27 that opens and closes the port 23c opens when the pressure in the pressure side chamber R2 is reduced during the expansion operation of the shock absorber D1, and the outer peripheral side bends to open the reservoir R and the pressure side chamber R2 through the port 23c and the passage 22e. Communicate.
  • the check valve 27 constitutes the suction passage 3 together with the port 23c and the passage 22e.
  • each member constituting the bottom member 11 is easily incorporated into the shock absorber D1.
  • the lid member 23 is provided with an annular groove 23d that is press-fitted into the inner periphery of the cylindrical tip of the case member 22 and that opens the port 23c.
  • the seal ring 29 is attached to the outer periphery of the cylindrical tip of the case member 22 and is in close contact with the inner periphery of the socket 23b.
  • the seal ring 29 may be attached to the socket 23 b side of the lid member 23 so that the seal ring 29 is in close contact with the outer periphery of the tip end of the case member 22.
  • valve disk 40 is accommodated in the case member 22.
  • the valve disk 40 is connected to the lid member 23 by a connecting rod 41 and is accommodated in the hollow portion 22 a of the case member 22.
  • the connecting rod 41 includes a shaft portion 41b having a screw portion 41a at the tip, a head portion 41c formed at the proximal end of the shaft portion 41b, and a rod that opens at the upper end of the shaft portion 41b and leads to the side portion of the shaft portion 41b.
  • a check valve 27 On the outer periphery of the shaft portion 41 b of the connecting rod 41, a check valve 27 that is stacked on the pressure side chamber R ⁇ b> 2 side surface of the lid member 23 is mounted.
  • the check valve 27 is fixed to the lid member 23 by a nut 42 screwed to the connecting rod 41 and the screw portion 41a, and opens and closes the port 23c.
  • a cylindrical spacer 43, a first valve 44, a valve disk 40, a second valve 45, and a perforated disk-shaped spring are provided on the outer periphery of the shaft portion 41b of the connecting rod 41 below the lid member 23.
  • the receiver 46 is assembled. These are clamped by the nut 42 and the head 41 c of the connecting rod 41 and fixed to the lid member 23.
  • the spacer 43 has a bottomed cylindrical shape, and includes a hole 43a through which the shaft 41b of the connecting rod 41 provided at the bottom is inserted, and a through hole 43b that communicates between the inside and outside of the cylinder provided at the cylinder. I have.
  • the valve disc 40 includes a hole 40a through which a shaft 41b of a connecting rod 41 provided in the center is inserted, and a first port 40b and a second port 40c that open from the upper end to the lower end.
  • the free piston 5, the compression side spring 6a, and the extension side spring 6b are accommodated.
  • the socket 23b of the lid member 23 is fitted to the tip of the case member 22, the compression side spring 6a and the extension side spring 6b are compressed, and the free piston 5 is positioned to the neutral position by the urging force of the compression side spring 6a and the extension side spring 6b. Is done. Since the upper end of the pressure side spring 6 a is supported in contact with the spring receiver 46, the pressure side spring 6 a does not interfere with the first valve 45.
  • the compression side spring 6a may be supported by the head 41c of the connecting rod 41, and the spring receiver 46 may be eliminated.
  • the inside of the pressure chamber 25 is divided into a small chamber 15, a large chamber 16 and an outer peripheral chamber 17 by inserting the free piston 5.
  • the small chamber 15 communicates with the reservoir R through a passage 22 d provided in the case member 22.
  • the outer peripheral chamber 17 communicates with the discharge passage 7 through the through hole 22c.
  • the through hole 22c that opens to the stepped portion 25c is formed so as to maintain communication between the outer peripheral chamber 17 and the discharge passage 7 until the free piston 5 is completely in close contact with the stepped portion 25c.
  • the room S2 communicates with the large room 16 through the first port 40b and the second port 40c.
  • One end of the in-rod passage 41d provided in the connecting rod 41 is open at the side of the shaft portion 41b located in the cylindrical portion of the spacer 43, and the other end is at the tip of the shaft portion 41b facing the compression side chamber R2. It is open. Since the inside of the cylindrical portion of the spacer 43 communicates with the room S2 through the through hole 43b, the large chamber 16 has the passage 41d in the rod, the inside of the spacer 43, the through hole 43b, the room S2, the first port 40b, and the second port 40c. And communicates with the pressure side chamber R2.
  • the first valve 45 laminated on the surface of the valve disk 40 on the side of the large chamber 16 is a laminated leaf valve in which annular plates are laminated, and opens and closes the lower end opening end of the first port 40b.
  • the first valve 45 is a one-way passage that allows only the flow of liquid from the pressure side chamber R2 to the large chamber 16 via the first port 40b, and provides resistance to the flow of the passing liquid.
  • the pressure side first passage is formed by the first port 40b and the rod inner passage 41d
  • the pressure side second passage is formed by the second port 40c and the rod inner passage 41d. Is formed.
  • the port 23c communicates with the reservoir R through the passage 22e.
  • the check valve 27 that opens and closes the port 23c opens when the pressure in the pressure side chamber R2 is reduced during the expansion operation of the shock absorber D1, and the outer peripheral side bends to open the reservoir R and the pressure side chamber R2 through the port 23c and the passage 22e. Communicate. Similar to the shock absorber D1 of FIG. 3, the check valve 27 constitutes the suction passage 3 together with the port 23c and the passage 22e.
  • each member constituting the bottom member 11 is easily incorporated into the shock absorber D1.
  • the valve disk 30, the first valve 32, and the second valve 33 are accommodated in the pressure side chamber R2.
  • the buffer device D1 in FIG. 3 that accommodates the valve disk 30 in the pressure side chamber R2 has a larger outer diameter of the valve disk 30 than the buffer device D1 in FIG.
  • the outer diameter of the first valve 32 and the second valve 33 can also be increased. Since the bending rigidity of the first valve 32 and the second valve 33 can be made lower than the bending rigidity of the first valve 45 and the second valve 44, the first valve 32 and the second valve 33 are opened. The pressure loss is smaller than that of the first valve 45 and the second valve 44. Therefore, the damping device D1 in FIG. 3 can increase the reduction width of the damping force reduction effect at the time of high frequency vibration input, compared to the damping device D1 in FIG.
  • the pressure chambers 14 and 25 of the shock absorber D1 are formed so that the free piston 5 can move in the vertical direction.
  • the pressure chambers 14 and 25 may be formed so that the free piston 5 can move in the lateral direction or the oblique direction, not in the vertical direction. In this case, the free piston 5 is less susceptible to the vertical vibration input to the shock absorber D1.
  • the pressure chambers 14 and 25 are formed so that the free piston 5 can move in the vertical direction, it is easy to secure the stroke amount of the free piston 5 and a large free piston 5 can be adopted.
  • the shock absorber of the present invention it is possible to suppress the vibration of the vehicle body by adjusting the damping force by the damping force adjusting unit with respect to the vibration in a relatively low frequency band.
  • the shock absorber can mechanically generate a low damping force against high frequency vibrations that cannot be suppressed by the damping force adjusting unit, and can effectively suppress vehicle body vibrations by insulating the vibrations from the wheel side.
  • the riding comfort in the vehicle can be dramatically improved.
  • the first valve and the second valve open the pressure side first passage and the pressure side second passage accordingly. To do. For this reason, even if the expansion / contraction speed of the shock absorber reaches a high speed range, the damping force reduction effect is exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

緩衝装置は、リザーバ(R)から圧側室(R2)への流れのみが許させる吸込通路(3)と、圧側室(R2)から伸側室(R1)への流れのみが許される整流通路(4)と、伸側室(R1)からリザーバ(R)への流れのみが許される可変減衰バルブ(V)とを備える。ハウジングとしてのボトム部材(11)に、フリーピストン(5)を挟んで、大室(16)と、小室(15)及び外周室(17)とを設ける。小室(15)か外周室(17)を伸側室(R1)に連通する。大室(16)を第一バルブ(Va)及び第2バルブ(Vb)を介して圧側室(R2)に連通する。ピストン(2)が下降する収縮作動時に、伸側室(R1)と圧側室(R2)とが等圧となるユニフロー型の緩衝装置であっても、受圧面積の差があるので、フリーピストン(5)が下降できる。伸縮速度が高速域に達しても、第一バルブ(Va)及び第2バルブ(Vb)が開放されて減衰力が低減する。

Description

緩衝装置
 本発明は、緩衝装置の改良に関する。
 緩衝装置は、シリンダと、ピストンと、ピストンロッドと、伸側室と、圧側室と、中間筒と、外筒と、吸込通路と、整流通路と、減衰力可変バルブと、を備える。ピストンは、シリンダ内に摺動自在に挿入される。ピストンロッドは、シリンダ内に挿入されてピストンに連結される。伸側室と圧側室は、ピストンにより区画される。中間筒は、シリンダの外周を覆ってシリンダとの間に排出通路を形成する。外筒は、中間筒の外周を覆って中間筒との間にリザーバを形成する。吸込通路は、リザーバから圧側室へ向かう作動油の流れのみを許容する。整流通路は、ピストンに設けられて圧側室から伸側室へ向かう作動油の流れのみを許容する。減衰力可変バルブは、排出通路とリザーバとの間に設けられる。
 緩衝装置は、伸長するときも、収縮するときも、整流通路と吸込通路の働きによってシリンダ内から排出通路を通じて作動油をリザーバへ流出させる。この作動油の流れに対して減衰力可変バルブにおいて与えられる抵抗を調節することによって、緩衝装置が発生する減衰力が調節可能である(例えば、特開2009-222136参照)。
 このように緩衝装置は、減衰力を調節することができるので、車体の振動に最適な減衰力を発生して、車両における乗り心地を向上することができる。また、減衰力可変バルブをシリンダの外に有する緩衝装置は、ストローク長を確保しつつ、ピストン内に減衰力可変バルブを有する緩衝装置に比較して車両への搭載性を維持できる利点を有する。
 減衰力可変バルブを有する緩衝装置の減衰力を調節するにはソレノイドが利用される。減衰力可変バルブの開弁圧をコントロールするパイロット弁にソレノイドが与える推力を調節することによって、減衰力可変バルブが作動油の流れに与える抵抗が調節される。
 車両の振動の抑制に最適な減衰力を緩衝装置に発生させるには、ECU(Electronic Control Unit)と称される電子制御装置が、各種センサで検知した車両の車体の振動情報から最適な減衰力を求め、ソレノイドを駆動するドライバへ制御指令を送る。
 緩衝装置が減衰力を調整して制振可能な車体の振動の周波数は、現状では、減衰力可変バルブの応答性とECUの演算処理速度によって数Hz程度の上限に制限されている。このため、上限以上の周波数の振動を抑制することが難しい。
 しかしながら、車両における乗り心地を左右する車体振動の周波数は、制振可能な周波数帯よりも高周波数である。従来の緩衝装置ではこのような高周波数の振動を抑制することができないので、車両における乗り心地の向上が要望されている。また、高周波振動入力時であって緩衝装置の伸縮速度が高い場合に充分な振動抑制効果を得ることができれば、車両における乗り心地をより一層向上させることができる。
 本発明は、高周波入力時に車両における乗り心地を向上でき、かつ、伸縮速度が高くとも振動抑制効果を維持できる緩衝装置を提供することを目的とする。
 本発明のある態様によれば、緩衝装置は、シリンダと、前記シリンダ内に摺動自在に挿入され当該シリンダ内を伸側室と圧側室に区画するピストンと、リザーバと、前記リザーバから前記圧側室へと向かう液体の流れのみを許容する吸込通路と、前記圧側室から前記伸側室へ向かう液体の流れのみを許容する整流通路と、前記伸側室から前記リザーバへ向かう液体の流れのみを許容するとともに当該液体の流れに与える抵抗を変更可能な減衰力調整部とを備えた緩衝装置であって、小断面積部と大断面積部とを有する圧力室を備えたハウジングと、前記圧力室の小断面積部内に摺動自在に挿入される小ピストン部と前記圧力室の大断面積部内に摺動自在に挿入される大ピストン部とを備えて、前記小断面積部内に前記小ピストン部で小室を区画し、前記大断面積部内であって前記小ピストン部の外周に外周室を区画し、前記大断面積部内に前記大ピストン部で大室を区画するフリーピストンと、前記フリーピストンを前記圧力室に対して中立位置に位置決めるとともに当該フリーピストンの中立位置からの変位を抑制する附勢力を発生するばね要素と、前記小室或いは前記外周室の一方を前記伸側室に連通する伸側通路と、前記大室と前記圧側室とを連通する圧側第一通路および圧側第二通路と、前記圧側第一通路に設けられて前記大室から前記圧側室へ向かう液体の流れのみを許容しつつ当該流れに抵抗を与える第一バルブと、前記圧側第二通路に設けられて前記圧側室から前記大室へ向かう液体の流れのみを許容しつつ当該流れに抵抗を与える第二バルブとを備える。
図1は、実施形態における緩衝装置の縦断面図である。 図2は、実施形態における緩衝装置の減衰特性図である。 図3は、実施形態における緩衝装置における具体的なボトム部材の一例の縦断面図である。 図4は、実施形態における緩衝装置における具体的なボトム部材の他例の縦断面図である。 図5は、実施形態における緩衝装置における具体的なボトム部材の別例の縦断面図である。
 図面を参照して、本発明の実施形態における緩衝装置を説明する。以下では、減衰特性図以外の各図面における上方を「上」、下方を「下」として説明する。
 緩衝装置D1は、図1に示すように、シリンダ1と、ピストン2と、リザーバRと、吸込通路3と、整流通路4と、減衰力可変バルブVと、ボトム部材11と、フリーピストン5と、ばね要素6と、伸側通路20と、圧側第一通路19aと、圧側第二通路19bと、第一バルブVaと、第二バルブVbと、を備えている。
 ピストン2は、シリンダ1内に摺動自在に挿入されシリンダ1内を伸側室R1と圧側室R2とに区画する。吸込通路3は、リザーバRから圧側室R2へと向かう液体の流れのみを許容する。整流通路4は、圧側室R2から伸側室R1へ向かう液体の流れのみを許容する。減衰力可変バルブVは、伸側室R1からリザーバRへ向かう液体の流れのみを許容するとともに液体の流れに与える抵抗を変更可能な減衰力調整部である。ボトム部材11は、小断面積部14aと大断面積部14bとを有する圧力室14を備えたハウジングである。フリーピストン5は、圧力室14の小断面積部14a内に摺動自在に挿入される小ピストン部5bと圧力室14の大断面積部14b内に摺動自在に挿入される大ピストン部5cとを備える。フリーピストン5は、小断面積部14a内に小ピストン部5bで小室15を区画し、大断面積部14b内であって小ピストン部5bの外周に外周室17を区画し、大断面積部14b内に大ピストン部5cで大室16を区画する。
 ばね要素6は、フリーピストン5を圧力室14に対して中立位置に位置決めるとともにフリーピストン5の中立位置からの変位を抑制する附勢力を発生する。伸側通路20は、小室15と外周室17のうち一方、即ち図1に記載された例では、外周室17を、伸側室R1に連通する。圧側第一通路19aおよび圧側第二通路19bは、大室16と圧側室R2とを連通する。第一バルブVaは、圧側第一通路19aに設けられて大室16から圧側室R2へ向かう液体の流れのみを許容しつつ液体の流れに抵抗を与える。第二バルブVbは、圧側第二通路19bに設けられて圧側室R2から大室16へ向かう液体の流れのみを許容しつつ液体の流れに抵抗を与える。
 緩衝装置D1は、シリンダ1内に移動自在に挿通されたピストンロッド21を備えている。ピストンロッド21の一端21aは、ピストン2に連結され、他端である上端は、シリンダ1の上端を封止する環状のロッドガイド8によって摺動自在に軸支されて外方へ突き出ている。さらに、緩衝装置D1は、中間筒9と、外筒10とを備える。中間筒9は、シリンダ1の外周を覆ってシリンダ1との間に伸側室R1とリザーバRとを連通する排出通路7を形成する。有底筒状の外筒10は、中間筒9の外周を覆って中間筒9との間にリザーバRを形成する。減衰力可変バルブVは、排出通路7とリザーバRとの間に設けられている。シリンダ1および中間筒9の下端は、ボトム部材11によって封止される。ボトム部材11には、圧力室14と吸込通路3が設けられている。
 伸側室R1、圧側室R2及び圧力室14内には作動油等の液体が充満され、リザーバR内には、液体とともに気体が充填されている。液体には、作動油以外に、たとえば、水、水溶液といった液体を使用してもよい。
 次に、緩衝装置D1の各部について詳細に説明する。ピストン2は、シリンダ1内に移動自在に挿通されたピストンロッド21の下端である一端21aに連結されている。ピストンロッド21と、これを軸支するロッドガイド8との間は、シール部材12によってシールされており、シリンダ1内は液密状態に保たれている。
 ロッドガイド8は、シリンダ1、中間筒9および外筒10に嵌合するように外径が段階的に大きくなっている。シリンダ1、中間筒9および外筒10の上端開口は、ロッドガイド8により閉塞される。
 シリンダ1の下端には、ボトム部材11が嵌合されている。ボトム部材11は、小径部11aと、中径部11bと、大径部11cと、筒部11dと、複数の切欠11eと、を備える。小径部11aは、シリンダ1内に嵌合される。中径部11bは、小径部11aよりも外径が大きく中間筒9内に嵌合する。大径部11cは、中径部11bの下端側に設けられて中径部11bよりも大きな外径を有する。筒部11dは、大径部11cの下端側に設けられる。複数の切欠11eは、筒部11dに設けられる。
 外筒10内に、ボトム部材11、シリンダ1、中間筒9、ロッドガイド8およびシール部材12を収容し、外筒10の上端を加締めると、外筒10の加締部10aと外筒10の底部10bとで、ボトム部材11、シリンダ1、中間筒9、ロッドガイド8およびシール部材12が挟み込まれて、これらが外筒10に固定される。外筒10の開口端を加締めるのに代えて、開口端に螺着されるキャップを設け、キャップと底部10bとが、ボトム部材11、シリンダ1、中間筒9、ロッドガイド8およびシール部材12を挟み込んでよい。
 ボトム部材11に設けられた吸込通路3は、リザーバRと圧側室R2とを連通する通路3aと、通路3aに設けられたチェックバルブ3bと、を備えている。具体的には、通路3aは、一方がボトム部材11の小径部11aの上端で開口し、他方が大径部11cの下端で開口している。大径部11cの下端で開口した通路3aは、切欠11eを通じてリザーバRと連通する。チェックバルブ3bは、液体がリザーバRから圧側室R2へ向かって流れる場合にのみ開弁する。吸込通路3は、リザーバRから圧側室R2へ向かう液体の流れのみを許容し、逆方向への流れを阻止し、一方通行に設定される。
 ピストン2には、圧側室R2から伸側室R1へ向かう液体の流れのみを許容する整流通路4が設けられている。整流通路4は、圧側室R2を伸側室R1へ連通する通路4aと、通路4aに設けられたチェックバルブ4bと、を備えている。チェックバルブ4bは、液体が圧側室R2から伸側室R1へ向かって流れる場合にのみ開弁する。整流通路4は、圧側室R2から伸側室R1へ向かう液体の流れのみを許容し、逆方向への流れを阻止し、一方通行に設定される。
 シリンダ1の上端近傍には、伸側室R1に臨む透孔1aが設けられており、伸側室R1は、透孔1aを通じてシリンダ1と中間筒9との間に形成された環状隙間に連通している。シリンダ1と中間筒9の間の環状隙間は、伸側室R1とリザーバRとを連通する排出通路7を形成している。減衰力可変バルブVは、外筒10と中間筒9に架け渡されて固定されるバルブブロック13に設けられている。減衰力可変バルブVは、流路13aと、弁体13bと、パイロット通路13cと、押圧装置13dと、を備えている。流路13aは、中間筒9内の排出通路7をリザーバRに接続する。弁体13bは、流路13aの途中に設けられる。パイロット通路13cは、弁体13bより上流側である伸側室R1の圧力を弁体13bに開弁方向へ押圧するように作用させる。押圧装置13dは、弁体13bを閉弁方向に押圧する押圧力を発生するとともに押圧力を可変にする。図1に示された押圧装置13dは、ソレノイドによって弁体13bを閉弁方向に押圧する圧力を制御しており、外部からソレノイドへ供給する電流供給量に応じてこの圧力を変化させることができる。これに限らず、押圧装置13dは、ソレノイド等のアクチュエータで弁体13bを直接押圧するものであってもよい。押圧装置13dは、供給される電流量や電圧量に応じて押圧力を変化させることができるものであればどのような形式でもよい。液体が磁気粘性流体とされる場合には、減衰力可変バルブVに変えて、排出通路7とリザーバRとを連通する流路に磁界を作用させることができる減衰力調整部、たとえば、コイル等が使用されてよい。この場合、外部から供給される電流量によって磁界の大きさを調整して流路を通過する磁気粘性流体の流れに与える抵抗を変化させる。流体を電気粘性流体とする場合には、減衰力調整部は、排出通路7とリザーバRとを連通する流路に電界を作用させてもよい。この場合、外部から与えられる電圧によって電界の大きさを調整して、流路を流れる電気粘性流体に与える抵抗を変化させる。
 緩衝装置D1が収縮作動する際には、ピストン2が下方へ移動して圧側室R2が圧縮され、圧側室R2内の液体が整流通路4を介して伸側室R1へ移動する。収縮作動時には、ピストンロッド21がシリンダ1内に侵入するため、シリンダ1内でピストンロッドの侵入体積に相当する量の液体が過剰となり、過剰の液体がシリンダ1から押し出されて排出通路7を介してリザーバRへ排出される。緩衝装置D1は、排出通路7を通過してリザーバRへ移動する液体の流れに減衰力可変バルブVで抵抗を与えることによって、シリンダ1内の圧力を上昇させて圧側減衰力を発生する。
 他方、緩衝装置D1が伸長作動する際には、ピストン2が上方へ移動して伸側室R1が圧縮され、伸側室R1内の液体が排出通路7を介してリザーバRへ移動する。伸長作動時には、ピストン2が上方へ移動して圧側室R2の容積が拡大するが、拡大に見合った液体が吸込通路3を介してリザーバRから供給される。緩衝装置D1は、伸側室R1から排出され、排出通路7を通過してリザーバRへ移動する液体の流れに減衰力可変バルブVで抵抗を与えることによって伸側室R1内の圧力を上昇させて伸側減衰力を発生する。
 このように、緩衝装置D1は、伸縮作動を呈すると、必ずシリンダ1内から排出通路7を介して液体をリザーバRへ排出する。緩衝装置D1は、液体が圧側室R2、伸側室R1、リザーバRを順に一方通行で循環するユニフロー型の緩衝装置であり、伸圧両側の減衰力を単一の減衰力可変バルブVによって発生する。ピストンロッド21の断面積をピストン2の断面積の二分の一に設定しておくことで、ピストン2の振幅が同じであれば、シリンダ1内から排出される作動油量を伸圧両側で等しく設定できる。このため、伸圧両側で減衰力可変バルブVが流れに与える抵抗を同じにしておくと、伸側と圧側の減衰力を等しくすることができる。
 圧力室14は、ボトム部材11に設けた中空部によって形成されている。圧力室14は、上下方向に対して垂直な断面積が下方側と上方側とで異なっており、断面積が小さい下方側の小断面積部14aと、断面積が大きい上方側の大断面積部14bと、小断面積部14aと大断面積部14bの途中に設けられた段部14cと、を備えている。
 圧力室14内には、フリーピストン5が摺動自在に挿入されている。フリーピストン5は、段付き形状であり、板状の基部5aと、筒状の小ピストン部5bと、筒状の大ピストン部5cとを備える。小ピストン部5bは、基部5aの下端から下方へ延伸し圧力室14の小断面積部14a内に摺動自在に挿入される。大ピストン部5cは、基部5aの上端の外周から上方へ立ち上がり圧力室14の大断面積部14b内に摺動自在に挿入される。フリーピストン5は、上下方向に移動することができる。圧力室14における小断面積部14aと大断面積部14bは、フリーピストン5の摺動方向に沿って形成されればよい。
 フリーピストン5は、小ピストン部5bを小断面積部14a内に摺動自在に挿入することで、小断面積部14a内であって小ピストン部5bの下方に小室15を区画する。フリーピストン5は、大ピストン部5cを大断面積部14b内に摺動自在に挿入することで大断面積部14b内であって大ピストン部5cの上方に大室16を区画する。フリーピストン5は、大断面積部14b内の基部5aと段部14cとの間であって小ピストン部5bの外周に外周室17を区画している。フリーピストン5の大ピストン部5cの外周には大断面積部14bの内周に摺接するシールリング5dが装着されている。このため、大室16と外周室17とはフリーピストン5の外周を通じて連通することはない。外周室17と小室15との連通を防止するべく、小ピストン部5bの外周にシールリングを設けてもよい。
 小室15は、ボトム部材11に設けられた通路18および切欠11eを通じてリザーバRに連通しているため、小室15にはリザーバRに由来する圧力が作用している。大室16は、ボトム部材11の小径部11aの上端で開口して大断面積部14bの上端で開口する圧側第一通路19aおよび圧側第二通路19bを通じて圧側室R2に連通している。圧側第一通路19aには、リーフバルブでなる第一バルブVaが設けられている。第一バルブVaは、大室16の圧力と圧側室R2の圧力との差圧が開弁圧に達すると開弁して大室16から圧側室R2へ向かう液体の流れに抵抗を与える。第一バルブVaは、圧側室R2から大室16へ向かう液体の流れに対しては閉弁状態を維持する。圧側第一通路19aには、第一バルブVaに並列してオリフィスO1が設けられている。圧側第二通路19bには、リーフバルブでなる第二バルブVbが設けられている。第二バルブVbは、圧側室R2の圧力と大室16の圧力との差圧が開弁圧に達すると開弁して圧側室R2から大室16へ向かう液体の流れに抵抗を与える。第二バルブVbは、大室16から圧側室R2へ向かう液体の流れに対しては閉弁状態を維持する。圧側第二通路19bには、第二バルブVbに並列してオリフィスO2が設けられている。大室16には、圧側室R2に由来する圧力が作用しており、大室16は、圧側室R2に連通する圧側圧力室として機能している。
 外周室17は、ボトム部材11に設けられた伸側通路20と、伸側通路20に対向するシリンダ1の下端近傍に設けられた透孔1bとを通じて、排出通路7に接続されている。排出通路7は、上述したように、伸側室R1に通じているので、外周室17は、伸側室R1に連通する。このため、外周室17には、伸側室R1に由来する圧力が作用し、外周室17は、伸側圧力室として機能している。外周室17は、緩衝装置D1をユニフロー構造にするために設けられた減衰力可変バルブVへ液体を導く排出通路7を利用して伸側室R1に連通する。このため、ボトム部材11に圧力室14を設けても、伸側室R1に外周室17を連通する他の通路を設ける必要がないので、緩衝装置D1のコスト軽減および軽量化の点で有利である。
 大室16内の圧力、すなわち、圧側室R2から導入される圧力(圧側室由来の圧力)がフリーピストン5の大ピストン部5cの水平表面(圧側受圧面積A1)に作用しており、小室15および外周室17を圧縮する方向である下方へフリーピストン5を押圧している。なお、水平表面は、図1の上下方向に垂直な面である。圧側受圧面積A1は、水平方向に大ピストン部5cを切って得られる断面の外縁で囲まれる面積である。
 他方、外周室17内の圧力、すなわち、伸側室R1から導入される圧力(伸側室由来の圧力)が外周室17を区画するフリーピストン5の水平表面(伸側受圧面積B1)に作用しており、さらに、小室15内の圧力、すなわち、リザーバRの圧力がフリーピストン5の小ピストン部5bの水平表面(受圧面積C1)に作用しており、大室16を圧縮する方向である上方へフリーピストン5を押圧している。なお、水平表面は、図1の上下方向に垂直な面である。伸側受圧面積B1は、水平方向に大ピストン部5cを切って得られる断面の外縁と、水平方向に小ピストン部5bを切って得られる断面の外縁とで囲まれる面積である。受圧面積C1は、水平方向に小ピストン部5bを切って得られる断面の外縁で囲まれる面積である。
 このように、フリーピストン5を摺動方向の一方(図1において下方)に押圧するようフリーピストン5に圧側室由来の圧力を作用させるとともに、フリーピストン5を摺動方向の他方(図1において上方)に押圧するようフリーピストン5に伸側室由来の圧力を作用させている。フリーピストン5の圧側室由来圧力が作用する圧側受圧面積A1は、フリーピストン5の伸側室由来圧力が作用する伸側受圧面積B1よりも大きく設定されている。フリーピストン5を摺動方向の他方に押圧するように伸側室由来圧力が作用する伸側受圧面積B1以外の受圧面積C1、つまり、小室15に臨む面には、リザーバRに由来の圧力を作用させている。
 フリーピストン5の圧力室14に対する変位に対して変位を抑制する附勢力を作用させるため、ばね要素6としてのコイルばねである圧側ばね6aおよび伸側ばね6bが設けられている。大室16内で、圧側ばね6aは、大断面積部14bの頂壁とフリーピストン5の基部5aとの間に圧縮状態で介装されている。小室15内で、伸側ばね6bは、小断面積部14aの底壁とフリーピストン5の基部5aとの間に圧縮状態で介装されている。このようにフリーピストン5は、圧側ばね6aおよび伸側ばね6bによって上下側から挟持されて、圧力室14内の所定の中立位置に位置決められている。中立位置から変位すると圧側ばね6aおよび伸側ばね6bがフリーピストン5を中立位置に戻そうとする附勢力を発生する。中立位置は、圧力室14の軸方向の中央を指すものではなく、フリーピストン5がばね要素6によって位置決められる位置のことである。
 ばね要素6は、フリーピストン5を中立位置に位置決めるとともに、附勢力を発生できる部材、即ちコイルばね以外の部材でよい。たとえば、ばね要素6として皿ばね等の弾性体を用いてフリーピストン5を弾性支持するようにしてもよい。また、一端がフリーピストン5に連結される単一のばね要素6を用いる場合には、大断面積部14bの頂壁或いは小断面積部14aの底壁に他端を固定するようにしてもよい。
 ばね要素6として圧側ばね6aと伸側ばね6bとが用いられており、フリーピストン5の基部5aの両側に筒状の小ピストン部5bおよび大ピストン部5cが設けられた。従って、圧側ばね6aを大ピストン部5c内に、小ピストン部5b内に伸側ばね6bを収容することができる。このため、圧側ばね6aおよび伸側ばね6bの伸縮スペースが確保されてフリーピストン5のストローク長を充分に確保しつつ圧力室14の全長を短縮化することができる。緩衝装置D1の全長やストローク長に制約がなく、圧力室14の全長を充分に確保することができる場合には、フリーピストン5は、中実な円柱状の小ピストン部5bと大ピストン部5cを一体化した構造を有してよい。
 緩衝装置D1の圧力室14が、フリーピストン5によって伸側圧力室としての外周室17と圧側圧力室としての大室16とに区画されている。フリーピストン5が移動すると大室16と外周室17の容積が変化する。
 緩衝装置D1が伸長作動する場合、ピストン2が上方へ移動するので、圧縮される伸側室R1からは液体が減衰力可変バルブVを通じてリザーバRへ排出され、拡大される圧側室R2へは吸込通路3を通じてリザーバRから液体が供給される。伸側室R1内の圧力は上昇し、圧側室R2内の圧力はリザーバR内とほぼ等しくなる。
 外周室17は、伸側室R1に連通されており、外周室17内には、伸側室R1に由来した圧力が作用する。小室15は、リザーバRに連通しているので小室15内もリザーバR内とほぼ等しい圧力となる。他方、大室16は、第一バルブVaが設けられた圧側第一通路19aを通じて圧側室R2に連通している。従って、外周室17内の圧力上昇によってフリーピストン5が上方へ押圧されると、第一バルブVaが開弁して大室16と圧側室R2とが連通する。このとき、大室16内の圧力は、圧側室R2の圧力を基準として、第一バルブVaにおける圧力損失に対応する量だけ圧側室R2内の圧力よりも高くなる。
 したがって、緩衝装置D1が伸長作動する場合、フリーピストン5の圧側受圧面積A1には第一バルブVaの圧力損失に対応する量だけリザーバRの圧力よりも高い圧力が作用し、受圧面積C1にはリザーバRの圧力にほぼ等しい圧力が作用し、伸側受圧面積B1には圧縮される伸側室R1に由来する高い圧力が作用するので、フリーピストン5は、上方側へ押されて移動する。フリーピストン5が移動すると、フリーピストン5の移動量に応じて外周室17へ液体が流れ込み、大室16から圧側室R2へ液体が排出される。この場合、圧力室14が見掛け上の流路として機能し、液体は伸側室R1から圧側室R2へ減衰力可変バルブVを迂回して移動する。フリーピストン5の移動速度が高くなると、それに応じて第一バルブVaが圧側第一通路19aを大きく開放するので、大室16と圧側室R2とをオリフィスO1,O2のみで連通した場合に比較して、フリーピストン5の移動速度に対する大室16内の圧力上昇度合いは低くなる。
 他方、緩衝装置D1が収縮作動する場合、ピストン2が下方へ移動するので、整流通路4によって、圧縮される圧側室R2と拡大される伸側室R1が連通状態におかれ、シリンダ1内から液体が減衰力可変バルブVを介してリザーバRへ排出される。よって、伸側室R1内および圧側室R2内の圧力は、ほぼ等しくともに上昇することになる。
 外周室17は、伸側通路20を介して伸側室R1に連通されており、外周室17内には、伸側室R1に由来した圧力が作用する。小室15は、リザーバRに連通しているので小室15内もリザーバR内とほぼ等しい圧力となる。他方、大室16は、第二バルブVbが設けられた圧側第二通路19bを通じて圧側室R2に連通しており、圧側室R2内の圧力上昇によって、第二バルブVbが開弁して大室16と圧側室R2とが連通する。この場合、大室16内の圧力は、圧側室R2の圧力を基準として第二バルブVbにおける圧力損失に対応する量だけ圧側室R2内の圧力よりも低くなる。
 したがって、緩衝装置D1が収縮作動する場合、フリーピストン5の圧側受圧面積A1には第二バルブVbの圧力損失に対応する量だけ圧側室R2の圧力よりも低い圧力が作用し、伸側受圧面積B1には伸側室R1の圧力にほぼ等しい圧力が作用し、受圧面積C1にはリザーバRの圧力が作用する。圧側受圧面積A1は伸側受圧面積B1よりも大きい。緩衝装置D1の収縮作動時における大室16内の圧力と圧側受圧面積A1の積の値が、外周室17の圧力と伸側受圧面積B1の積の値よりも大きくなるよう、第二バルブVbの圧力損失が設定されている。このため、フリーピストン5は、下方側へ押されて移動する。フリーピストン5が移動すると、外周室17から排出通路7へ液体が排出されるものの大室16へ圧側室R2から液体が流入し、小室15から液体がリザーバRへ排出される。この場合、大室16の容積拡大量から外周室17の容積減少量を差し引きした量の液体がシリンダ1内からリザーバRへ移動することになる。つまり、圧力室14が見掛け上の流路として機能して、小室15から排出された液体がシリンダ1内からリザーバRへ減衰力可変バルブVを迂回して移動する。フリーピストン5の移動速度が高くなると、それに応じて第二バルブVbが圧側第二通路19bを大きく開放するので、大室16と圧側室R2とをオリフィスO1,O2のみで連通した場合に比較して、フリーピストン5の移動速度に対する大室16内の圧力下降度合いは小さくなる。
 このように、フリーピストン5を摺動方向の一方(図1において下方)に押圧するようフリーピストン5に圧側室由来の圧力を作用させるとともに、フリーピストン5を摺動方向の他方(図1において上方)に押圧するようフリーピストン5に伸側室由来の圧力を作用させている。フリーピストン5の圧側室由来圧力が作用する圧側受圧面積A1をフリーピストン5の伸側室由来圧力が作用する伸側受圧面積B1よりも大きくしてある。従って、ユニフロー型に設定されて収縮作動時には伸側室R1と圧側室R2とが構造上等圧となる緩衝装置にあってもフリーピストン5を作動させて圧力室14を見掛け上の流路として機能させることができる。
 ここで、緩衝装置D1へ入力される振動周波数が低い場合と高い場合で、ピストン速度が同じであるという条件下で、入力周波数が低い場合、入力される振動の振幅が大きくなり、フリーピストン5の振幅が大きくなる。このため、この場合に、フリーピストン5が圧側ばね6aおよび圧側ばね6bでなるばね要素6から受ける附勢力が大きくなる。緩衝装置D1が低い振動周波数で伸縮する場合、ストローク量が大きくなるので、液体がシリンダ1からリザーバRへ排出される流量が多い。また、この場合に、フリーピストン5の振幅が大きくなってばね要素6の附勢力が大きくなるため、フリーピストン5はそれ以上移動しにくくなる。このため、見掛け上の通路として機能する圧力室14を介して伸側室R1と圧側室R2の液体のやり取りが少なくなり、そのため、減衰力可変バルブVを通過する流量が多くなるので、緩衝装置D1が発生する減衰力は高いまま維持される。対して、緩衝装置D1への入力周波数が高い場合、入力される振動の振幅が小さくなり、ピストン2の振幅も小さい。この場合、シリンダ1からリザーバRへ排出される流量が少なく、フリーピストン5の振幅も小さくなるために、フリーピストン5がばね要素6から受ける附勢力が小さい。このため、緩衝装置D1が伸長行程にあっても収縮行程にあっても、減衰力可変バルブVを通過する流量に対して見掛け上の通路(圧力室14)を通過する流量の割合が低周波振動時よりも多くなるので、緩衝装置D1が発生する減衰力は低減されて低くなる。
 緩衝装置D1の伸縮速度が高くなって大室16と圧側室R2とで行き交う液体の流量が増えても、第一バルブVaおよび第二バルブVbがそれに応じて圧側第一通路19aおよび圧側第二通路19bを大きく開放する。従って、大室16と圧側室R2とをオリフィスのみで連通した構成を採用した場合に比較して、フリーピストン5が動きづらくなることがない。そのため、緩衝装置D1の伸縮速度が高速域に達しても減衰力低減効果が発揮される。具体的には、緩衝装置D1の減衰特性は、図2に示される。図2中の各実線は、減衰力調整部としての減衰力可変バルブVで緩衝装置D1の伸側および圧側の減衰力をソフト、ミディアム、ハードとした場合について減衰特性を示す。破線は、ソフト、ミディアム、ハードの減衰特性に設定される状況において、緩衝装置D1に高周波振動が入力されて、減衰力が低減された場合の減衰力の特性を示している。
 図2に示すように、この緩衝装置D1にあっては、減衰力の変化を入力振動周波数に依存させることができる。このため、車両の車体(ばね上部材)の共振周波数帯にある低周波振動の入力に対して、緩衝装置D1は、高い減衰力を発生するため、車体(ばね上部材)の姿勢を安定させて、車両旋回時に搭乗者に不安を感じさせることを防止できる。さらに、車両の車輪(ばね下部材)の共振周波数帯にある高周波振動が入力されると、緩衝装置D1は、必ず低い減衰力を発生させて、車輪側(ばね下部材側)の振動が車体側(ばね上部材側)へ伝達することを防止する。このようにして、車両における乗り心地を良好なものとすることができる。また、緩衝装置D1の伸縮速度が高くなっても高周波振動入力に対して減衰力低減の効果を発揮することができるので、より一層車両における乗り心地を向上させることができる。
 また、緩衝装置D1は、減衰力可変バルブVが液体の流れに与える抵抗を調整することによって、減衰力を調節することができる。つまり、この緩衝装置D1にあっては、減衰力可変バルブVによる減衰力調整を行いつつも、高周波数の振動に対しては、減衰力を低減することができる。
 緩衝装置D1は、比較的低い周波数帯の振動に対しては、減衰力調整部としての減衰力可変バルブVのコントロールによって減衰力調整することで車体振動を制振することができる。さらに、緩衝装置D1は、減衰力調整部としての減衰力可変バルブVのコントロールによっては抑制できない高周波振動に対してはメカニカルに低減衰力を発生することができる。よって、車輪側からの振動を絶縁して車体振動を効果的に抑制することができ、車両における乗り心地を飛躍的に向上することができる。また、緩衝装置D1の伸縮速度が高くなって大室16と圧側室R2とで行き交う液体の流量が増えても、第一バルブVaおよび第二バルブVbがそれに応じて圧側第一通路19aおよび圧側第二通路19bを大きく開放する。このため、緩衝装置D1の伸縮速度が高速域に達しても減衰力低減効果が発揮される。
 減衰力を低減する周波数帯は、フリーピストン5の圧側受圧面積A1、伸側受圧面積B1、受圧面積C1の面積、通路18、第一バルブVa、第二バルブVb、伸側通路20の流路抵抗およびばね要素6のばね定数(この場合、圧側ばね6aと伸側ばね6bの合成ばね定数)の設定によって、任意に決定することができる。
 フリーピストン5は、ばね要素6によって中立位置へ位置決めされており、ばね要素6の附勢力により中立位置へ戻される。このため、フリーピストン5がストロークエンドで停止してしまい、緩衝装置D1が高周波振動入力時に減衰力低減効果を発揮できなくなるという事態の発生を抑制することができる。
 また、上記構成に代えて、外周室17をリザーバRへ連通し、伸側通路を通じて小室15を伸側室R1へ連通するようにしてもよい。このような構成でも、フリーピストン5を摺動方向の一方(図1において下方)に押圧するようフリーピストン5に圧側室由来の圧力を作用させるとともに、フリーピストン5を摺動方向の他方(図1において上方)に押圧するようフリーピストン5に伸側室由来の圧力を作用させることができる。この場合に、フリーピストン5の圧側室由来圧力が作用する圧側受圧面積A1がフリーピストン5の伸側室由来圧力が作用する部位C1より大きいので、上記構成と同様に、圧力室14を見掛け上の流路として機能させることができる。
 また、小室15をリザーバRへ連通した構成に代えて、小室15を緩衝装置D1の外部へ連通して大気開放したり、小室15に低圧の気体を封入して、小室15を気室として使用してよい。そのような構成でも、緩衝装置D1が伸長作動する場合には、フリーピストン5が上方側へ押されて移動し、フリーピストン5の移動量に応じて外周室17へ液体が流れ込み、大室16から圧側室R2へ液体が排出される。圧力室14が見掛け上の流路として機能して、液体が減衰力可変バルブVを迂回して伸側室R1から圧側室R2へ移動する。また、緩衝装置D1が収縮作動する場合には、フリーピストン5が下方側へ押されて移動し、外周室17と大室16の合計容積が拡大するとともに、減衰力可変バルブVを通過する液体量が減少する。従って、緩衝装置D1は、小室15をリザーバRへ連通した場合と同様に高周波振動に対して減衰力を低減する効果を発揮することができる。小室15内を気室にする場合、伸側ばねを気体ばねとすることも可能である。小室15を大気開放するか、あるいは気室とした場合、小室15をリザーバRへ連通させなくともよいので、圧力室14を形成するハウジングをピストンロッド21に固定するか、ピストンロッド21内に設けることも可能である。小室15をリザーバRへ連通する場合には、圧力室14を完全に緩衝装置D1内に収容するとともに、小室15から外周室17或いは大室16への気体の混入を防止することができる。小室15を伸側室R1に連通する場合には、外周室17を気室とすることもできる。
 フリーピストン5の外周の断面形状と圧力室14の内壁の断面形状は、円形以外の形状を採用することも可能である。
 次に、ボトム部材11の具体的構成について説明する。ボトム部材11は、例えば図3に示すように、ケース部材22と、蓋部材23と、バルブディスク30と、キャップ31と、を備える。蓋部材23は、フリーピストン5が挿入される中空部22aを備えたケース部材22と、ケース部材22の中空部22aを閉塞する。バルブディスク30は、蓋部材23に連結ロッド26を介して連結されるとともに圧側室内R2に配置される。キャップ31は、連結ロッド26の外周に装着されるとともにバルブディスク30が嵌合されて圧側室R2内に部屋S1を区画する。バルブディスク30には、リーフバルブからなる第一バルブ32と第二バルブ33とが設けられる。
 ケース部材22は、円柱状であって外周に三つの段部を備えて、上方へ向かうほど段階的に縮む外径を有する。ケース部材22の下から二番目の段部の外周には中間筒9に嵌合されており、下から三番目の段部は中間筒9との間に隙間を空けて中間筒9内に位置している。ケース部材22の最下段の外径は、中間筒9の内径よりも大きく形成されている。中間筒9が嵌合されるケース部材22の下から二番目の段部の外周にはシールリング24が装着されており、ケース部材22の外周を通じて排出通路7とリザーバRとが連通してしまうことを防止している。ケース部材22の最下段の外周は、筒状とされており、内外を連通する複数の切欠22bを備えている。
 ケース部材22は、上端に開口する中空部22aを備えている。中空部22aの開口部は、蓋部材23によって閉塞され、ケース部材22の内部に圧力室25を形成している。中空部22aは、開口部側に形成された大断面積部25bと、大断面積部25bの下方に形成され大断面積部25bよりも小径の小断面積部25aと、を有している。小断面積部25aと大断面積部25bとの間には、段部25cが形成されている。
 ケース部材22は、透孔22cと、通路22dと、通路22eと、を備える。透孔22cは、ケース部材22の下から三番目の段部の外周で開口して段部25cへ通じる。通路22dは、ケース部材22の下端から中空部22aの底面へ通じる。通路22eは、ケース部材22を上下方向に貫通する。
 蓋部材23は、中央に上下方向に沿って設けた円板状のボルト挿通孔23aと、外周において、下方に延設された筒状のソケット23bと、上下方向に沿って設けたポート23cと、を備える。ケース部材22の先端に蓋部材23のソケット23bが嵌合することにより、中空部22aが閉塞されて、ケース部材22の内部に圧力室25が形成される。
 ケース部材22の中空部22a内には、フリーピストン5と圧側ばね6aおよび伸側ばね6bとが収容されている。ケース部材22の先端に蓋部材23のソケット23bを嵌合すると、圧側ばね6aおよび伸側ばね6bが圧縮されて、フリーピストン5は圧側ばね6aおよび伸側ばね6bの附勢力によって中立位置へ位置決めされる。
 圧力室25は、フリーピストン5が挿入されることで、小室15、大室16および外周室17に区画される。小室15は、ケース部材22に設けられた通路22dを通じてリザーバRに連通する。外周室17は、透孔22cを通じて排出通路7に連通する。段部25cに開口する透孔22cは、フリーピストン5が段部25cに完全に密着するまでは外周室17と排出通路7との連通を保つように形成されている。
 ボルト挿通孔23aには、連結ロッド26が挿通されている。連結ロッド26は、先端に螺子部26aを有する軸部26bと、軸部26bの基端に形成された頭部26cとを備える。連結ロッド26の軸部26bの外周には、蓋部材23の上面に載置されたディスク状のチェックバルブ27が装着される。チェックバルブ27は、連結ロッド26と、螺子部26aに螺着されるナット28とによって、蓋部材23に固定され、蓋部材23に形成されたポート23cを開閉する。連結ロッド26の内部には、頭部26cの下端で開口し、軸部26bの側部へ通じるロッド内通路26dが設けられている。
 連結ロッド26の軸部26bの外周には、チェックバルブ27よりも上方に、有底筒状のキャップ31と、筒状のスペーサ34と、第二バルブ33と、バルブディスク30と、第一バルブ32とが順に組み付けられる。これらはナット28と、連結ロッド26における頭部26cとで挟持されて、蓋部材23に固定される。
 キャップ31は、有底筒状であって、底部に連結ロッド26の軸部26bが挿通される孔31aを備えている。スペーサ34は、有頂筒状であって、頂部には連結ロッド26の軸部26bが挿通される孔34aが形成されており、筒部には筒部内外を連通する通孔34bが形成されている。バルブディスク30は、連結ロッド26の軸部26bが挿通される孔30aが中央に形成されており、上端から下端へ開口する第一ポート30bおよび第二ポート30cが周縁に形成されている。
 バルブディスク30がスペーサ34を挟んで軸部26bに組み付けられると、バルブディスク30の外周がキャップ31の筒部の内周に嵌合するので、キャップ31内には、圧側室R2から区画される部屋S1が形成される。部屋S1は、第一ポート30bおよび第二ポート30cを通じて圧側室R2に連通する。連結ロッド26内に設けられたロッド内通路26dの一端は、スペーサ34の筒部内に位置する軸部26bの側部で開口しており、他端は、大室16内に位置する頭部26cの下端で開口している。スペーサ34の筒部内は、通孔34bを通じて部屋S1と連通しているため、大室16は、ロッド内通路26d、スペーサ34内、通孔34b、部屋S1、第一ポート30bおよび第二ポート30cを通じて圧側室R2と連通する。
 バルブディスク30の圧側室R2側の面に積層された第一バルブ32は、環状板を積層した積層リーフバルブであって第一ポート30bの上端開口端を開閉する。第一バルブ32は、第一ポート30bを介して大室16から圧側室R2へ向かう液体の流れのみを許容する一方通行の通路であるとともに、通過液体の流れに抵抗を与える。
 バルブディスク30の部屋S1側の面に積層された第二バルブ33は、環状板を積層した積層リーフバルブであって第二ポート30cの下端開口端を開閉する。第二バルブ33は、第二ポート30cを介して圧側室R2から大室16へ向かう液体の流れのみを許容する一方通行の通路であるとともに、通過液体の流れに抵抗を与える。
 図3に示された緩衝装置D1では、圧側第一通路は、第一ポート30bとロッド内通路26dとで形成されており、圧側第二通路は、第二ポート30cとロッド内通路26dとで形成されている。
 ケース部材22に蓋部材23を嵌合して一体化すると、ポート23cは、通路22eを通じてリザーバRに連通する。ポート23cを開閉するチェックバルブ27は、緩衝装置D1の伸長作動時に圧側室R2内の圧力が減圧されると外周側が撓んで開弁し、ポート23cおよび通路22eを通じてリザーバRと圧側室R2とを連通する。チェックバルブ27は、ポート23cおよび通路22eとともに吸込通路3を構成する。
 蓋部材23とケース部材22とを嵌合する部位にシールリング29を装着しておくと、蓋部材23とケース部材22との間がシールされ、排出通路7と大室16とが直接連通してしまうことを防止できる。
 図3に示された緩衝装置D1において、ボトム部材11を構成する各部材は、緩衝装置D1内に無理なく組み込まれる。
 図4に示す緩衝装置D1では、ケース部材22の筒状の先端の内周に圧入されるとともにポート23cが開口する環状溝23dを蓋部材23に設けている。環状溝23dの内周側の壁がケース部材22の先端の内周に隙間を生じることなく圧入されると、大室16と吸込通路3との連通が確実に阻止されて、安定した減衰力低減効果を得ることができる。シールリング29は、ケース部材22の筒状の先端の外周に装着され、ソケット23bの内周に密着している。これに代えて、蓋部材23のソケット23b側にシールリング29を装着して、ケース部材22の先端外周にシールリング29が密着するようにしてもよい。
 図3の緩衝装置D1に対して、図5に示した緩衝装置D1では、バルブディスク40をケース部材22内に収容している。バルブディスク40は、蓋部材23に連結ロッド41によって連結され、ケース部材22の中空部22a内に収容される。
 連結ロッド41は、先端に螺子部41aを有する軸部41bと、軸部41bの基端に形成された頭部41cと、軸部41bの上端で開口して軸部41bの側部へ通じるロッド内通路41dと、を備える。連結ロッド41の軸部41bの外周には、蓋部材23の圧側室R2側の面に積層されるチェックバルブ27が装着される。チェックバルブ27は、連結ロッド41と螺子部41aに螺着されるナット42によって、蓋部材23に固定され、ポート23cを開閉する。
 連結ロッド41の軸部41bの外周には、蓋部材23よりも下方に、筒状のスペーサ43と、第一バルブ44と、バルブディスク40と、第二バルブ45と、孔空き円盤状のばね受け46と、が組み付けられる。これらは、ナット42と連結ロッド41における頭部41cとで挟持されて、蓋部材23に固定される。
 スペーサ43は、有底筒状であって、底部に設けられた連結ロッド41の軸部41bが挿通される孔43aと、筒部に設けられた筒部内外を連通する通孔43bと、を備えている。バルブディスク40は、中央に設けた連結ロッド41の軸部41bが挿通される孔40aと、上端から下端へ開口する第一ポート40bおよび第二ポート40cと、を備えている。
 バルブディスク40は、スペーサ43を介して蓋部材23に積層される。軸部41bに組み付けられたバルブディスク40が中空部22a内に挿入されると、バルブディスク40の外周がケース部材22の中空部22aの内周に嵌合するので、中空部22aは圧力室25と部屋S2とに区画される。
 バルブディスク40より下方の圧力室25内には、フリーピストン5と圧側ばね6aおよび伸側ばね6bとが収容されている。ケース部材22の先端に蓋部材23のソケット23bを嵌合すると、圧側ばね6aおよび伸側ばね6bが圧縮されて、フリーピストン5は圧側ばね6aおよび伸側ばね6bの附勢力によって中立位置へ位置決めされる。圧側ばね6aの上端は、ばね受け46に当接して支承されるため、圧側ばね6aが第一バルブ45に干渉することはない。圧側ばね6aを連結ロッド41の頭部41cで支承する構成とし、ばね受け46を廃止してもよい。
 圧力室25内は、フリーピストン5が挿入されることで、小室15、大室16および外周室17に区画される。小室15は、ケース部材22に設けられた通路22dを通じてリザーバRに連通する。外周室17は、透孔22cを通じて排出通路7に連通する。段部25cに開口する透孔22cは、フリーピストン5が段部25cに完全に密着するまでは外周室17と排出通路7との連通を保つように形成されている。
 部屋S2は、第一ポート40bおよび第二ポート40cを通じて大室16に連通する。連結ロッド41に設けられたロッド内通路41dの一端は、スペーサ43の筒部内に位置する軸部41bの側部で開口しており、他端は、圧側室R2に臨む軸部41bの先端で開口している。スペーサ43の筒部内は、通孔43bを通じて部屋S2と連通しているため、大室16は、ロッド内通路41d、スペーサ43内、通孔43b、部屋S2、第一ポート40bおよび第二ポート40cを通じて圧側室R2と連通する。
 バルブディスク40の大室16側の面に積層された第一バルブ45は、環状板を積層した積層リーフバルブであって第一ポート40bの下端開口端を開閉する。第一バルブ45は、第一ポート40bを介して圧側室R2から大室16へ向かう液体の流れのみを許容する一方通行の通路であるとともに、通過液体の流れに抵抗を与える。
 バルブディスク40の圧側室R2側の面に積層された第二バルブ44は、環状板を積層した積層リーフバルブであって第二ポート40cの上端開口端を開閉する。第二バルブ44は、第二ポート40cを介して大室16から圧側室R2へ向かう液体の流れのみを許容する一方通行の通路であるとともに、通過液体の流れに抵抗を与える。
 図5に示された緩衝装置D1では、圧側第一通路は、第一ポート40bとロッド内通路41dとで形成されており、圧側第二通路は、第二ポート40cとロッド内通路41dとで形成されている。
 ケース部材22に蓋部材23を嵌合して一体化すると、ポート23cは、通路22eを通じてリザーバRに連通する。ポート23cを開閉するチェックバルブ27は、緩衝装置D1の伸長作動時に圧側室R2内の圧力が減圧されると外周側が撓んで開弁し、ポート23cおよび通路22eを通じてリザーバRと圧側室R2とを連通する。図3の緩衝装置D1と同様に、チェックバルブ27は、ポート23cおよび通路22eとともに吸込通路3を構成する。
 図5に示された緩衝装置D1において、ボトム部材11を構成する各部材は、緩衝装置D1内に無理なく組み込まれる。
 図3における緩衝装置D1では、圧側室R2内にバルブディスク30、第一バルブ32および第二バルブ33を収容し、図5における緩衝装置D1では、ボトム部材11内にバルブディスク40、第一バルブ45および第二バルブ44を収容している。したがって、圧側室R2内にバルブディスク30を収容する図3における緩衝装置D1の方が、ボトム部材11内にバルブディスク40を収容する図5における緩衝装置D1よりも、バルブディスク30の外径を大きくすることができ、第一バルブ32および第二バルブ33の外径についても大きくすることができる。第一バルブ32および第二バルブ33における撓み剛性は、第一バルブ45および第二バルブ44の撓み剛性よりも低くすることができるので、第一バルブ32および第二バルブ33が開弁した際の圧力損失は第一バルブ45および第二バルブ44のそれよりも小さくなる。よって、図3における緩衝装置D1は、図5における緩衝装置D1よりも、高周波振動入力時における減衰力低減効果の低減幅を大きくすることができる。
 実施形態に係る緩衝装置D1の圧力室14,25は、フリーピストン5が上下方向に移動可能なように形成されている。これに代えて、フリーピストン5が上下方向ではなく、横方向や斜め方向に移動可能なように圧力室14、25を形成してもよい。この場合、フリーピストン5は、緩衝装置D1に入力される上下方向の振動の影響を受けにくくなる。圧力室14,25をフリーピストン5が上下方向に移動可能なように形成した場合、フリーピストン5のストローク量を確保しやすく、大型のフリーピストン5を採用することもできる。
 以上の本実施形態によれば、以下に示す作用効果を奏する。
 本発明の緩衝装置によれば、比較的低い周波数帯の振動に対しては、減衰力調整部によって減衰力調整することで車体振動を制振することができる。緩衝装置は、減衰力調整部によっては抑制できない高周波振動に対してはメカニカルに低減衰力を発生することができ、車輪側からの振動を絶縁して車体振動を効果的に抑制することができ、車両における乗り心地を飛躍的に向上することができる。
 また、緩衝装置の伸縮速度が高くなって大室と圧側室とで行き交う液体の流量が増えても、第一バルブおよび第二バルブがそれに応じて圧側第一通路および圧側第二通路を大きく開放する。このため、緩衝装置の伸縮速度が高速域に達しても減衰力低減効果が発揮される。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2013年3月22日に日本国特許庁に出願された特願2013-060603に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 

Claims (5)

  1.  シリンダと、前記シリンダ内に摺動自在に挿入され当該シリンダ内を伸側室と圧側室に区画するピストンと、リザーバと、前記リザーバから前記圧側室へと向かう液体の流れのみを許容する吸込通路と、前記圧側室から前記伸側室へ向かう液体の流れのみを許容する整流通路と、前記伸側室から前記リザーバへ向かう液体の流れのみを許容するとともに当該液体の流れに与える抵抗を変更可能な減衰力調整部とを備えた緩衝装置であって、
     小断面積部と大断面積部とを有する圧力室を備えたハウジングと、
     前記圧力室の小断面積部内に摺動自在に挿入される小ピストン部と前記圧力室の大断面積部内に摺動自在に挿入される大ピストン部とを備えて、前記小断面積部内に前記小ピストン部で小室を区画し、前記大断面積部内であって前記小ピストン部の外周に外周室を区画し、前記大断面積部内に前記大ピストン部で大室を区画するフリーピストンと、
     前記フリーピストンを前記圧力室に対して中立位置に位置決めるとともに当該フリーピストンの中立位置からの変位を抑制する附勢力を発生するばね要素と、
     前記小室或いは前記外周室の一方を前記伸側室に連通する伸側通路と、
     前記大室と前記圧側室とを連通する圧側第一通路および圧側第二通路と、
     前記圧側第一通路に設けられて前記大室から前記圧側室へ向かう液体の流れのみを許容しつつ当該流れに抵抗を与える第一バルブと、
     前記圧側第二通路に設けられて前記圧側室から前記大室へ向かう液体の流れのみを許容しつつ当該流れに抵抗を与える第二バルブと
    を備える緩衝装置。
  2.  請求項1に記載の緩衝装置であって、
     前記第一バルブおよび前記第二バルブは、リーフバルブである緩衝装置。
  3.  請求項2に記載の緩衝装置であって、
     前記ハウジングに連結ロッドを介して連結されるとともに前記圧側室内に配置されるバルブディスクと、
     前記連結ロッドの外周に装着されるとともに前記バルブディスクが嵌合されて前記圧側室内に部屋を区画するキャップとをさらに備え、
     前記大室は、前記連結ロッド内に形成したロッド内通路を通じて前記部屋に連通し、
     前記バルブディスクに前記部屋と前記圧側室とを連通する第一ポートと第二ポートが設けられ、
     前記第一ポートと前記ロッド内通路とで前記圧側第一通路が形成され、
     前記第二ポートと前記ロッド内通路とで前記圧側第二通路が形成され、
     前記バルブディスクの圧側室側に前記第一ポートを開閉する第一バルブが積層され、
     前記バルブディスクの部屋側に前記第二ポートを開閉する第二バルブが積層された緩衝装置。
  4.  請求項2に記載の緩衝装置であって、
     前記ハウジング内に設けた中空部に収容されて当該中空部を前記大室と前記圧側室に連通される部屋とに仕切るバルブディスクを備え、
     前記バルブディスクに前記部屋と前記大室とを連通する第一ポートと第二ポートが設けられ、
     前記第一ポートで前記圧側第一通路が形成され、
     前記第二ポートで前記圧側第二通路が形成され、
     前記バルブディスクの部屋側に前記第一ポートを開閉する第一バルブが積層され、
     前記バルブディスクの大室側に前記第二ポートを開閉する第二バルブが積層された緩衝装置。
  5.  請求項1に記載の緩衝装置であって、
     前記シリンダの外側に設けた外筒と、
     前記シリンダと前記外筒との間に設けた中間筒とを備え、
     前記ハウジングが前記シリンダと前記中間筒の端部に嵌合されて、前記中間筒と前記外筒との間で前記リザーバが形成され、
     前記シリンダと前記中間筒との間の隙間で、前記伸側室を前記リザーバへ連通する排出通路が形成され、
     前記減衰力調整部が、前記排出通路と前記リザーバとの間に設けられ、
     前記排出通路を通じて、前記小室或いは前記外周室が、前記伸側室に連通する緩衝装置。
     
     
     
     
PCT/JP2014/057901 2013-03-22 2014-03-20 緩衝装置 WO2014148635A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480017385.0A CN105051403B (zh) 2013-03-22 2014-03-20 缓冲装置
EP14767379.2A EP2977641B1 (en) 2013-03-22 2014-03-20 Shock absorber
KR1020157026067A KR101710820B1 (ko) 2013-03-22 2014-03-20 완충 장치
US14/778,326 US9428030B2 (en) 2013-03-22 2014-03-20 Shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-060603 2013-03-22
JP2013060603A JP5961129B2 (ja) 2013-03-22 2013-03-22 緩衝装置

Publications (1)

Publication Number Publication Date
WO2014148635A1 true WO2014148635A1 (ja) 2014-09-25

Family

ID=51580304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057901 WO2014148635A1 (ja) 2013-03-22 2014-03-20 緩衝装置

Country Status (6)

Country Link
US (1) US9428030B2 (ja)
EP (1) EP2977641B1 (ja)
JP (1) JP5961129B2 (ja)
KR (1) KR101710820B1 (ja)
CN (1) CN105051403B (ja)
WO (1) WO2014148635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474245A (zh) * 2019-03-04 2021-10-01 Kyb株式会社 缓冲器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840123B2 (en) * 2013-03-22 2017-12-12 Kyb Corporation Shock absorber
JP6243173B2 (ja) * 2013-09-20 2017-12-06 Kyb株式会社 緩衝装置
JP6154741B2 (ja) * 2013-12-20 2017-06-28 Kyb株式会社 緩衝器
JP6339919B2 (ja) * 2014-10-06 2018-06-06 Kyb株式会社 緩衝器
JP6581895B2 (ja) * 2015-12-24 2019-09-25 株式会社ショーワ 圧力緩衝装置
JP6882866B2 (ja) * 2016-08-09 2021-06-02 Kyb株式会社 シリンダ装置、及びシリンダ装置の製造方法
JP6817786B2 (ja) * 2016-11-04 2021-01-20 Kyb株式会社 シリンダ装置
CN111819370B (zh) * 2018-03-13 2022-03-29 Kyb株式会社 阀装置以及缓冲器
US11143260B2 (en) * 2018-12-28 2021-10-12 Tenneco Automotive Operating Company Inc. Damper with single external control valve
US11156261B2 (en) 2018-12-28 2021-10-26 Tenneco Automotive Operating Company Inc. Damper with multiple external control valves
JP2020143682A (ja) * 2019-03-04 2020-09-10 Kyb株式会社 緩衝器
US11118649B2 (en) 2019-07-01 2021-09-14 Tenneco Automotive Operating Company Inc. Damper with side collector and external control valves
US11248677B2 (en) 2019-07-18 2022-02-15 Tenneco Automotive Operating Company Inc. Pre-assembled piston accumulator insert device
US11635122B2 (en) 2019-07-18 2023-04-25 Tenneco Automotive Operating Company Inc. Intake device for a damper having a side collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238727A (ja) * 1988-03-18 1989-09-22 Toyota Motor Corp ショックアブソーバ
JP2009222136A (ja) 2008-03-17 2009-10-01 Kayaba Ind Co Ltd 減衰弁
JP2011247371A (ja) * 2010-05-28 2011-12-08 Hitachi Automotive Systems Ltd 緩衝器
JP2012197905A (ja) * 2011-03-23 2012-10-18 Kyb Co Ltd 緩衝装置
US20120325604A1 (en) * 2007-12-05 2012-12-27 Nam Ho Kim Shock absorber

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050029063A1 (en) * 2003-07-24 2005-02-10 Baltic Electronik Gmbh Shock absorber having variable damping characteristics and method of damping vibrations with the shock absorber
DE102005010240A1 (de) * 2005-03-05 2006-09-07 Zf Friedrichshafen Ag Selbstpumpender hydropneumatischer Schwingungsdämpfer
JP4919045B2 (ja) * 2007-04-19 2012-04-18 日立オートモティブシステムズ株式会社 減衰力調整式流体圧緩衝器
KR101131050B1 (ko) * 2007-11-21 2012-03-29 주식회사 만도 쇽업소버
KR100904150B1 (ko) * 2007-12-05 2009-06-24 주식회사 만도 쇽업소버
US9038791B2 (en) * 2009-01-07 2015-05-26 Fox Factory, Inc. Compression isolator for a suspension damper
JP5503473B2 (ja) * 2010-09-10 2014-05-28 カヤバ工業株式会社 緩衝装置
CN102686903B (zh) * 2009-12-11 2014-09-17 萱场工业株式会社 缓冲装置
US8746423B2 (en) * 2010-03-02 2014-06-10 Hitachi Automotive Systems, Ltd. Shock absorber
JP5639870B2 (ja) * 2010-12-10 2014-12-10 カヤバ工業株式会社 車両用液圧緩衝器
US9533542B2 (en) * 2011-02-16 2017-01-03 Elite Suspension Systems, Llc Externally adjustable shock absorbing and suspension apparatus and method of use
JP2016528458A (ja) * 2013-08-14 2016-09-15 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッドTenneco Automotive Operating Company Inc. 低圧力の高圧縮減衰性モノチューブショックアブソーバ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238727A (ja) * 1988-03-18 1989-09-22 Toyota Motor Corp ショックアブソーバ
US20120325604A1 (en) * 2007-12-05 2012-12-27 Nam Ho Kim Shock absorber
JP2009222136A (ja) 2008-03-17 2009-10-01 Kayaba Ind Co Ltd 減衰弁
JP2011247371A (ja) * 2010-05-28 2011-12-08 Hitachi Automotive Systems Ltd 緩衝器
JP2012197905A (ja) * 2011-03-23 2012-10-18 Kyb Co Ltd 緩衝装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474245A (zh) * 2019-03-04 2021-10-01 Kyb株式会社 缓冲器
CN113474245B (zh) * 2019-03-04 2022-06-21 Kyb株式会社 缓冲器

Also Published As

Publication number Publication date
KR101710820B1 (ko) 2017-02-27
EP2977641A4 (en) 2017-01-25
JP2014185687A (ja) 2014-10-02
US20160059663A1 (en) 2016-03-03
CN105051403A (zh) 2015-11-11
EP2977641A1 (en) 2016-01-27
JP5961129B2 (ja) 2016-08-02
US9428030B2 (en) 2016-08-30
CN105051403B (zh) 2017-05-10
KR20150121137A (ko) 2015-10-28
EP2977641B1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
WO2014148635A1 (ja) 緩衝装置
JP6274798B2 (ja) 緩衝装置
JP5961130B2 (ja) 緩衝装置
JP6243173B2 (ja) 緩衝装置
JP6108550B2 (ja) 緩衝装置
WO2014148599A1 (ja) 緩衝装置
WO2017013960A1 (ja) 緩衝器
JP5603817B2 (ja) 緩衝装置
JP5878840B2 (ja) 緩衝装置
JP2013007425A (ja) 緩衝装置
JP5690179B2 (ja) 緩衝装置
JP6097108B2 (ja) 緩衝装置
JP6013956B2 (ja) 緩衝装置
JP5618417B2 (ja) 緩衝装置
JP6108532B2 (ja) 緩衝装置
JP5831977B2 (ja) 緩衝装置
JP5618418B2 (ja) 緩衝装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017385.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14778326

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157026067

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014767379

Country of ref document: EP