WO2014148463A1 - リング圧延用素材の製造方法 - Google Patents

リング圧延用素材の製造方法 Download PDF

Info

Publication number
WO2014148463A1
WO2014148463A1 PCT/JP2014/057250 JP2014057250W WO2014148463A1 WO 2014148463 A1 WO2014148463 A1 WO 2014148463A1 JP 2014057250 W JP2014057250 W JP 2014057250W WO 2014148463 A1 WO2014148463 A1 WO 2014148463A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring rolling
height
shape
ring
peripheral surface
Prior art date
Application number
PCT/JP2014/057250
Other languages
English (en)
French (fr)
Inventor
哲也 谷上
寺前 俊哉
藤田 悦夫
慎也 長尾
レミ 向瀬
尚幸 岩佐
福井 毅
宙也 青木
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP14769789.0A priority Critical patent/EP2977123B8/en
Priority to JP2015506789A priority patent/JP6350919B2/ja
Priority to CN201480017278.8A priority patent/CN105050749B/zh
Priority to US14/778,021 priority patent/US9719369B2/en
Publication of WO2014148463A1 publication Critical patent/WO2014148463A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/02Flanging or other edge treatment, e.g. of tubes by continuously-acting tools moving along the edge
    • B21D19/04Flanging or other edge treatment, e.g. of tubes by continuously-acting tools moving along the edge shaped as rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/022Open die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/761Making machine elements elements not mentioned in one of the preceding groups rings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines

Definitions

  • the present invention relates to a method for manufacturing a ring rolling material for rolling and forming a ring product material used in a high temperature environment.
  • a gas turbine As an example of an apparatus in which parts such as those made of heat resistant steel and super heat resistant alloy are frequently used, a gas turbine may be mentioned.
  • a gas turbine blade-shaped blades are respectively arranged on the outer periphery of a plurality of ring-shaped turbine disks mounted in a multistage manner on the rotation shaft thereof, and the fluid flow in the axial direction (axial direction of the rotation shaft) is rotationally moved. Power is generated by converting to.
  • the air sucked from the front of the gas turbine is compressed by the subsequent multi-stage axial compression section, and further, the gas mixed with the fuel in the compressed air is combusted in the combustor disposed at a high temperature and high pressure.
  • the combustion gas is generated.
  • the combustion gas collides with blades attached to the turbine disk while flowing in the axial direction along the flow path in the outer peripheral portion of the turbine disk, and the axial movement is converted into rotational movement. It is intended to rotate at high speed.
  • the driving force of this rotation acts so as to cause continuous rotation by rotating the turbine disk of the previous stage via the rotating shaft and compressing the air.
  • Ni-based superalloy for example, 718 alloy
  • a method of precipitating particles that suppress the coarsening of crystal grains is an effective means.
  • Patent Document 2 a method of obtaining fine grains by promoting a miniaturization phenomenon by introducing strain into a material during hot working has been proposed.
  • a Ni-base superalloy is expensive as compared with a normal steel material because a rare metal is a main component.
  • near net forging is often used in which a near net shape material close to a finished shape is cut as a cutting material, thereby reducing the amount of chips during cutting and reducing the manufacturing cost.
  • hot forging is used for near net forging.
  • a cylindrical billet is formed into a disk shape by upsetting forging, then the center part is drilled, and further, a ring having a predetermined diameter is formed by ring rolling.
  • the hot forging process which shape
  • JP 61-238936 A Japanese Patent Laid-Open No. 7-138719 JP 2011-56548 A
  • the ring-shaped molded object which has a some near net shape at a time by hot rolling using the main roll and mandrel roll of a special shape using one ring-shaped raw material like patent document 3 is obtained. It has also been proposed to try. In this proposal, unlike the above-described ring rolling material having a rectangular cross-sectional shape, a ring rolling material having a substantially circular or substantially elliptical cross section is used.
  • Patent Document 3 aims to eliminate the hot forging process, and is significantly different from the conventional technique.
  • the examination of the shape of the ring rolling material is insufficient, and if an attempt is made to produce the ring rolling material having the shape shown in Patent Document 3 as a single molded product as it is, local abnormal heat generation may occur. .
  • the object of the present invention is to suppress an excessive temperature rise during ring rolling and to introduce a uniform and optimum strain on the entire surface of the ring rolling material. It is providing the manufacturing method of the raw material for rolling used as a raw material of rolling components, especially a rotary component used in high temperature parts, such as a gas turbine.
  • the present invention has been made in view of the above problems. That is, the present invention (1) a step of heating a disk-shaped hot forging material to a hot working temperature; (2) a step of disposing the hot forging material on a lower die having a truncated cone-shaped convex portion; (3) A step of pressing the central portion of the hot forging material into a thin portion using an upper die having a truncated cone-shaped convex portion, (4) A step of removing the thin-walled portion to obtain a ring rolled material, Including The ring rolling material is formed into a shape having a height reducing portion in which the one-side cross-sectional shape of the ring rolled material decreases toward the inner peripheral surface from a center line that bisects the height direction.
  • the ring rolling material has a center of gravity of one side cross-section of the ring rolling material on the outer peripheral surface side in contact with the main roll rather than the center in the thickness direction of the ring rolling material
  • the one-side cross-sectional shape of the ring rolling material has a height reduction portion in which the height from the center line that bisects the height direction decreases toward the inner peripheral surface that contacts the mandrel roll, and the center It is substantially line-symmetric with the line as the axis of symmetry,
  • the height of the inner peripheral surface of the ring rolling material is 20 to 50% of the maximum height of the ring rolling material.
  • the present invention it is possible to easily manufacture a ring rolling material that provides the following effects.
  • the ring rolling material obtained by the present invention secures a free space when the ring rolling material is deformed by the height reduction portion.
  • heat generation during ring rolling is reduced, crystal grain growth due to abnormal heat generation is suppressed, and a high-quality ring can be obtained.
  • the lack of inner diameter can be suppressed at the end of rolling, it is possible to obtain a ring with good shape accuracy as well as quality.
  • the number of man-hours for controlling the structure when a plurality of heats are increased.
  • heat generation during ring rolling can be set to an appropriate temperature, as compared with ring rolling using a conventional shape. Since the number of heats can be reduced, the manufacturing time can be shortened.
  • FIG. It is a figure which shows the metal structure of the upper part of a ring rolling raw material obtained by the manufacturing method of this invention, an internal diameter part, a center part, an outer diameter part, and a lower part with an enlarged photograph.
  • Ni 50 to 55%
  • Cr 15 to 22%
  • Nb 4.5 to 6.5%
  • Mo 2.5 to 3 in mass% 0.5%
  • Ti 0.6 to 1.2%
  • Al 0.2 to 0.8%
  • FIG. 1A a disc-shaped Ni-based superalloy 1 having a predetermined height is heated to a hot working temperature.
  • the hot working temperature may be selected depending on the material of the ring rolling material.
  • the material is a Ni-base superalloy
  • a temperature range of 900 to 950 ° C. is suitable.
  • the range of 850 to 900 ° C. is preferable.
  • the Ni-base superalloy heat-resistant gold material is disposed on the lower mold having the frustoconical protrusions. The arrangement is easiest to place on the lower mold. Then, as shown in FIG. 1 (b), as shown in FIG. 1 (b), using upper and lower molds (upper and lower molds) 2 and 3 each having a frustoconical convex portion at the center.
  • the thin-walled portion 4 (shown by the hatched portion in FIG. 1 (b)) having a truncated conical recess space is formed, and then the central thin-walled portion 4 is cut out, thereby forming a ring rolling material.
  • the method of excising the thin portion can be performed by a known method such as machining or a water cutter.
  • the hot-worked material after hot working can be used as it is as a material for ring rolling as it is, it is important to accurately form the concave portion of the Ni-based superalloy heat-resistant gold material at the center.
  • a convex shape and a concave shape that can be fitted to each other are formed on a Ni-based super composite heat-resistant gold material and a lower mold on which the Ni-based super composite heat-resistant gold material is placed.
  • Positioning (centering) may be performed by fitting the convex shape and the concave shape.
  • a Ni-based superalloy heat-resistant gold material may be placed at the center of the lower die by a manipulator positioning mechanism.
  • a hot processing machine applied by this invention it is a hot forging apparatus.
  • hot forging includes hot pressing and includes constant temperature forging.
  • FIG. 2 is a one-side cross-sectional view schematically showing the ring rolling blank 11 formed into an axisymmetric shape (shape 1) with respect to the central axis CA.
  • the “one-side cross-sectional view” is a drawing in which the ring rolling material 11 is drawn with the part on one side in the thickness direction with respect to the central axis CA, that is, the left part on the drawing omitted. Means.
  • Such a ring rolling material 11 includes a radially outer peripheral surface 12 and an inner peripheral surface 13.
  • the ring rolling material 11 includes an outer peripheral portion 14 including an outer peripheral surface 12.
  • the outer peripheral surface 12 is a part of the periphery of the outer peripheral portion 14 forming the outline of the one-side cross section.
  • the outer peripheral portion 14 is positioned closer to the outer periphery of the ring rolling material 11 with respect to a boundary line (not shown) that linearly connects both end portions 12a in the height direction of the outer peripheral surface 12.
  • the one-side cross-sectional shape of the ring rolling material 11 shown in the figure has a straight portion 15 near the central portion in the thickness direction, and the straight portion 15 includes an end face 16 in the height direction extending linearly.
  • the length of the straight portion 15, preferably the length of the end face 16 of the straight portion 15 is about 2/3 times the maximum height H ⁇ b> 1 of the ring rolling material 11.
  • a height reducing portion 17 connected to such a straight portion 15 is provided, and the height reducing portion 17 is an inner portion whose height from the center line CL that bisects one side cross section in the height direction contacts the mandrel roll.
  • the taper shape is formed so as to gradually decrease toward the peripheral surface 13.
  • the height Hin on the inner diameter end (inner peripheral surface 13) side is 1/3 times (33%) or more and 1/2 times (50%) or less of the maximum height H1 of the material 11 for ring rolling. It has become.
  • the length of the projection onto the line CL is set in a range of 0.2 times or more and 1.5 times or less with respect to the maximum height H1 of the ring rolling material 11, and the height reducing portion 17
  • the outer peripheral surface 12 formed on the roll side is formed into a shape that tapers from both end portions 12a in the height direction toward both end portions 13a in the height direction of the inner peripheral surface 13 while including a linear portion having a certain length. Yes.
  • the shape of the one-side cross section is formed substantially symmetrical with the center line CL as an axis of symmetry.
  • the center of gravity (or centroid) G of the cross section on one side of the ring rolling material 11 is located on the main roll side, that is, on the outer peripheral surface 12 side, from the center CP in the thickness direction of the ring rolling material 11,
  • the center CP in the thickness direction is indicated by a cross mark
  • the position of the center of gravity G is indicated by a black circle mark.
  • an upper mold 2 and a lower mold 3 as shown in FIG. 6 are preferably used.
  • the angle ( ⁇ ) of the frustoconical convex portion formed in the central portion shown in FIG. 6 is 20 to 70 °.
  • the angle is less than 20 °, the thickness of the produced ring rolling material becomes too thick, and the ring rolling time becomes long.
  • the angle exceeds 70 °, the meat may not flow sufficiently between the Ni-base superalloy heat-resistant gold material and the frustoconical protrusion during hot forging, and the desired shape may not be obtained. is there.
  • the lower limit of the preferred angle ( ⁇ ) is 25 °.
  • the upper limit of the preferred angle ( ⁇ ) is 45 °, more preferably 30 °.
  • FIGS. 3 to 5 show first to third modifications of the ring rolling material 11, respectively.
  • the portion 12c is provided with a tapered portion, and an intermediate portion 12d connecting the upper and lower tapered portions has a linear shape.
  • the upper portion 12b and the lower portion 12c of the outer peripheral surface 12 are provided with tapered portions, and the intermediate portion 12d connecting the upper and lower tapered portions is linearly formed.
  • the contact area between the main roll and the ring rolling material 11 increases, and as a result, stable ring rolling becomes possible.
  • the method of adjusting the shape by machining for example, when forming the ring rolling material described above, the top and bottom corresponding to the shape of FIG.
  • the method of machining there is a method using a mold having molds 2 and 3.
  • the accuracy of the shape can be increased, but the yield decreases. Therefore, it is advantageous to form the shape of FIG. 3 by the die shape at the time of hot forging (including hot pressing).
  • the distance from the central axis CA of the ring rolling material 11 to the outer peripheral surface of the main roll, and the ring rolling material 11 can be easily made the same by adjusting the mold shape. As a result, more stable ring rolling is possible.
  • molding this shape of FIG. 3 by hot forging a press load becomes large rather than the case where the shape of FIG. 2 is applied. Therefore, whether to apply the shape of FIG. 3 or the shape of FIG. 2 may be determined in consideration of the maximum load of the forging device to be used, the maximum load at the time of forging, and the like.
  • an upper mold 2 and a lower mold 3 as shown in FIG. 7 are preferably used.
  • the angle ( ⁇ ) of the frustoconical convex portion formed at the center is preferably 25 to 35 ° as described above.
  • the material 11 for ring rolling (shape 3) of the one side cross-sectional view of the second modification shown in FIG. 4 has an inner peripheral surface 13 from both end portions 12a in the height direction of the outer peripheral surface 12 formed on the main roll side. It has a shape that tapers linearly toward both end portions 13a in the height direction.
  • the method of adjusting the shape by machining for example, the shape of FIG.
  • the outer peripheral surface 12 that comes into contact with the main roll is formed into a curved shape.
  • the curved surface portion that first comes into contact with the main roll is processed into a flat shape,
  • the contact area with the ring rolling material 11 increases, and as a result, stable ring rolling becomes possible.
  • the entire curved surface on the outer peripheral surface 12 side may be processed to be flat.
  • an upper mold 2 and a lower mold 3 as shown in FIG. 8 are preferably used.
  • the angle ( ⁇ ) of the frustoconical protrusion formed at the center is preferably 15 to 25 ° as described above.
  • the inner peripheral surface 13 in contact with the mandrel roll is formed in a linear shape, and the other portions are formed in a curved shape. ing.
  • an upper mold 2 and a lower mold 3 as shown in FIG. 9 are preferably used.
  • the angle ( ⁇ ) of the frustoconical convex portion formed at the center is preferably set to the same angle of 35 to 45 ° as described above.
  • the angle of the frustoconical convex portion may be gradually changed so as to correspond to the shape of the height reducing portion having a curved surface shape.
  • the shape shown in FIGS. 2 and 3 can be more stably ring-rolled.
  • the ring rolling material 11 has a shape that tapers toward the inner peripheral surface 13 side by the height reducing portion 17, the center of gravity G of the ring rolling material 11 is the meat of the ring rolling material 11. It is located on the main roll side from the center CP in the thickness direction, that is, on the outer peripheral surface 12 side. With this shape, the contact area between the mandrel roll with which the inner peripheral surface 13 contacts and the ring rolling material 11 can be reduced. Thereby, ring rolling can be performed while reducing the load during ring rolling.
  • the height Hin of the inner peripheral surface 13 of the ring rolling material 11 is 20% or more and 50% or less with respect to the maximum height H1 of the ring rolling material 11, so that the ring rolling material is used during ring rolling.
  • deformation occurs sequentially in the height reduction portion 17 of 11 and ring rolling can be performed with a relatively low pressing force.
  • the height Hin of the inner peripheral surface 13 is less than 20% with respect to the maximum height H1 of the ring rolling material 11, the contact area between the mandrel roll and the inner peripheral surface 13 decreases.
  • the rolled material 11 tends to fall down in either the upper or lower direction, and as a result, the ring rolling tends to become unstable.
  • the height Hin of the inner peripheral surface 13 exceeds 50% with respect to the maximum height H1 of the ring rolling material 11, abnormal heat generation may occur. That is, by making the cross-sectional shape prescribed in the embodiment of the present invention, the position of the center of gravity G, and the relationship between the height Hin of the inner peripheral surface 13 and the maximum height H1 of the ring rolling material 11 suitable for ring rolling. Local heat generation of the material 11 can be suppressed and hot workability can be improved.
  • the minimum of the preferable height Hin of the internal peripheral surface 13 which can acquire the above-mentioned effect more reliably is 25% with respect to the maximum thickness H1 of the raw material 11 for ring rolling, More preferably, it is 33%. is there.
  • the upper limit of the preferable height Hin of the inner peripheral surface 13 is 45%, more preferably 40%, with respect to the maximum thickness H1 of the ring rolling material 11.
  • “the height of the inner peripheral surface 13” refers to the interval between both end portions 13 a in the height direction of the inner peripheral surface 13 having a large difference in curvature with respect to the curvature of the inclined surface 18 of the height reducing portion 17. For example, in the case of the one-side cross-sectional views of FIGS.
  • the height of the inner peripheral surface 13 refers to the length of a linear portion that contacts the mandrel roll.
  • the measurement of the height Hin of the inner peripheral surface 13 is unclear because there are slight curved surfaces or irregularities on the inner peripheral surface 13, from the first contact point with the mandrel roll to the outer peripheral side. It is good to measure the location which is located in the range within 20 mm, and has a curvature with a big difference with respect to the curvature of the height reduction part 17.
  • the ring rolling blank 11 is formed substantially symmetrically about the center line CL as an axis of symmetry.
  • the substantially line-symmetric shape with the center line CL as the axis of symmetry enables stable ring rolling during ring rolling.
  • substantially line symmetry since the material for ring rolling is formed by hot forging as described above, for example, if a die whose outer peripheral surface 12 is not restrained is used, complete line symmetry is obtained. There may not be. For this reason, “substantially line symmetry” described in the present invention is defined as allowing the shape error, deviation, and the like that occur when the ring rolling material is formed. Furthermore, in the embodiment of the present invention, as shown in FIGS.
  • the height reducing portion 17 becomes a free space when the ring rolling material 11 is deformed during molding by a ring rolling mill, and in particular, excessive heat generation of the ring rolling material 11 on the mandrel roll side can be prevented.
  • the height reducing portion 17 is formed by pressing the center using the upper and lower molds 2 and 3 having a frustoconical convex portion at the center portion. Can be molded. In this case, as the angle of the frustoconical convex portion becomes shallower, the length of the height reducing portion 17 in the thickness direction becomes longer.
  • the processing time of the height reducing portion 17 may be lengthened during ring rolling.
  • the angle of the frustoconical protrusion increases, the length of the height reducing portion 17 in the thickness direction decreases.
  • the length is excessively shortened, the mortar-shaped removed portion after pressing increases and the yield is deteriorated.
  • the pressing surface area of the convex portion increases, a large pressing force is required, and a special forging device that can apply a large load is required.
  • the temperature of the ring rolling material 11 may be locally increased during ring rolling.
  • the length of the height reducing portion 17 in the thickness direction preferably the length of the inclined surface 18 of the height reducing portion 17 projected onto the center line CL in the height direction is
  • the maximum height H1 of the ring rolling material 11 is 0.2 times or more and 1.5 times or less.
  • the lower limit of the length in the thickness direction in the preferred height reduction portion 17 is 0.5 times, more preferably 0.6 times.
  • the upper limit of the length in the thickness direction in the preferred height reducing portion 17 is 1.1 times, and more preferably 1.0 times.
  • the outer peripheral part 14 which contacts the main roll of the raw material 11 for ring rolling which concerns on embodiment of this invention is shape
  • the ring rolling material 11 shown in FIGS. 2 to 5 is all formed into a tapered shape.
  • a shape is applied, for example, even when a die that does not restrain the outer peripheral surface 12 by hot forging at the time of forming a ring rolling material can be used as it is for ring rolling, it is economical. It is.
  • a flat portion is provided on the outer peripheral surface 12 in contact with the main roll during ring rolling, the ring rolling is stabilized.
  • a flat portion (a linear shape portion of the outer peripheral surface 12 in the drawing) having a length of about 1/6 times or more and 1/3 times or less of the maximum height H1.
  • the linear portion 15 having both end surfaces 16 in the height direction extending substantially linearly may be provided between the outer peripheral portion 14 and the height reducing portion 17.
  • the straight portion 15 is more stable in ring rolling and more easily obtains a desired shape if a flat portion for pressing with the axial roll is present.
  • the length of the straight portion 15 in the thickness direction preferably the length of the end face 16 of the straight portion 15 is greater than 0 times the maximum height H1 of the ring rolling material 11 and 2/3. Is less than double.
  • the thickness (wall thickness) of the ring rolling material 11 is preferably 0.5 times or more with respect to the maximum height H1 of the ring rolling material 11. This is because the ring rolling blank 11 according to an embodiment of the present invention is further processed into a final product shape by hot forging (including forging and pressing under hot and constant temperature) after ring rolling, so that the thickness is excessively large. It is determined in consideration of the fact that if it is thin, it may be buckled by subsequent hot forging.
  • the angle of the ring rolling material 11 indicated by ⁇ in in FIG. 2 is preferably 20 ° or more.
  • the angle ⁇ in is less than 20 °, the height reducing portion 17 becomes long and the ring rolling time tends to be long. Further, the weight of the thin portion 4 to be cut after hot working such as hot forging or hot pressing increases, and as a result, the yield may be deteriorated.
  • the angle ⁇ in exceeds 70 °, local heat generation on the inner peripheral surface 13 is likely to occur during ring rolling.
  • the Ni-based superalloy 1 is not filled in the upper and lower molds 2 and 3 during hot working, making it difficult to obtain a desired shape.
  • the lower limit of the preferable angle ⁇ in that can prevent these problems more reliably is 25 °.
  • the upper limit of the preferred angle ⁇ in is 45 °, more preferably 30 °.
  • Ring rolling is performed on the above-described ring rolling material 11 using a ring rolling mill.
  • a ring rolling machine used at that time, for example, a structure as shown in FIG. 10 can be used.
  • the ring rolling mill may be provided with guide rolls (holding rolls) and fixed-size rolls.
  • a main roll 21 that can be rotated at a predetermined rotational speed and a mandrel roll 22 that can be driven to rotate around an axis include a radially outer peripheral surface 12 and an inner peripheral surface 13 of the ring rolling material 11.
  • the ring rolling mill includes two axial rolls 23 ⁇ / b> A and 23 ⁇ / b> B disposed to face the upper surface and the lower surface in the height direction of the ring rolling material 11.
  • a guide roll that can be driven and rotated on both sides of the main roll 21 is arranged, and rolling while supporting the outer peripheral portion 14 of the ring rolling material 11, More stable rolling becomes possible.
  • the main roll 21 is formed in a cylindrical shape, and such a main roll 21 is rotated while being in contact with the outer peripheral surface 12 of the ring rolling material 11 during rolling, thereby rotating the ring rolling material 11. It is something to be made.
  • a cylindrical roll is used as the mandrel roll 22, and the mandrel roll 22 has a structure that can freely rotate around the axis and is disposed substantially parallel to the rotation axis of the main roll 21. Rolling is performed in a state where the outer peripheral surface of the mandrel roll 22 is in contact with the inner peripheral surface 13 of the ring rolling material 11, and the distance between the rolls between the main roll 21 and the mandrel roll 22 during such rolling.
  • the upper and lower axial rolls 23A and 23B are formed in a conical shape or a truncated cone shape having an apex angle of 20 to 45 °, and the upper and lower axial rolls 23A and 23B are dimensions in the height direction of the ring rolling material 11. Are adjusted so that the tip is directed to the approximate center of each of the ring rolling materials 11.
  • the upper and lower axial rolls 23A and 23B are driven to rotate in accordance with the rotational speed of the ring rolling material 11, but may be driven to rotate.
  • the mandrel roll 22 is passed through the inner diameter hole of the ring rolling material 11 heated to a predetermined temperature, and the mandrel roll 22 is moved radially outward so that the distance between the main roll 21 and the mandrel roll 22 is gradually narrowed.
  • the ring is caused by friction between the surface of the main roll 21 and the outer peripheral surface 12 of the ring rolling material 11. Rotation is applied to the rolling material 11. At this time, the mandrel roll 22 is driven to rotate to follow the rotation of the ring rolling material 11.
  • the ring rolling material 11 used at this time has a shape defined in the present invention described above.
  • effect The effects when the ring rolling material 11 having such a cross-sectional shape is rolled using the above-described ring rolling mill will be described below.
  • the effect will be described using an analysis example in which a numerical simulation is performed on a computer.
  • guide rolls that do not directly affect the forming are excluded from modeling.
  • a numerical ring rolling analysis using a three-dimensional rigid-plastic finite element analysis method was performed on the rolling conditions for expanding the outer diameter of the ring rolling raw material 11 having the shape of one side cross section shown in FIG.
  • the outer diameter of the ring rolling material 11 was ⁇ 600 mm, the maximum thickness was 100 mm, and the inner diameter side thickness was 40 mm.
  • the displacement of the nodes located on the symmetry plane CL in the out-of-plane direction is determined. Only the portion above the plane of symmetry CL was subject to analysis.
  • the mandrel roll 22 and the upper axial roll 23A were set to conditions capable of rotating around their respective axes.
  • the main roll 21 has a diameter of 800 mm and rotates at a constant speed of 20 RPM.
  • the initial heating temperature was 980 ° C. Data obtained by a compression test with a test temperature of 700 to 1100 ° C. was used as hot flow stress data with a material equivalent to 718 alloy.
  • FIGS. 11 (a) to 11 (c) show the change in the cross-sectional shape in the middle of rolling and the temperature distribution obtained from the numerical analysis.
  • FIGS. 11D to 11F show changes in cross-sectional shape and temperature distribution when rolling under the same conditions using a conventional ring rolling material having a rectangular cross section. It is shown.
  • the alternate long and short dash line indicated as “CL” is the center line, and all the drawings are the simulation results of the upper half of the one-side cross section divided by the center line CL.
  • the ring rolling material 11 is heated and the mandrel roll 22 and the main roll 21 are in the initial positions, and the ring rolling is performed.
  • the height reducing portion 17 (tapered) is provided in the material 11 for ring rolling.
  • the tapered tip region which becomes free space is selectively deformed.
  • the upper and lower axial rolls 23A and 23B are located at the maximum thickness portion, the region on the inner peripheral surface 13 side is deformed in a free state in the height direction.
  • FIGS. 11 (d) to 11 (f) show the results of temperature distribution when a material having a rectangular cross section, which has been generally used in the past, is rolled.
  • FIGS. When the outer diameter spreads by 20%, a temperature rise due to processing heat generation is observed at the inner diameter corner, and the temperature rises to about 1130 ° C.
  • the ring rolling material 11 according to the embodiment of the present invention is rolled, the temperature from the start to the end of the rolling is 1000 ° C. at the maximum, and the rolling is performed within an appropriate temperature range.
  • FIGS. 12A and 12B show the distortion at the end of the ring rolling process obtained from the numerical analysis of the ring rolling material 11 according to the embodiment of the present invention and the conventional rectangular rolling material with a rectangular cross section. The distribution map of is shown.
  • the drawings shown in FIGS. 12A and 12B are also the simulation results of the upper half of the one-side cross section divided by the center line CL.
  • the strain is generally defined as ((length after deformation) ⁇ (length before deformation)) / (length before deformation). Therefore, as in the case of the inner diameter corner, which has been a problem in the past, the temperature is excessively high, resulting in coarsening of the grains, and the local deformation makes the strain distribution non-uniform, resulting in a non-uniform structure. Can be solved.
  • the shape of the ring rolling material 11 according to the embodiment of the present invention is such that a space is formed between the (tapered) height reducing portion 17 and the maximum height portion of the ring rolling material 11. Since plastic deformation proceeds so that the material gradually flows in this region during the reduction process, the deformation does not concentrate locally, and the deformation of the entire ring can be made uniform. As a result, abnormal heat generation is suppressed, the heat load on the axial roll can be reduced, and the life of the axial roll is also improved.
  • Examples of means for avoiding this include water cooling, provision of pre-meat, and reduction in rolling speed.
  • water cooling it is very difficult to manage the temperature according to the rolling process.
  • pre-meat the material yield is reduced and the required rolling capacity is increased if the cutting allowance is provided.
  • the rolling speed is reduced in order to suppress the heat generation at the corners, the rolling end time becomes longer, and the temperature of other parts is lowered.
  • the ring rolling blank 11 according to the embodiment of the present invention uses a pre-process equivalent to the conventional method, hot forging a billet on a cylinder, and punching the center with a punching die, and then as necessary.
  • the above-described ring rolling material shape can be easily obtained by cutting into the shape of the embodiment of the present invention by machining.
  • the fillet part (curved part) is provided in the connection part of each side, since a local contact with an axial roll can be avoided and abrasion of an axial roll can be suppressed, it is further suitable.
  • the ring rolling material shown in FIG. 2 was formed by applying the ring rolling material forming method shown in FIG. 1 to the 718-equivalent alloy used in the above-mentioned ⁇ 1000 mm or more gas turbine disc.
  • the hot forging temperature of the 718 equivalent alloy was 920 ° C.
  • the shape of the mold used was an upper and lower mold as shown in FIG. 6, and the angle ( ⁇ ) of the frustoconical convex portion was 32 °.
  • the dimensions of the ring rolling blank 11 are as shown in Table 1. Specifically, the outer peripheral portion 14 of the ring rolling material 11 that contacts the main roll is formed into a curved shape that tapers toward the outer periphery.
  • the shape of the one-side cross section of the material 11 for ring rolling is the height reduction which reduced the height from the centerline CL which bisects the one-side cross section to the height direction toward the inner peripheral surface 13 which contacts a mandrel roll. It has a portion 17 and is shaped substantially line-symmetrically with the center line CL as the axis of symmetry.
  • the center of gravity G of the cross section on one side of the ring rolling material 11 is located on the main roll side, that is, on the outer peripheral surface 12 side of the center CP in the thickness direction of the ring rolling material 11.
  • the ring rolling material 11 was subjected to ring rolling using a ring rolling machine shown in FIG.
  • the used roll mill is provided with a guide roll and a fixed-size roll.
  • the ring rolling material 11 was heated to 990 ° C. to perform ring rolling.
  • ring rolling as in the simulation results described above, in the region on the inner peripheral surface 13 side, the deformation progressed freely in the height direction, and excessive abnormal heat generation was not observed. Therefore, it was possible to shorten the manufacturing time by setting the number of times of heat to two.
  • a straight portion (flat portion) 15 having an end surface 16 in the height direction extending substantially linearly is provided between the outer peripheral portion 14 and the height reducing portion 17, it is stable when pressed with an axial roll.
  • Ring rolling was possible.
  • a rectangular ring rolling material 11 having an outer diameter of 1141 mm, an inner diameter of 933 mm, a thickness of 104 mm, and a height of 189 mm could be obtained.
  • the appearance of the ring rolling material 11 was visually observed, it was confirmed that the ring rolling material 11 had no defects such as cracks and peeling, and the ring rolling material 11 had a substantially circular shape.
  • a test piece for observing the metal structure was taken from the ring rolling material 11.
  • the collected portions were the upper part, inner diameter part, center part, outer diameter part, and lower part of the material for ring rolling (ring mill rolled material) 11.
  • the metal structure of the ring rolling material 11 was observed with an optical microscope, and the crystal grain size number was measured.
  • the crystal grain size was measured according to the measurement method defined by ASTM-E112. The measurement results of the crystal grain size are shown in Table 2, and a photograph of the metal structure is shown in FIG.
  • the crystal grains are uniform and fine. I understand that. Therefore, uniform and optimal distortion is brought about on the entire surface of the ring rolling material 11, and such a ring rolling material 11 is suitable for use as a material for a rotating part used in a high temperature part such as a gas turbine. It was confirmed.
  • Ni-base super heat-resistant alloy for ring rolling 1 Upper die (upper die) 3 Lower mold (lower mold) 4 Thin portion 11 Ring rolling material 12 Outer peripheral surface 12a End portion 12b Upper portion 12c Lower portion 12d Intermediate portion 13 Inner peripheral surface 13a End portion 14 Outer peripheral portion 15 Linear portion 16 End surface 17 Height reducing portion 18 Inclined surface 21 Main roll 22 Mandrel roll 23A Upper axial roll 23B Lower axial roll CA Center axis CP Center CL Center line Hin Inner surface height H1 Maximum height of ring rolling material ⁇ in Angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Metal Rolling (AREA)

Abstract

高品質なリング圧延用素材(11)の製造方法を提供する。円板状の熱間鍛造用素材(1)を熱間加工温度に加熱する工程、円錐台状の凸部を有する下型(3)上に熱間鍛造用素材(1)を配置する工程、円錐台状の凸部を有する上型(2)を用いて熱間鍛造用素材(1)の中央部を押圧して薄肉部(4)とする工程、薄肉部(4)を除去してリング圧延素材(11)とする工程、とを含み、リング圧延用素材(11)の片側断面の重心(G)は、該片側断面の肉厚方向の中心(CP)よりも前記外周面(12)寄りに位置し、片側断面の形状は、該片側断面をその高さ方向に二分する中心線(CL)からの高さを内周面(13)に向かって減少させた高さ減少部(17)を含み、且つ前記中心線(CL)を対称軸とした略線対称となるように成形され、内周面(13)の高さ(Hin)が、リング圧延用素材(11)の最大高さ(H1)に対して20%以上且つ50%以下になっている。

Description

リング圧延用素材の製造方法
 本発明は、高温環境下で使用するリング製品用素材を圧延成形するためのリング圧延用素材の製造方法に関する。
 耐熱鋼製、超耐熱合金製などの部品が多用される装置の一例として、ガスタービンが挙げられる。ガスタービンは、その回転軸に多段状に取り付けられた複数のリング状タービンディスクの外周部に翼形状のブレードをそれぞれ配置し、且つ軸方向(回転軸の軸線方向)の流体の流れを回転運動に変換することによって動力を発生させるものである。
 ガスタービンの前方から吸い込まれた空気は、後続の多段軸流圧縮部で圧縮され、さらに後続に配置された燃焼器内で、圧縮空気に燃料を混合したガスを燃焼させることによって、高温且つ高圧の燃焼ガスが発生する。この燃焼ガスは、タービンディスクの外周部の流路に沿って軸方向に流れながらタービンディスクに取り付けられたブレードに衝突し、このような軸方向の運動を回転運動に変換して、タービンディスクを高速回転させるものとなっている。この回転の駆動力は、回転軸を介して前段のタービンディスクを回転させ、且つ空気を圧縮することによって、連続的な回転をもたらすように作用する。
 近年、省エネルギーの観点から、ガスタービンの効率向上が重要な技術的課題となっている。しかしながら、取り扱う燃焼ガスの最高温度が高くなることによって効率が向上するので、より高温で作動可能なガスタービンが求められている。その一方で、ガスタービンのタービンディスクおよびブレードは、高速回転しながら使用されるので、運転中に遠心力による高い負荷を受ける。また、これらのタービンディスクおよびブレードは、600℃以上の高温ガスに曝され、且つ高温ガスの流路近傍で使用される。そのため、タービンディスクおよびブレードは高温環境で高い強度を有することが不可欠となっている。
 さらに、ガスタービンの起動および停止が断続的に生ずる運転パターンで使用される場合、これらの構成部品には繰り返して負荷が加えられるので、部品の温度上昇および冷却の段階で生ずる熱応力もまた繰り返して作用することとなる。
 従って、このような繰り返しの負荷および熱応力に対しても十分な強度を有した部品を用いて、ガスタービンを構成することが重要となる。
 その一方で、タービンの高効率化を図るために、タービンディスクおよびブレードのような回転体は大型化する傾向にあるので、より高い遠心力に耐え得る高品質な耐熱鋼、超耐熱合金などから成るリングが求められている。これらの要求に応じるため、ガスタービン内部には、高温環境下で高い強度を有する耐熱鋼として、例えば、オーステナイト系耐熱鋼、フェライト系耐熱鋼、718合金に代表されるNi基超耐熱合金などが主に用いられている。
 このような合金のうち、特に優れた高温強度を有するNi基超耐熱合金(例えば718合金)に関しては、金属結晶組織を微細化することによって、疲労強度を向上できることが知られている。また、材料内部の粒径を微細化する手法については、これまでにも様々な技術が提案されている。例えば、特許文献1に記載されているように、結晶組織を微細化するためには、結晶粒の粗大化を抑制する粒子を析出させるなどの方法が有効な手段とされている。
 また、特許文献2に記載されているように、熱間加工時に素材に歪みを導入することによって、微細化現象を促進させて、微細粒を得る方法も提案されている。高温環境下で使用されるリングの製造方法に関しては、特に、Ni基超耐熱合金が、希少金属を主成分とするので通常の鋼材と比較して高価となっている。そのため、切削素材として仕上げ形状に近いニアネット形状素材を切削することによって、切削時の切屑量を低減して、製造コストを低減可能とするニアネット鍛造がしばしば用いられている。
 一般的に、ニアネット鍛造には熱間鍛造が用いられている。このような製造工程の一例としては、先ず円柱状のビレットを据え込み鍛造によって円盤状に成形し、次に中心部を穿孔し、さらにリング圧延によって所定の径を有するリングを成形し、最後に金型を用いて断面の形状を成形する熱間鍛造工程が用いられている。
特開昭61-238936号公報 特開平7-138719号公報 特開2011-56548号公報
 しかしながら、上述の熱間鍛造工程を用いたリング圧延では、製造条件に起因して異常高温発熱が生ずることがあり、その結果、品質低下を引き起こすおそれがある。すなわち、Ni基超耐熱合金、例えば、718合金の場合、1050℃を超えると、結晶粒の成長を抑制する粒子が母材に固溶するので、結晶粒の成長が活発化して、粗粒の組織が生ずる。そのため、リング圧延時に、Ni基超耐熱合金に異常高温発生箇所が発生することのないように製造することが、きわめて重要な技術課題となる。
 さらに、最終型への鍛造工程においては、例えば、タービンディスクなどの複雑な断面形状を成形する場合、型鍛造では素材全面に均一且つ最適な歪みを付与することが難しくなっている。そのため、鍛造狙い形状に起因して、鍛造中に歪みがほとんど付与されないデッドゾーンが生ずる場合がある。このような場合、デッドゾーンにおいて、歪み導入による金属結晶組織の微細化現象が十分に行われず、その結果、低サイクル疲労特性の劣化の原因となる粗粒が残ってしまうことが頻繁に発生して、製造上の課題となる。
 従って、型鍛造される素材をリング圧延によって製造する際には、予め前工程であるリング圧延の段階で微細な結晶組織を得ることもまた重要な技術課題となる。
 なお、特許文献3のように1つのリング状素材を用いて、特殊な形状の主ロールおよびマンドレルロールを用いた熱間圧延によって、一度に複数個のニアネット形状を有するリング状成形体を得ようとすることもまた提案されている。この提案では、上述の矩形状の断面形状を有するリング圧延用素材とは異なり、略円形または略楕円形の断面を有するリング圧延用素材が用いられている。しかしながら、特許文献3は、熱間鍛造工程を除くことを目的とするものであり、従来の技術とは大きく異なるものである。また、リング圧延用素材の形状の検討が不十分であり、特許文献3で示される形状のリング圧延用素材をそのまま1つの成形品として製造しようとすると、局所的な異常発熱が生じるおそれがある。
 このような技術課題を踏まえた上で、本発明の目的は、リング圧延時の過度な温度上昇を抑制可能とするとともに、リング圧延用素材の全面に均一且つ最適な歪みを導入可能とするリング圧延用素材、特に、ガスタービンなどの高温部で使用される回転部品の素材として用いられるリング圧延用素材の製造方法を提供することにある。
 本発明は上記の課題に鑑みてなされたものである。
 すなわち本発明は、
 (1)円板状の熱間鍛造用素材を熱間加工温度に加熱する工程、
 (2)円錐台状の凸部を有する下型上に前記熱間鍛造用素材を配置する工程、
 (3)円錐台状の凸部を有する上型を用いて前記熱間鍛造用素材の中央部を押圧して薄肉部とする工程、
 (4)前記薄肉部を除去してリング圧延素材とする工程、
とを含み、
 前記リング圧延素材の片側断面形状が、その高さ方向を二分する中心線からの高さを前記内周面に向かって減少する高さ減少部を有する形状に形成されているリング圧延用素材の製造方法である。
 好ましい前記リング圧延用素材は、前記リング圧延用素材の片側断面の重心は、前記リング圧延用素材の肉厚方向の中心よりも主ロールに接触する外周面側にあり、
 前記リング圧延用素材の片側断面形状は、その高さ方向を二分する中心線からの高さがマンドレルロールに接触する内周面に向かって減少する高さ減少部を有し、且つ、前記中心線を対称軸とする略線対称であり、
 前記リング圧延用素材の前記内周面の高さが、前記リング圧延用素材の最大高さの20~50%である。
 本発明によれば、次のような効果が得られるリング圧延用素材を容易に製造することができる。本発明によって得られるリング圧延用素材は、リング圧延を行う結果、高さ減少部によってリング圧延用素材が変形する際の自由空間が確保される。そのため、リング圧延を実施した際の発熱が少なくなり、異常発熱による結晶粒の成長が抑えられて、高品質のリングを得ることができる。しかも、圧延終了時に内径側の欠肉を抑制することができるので、品質のみならず形状精度の良好なリングを得ることができる。
 その結果、リング圧延中の結晶粒度の制御を必要とするような高温環境下で使用されるリングを製造する際にもまた、適正温度範囲内で圧延が完了できる。そのため、粒成長によって非微細な金属組織となることが抑制されて、リング全体で微細な粒を有した高品質なリングの成形体を得ることができる。
 さらに、従来のリングの製造においては、リング圧延を実施する際の異常発熱を回避するために、発熱が生ずる前段階までリング圧延した後にリング圧延を中断し、再度加熱して、続きの圧延を行う複数ヒートの圧延が実施されてきた。しかしながら、圧延中断の条件などプロセスの設計因子が増大し、プロセス決定のための工数が増大するばかりか、複数ヒートしたときの組織制御の管理工数が増大することとなった。
 これに対して、本発明の一態様に係るリング圧延用素材を用いた場合には、リング圧延中の発熱を適切な温度とすることができ、従来の形状を用いたリング圧延と比較してヒート回数が低減できるので、製造時間を短縮することができる。
本発明の製造方法に係るリング圧延用素材の成形過程を説明するために模式的に示す断面図である。 本発明の製造方法により得られるリング圧延用素材の一例を模式的に示す片側断面図である。 本発明の製造方法により得られるリング圧延用素材の一例を模式的に示す片側断面図である。 本発明の製造方法により得られるリング圧延用素材の一例を模式的に示す片側断面図である。 本発明の製造方法により得られるリング圧延用素材の一例を模式的に示す片側断面図である。 リング圧延用素材を製造するときに用いる上下型の一例を模式的に示す断面図である。 リング圧延用素材を製造するときに用いる上下型の一例を模式的に示す断面図である。 リング圧延用素材を製造するときに用いる上下型の一例を模式的に示す断面図である。 リング圧延用素材を製造するときに用いる上下型の一例を模式的に示す断面図である。 リング圧延用素材の圧延工程を説明するために模式的に示す斜視図である。 本発明の製造方法により得られるリング圧延用素材を用いて得られたリング圧延用素材と比較例のリング圧延用素材を用いてリング圧延を行った時の数値解析によって得られた温度分布を示す図である。 本発明の製造方法により得られるリング圧延用素材を用いて得られたリング圧延用素材と比較例のリング圧延用素材を用いてリング圧延を行った時の数値解析によって得られた歪み分布を示す図である。 本発明の製造方法により得られるリング圧延用素材の上部、内径部、中心部、外径部、および下部の金属組織を拡大写真によって示す図である。
 以下、本発明の実施形態について図面を用いて説明する。
 以下、本発明を図面を用いて説明する。
 (リング圧延用素材の成形)
 本発明の実施形態の一例として、Φ1000mm以上のガスタービン用ディクスに用いるリング圧延用素材について説明する。リング圧延用素材として高温強度に優れたNi基超耐熱合金を採用する。以下、Ni基超合耐熱金素材の成分の一例として、質量%でNi:50~55%,Cr:15~22%,Nb:4.5~6.5%,Mo:2.5~3.5%,Ti:0.6~1.2%,Al:0.2~0.8%を含有し、残部はFeと不可避的不純物でなる成分組成を有する718合金相当のNi基超耐熱合金を素材として用いる例について説明する。
 図1(a)に示すように、所定の高さを有する円板状のNi基超耐熱合金1を、熱間加工温度に加熱する。なお、熱間加工温度は、リング圧延素材の材質によりその温度を選定すると良い。例えば、材質がNi基超耐熱合金であれば900~950℃の範囲が好適である。なお、例えば、高強度ステンレス鋼であれば850~900℃の範囲が好ましい。
 次に、前記円錐台状の凸部を有する下型上に前記Ni基超合耐熱金素材を配置する。配置は下型上に載置するのが最も容易である。そして、図1(b)に示すように、中央部に円錐台形状の凸部を有する上下型(上側および下側の金型)2,3を用いて、図1(b)に示すように、Ni基超耐熱合金1の中央を押圧することによって、円錐台状の凹部の空間を有する薄肉部4(図1(b)にて斜線部により示す)を形成し、その後、中央の薄肉部4を切除して、これによって、リング圧延用素材を成形する。なお、薄肉部4の切除後に機械加工を行って、所望の形状としても良い。前記の薄肉部の切除の方法は機械加工、ウォーターカッター等の公知の方法で行うことができる。
 なお、本発明においては、熱間加工後の熱間加工材をそのままリング圧延用素材として使用可能なため、Ni基超合耐熱金素材の凹部を精度よく中央に形成することが重要である。そのための方法としては、例えば、Ni基超合耐熱金素材とNi基超合耐熱金素材を載置する下型とに、嵌め合いが可能な凸形状と凹形状とをそれぞれ形成して、その凸形状と凹形状とを嵌め合わせることによる位置決め(センタリング)を行っても良い。また、別な方法としては、マニピュレータの位置決め機構によって、Ni基超合耐熱金素材を下型中央に載置しても良い。
 なお、本発明で適用する熱間加工機としては、熱間鍛造装置である。なお、熱間鍛造には熱間プレスも含み、恒温鍛造も含まれる。
 (リング圧延用素材の形状)
 図2に、上述のリング圧延用素材の成形工程を経て得られたリング圧延用素材11の片側断面の一例を示す。ここで、図2においては、リング圧延用素材11の中心軸CAに沿う方向を「高さ方向」と定義し、且つ中心軸CAに直交する方向を「肉厚方向」と定義する。なお、後述する図3~5においても、「高さ方向」および「肉厚方向」は、図2と同様の方向を意味するものとする。
 図2は、中心軸CAに対して軸対称の形状(形状1)に成形されたリング圧延用素材11を模式的に示す片側断面図である。本発明の実施形態において、「片側断面図」は、リング圧延用素材11を、中心軸CAに対して肉厚方向一方側の部分、すなわち、図面上の左側の部分を省略して描いた図面を意味するものとする。
 このようなリング圧延用素材11は、径方向外周面12および内周面13を備えている。また、リング圧延用素材11は、外周面12を含む外周部14を備えている。外周面12は、片側断面の輪郭を形成する外周部14周縁の一部になっている。また、外周部14は、外周面12の高さ方向の両端部分12aを直線状に結ぶ境界線(図示せず)に対してリング圧延用素材11の外周寄りに位置している。
 図で示すリング圧延用素材11の片側断面形状は、肉厚方向の中央部付近に直線部15を有し、直線部15は、直線状に延びる高さ方向の端面16を含んでいる。直線部15の長さ、好ましくは、直線部15の端面16の長さは、リング圧延用素材11の最大高さH1に対して2/3倍程度となっている。このような直線部15に接続する高さ減少部17が設けられており、高さ減少部17は、片側断面を高さ方向に二分する中心線CLからの高さがマンドレルロールに接触する内周面13に向かって徐々に減少するように、テーパー形状に成形されている。
 そして、内径端(内周面13)側の高さHinが、リング圧延用素材11の最大高さH1に対して1/3倍(33%)以上且つ1/2倍(50%)以下となっている。また、高さ減少部17の肉厚方向の長さ、好ましくは、リング圧延用素材11の高さの最大点から内周に向かう高さ減少部17の傾斜面18を高さ方向にて中心線CLに投影したものの長さは、リング圧延用素材11の最大高さH1に対して0.2倍以上且つ1.5倍以下の範囲に設定され、また、高さ減少部17は、主ロール側に成形された外周面12の高さ方向の両端部分12aから一定長さの直線形状部分を含みながら内周面13の高さ方向の両端部分13aに向かって先細る形状に成形されている。さらに、片側断面の形状は、中心線CLを対称軸とする略線対称に成形されている。なお、リング圧延用素材11の片側断面の重心(または図心)Gは、リング圧延用素材11の肉厚方向の中心CPよりも主ロール側、すなわち、外周面12側に位置しており、図面においては、肉厚方向の中心CPがバツ印によって示され、重心Gの位置が黒丸印によって示されている。
 なお、図2に示すリング圧延用素材を製造するには、例えば、図6に示すような上型2と下型3を用いるのがよい。このとき、図6で示す中央部に成形される円錐台状の凸部の角度(θ)は20~70°とするのが好ましい。これは、角度が20°未満であると、製造されたリング圧延用素材の肉厚が厚くなり過ぎて、リング圧延の時間が長くなる。一方、角度が70°を超えると、熱間鍛造時にNi基超合耐熱金素材と円錐台状の凸部の間に十分に肉が流れず、所望の形状が得られない場合がるためである。好ましい角度(θ)の下限は25°である。好ましい角度(θ)の上限は45°であり、さらに好ましくは30°である。
 図3~5に、リング圧延用素材11の第1変形例~第3変形例をそれぞれ示す。
 先ず、図3に示す第1変形例のリング圧延用素材11(形状2)の片側断面図においては、上述の図2のような径方向外周面12の高さ方向の上側部分12bおよび下側部分12cにテーパー部分が設けられ、上下のテーパー部分を結ぶ中間部分12dが直線的な形状となっている。この図3の形状によれば、片側断面において、外周面12の上側部分12bおよび下側部分12cにテーパー部分が設けられ、且つ上下のテーパー部分を結ぶ中間部分12dが直線状に成形されているので、リング圧延開始時に主ロールとリング圧延用素材11との接触面積が増えて、その結果、安定したリング圧延が可能となる。
 この形状を得るためには、例えば、上述の図1で示す形状を得た後、機械加工によって形状を整える方法、例えば、上述のリング圧延用素材の成形時に、図3の形状に対応した上下型2,3を有する金型を用いる方法がある。機械加工を行う方法では、形状の精度を高めることができる一方で歩留まりが低下する。そのため、熱間鍛造(熱間プレスを含む)時の金型形状によって図3の形状を成形することが有利である。
 また、熱間鍛造時の金型形状に図3のリング圧延用素材11の形状を適用すると、リング圧延用素材11の中心軸CAから主ロールの外周面までの距離と、リング圧延用素材11の中心軸CAから外周面12までの距離とを、金型形状の調整によって容易に同じにすることができる。その結果、より一層安定したリング圧延が可能となる。
 なお、この図3の形状を熱間鍛造によって成形する場合、図2の形状を適用した場合よりも、プレス荷重が大きくなる。そのため、図3の形状を適用するか、または図2の形状を適用するかは、用いる鍛造装置の最大荷重、鍛造時の最大荷重などを考慮して決定すると良い。
 また、図3に示すリング圧延用素材を製造するには、例えば、図7に示すような上型2と下型3を用いるのがよい。このときの中央部に形成される円錐台状の凸部の角度(θ)は前述と同じ25~35°の角度とすることが好ましい。
 次に、図4で示す第2変形例の片側断面図のリング圧延用素材11(形状3)は、主ロール側に成形された外周面12の高さ方向の両端部分12aから内周面13の高さ方向の両端部分13aに向かって直線的に先細る形状を有している。この形状を得るためには、例えば、上述の図1で示す形状を得た後、機械加工によって形状を整える方法、例えば、上述のリング圧延用素材の成形時に、図4の形状を得るように形成された上下型2,3を有する金型を用いる方法がある。機械加工を行う方法では、形状の精度を高めることができる一方で歩留まりが低下する。そのため、金型の形状によって図4の形状を成形することが有利である。なお、図4では主ロールと接触する外周面12が曲面形状に成形されているが、主ロールと最初に接触する曲面形状の部分を平坦に加工しておけば、リング圧延開始時に主ロールとリング圧延用素材11との接触面積が増えて、その結果、安定したリング圧延が可能となる。勿論、外周面12側の曲面形状の全部を平坦に加工しても差し支えない。
 なお、図4に示すリング圧延用素材を製造するには、例えば、図8に示すような上型2と下型3を用いるのがよい。このときの中央部に形成される円錐台状の凸部の角度(θ)は前述と同じ15~25°の角度とすることが好ましい。
 図5で示す第3変形例の片側断面図のリング圧延用素材11(形状4)においては、マンドレルロールに接触する内周面13が直線状に成形され、その他の部分は曲面形状に成形されている。この形状を得るためには、例えば、上述のリング圧延用素材の成形時に、上下型2,3を図4の形状に成形する方法、または上型2および下型3に形成された円錐台形状の凸部の高さを高くする方法によって成形することができる。
 なお、図5に示すリング圧延用素材を製造するには、例えば、図9に示すような上型2と下型3を用いるのがよい。このときの中央部に形成される円錐台状の凸部の角度(θ)は前述と同じ35~45°の角度とすることが好ましい。なお、図5に示すリング圧延用素材の場合、円錐台状の凸部の角度は曲面形状とする高さ減少部の形状に対応するように徐々に角度を変化させるとよい。
 例示した図2~5の形状のうち、より安定してリング圧延することができるのは、図2及び3にて示す形状である。
 次に、本発明の実施形態に係るリング圧延用素材11の形状の好ましい形態について説明する。
 上述のように、リング圧延用素材11は、高さ減少部17によって内周面13側に向かって先細る形状を有するので、リング圧延用素材11の重心Gは、リング圧延用素材11の肉厚方向の中心CPよりも主ロール側、すなわち、外周面12側に位置している。この形状によって、内周面13が接するマンドレルロールとリング圧延用素材11の接触面積を小さくできる。これによって、リング圧延時の荷重を低減しつつリング圧延を行うことができる。そのため、特に、マンドレルロールと接触するリング圧延用素材11の局所的な発熱を抑制することが可能である。
 また、リング圧延用素材11の内周面13の高さHinが、リング圧延用素材11の最大高さH1に対して20%以上且つ50%以下とすることによって、リング圧延時にリング圧延用素材11の高さ減少部17内で順次変形が生じて行くと共に、比較的低い押圧力でリング圧延を行うことができる。内周面13の高さHinが、リング圧延用素材11の最大高さH1に対して20%未満となると、マンドレルロールと内周面13との接触面積が減少するので、リング圧延中にリング圧延素材11が上下の何れかの方向に倒れ易くなって、その結果、リング圧延が不安定になり易い。その一方で、内周面13の高さHinが、リング圧延用素材11の最大高さH1に対して50%を超えると、異常発熱のおそれがある。すなわち、本発明の実施形態で規定する断面形状、重心Gの位置、並びに内周面13の高さHinおよびリング圧延用素材11の最大高さH1の関係を適切にすることによって、リング圧延用素材11の局所的な発熱を抑制できると共に、熱間加工性を向上させることができる。
 なお、上述の効果をより確実に得ることができる好ましい内周面13の高さHinの下限は、リング圧延用素材11の最大厚さH1に対して25%であり、さらに好ましくは33%である。その一方で、好ましい内周面13の高さHinの上限は、リング圧延用素材11の最大厚さH1に対して45%であり、さらに好ましくは40%である。また、「内周面13の高さ」は、高さ減少部17の傾斜面18の曲率に対して大きな差の曲率を有する内周面13の高さ方向両端部分13aの間隔を言う。例えば、図2~5の片側断面図の場合、「内周面13の高さ」は、マンドレルロールに接触する直線的な部分の長さを言う。なお、例えば、内周面13に僅かな曲面や凹凸が存在するために、内周面13の高さHinの測定が不明確となる場合では、最初にマンドレルロールと接触する箇所から外周側に20mm以内の範囲に位置する箇所であって、高さ減少部17の曲率に対して大きな差の曲率を有する箇所を測定すると良い。
 また、図2~5に示すように、リング圧延用素材11は、中心線CLを対称軸として略線対称に成形されている。中心線CLを対称軸とする略線対称の形状によって、リング圧延時に安定したリング圧延が可能となる。なお、「略線対称」については、上述のようにリング圧延用素材の成形を熱間鍛造によって行うために、例えば、外周面12が拘束されない金型を用いると、完全な線対称が得られない場合がある。そのため、本発明で述べる「略線対称」は、上述のリング圧延用素材の成形時に発生する形状の誤差、ズレなどを許容したものとして定義される。
 さらに、本発明の実施形態では、図2~5に示すように、高さ減少部17が存在する。高さ減少部17は、リング圧延機による成形時に、リング圧延用素材11が変形する際の自由空間となり、特に、マンドレルロール側のリング圧延用素材11の過度な発熱を防止することができる。この高さ減少部17は、上述したように、本発明の実施形態では中央部に円錐台状の凸部を有する上下型2,3を用いて中央を押圧することによって高さ減少部17を成形することができる。この場合、円錐台状の凸部の角度を浅くするに連れて高さ減少部17の肉厚方向の長さは長くなる。しかしながら、過度に高さ減少部17の肉厚方向の長さが長くなると、リング圧延時に高さ減少部17の加工時間が長くなるおそれがある。その一方で、円錐台状の凸部の角度を深くするに連れて高さ減少部17の肉厚方向の長さは短くなる。しかしながら、過度に長さを短くしようとすると、押圧後のすり鉢状の除去部分が増えて歩留まりを悪くする。加えて、凸部の押圧面面積が増えると、大きな押圧力が必要になり、大きな荷重を付加できる特別な鍛造装置が必要になる。また、リング圧延時にリング圧延用素材11の温度が局所的に高くなるおそれもある。
 そのため、本発明の実施形態では、高さ減少部17の肉厚方向の長さ、好ましくは、高さ減少部17の傾斜面18を高さ方向にて中心線CLに投影したものの長さは、リング圧延用素材11の最大高さH1に対して0.2倍以上且つ1.5倍以下である。このような関係において、好ましい高さ減少部17における肉厚方向の長さの下限は0.5倍であり、さらに好ましくは0.6倍である。その一方で、好ましい高さ減少部17における肉厚方向の長さの上限は1.1倍であり、さらに好ましくは1.0倍である。
 また、本発明の実施形態に係るリング圧延用素材11の主ロールに接触する外周部14は、外周に向かって先細る形状に成形されると好ましい。
 図2~5に示すリング圧延用素材11は、全て先細り形状に成形されている。このような形状を適用した場合、例えば、リング圧延用素材の成形時の熱間鍛造によって外周面12を拘束しない金型を用いた場合であっても、そのままリング圧延に使用できるので、経済的である。なお、上述のように、リング圧延時に主ロールと接する外周面12に平坦部を設けると、リング圧延が安定する。そのため、リング圧延用素材11の主ロールに接触する外周部14の一部に平坦部を設けることが好ましい。この場合、最大高さH1の1/6倍以上且つ1/3倍以下程度の長さを有する平坦部(図で見ると外周面12の直線形状部分)を付与することが好ましい。
 また、本発明の実施形態では、外周部14と高さ減少部17との間に、略直線状に延びる高さ方向の両端面16を有する直線部15を有しても良い。この直線部15は、リング圧延時にアキシャルロールを用いた場合、そのアキシャルロールによって押さえるための平坦部が存在した方が、リング圧延が安定し、所望の形状が得られ易い。そのための好ましい直線部15の肉厚方向の長さ、好ましくは、直線部15の端面16の長さは、リング圧延用素材11の最大高さH1に対して0倍よりも大きく且つ2/3倍以下である。さらに、特に規定するものではないが、リング圧延用素材11の厚み(肉厚)は、リング圧延用素材11の最大高さH1に対して0.5倍以上とするのが良い。これは、本発明の実施形態に係るリング圧延用素材11がリング圧延後にさらに熱間鍛造(熱間および恒温下での鍛造およびプレスを含む)によって最終製品形状に加工されるので、過度に厚みが薄いと後の熱間鍛造で座屈するおそれがあるということを考慮して定められている。
 また、図2にてθinによって示されるリング圧延用素材11の角度は20°以上とするのが好ましい。角度θinが20°未満になると高さ減少部17が長くなって、リング圧延時間が長時間となり易い。また、熱間鍛造や熱間プレス等の熱間加工後に切除する薄肉部4の重量が増えて、その結果、歩留まりも悪くするおそれがある。その一方で、角度θinが70°を超えると、リング圧延時に内周面13の局部的な発熱を起こし易くなる。また、熱間加工時に上下型2,3内にNi基超耐熱合金1が満肉せずに所望の形状が得にくくなる。これらの問題をより確実に防止できる好ましい角度θinの下限は25°である。好ましい角度θinの上限は45°であり、さらに好ましくは30°である。
 (耐熱合金リングを成形する際のリング圧延工程)
 上述したリング圧延用素材11に対して、リング圧延機を用いてリング圧延が行われる。その際使用するリング圧延機としては、例えば、図10に示すような構成のものを用いることができる。なお、リング圧延機にガイドロール(抱きロール)、定寸ロールが設けられていても良い。
 図10に示すリング圧延機においては、所定の回転速度で回転可能な主ロール21と軸周りに従動回転できるマンドレルロール22とが、リング圧延用素材11の径方向外周面12と内周面13とに対向配置され、また、このリング圧延機は、リング圧延用素材11の高さ方向の上面および下面に対向配置された2つのアキシャルロール23A、23Bを備えている。圧延中のリング圧延用素材11の芯ズレを低減するために、主ロール21の両脇に従動回転できるガイドロールを配置し、且つリング圧延用素材11の外周部14を支持しながら圧延すると、より安定した圧延が可能となる。
 主ロール21は円柱形状に形成されており、このような主ロール21は、圧延中、リング圧延用素材11の外周面12に接触させた状態で駆動することによって、リング圧延用素材11を回転させるものとなっている。マンドレルロール22には円筒形状のロールが用いられており、さらに、マンドレルロール22は、軸周りに自由に回転できる構造であり、且つ主ロール21の回転軸と略平行に配置されている。
 圧延は、マンドレルロール22の外周面をリング圧延用素材11の内周面13に接触させた状態で行われ、このような圧延中に、主ロール21とマンドレルロール22との間におけるロール間距離を徐々に狭めることによって、リング圧延用素材11の径方向内周面13および外周面12間の部分が肉厚方向に圧下される。上下アキシャルロール23A,23Bは、20~45°の頂角を有する円錐形状または円錐台形状に形成されており、さらに、上下アキシャルロール23A,23Bは、リング圧延用素材11の高さ方向の寸法を調整するため、それぞれリング圧延用素材11の略中心に先端を向けるように配置されている。なお、圧延中において、上下アキシャルロール23A,23Bは、リング圧延用素材11の回転数に合わせて駆動回転するものになっているが、従動回転するものになっていてもよい。
 圧延手順としては、所定の温度に加熱したリング圧延用素材11の内径穴にマンドレルロール22を通しておき、主ロール21とマンドレルロール22との間隔が徐々に狭まるように、マンドレルロール22を径方向外方に徐々に移動させて、両者の距離がリング圧延用素材11の初期状態の肉厚と一致した状態になると、主ロール21の表面とリング圧延用素材11の外周面12との摩擦によってリング圧延用素材11に回転が付与されることとなる。このとき、マンドレルロール22は、リング圧延用素材11の回転に追従するように従動回転する。
 その後、マンドレルロール22を径方向外方(外周側)に徐々に移動させることによって、主ロール21とマンドレルロール22との間隔が徐々に狭まって、リング圧延用素材11が肉厚方向に圧下され、リング圧延用素材11の周方向に沿って連続的に塑性変形が与えられることになる。この時に用いるリング圧延用素材11は、上述の本発明で規定する形状を有するものである。
 (効果)
 このような断面形状を有するリング圧延用素材11を、上述のリングローリングミルを用いて圧延した場合の効果について、以下に説明する。ここでは、内径側にてテーパー形状に形成された部分の変形時における作用を確認するために、計算機上で数値シミュレーションを実施した解析例を用いて効果を説明する。ただし、解析例においては、数値計算を簡略化するため、成形に直接影響を与えないガイドロールをモデル化の対象外としている。
 図2で示す片側断面の形状を有するリング圧延用素材11の外径を1.2倍に拡径する圧延条件について、3次元剛塑性有限要素解析法を用いた数値リング圧延解析を実施した。なお、リング圧延用素材11の外径をφ600mmとし、最大厚さを100mmとし、内径側厚さを40mmとした。リング圧延素材11の周方向断面形状の対称面CL(片側断面視の中心線CLに相当)を基準とする対称性を考慮し、対称面CL上に位置する節点の面外方向への変位を拘束し、対称面CLよりも上側の部分のみを解析対象とした。また、マンドレルロール22および上アキシャルロール23Aに関しては、各々の軸周りに回転可能な条件に設定した。主ロール21は、φ800mmの直径を有しており、且つ20RPMの一定速度で回転するものとなっている。なお、初期加熱温度は980℃とした。素材を718相当合金とする熱間流動応力データとして、試験温度を700~1100℃とする圧縮試験によって求めたものを用いた。
 図11(a)~(c)には、数値解析から得られた圧延途中段階における断面形状の変化の様子と、温度の分布状況とが示されている。また、図11(d)~(f)には、比較のため、従来の矩形断面のリング圧延用素材を用いて同じ条件で圧延した場合における断面形状の変化の様子と、温度の分布状況とが示されている。図11中で「CL」として示された一点鎖線は中心線であり、図面は全て中心線CLにて分割した片側断面の上側半分のシミュレーション結果である。なお、図11(a)~(c)および図11(d)~(f)は、リング圧延用素材11を加熱した状態で、マンドレルロール22および主ロール21が初期位置となって、リング圧延用素材11の外周面12および内周面13に接した時点(図7(a)および(d))と、リング圧延用素材11の外径が3%増加した時点(図11(b)および(e))と、さらに20%増加した時点(図11(c)および(f))とをそれぞれ示している。
 主ロール21およびマンドレルロール22の回転軸を含むようにこれらの回転軸に沿って配置される仮想平面上にて主ロール21とマンドレルロール22との間を通過するリング圧延用素材11に着目すると、肉厚方向への圧下によって、肉厚方向の寸法が時間とともに減少する。しかしながら、リング圧延用素材11自体の体積は塑性変形中においても一定であるので、周方向への材料流動が生ずることとなる。ただし、マンドレルロール22と主ロール21との間の領域は、各々の軸方向の拘束がないので、高さ方向への流動成分もまた生ずることとなる。ここで、本発明の実施形態に係るリング圧延用素材11の圧延においては、リング圧延用素材11に(テーパー形状の)高さ減少部17が設けられているので、内側の流動については、初期にて、自由空間となるテーパー形状の先端の領域が選択的に変形することとなる。このとき、上下アキシャルロール23A,23Bは最大厚さ部に位置しているので、内周面13側の領域においては、高さ方向にて自由な状態で変形が進むこととなる。
 図11(a)~(c)の温度分布に着目すると、1000℃以下に保った状態で圧延が行われている。その一方で、図11(d)~(f)には、従来一般的に用いられてきた矩形断面の素材を圧延した場合の温度分布の結果が示されており、このような従来形状の場合、外径が20%広がった時点で、内径角部で加工発熱による温度上昇が見られ、1130℃程度まで上昇している。しかしながら、本発明の実施形態に係るリング圧延用素材11を圧延した場合、圧延開始から終了に到るまでの温度は最大で1000℃であり、適正温度範囲内で圧延が行われていることが確認できる。
 さらに、図12(a)および(b)は、本発明の実施形態に係るリング圧延用素材11および従来の矩形断面のリング圧延用素材について、数値解析から得られたリング圧延工程終了時における歪みの分布図を示している。なお、図12(a)および(b)で示す図面もまた全て中心線CLにて分割した片側断面の上側半分のシミュレーション結果である。
 この結果からわかるように、従来の場合、内径角部に変形が集中したことで変形発熱が生じ、それによる材料の軟化した結果、歪みが局部的に4以上と高い値となっている。その一方で、本発明の実施形態の場合、内径角部の歪みに着目すると2.5程度であり、従来の場合と比較して局部変形が抑えられているので、断面内でより均一な変形が成されたことがわかる。Ni基超耐熱合金は、高温の状態で加工歪みを与えられることによって、初期に粗粒が微細な粒に再結晶し、その結果、微細組織が得られることとなる。なお、歪みは、一般的には、((変形後の長さ)-(変形前の長さ))/(変形前の長さ)として定義される。そのため、従来問題となっていた、内径角部のように、温度が過度に高いことによって粒の粗大化が生じ、局部変形によって歪みの分布が不均一となり、その結果、組織が不均一となるという問題を解消することができる。
 従って、同じ狙い形状のリングを圧延する場合でも、リング圧延用素材を本発明の実施形態に係る形状とすることによって、圧延中の発熱が抑えられ、Ni基超耐熱合金の結晶粒成長を抑制した状態で微細化のための再結晶が進み、品質の優れたリングが圧延可能となる。以上のように、本発明の実施形態に係るリング圧延用素材11の形状は、(テーパー形状の)高さ減少部17とリング圧延用素材11の最大高さ部分との間に空間が形成されて、圧下の過程で徐々にこの領域に材料が流動するように塑性変形が進むので、局部に変形が集中することがなく、リング全体の変形を均一化できる。その結果、異常な発熱が抑えられ、アキシャルロールへの熱負荷が小さくでき、アキシャルロールの寿命もまた向上することとなる。
 その一方で、従来の圧延素材形状を用いた場合、圧延が完了する前に角部が充満すると、角部近傍の素材は、マンドレルロール22および主ロール21間で肉厚方向に圧縮されるので、行き場を失った材料が高さ方向に流れる一方で、角部近傍の素材は、上下アキシャルロール23A,23B間では反対に高さ方向に圧縮されるので、行き場を失った材料が肉厚方向に流れる。そのため、これらの変形が1回転毎に繰り返して起こるので、変形発熱が生じることとなる。特に、Ni基超耐熱合金の熱伝導率は低いので、一度発熱が生じると温度低下までに時間を要し、その結果、リング圧延における局所変形の繰り返しによって温度が上昇する。すると、素材は、結晶粒を粗大化させる温度領域である1050℃に達して、圧延終了後においては、優れない強度特性を有する部位を含むこととなる。
 これを避ける手段として、水冷、予肉の付与、圧延速度の低下など挙げられる。しかしながら、水冷の場合、圧延工程に合わせた温度の管理がきわめて困難である。また、予肉を付与した場合、その削り代を設けると材料歩留まりが低下し、且つ所要圧延能力も増大する。さらに、角部の発熱を抑制するために圧延速度を低下させると、圧延終了時間が長くなるので、他の部位の温度低下が生ずることとなる。
 本発明の実施形態に係るリング圧延用素材11は、従来と同等の前工程を用い、円柱上のビレットを熱間で据え込み鍛造し、ポンチング金型によって中心部を穿孔した後、必要に応じて機械加工によって本発明の実施形態の形状に切削加工するので、簡単に、上述したリング圧延用素材形状を得ることができる。なお、各辺の接続部にフィレット部(湾曲部)を設けた場合、アキシャルロールとの局部接触を避けることができ、アキシャルロールの磨耗を抑制できるので、さらに好適である。
 上述したΦ1000mm以上のガスタービン用ディクスに用いる718相当合金について、図1に示すリング圧延用素材の成形方法を適用し、図2に示すリング圧延用素材を成形した。718相当合金の熱間鍛造温度は920℃とした。用いた金型の形状は図6に示すような上下型で、円錐台状の凸部の角度(θ)は32°である。
 リング圧延用素材11の寸法は表1に示すような値となっている。具体的には、主ロールに接触するリング圧延用素材11の外周部14は、外周に向かって先細る曲面形状に成形されている。また、リング圧延用素材11の片側断面の形状は、その片側断面を高さ方向に二分する中心線CLからの高さをマンドレルロールに接触する内周面13に向かって減少させた高さ減少部17を有し、且つ中心線CLを対称軸とした略線対称に成形されている。また、リング圧延用素材11の片側断面の重心Gは、リング圧延用素材11の肉厚方向の中心CPよりも主ロール側、すなわち、外周面12側に位置している。
Figure JPOXMLDOC01-appb-T000001
 このリング圧延用素材11に対して、図10に示すリング圧延機を用いてリング圧延を行った。なお、用いたリング圧延機には、ガイドロール、定寸ロールが設けられている。リング圧延用素材11を990℃に加熱して、リング圧延を行った。リング圧延中は、上述のシミュレーション結果と同様に、内周面13側の領域では、高さ方向には自由の状態で変形が進み、過度な異常発熱は見られなかった。そのため、ヒート回数を2回として、製造時間の短縮を図ることができた。また、外周部14と高さ減少部17との間に略直線状に延びる高さ方向の端面16を有する直線部(平坦部)15を設けたので、アキシャルロールで押さえた際に、安定したリング圧延が行えた。このリング圧延によって、1141mmの外径と、933mmの内径と、104mmの肉厚と、189mmの高さとを有する矩形状のリング圧延用素材11を得ることができた。
 リング圧延用素材11を目視で外観観察したところ、リング圧延用素材11に割れや剥離などの欠陥も見られず、リング圧延用素材11が略真円形状となっていることが確認された。
 このリング圧延用素材11から、金属組織観察用の試験片を採取した。採取部分は、リング圧延用素材(リングミル圧延材)11の上部、内径部、中心部、外径部、および下部とした。リング圧延用素材11の金属組織を光学顕微鏡によって観察し、結晶粒度番号を測定した。結晶粒度測定はASTM-E112で規定される測定方法に従って行った。結晶粒度の測定結果を表2に示し、金属組織の写真を図13に示す。
Figure JPOXMLDOC01-appb-T000002
 断面の金属組織の観察結果及び平均結晶粒度の測定結果によれば、本発明の実施形態に係るリング圧延用素材11を用いて製造したリング圧延材では、結晶粒が均一微細なものとなっていることがわかる。よって、リング圧延用素材11の全面に均一且つ最適な歪みがもたらされ、このようなリング圧延用素材11は、ガスタービンなどの高温部で使用する回転部品の素材として用いることに好適であることが確認された。
1   リング圧延用Ni基超耐熱合金
2   上型(上側の金型)
3   下型(下側の金型)
4   薄肉部
11  リング圧延用素材
12  外周面
12a 端部分
12b 上側部分
12c 下側部分
12d 中間部分
13  内周面
13a 端部分
14  外周部
15  直線部
16  端面
17  高さ減少部
18  傾斜面
21  主ロール
22  マンドレルロール
23A 上アキシャルロール
23B 下アキシャルロール
CA  中心軸
CP  中心
CL  中心線
Hin 内周面の高さ
H1  リング圧延用素材の最大高さ
θin 角度

 

Claims (2)

  1.  (1)円板状の熱間鍛造用素材を熱間加工温度に加熱する工程、
     (2)円錐台状の凸部を有する下型上に前記熱間鍛造用素材を配置する工程、
     (3)円錐台状の凸部を有する上型を用いて前記熱間鍛造用素材の中央部を押圧して薄肉部とする工程、
     (4)前記薄肉部を除去してリング圧延素材とする工程、
    とを含み、
     前記リング圧延素材の片側断面形状が、その高さ方向を二分する中心線からの高さを前記内周面に向かって減少する高さ減少部を有する形状に形成されていることを特徴とするリング圧延用素材の製造方法。
  2.  前記リング圧延用素材の片側断面の重心は、該片側断面の肉厚方向の中心よりも前記外周面寄りに位置し、
     前記片側断面の形状は、該片側断面をその高さ方向に二分する中心線からの高さを前記内周面に向かって減少させた高さ減少部を含み、且つ前記中心線を対称軸とした略線対称となるように形成され、
     前記内周面の高さが、リング圧延用素材の最大高さに対して20%以上且つ50%以下になっていることを特徴とする請求項1記載のリング圧延用素材の製造方法。

     
PCT/JP2014/057250 2013-03-21 2014-03-18 リング圧延用素材の製造方法 WO2014148463A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14769789.0A EP2977123B8 (en) 2013-03-21 2014-03-18 Manufacturing method for material for ring rolling
JP2015506789A JP6350919B2 (ja) 2013-03-21 2014-03-18 リング圧延用素材の製造方法
CN201480017278.8A CN105050749B (zh) 2013-03-21 2014-03-18 环轧用材料的制造方法
US14/778,021 US9719369B2 (en) 2013-03-21 2014-03-18 Manufacturing method for material for ring rolling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013057502 2013-03-21
JP2013-057502 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148463A1 true WO2014148463A1 (ja) 2014-09-25

Family

ID=51580142

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/057250 WO2014148463A1 (ja) 2013-03-21 2014-03-18 リング圧延用素材の製造方法
PCT/JP2014/057262 WO2014148464A1 (ja) 2013-03-21 2014-03-18 リング圧延用素材

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057262 WO2014148464A1 (ja) 2013-03-21 2014-03-18 リング圧延用素材

Country Status (5)

Country Link
US (2) US10094238B2 (ja)
EP (2) EP2977123B8 (ja)
JP (2) JP6350920B2 (ja)
CN (2) CN105073295A (ja)
WO (2) WO2014148463A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037533A (ja) * 2019-09-04 2021-03-11 日本製鉄株式会社 円形材の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219985A1 (en) * 2016-03-14 2017-09-20 Siemens Aktiengesellschaft Wind turbine tower door frame
JP6738548B1 (ja) * 2018-09-19 2020-08-12 日立金属株式会社 Fe−Ni基超耐熱合金のリング圧延材の製造方法
CN109794568B (zh) * 2019-04-01 2020-09-22 西北工业大学深圳研究院 一种确定内外表面异形的环件轧制坯料尺寸的方法
CN113510204A (zh) * 2020-04-09 2021-10-19 陕西长羽航空装备有限公司 一种盾构机刀圈异形环件的模锻制坯及轧环复合成形方法
CN113510205A (zh) * 2020-04-09 2021-10-19 陕西长羽航空装备有限公司 一种高温合金异形截面法兰盘形件的模锻及轧制成形方法
CN113941675A (zh) * 2021-09-29 2022-01-18 武汉理工大学 大型突变截面环件近净轧制成形方法
CN115592065A (zh) * 2022-09-29 2023-01-13 江苏翔能科技发展有限公司(Cn) 一种内外径深度仿形重型钛合金环锻件及其成型方法
CN117415259B (zh) * 2023-11-22 2024-05-28 郑州煤机格林材料科技有限公司 一种盾构机滚刀刀毂锻造工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2058007A (en) * 1932-12-09 1936-10-20 Firm Ringfeder Gmbh Production of preliminarily shaped annular blanks
JPS52131967A (en) * 1976-03-19 1977-11-05 Thyssen Ag Method of fabricating annular work materials such as blind flanges having remarkably formed cross section and rolling machine for practicing the method
JPS5633143A (en) * 1979-08-24 1981-04-03 Nikkei Giken:Kk Manufacture of aluminum alloy rim
JPS61238936A (ja) 1985-04-16 1986-10-24 Hitachi Metals Ltd 微細結晶粒Ni基析出強化型合金
JPS63214564A (ja) * 1987-02-12 1988-09-07 イートン コーポレーション リングギヤ準鍛造品を製造する方法
JPH07138719A (ja) 1993-11-13 1995-05-30 Kobe Steel Ltd Ni基超合金鍛造品の鍛造方法
JP2011056548A (ja) 2009-09-10 2011-03-24 Mitsubishi Materials Corp リング状成形体の製造方法
JP2011079043A (ja) * 2009-10-09 2011-04-21 Mitsubishi Materials Corp 環状成形体の製造方法及び環状成形体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2504969A1 (de) 1975-02-06 1976-08-19 Horst Schenk Verfahren und vorrichtung zum walzen von ringfoermigen werkstuecken
JPS544275A (en) 1977-06-13 1979-01-12 Mitsubishi Heavy Ind Ltd Roll forming apparatus for disk type parts
JPH0714537B2 (ja) * 1987-09-17 1995-02-22 三菱マテリアル株式会社 リングローリングミル
DE4208019A1 (de) * 1991-06-10 1992-12-24 Banning Gmbh J Verfahren und vorrichtung zur herstellung rotationssymmetrischer teile aus metall
GB2273749B (en) * 1992-12-08 1996-08-28 Nsk Ltd A race ring for a rolling bearing and a method of manufacturing it
JP3366534B2 (ja) 1996-09-19 2003-01-14 山陽特殊製鋼株式会社 温間或いは熱間前後方同時押出し高速型鍛造方法及び装置
CN1275720C (zh) * 2003-07-24 2006-09-20 胡补元 一种预制环形锻件的铸钢坯的模具
KR100612758B1 (ko) * 2004-01-27 2006-08-18 한국기계연구원 고정밀 평기어의 제조방법
CN1253258C (zh) 2004-09-21 2006-04-26 武汉理工大学 矩形截面铝合金环件轧制成形的方法
CN100486754C (zh) 2006-12-06 2009-05-13 贵州安大航空锻造有限责任公司 大中型空心盘形锻件的轧制成形方法
BRPI0701197A2 (pt) * 2007-06-14 2009-01-27 Gabriel Abuhab processo de forjamento a quente, a frio ou a morno de peÇas metÁlicas ocas vazadas, e punÇço para ferramenta de conformaÇço mecÂnica
ES2608755T3 (es) * 2008-01-29 2017-04-12 Nsk Ltd. Método de fabricación de miembro metálico con reborde hacia fuera
CN100584482C (zh) * 2008-04-23 2010-01-27 贵州安大航空锻造有限责任公司 钛合金异形环锻件的辗轧成形方法
JP5263580B2 (ja) * 2008-05-08 2013-08-14 三菱マテリアル株式会社 ガスタービン用リング状ディスク
CN202270926U (zh) * 2011-10-14 2012-06-13 上海保捷汽车零部件锻压有限公司 用于汽车从动齿扩孔成形工艺的预锻件
CN202343824U (zh) * 2011-10-28 2012-07-25 江阴市恒润环锻有限公司 一种异形截面法兰的热变形装置
CN102615221B (zh) * 2011-12-13 2014-08-20 天马轴承集团股份有限公司 一种大型双沟槽环件径轴向轧制成形方法
CN102601278B (zh) * 2012-03-20 2014-04-02 武汉理工大学 大型双边台阶环件径轴向轧制成形方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2058007A (en) * 1932-12-09 1936-10-20 Firm Ringfeder Gmbh Production of preliminarily shaped annular blanks
JPS52131967A (en) * 1976-03-19 1977-11-05 Thyssen Ag Method of fabricating annular work materials such as blind flanges having remarkably formed cross section and rolling machine for practicing the method
JPS5633143A (en) * 1979-08-24 1981-04-03 Nikkei Giken:Kk Manufacture of aluminum alloy rim
JPS61238936A (ja) 1985-04-16 1986-10-24 Hitachi Metals Ltd 微細結晶粒Ni基析出強化型合金
JPS63214564A (ja) * 1987-02-12 1988-09-07 イートン コーポレーション リングギヤ準鍛造品を製造する方法
JPH07138719A (ja) 1993-11-13 1995-05-30 Kobe Steel Ltd Ni基超合金鍛造品の鍛造方法
JP2011056548A (ja) 2009-09-10 2011-03-24 Mitsubishi Materials Corp リング状成形体の製造方法
JP2011079043A (ja) * 2009-10-09 2011-04-21 Mitsubishi Materials Corp 環状成形体の製造方法及び環状成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2977123A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037533A (ja) * 2019-09-04 2021-03-11 日本製鉄株式会社 円形材の製造方法
JP7260787B2 (ja) 2019-09-04 2023-04-19 日本製鉄株式会社 円形材の製造方法

Also Published As

Publication number Publication date
US20160281530A1 (en) 2016-09-29
CN105050749A (zh) 2015-11-11
EP2977123B1 (en) 2019-05-22
EP2977123A4 (en) 2016-11-30
US20160271681A1 (en) 2016-09-22
EP2977124A1 (en) 2016-01-27
WO2014148464A1 (ja) 2014-09-25
CN105050749B (zh) 2017-06-09
JP6350920B2 (ja) 2018-07-04
EP2977124B1 (en) 2019-05-08
EP2977123B8 (en) 2019-07-17
US9719369B2 (en) 2017-08-01
EP2977123A1 (en) 2016-01-27
US10094238B2 (en) 2018-10-09
JPWO2014148463A1 (ja) 2017-02-16
CN105073295A (zh) 2015-11-18
EP2977124A4 (en) 2016-11-30
JP6350919B2 (ja) 2018-07-04
JPWO2014148464A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6350919B2 (ja) リング圧延用素材の製造方法
JP5613467B2 (ja) 環状成形体の製造方法
JP6292761B2 (ja) 環状成形体の製造方法
JP5613468B2 (ja) 環状成形体の製造方法
US9592547B2 (en) Method of manufacturing annular molding
JP5895111B1 (ja) リング成形体の製造方法
JP5795838B2 (ja) リング状成形体の製造方法
RU2374028C1 (ru) Способ изготовления диска газотурбинного двигателя
JP6040944B2 (ja) 耐熱合金製リングの成形方法
US11208910B2 (en) Ring molded article manufacturing method and ring material
JP6410135B2 (ja) 熱間鍛造用金型
RU191479U1 (ru) Заготовка диска газотурбинного двигателя из жаропрочного сплава
RU2475327C2 (ru) Способ раскатки дисков

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017278.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506789

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014769789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14778021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE