WO2014148397A1 - 通電方式によるナノバブル発生装置 - Google Patents

通電方式によるナノバブル発生装置 Download PDF

Info

Publication number
WO2014148397A1
WO2014148397A1 PCT/JP2014/056964 JP2014056964W WO2014148397A1 WO 2014148397 A1 WO2014148397 A1 WO 2014148397A1 JP 2014056964 W JP2014056964 W JP 2014056964W WO 2014148397 A1 WO2014148397 A1 WO 2014148397A1
Authority
WO
WIPO (PCT)
Prior art keywords
type electrode
type
electrode rod
rod
nanobubble
Prior art date
Application number
PCT/JP2014/056964
Other languages
English (en)
French (fr)
Inventor
哲郎 岡野
鈴木 耕一郎
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Priority to JP2015506748A priority Critical patent/JP6252955B2/ja
Publication of WO2014148397A1 publication Critical patent/WO2014148397A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46165Special power supply, e.g. solar energy or batteries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/04Location of water treatment or water treatment device as part of a pitcher or jug

Definitions

  • the present invention relates to a nanobubble generator, and more particularly to a nanobubble generator that generates nanobubbles by an energization method.
  • Nano and micro-bubble water are currently used in food (sterilization) drinking water, cosmetics, liquid crystal manufacturing, medical (sterilization, cell preservation, antibacterial action), marine resources and plant cultivation (solution oxygen factory, growth promotion), electronic device substrates, etc. Utilization is expected from various fields such as cleaning, reduction of marine environment and frictional resistance of the hull.
  • Patent Document 1 discloses an apparatus for producing sterilizing water, which has a configuration in which effective chlorine-containing water is mixed with gas, and bubbles are broken up by a vortex shear force in a static mixer. Thereafter, when passing through the throttle valve, the solution is released to atmospheric pressure, the supersaturated gas is re-bubbled as microbubbles, and further ultrasonic energy is supplied thereto.
  • Patent Document 2 divides a liquid, mixes with gas on one side of the divided flow, generates microbubbles, recombines them, and supplies them to a plate with holes and a collision plate provided in the vicinity thereof. It is the structure which manufactures a nano bubble.
  • the nanobubble generator described in Patent Document 3 generates friction between the liquid and the gas by shearing the gas by discharging the pressurized gas into the liquid from the nozzle to form a high-speed airflow. It generates nanobubbles.
  • nanobubble generators proposed so far have a configuration in which a gas and a liquid are mixed. At that time, the generated bubbles are further broken by a shearing force, or a collision plate is formed. It is a structure that generates nanobubbles by colliding with or by friction between gas and liquid.
  • an object of the present invention is to provide a nanobubble generator using a simple configuration energization method configured using such a principle.
  • a first aspect of a nanobubble generator using an energization method includes a first type electrode rod, and a second type electrode rod of a different type from the first type electrode rod, The one type of electrode rod and the second type of electrode rod are arranged in parallel at an interval, and a direct current is passed between the first type of electrode rod and the second type of electrode rod.
  • a power supply is provided, wherein the first type electrode rod and the second type electrode rod are energized by the power source in electrolyte ion water.
  • the first type electrode rod and the second type electrode rod have at least two electrode rods of at least one of the first type electrode rod and the second type electrode rod.
  • the electrode rods are alternately arranged in parallel.
  • the second side surface of the nanobubble generator by the energization method according to the present invention includes a plurality of first-type electrode bars each having one end connected to a common electrode, and a plurality of first-type electrode bars different from the first-type electrode bars.
  • Two types of electrode rods, and the plurality of first type electrode rods and the plurality of second type electrode rods are arranged in parallel at alternately spaced intervals, and the first type A power source for supplying a direct current to the electrode rod of the type and the electrode rod of the second type, and the plurality of first type electrode rods and the second type of electrode rod are controlled by the power source in electrolyte ion water. It is characterized by being energized.
  • the third side surface of the nanobubble generator by the energization method according to the present invention includes a plurality of first-type electrode bars having one end connected to the common electrode, and a plurality of electrodes connected to the common electrode on the opposite side to the one end.
  • a plurality of first-type electrode bars and a plurality of second-type electrode bars are alternately arranged in parallel, and are insulated by an insulator on the side opposite to the one end side;
  • a power source that is fixed and further supplies a direct current to the first-type electrode rod and the second-type electrode rod; and the plurality of first-type electrode rods and the second-type electrode rods Is characterized in that it is energized by the power source in electrolyte ion water.
  • the first type electrode rod is a titanium electrode rod and serves as an anode side
  • the second type electrode rod is provided with a direct current as at least a surface of platinum and a cathode side. It is characterized by that.
  • the nanobubble generator according to the present invention was able to generate nanobubbles with a simple structure, and the bactericidal ability of the generated nanobubbles was confirmed. Therefore, the nanobubble generator can be applied in various ways.
  • FIG. 1 It is a figure which shows the application Example schematic structure of the nano bubble generator by the electricity supply system according to this invention. It is a structural example of the nanobubble generator by the electricity supply system according to this invention. It is a figure which shows a mode that the bubble generate
  • FIG. It is a histogram which shows the bubble particle size value and the relationship of scattering intensity distribution after progress for 15 minutes after generating a bubble for 20 minutes with a nano bubble generator.
  • FIG. 9C is a diagram illustrating a usage pattern. This is an embodiment of the nanobubble generator 1 having a structure that is easy to carry with respect to the embodiment of FIG.
  • FIG. 9A and FIG. 9B It is a figure explaining the usage pattern of the Example structure of FIG. 9A and FIG. 9B. It is a figure which shows the Example structure of the apparatus which provides the stationary type nano bubble water using the nano bubble generator.
  • Another application example is a configuration example in which the nanobubble generator 1 according to the present invention is used in a system for keeping hot water in a bathtub normal with nanobubble water.
  • FIG. 1 is a diagram showing a schematic configuration of an application example of a nanobubble generator by an energization method according to the present invention.
  • the nanobubble generator of the present invention is incorporated in a pot container and configured as a gargle water production device, for example.
  • the nanobubble generator 1 of the present invention is fixed and incorporated in a pot container 2 having a spout with a lid.
  • the pot container 2 is filled with electrolyte ion water 3, for example, normal tap water.
  • the nanobubble generator 1 is connected to an AC / DC converter 10 that converts an AC 100V power source into a direct current.
  • FIG. 2 is a configuration example of a nanobubble generator according to the present invention incorporated in the pot container 2 according to the present invention.
  • Two different kinds of conductive bars 12 and 13 are alternately arranged in parallel, and the ends of the plurality of conductive bars 12 are connected to the common electrode 14 at one end side.
  • end portions of the plurality of conductive rods 13 are connected to the common electrode 15 at opposite end portions.
  • the common electrodes 14 and 15 side are fixed by insulating supports 11L and 11R, respectively.
  • ⁇ Body-friendly metals such as platinum, gold, and titanium can be used as the conductive rods 12 and 13 serving as electrodes.
  • various metals such as aluminum and stainless steel can be used.
  • copper is considered to be a metal with strong bactericidal properties. It is possible to select an electrode material according to the purpose from such metal characteristics.
  • the cross-sectional shape of the conductive rods 12 and 13 can be a square or a polygon in addition to a circle.
  • a titanium metal rod is used as the conductive rod 12 connected to the anode (+) side
  • a platinum metal rod is used as the conductive rod 13 connected to the cathode ( ⁇ ) side.
  • the surface of a titanium metal rod may be coated with platinum.
  • any electrode can be used as long as it is an electrode considering allergies such as aluminum and stainless steel.
  • the output of the AC / DC converter 10 is connected so that the anode (+) side electrode corresponds to the conductive rod 12 side and the cathode ( ⁇ ) side electrode corresponds to the conductive rod 13 side.
  • the AC / DC converter 10 converts an AC 100V power source into a DC 12V, 0.2A voltage as an example.
  • the nanobubble generator 1 in a state where two different conductive rods 12 and 13 are alternately arranged in parallel is arranged in the electrolyte ion water, and a direct current is supplied. Thereby, electrolyte ion water is electrolyzed and air bubbles are generated.
  • FIG. 3 is a diagram showing how bubbles are generated for easy understanding.
  • the beaker 4 is filled with electrolyte ion water (tap water), and the nanobubble generator 1 shown in FIG. 2 according to the present invention is immersed in the electrolyte ion water to generate bubbles.
  • the white portion at the top is bubbles, and microbubbles having a diameter larger than 400 nm are mainly used. Furthermore, bubbles having a diameter of 400 nm or less exist in water.
  • nanobubble water was produced
  • the electrode rod a 1 mm diameter titanium electrode rod and a platinum electrode rod were used, and the interval between the parallel electrode rods was set to 1 mm.
  • a direct current (DC12V, 0.2A) was supplied with the titanium electrode rod corresponding to the anode and the platinum rod corresponding to the cathode.
  • the nanobubbles were distributed in the range of 200 to 400 nm with a median value of 320 nm. Further, from FIG. 5 to FIG. 7 after the passage of time, many microbubbles were mixed at the beginning of bubble generation, but the nanobubble density was the highest as the scattering intensity distribution after 30 minutes shown in FIG.
  • FIG. 8 is a line graph in which the scattering intensity distributions of FIGS. 4 to 7 are overwritten. From this graph, it can be seen that the nanobubbles are distributed in the range of 200 to 400 nm with a median value of 320 nm.
  • microbubbles of 1 ⁇ m or more are mixed in the bubble generator.
  • the microbubbles gradually rise and disappear after about 1 hour. If a fire is brought close to the bubble before it bursts, it will ignite and burst. Therefore, the bubble is considered as a bubble of hydrogen gas.
  • the electrolyte ionized water becomes cloudy in the upper layer due to the microbubbles as shown in FIG. 3, but gradually disappears and the whole becomes transparent and only nanobubbles remain. Nanobubbles were not visible, and the presence of the bubbles could be confirmed by making the bubbles glow by laser light irradiation as described above. After 24 hours, nanobubbles due to laser light could be confirmed, but the density seems to have decreased.
  • nanobubble water of 200 nm to 400 nm was the highest at 15 to 30 minutes, and there was a tendency to gradually decrease the density. Therefore, depending on the purpose of use, it may be desirable to use up in a short time.
  • Bactericidal rate (calculated by the average value of 3 systems) Regarding Staphylococus aureus NBRC12732 (Staphylococcus aureus), it was as follows. Number of bacteria: Time (0 minutes) 10 minutes treatment Bactericidal rate a) 500,000 290,000 b) 500,000 34,000 88% c) and d) have effective chlorine concentration and below the lower limit of detection. Regarding Escherichia coli NBR3972 (E. coli), it was as follows. Number of bacteria: Time (0 minutes) 10 minutes treatment Bactericidal rate a) 450,000 420,000 b) 450,000 200,000 52% c) and d) have effective chlorine concentration and below the lower limit of detection.
  • Periodatibacter actinomycetemcomitans (periodontal fungus)
  • Bacteria count Time (0 minutes) 10 minutes treatment
  • Bactericidal rate a) 1,300,000 1,100,000 b) 1,300,000 120,000 89% c) and d) have effective chlorine concentration and below the lower limit of detection.
  • Porphyromonas gingivalis JCM12257 (periodontal fungus 2), it was as follows.
  • Bacterial count Time (0 minutes) 10 minutes treatment Bactericidal rate a) 480,000 50,000 b) 480,000 ⁇ 10 99.98% (Calculated as 10) c) 480,000 10 d) 480,000 ⁇ 10 c) The control cannot be calculated because it is less than detection.
  • the principle of the nanobubble generator according to the present invention is a nanobubble generation method by an energization method, which is based on the electrolysis of water containing an electrolyte. Therefore, bubbles that remain in water after bubbles containing hydrogen rise and collapse are considered to be oxygen nanobubbles surrounded by negative ions. It is considered that the oxygen fine bubbles surrounded by negative ions are likely to be electrically associated with various positively charged bacteria.
  • the bactericidal rate of Escherichia coli NBR3972 (E. coli) is 52%
  • the bactericidal rate of Staphylococuscoaureus NBRC12732 (Staphylococcus aureus) is 88%
  • Aggregatibacter actinomycetemcomitans (periodontal fungus) is 89%
  • Porphyromonas gingivalis JCM12257 Is 99.98%.
  • the size of the bacteria is 1 ⁇ 1 ⁇ m for Staphylococus aureus NBRC12732 (Staphylococcus aureus), 1 ⁇ 2-6 ⁇ m for Escherichia coli NBR3972 (E. coli), and 0.1 ⁇ 0.2 ⁇ m for Aggregatibacter actinomycetemcomitans (one periodontal disease)
  • the size of the bacteria is thought to affect the sterilization rate.
  • Escherichia coli NBR3972 Escherichia coli
  • Escherichia coli NBR3972 Escherichia coli
  • applications such as cleaning of the whole body of nanobubble water need to be studied because of the relationship with exposure time.
  • Staphylococus aureus NBRC12732 (Staphylococcus aureus), which is a small bacterium and resident in the oral cavity, showed an effective bactericidal effect.
  • Aggregatibacter actinomycetemcomitans a causative agent of periodontal disease, also showed an effective bactericidal effect.
  • the bactericidal ability of the nanobubbles depends on the size of the bacteria, and if the nanobubbles can associate with the bacteria, sufficient bactericidal properties can be exhibited.
  • nanobubbles are said to have high permeability to the liquid layer and easily migrate into mucus.
  • the inflammation site of periodontal disease causes chronic inflammation due to anaerobic periodontal disease bacteria intervening in the deep mucus filled between the teeth. Standard treatment is to scrape the plaque in the gap. If the interproximal part is expanded by treatment, the periodontal disease bacteria will go deeper and the oral environment may be further deteriorated.
  • Nanobubbles are expected to improve the anaerobic oral environment because it is assumed that the nanobubbles penetrate into the mucus and associate with the periodontal disease bacteria that nest in the anaerobic environment as nanobubble particles.
  • FIGS. 9A and 9B show an example configuration of the nanobubble generator 1 having a structure that is easy to carry with respect to the example configuration of FIG.
  • FIG. 9C is a diagram for explaining a usage pattern of the configuration of the embodiment of FIGS. 9A and 9B.
  • FIG. 9A shows a configuration in which a cordless battery is provided
  • the nanobubble generator 1 has a structure having a nanobubble generator I and a main body II.
  • the nanobubble generating part I has two types of electrode rods 12 and 13, and two first type electrode rods 12 and second type electrode rods 13 different from the first type are alternately arranged in parallel.
  • the end portions are fixed by fixing portions 11 so as to be arranged at intervals.
  • the first type electrode rod 12 and the second type electrode rod 13 different from the first type may be interchanged.
  • each of the two types of electrode rods 12 and 13 is arranged in parallel and paired in parallel may be used.
  • the time required for bubble generation becomes longer with the same current.
  • the battery unit 20 is housed in the main unit II as a power supply unit, and further detailed illustration is omitted, but a booster circuit that boosts the output voltage of the battery 20, a timer, and PWM as current control
  • the controller 22 has a (pulse width control) function.
  • the anode (+) output terminal and the cathode ( ⁇ ) output terminal of the control unit 22, in which the voltage, current, and energization time are controlled, are the first type electrode rod 12 and the second type electrode rod 13, respectively. Connected to.
  • the control instruction unit 21 sets the pressure, current, and energization time by the user.
  • the battery 20 can be a dry battery or a rechargeable battery.
  • FIG. 9B shows a form in which a commercial power source is used.
  • a commercial power source of 100 V is input to the control unit 22 of the main unit II through the AC / DC converter 23. Since the control unit 22 of the main body II is the same as that described with reference to FIG. 9A, the same description is omitted.
  • FIG. 9C shows a method of using the nanobubble generator 1 having an easily portable structure shown in FIGS. 9A and 9B.
  • FIG. 10 is a diagram showing an example configuration of an apparatus for providing stationary nanobubble water using the nanobubble generator 1.
  • the nanobubble generator 1 is placed in a tank 25 filled with water 26 in a housing.
  • the nanobubble generator 1 is supplied with a DC voltage obtained by an AC / DC converter 23 that converts an AC voltage supplied from a commercial power source into a DC voltage through the control unit 22 as described in the configuration of the previous embodiment. Is done.
  • the control unit 22 controls the magnitude and supply time of the direct current to the nanobubble generator 1.
  • the controller 22 further supplies power for driving the pump 27. Since the pump 27 is connected to the water tank 25 by the water conduit, it is controlled by the control unit 22 to suck up the nanobubble water in the water tank 25 and discharge it through the pipe 28. Therefore, the discharged nano bubble water can be received by the cup 24 and used for beverage or oral cleaning.
  • FIG. 11 shows another application example, which is a configuration example in which the nanobubble generator 1 according to the present invention is used in a system for maintaining hot water in a bathtub normally with nanobubble water.
  • the nanobubble generator 1 is submerged in hot water 31 stretched in the bathtub 30. At this time, the body of the bather and the electrode of the nanobubble generator 1 are covered with an outer sheath of an insulator so as not to contact.
  • the battery 20 has a waterproof box 32 outside, the battery 20 is charged in the waterproof box 32 by a DC voltage obtained by an AC / DC converter 23 that converts an AC voltage supplied from a commercial power source into a DC voltage, and a control. Part 22. Therefore, the battery 20 and the control unit 22 are protected by the waterproof structure of the waterproof box 32.
  • the waterproof box 32 can be placed in the bathroom by being disconnected from the commercial power source.
  • the controller 22 in the waterproof box 32 controls the direct current supplied to the nanobubble generator 1 in the bathtub with a PWM function, as in the previous configuration example.
  • the nanobubble generator according to the present invention can generate nanobubbles with a simple structure, and the bactericidal ability of the generated nanobubbles has been confirmed. Therefore, various applications are possible in consideration of the sterilizing ability of the nanobubbles generated as described above. As an example, it is possible to provide nanobubble water as a beverage, or to configure and provide various cleaning devices that use nanobubble water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

第1の種類の電極棒と、前記第1の種類の電極棒と異なる種類の第2の種類の電極棒を有し、前記第1の種類の電極棒と第2の種類の電極棒は、間隔を置いて並行に配置され、更に、前記第1の種類の電極棒と前記第2の種類の電極棒間に、直流電流を供給する電源を有し、前記第1の種類の電極棒と前記第2の種類の電極棒は、電解質イオン水中で前記電源により通電されることを特徴とする。

Description

通電方式によるナノバブル発生装置
 本発明は、ナノバブル発生装置に関し、特に、通電方式によりナノバブルを生成するナノバブル発生装置に関する。
 ナノ、マイクロバブル水は、現在、食品(殺菌)飲料水、化粧品、液晶製造、医療(殺菌、細胞保存、抗菌作用)水産資源・植物栽培(溶材酸素工場、成長促進)、電子機器基板等の洗浄、海洋環境・船体の摩擦抵抗低減化など多彩な分野からその活用が期待されるに至っている。
 そして、種々の構成のナノバブルの製造装置が提案されている(例えば、特許文献1~3)。特許文献1は、殺菌水の製造装置を開示し、その構成は、有効塩素含有水を気体と混合し、スタティックミキサー内で渦のせん断力によって気泡を破細する。その後、絞り弁を通過する際、溶液を大気圧へ解放し、過飽和状態となった気体をマイクロバブルとして再気泡化させ、これに更に超音波エネルギーを供給するという装置である。
 特許文献2に記載の装置は、液体を分流し、分流の一方側で気体と混合しマイクロバブルを生成し、再度合流させ、孔付き板と、それに近接して設けられる衝突板に供給してナノバブルを製造する構成である。
 さらに、特許文献3に記載のナノバブル発生装置は、加圧した気体をノズルより液体中に放出して高速の気流とすることにより、液体と気体の摩擦を発生させて、気体をせん断することでナノバブルを発生させるものである。
特開2013-17963号公報 特開2013-34958号公報 特開2011-156526号公報
 しかし、上記のように、これまで提案されているナノバブル発生装置は、いずれも気体と液体を混合する構成を有し、その際、生成される気泡を更に、剪断力により破断し、あるいは衝突板に衝突させ、あるいは気体と液体との摩擦により、ナノバブルを生成する構造である。
 かかる構造から、小型化を目指しているが、構造が複雑となり、一般家庭、病医院等で使用可能なような小型化を実現することは難しい。
 本発明は、電解質イオン中で通電することにより水は電気分解され気泡が生じる。そして、本発明者等は、この気泡の大きさは、電極間の通電条件を変えることにより、制御出来ることを発見した。したがって、本発明の目的は、かかる原理を用いて構成される簡易構成の通電方式によるナノバブル発生装置を提供することにある。
 本発明に従う通電方式によるナノバブル発生装置の第1の側面は、第1の種類の電極棒と、前記第1の種類の電極棒と異なる種類の第2の種類の電極棒を有し、前記第1の種類の電極棒と第2の種類の電極棒は、間隔を置いて並行に配置され、更に、前記第1の種類の電極棒と前記第2の種類の電極棒間に、直流電流を供給する電源を有し、前記第1の種類の電極棒と前記第2の種類の電極棒は、電解質イオン水中で前記電源により通電されることを特徴とする。
 前記第1の側面において、前記第1の種類の電極棒と前記第2の種類の電極棒の少なくとも一方の電極棒を2本有し、前記第1の種類の電極棒と前記第2の種類の電極棒が、交互に並行に配置されていることを特徴とする。
 本発明に従う通電方式によるナノバブル発生装置の第2の側面は、それぞれ一端側が共通電極に接続された複数の第1の種類の電極棒と前記第1の種類の電極棒と異なる種類の複数の第2の種類の電極棒を有し、前記複数の第1の種類の電極棒と前記複数の第2の種類の電極棒は、交互に間隔を置いて平行に配置され、更に、前記第1の種類の電極棒と第2の種類の電極棒に直流電流を供給する電源を有し、前記複数の第1の種類の電極棒と第2の種類の電極棒は、電解質イオン水中で前記電源により通電されることを特徴とする。
 本発明に従う通電方式によるナノバブル発生装置の第3の側面は、一端側が共通電極に接続された複数の第1の種類の電極棒と、前記一端側と反対側で共通電極に接続された複数の第2の種類の電極棒を有し、前記複数の第1の種類の電極棒と前記複数の第2の種類の電極棒は、交互に平行に配置され前記一端側と反対側で絶縁体により固定され、更に、前記第1の種類の電極棒と第2の種類の電極棒に直流電流を供給する電源を有し、前記複数の第1の種類の電極棒と第2の種類の電極棒は、電解質イオン水中で前記電源により通電されることを特徴とする。
 さらに、前記各側面において、前記第1の種類の電極棒はチタンの電極棒であって陽極側として、更に前記第2の種類の電極棒は少なくとも表面が白金で陰極側として直流電流が供給されることを特徴とする。
 本発明に従うナノバブル発生装置は、簡易な構造でナノバブルを発生することが可能で有り、発生したナノバブルの殺菌能が確認された。よって、ナノバブル発生装置は、種々の適用が可能である。
本発明に従う通電方式によるナノバブル発生装置の適用実施例概略構成を示す図である。 本発明に従う通電方式によるナノバブル発生装置の構成例である。 理解容易なように気泡が発生した様子を示す図である。 ナノバブル発生装置1で20分間バブルを発生後、5分経過後におけるバブル粒径値と散乱強度分布の関係を示すヒストグラムである。 ナノバブル発生装置で20分間バブルを発生後、15分経過後におけるバブル粒径値と散乱強度分布の関係を示すヒストグラムである。 ナノバブル発生装置1で20分間バブルを発生後、30分経過後におけるバブル粒径値と散乱強度分布の関係を示すヒストグラムである。 ナノバブル発生装置1で20分間バブルを発生後、60分経過後におけるバブル粒径値と散乱強度分布の関係を示すヒストグラムである。 図4から図7の散乱強度分布を重ね書きした折れ線グラフである。 図1の実施例構成に対して、携帯容易な構造にしたナノバブル発生装置1の実施例構成である。図9Cは、使用形態を説明する図である。 図1の実施例構成に対して、携帯容易な構造にしたナノバブル発生装置1の実施例構成である。 図9A、図9Bの実施例構成の使用形態を説明する図である。 ナノバブル発生装置1を利用した、据え置き型のナノバブル水を提供する装置の実施例構成を示す図である。 他の適用例であり、ナノバブル水により、バスタブ内の湯を正常に保つためのシステムに本発明に従うナノバブル発生装置1を用いる構成例である。
 以下に図面に従い、本発明に従う通電方式によるナノバブル発生装置について説明する。
 図1は、本発明に従う通電方式によるナノバブル発生装置の適用実施例の概略構成を示す図である。図1に示す例は、本発明のナノバブル発生装置をポット容器に組み込んで、例えばうがい水の製造器として構成したものである。
 蓋付きの注ぎ口を有するポット容器2内に、本発明のナノバブル発生装置1が固定して組み込まれている。ポット容器2内に、電解質イオン水3、例えば、通常の水道水を満たす。
 ナノバブル発生装置1にはAC100V電源を直流に変換するAC/DCコンバータ10が接続されている。
 図2は、かかるポット容器2内に組み込まれている本発明に従う通電方式によるナノバブル発生装置の構成例である。
 2種類の異なる導電棒12、13が交互に平行に配列され、複数の導電棒12の端部が、一端側で、共通電極14に接続されている。一方、複数の導電棒13の端部が、反対側端部で共通電極15に接続されている。共通電極14、15側は、それぞれ絶縁性支持体11L、11Rにより固定されている。
 電極となる導電棒12、13として白金、金、チタンなど身体に優しい金属が使用できる。また浄水の目的ではアルミ、ステンレス等多様な金属が使用できる。特に、銅は殺菌性が強い金属と考えられる。この様な金属の特性から目的に応じた電極材料の選択が可能である。
 ここで、導電棒12、13の断面形状として円形の他に、四角形と多角形とすることが可能である。
 さらに、実施例としては、陽極(+)側に接続される導電棒12としてチタンの金属棒を使用し、陰極(-)側に接続される導電棒13として白金の金属棒を使用している。導電棒13が白金のみであると高価であるので、チタンの金属棒の表面に白金をコーティングしたものであっても良い。また、上記の通り、チタンと白金の代わりに、アルミおよびステンレス金属等アレルギーを考慮した電極であれば、いずれにも代替が可能である。
 また、陽極(+)側と陰極(-)側の対応を相互に入れ替えても作動可能である。
 さらに、絶縁性支持体11Rの部分で、AC/DCコンバータ10の出力が、導電棒12側に陽極(+)側電極、導電棒13側に陰極(-)側電極が対応する様に接続される。
 AC/DCコンバータ10は、例としてAC100V電源をDC12V、0.2Aの電圧に変換する。
 この様な構成で、2種類の異なる導電棒12、13が交互に平行に配列された状態のナノバブル発生装置1を電解質イオン水中に配置し、直流電流を供給する。これにより、電解質イオン水が電気分解されて気泡が発生する。
 図3は、理解容易なように気泡が発生した様子を示す図である。ビーカー4に電解質イオン水(水道水)を満たし、本発明に従う図2に示したナノバブル発生装置1を電解質イオン水中に浸して気泡を発生させた状態である。後に説明するように、上部の白い部分が気泡であり、400nmより大きい径のマイクロバブルが主体である。さらに、400nm以下の径のバブルが水中に存在する。
 [ナノバブル水のバブル形態観察及び分布状況]
 ここで、上記の図2の構成のナノバブル発生装置1を用いて、電解質イオン水によりナノバブル水を生成した。電極棒として、1mm径のチタン電極棒と白金電極棒を用い、平行する電極棒間の間隔を1mmとした。チタン電極棒を陽極、白金棒を陰極に対応させて直流電流(DC12V、0.2A)を供給した。
 ファイバー光学動的光散乱光度計(大塚電子八王子研究所パーティクルカウンタ)を用いて測定した。サンプルは、ナノバブル発生装置1で20分間バブルを発生後、5、15、30、45、60分経過後におけるバブル形状を観察測定した。その後のバブルの存在は、ペン型赤色レーザー発光器により肉眼で確認した。
 図4、図5、図6、図7は、それぞれナノバブル発生装置1で20分間バブルを発生後、5分、15分、30分及び60分経過後におけるバブル粒径値と散乱強度分布の関係を示すヒストグラムである。
 図4において、ナノバブルは、320nmを中央値とする200~400nmに分布していた。さらに時間経過後の図5~図7からバブル発生当初は、マイクロバブルが多く混在するが、図6に示す30分経過後の散乱強度分布としてナノバブル密度が最も高かった。
 図8は、上記図4から図7の散乱強度分布を重ね書きした折れ線グラフである。このグラフからナノバブルが320nmを中央値とする200~400nmに分布していることが判る。
 上記の観察において、バブル発生器には、1μm以上のマイクロバブルが混在している。
 そして、マイクロバブルは1時間程度掛けて次第に浮き上がり消失する。はじける前のバブルに火を近づけると小さく引火して破裂する。したがって、バブルは、水素ガスのバブルと考えられる。
 バブル発生時、電解質イオン水は、図3に示したようにマイクロバブルにより上層部が白濁するが、次第に消失し全体が透明になりナノバブルだけが残存する。ナノバブルは、視認できず、上記のとおりレーザー光照射によって気泡を光らせることで存在が確認出来た。24時間以降もレーザー光によるナノバブルは確認出来たが密度は下がっていると思われる。
 結果として、200nm~400nmのナノバブル水は発生15~30分が最も高く、しだいに密度を下げて行く傾向が窺えた。したがって、使用目的によっては、短時間で使い切ることが望ましいと考えられる。
 [ナノバブル水の殺菌能]
 次に、上記のとおり、作業時間を考慮して、散乱強度分布としてナノバブル密度が最も高かったバブル発生後20分経過時のナノバブル水を使用して、その殺菌能比較試験を行った。
 1)科学的性状
 次の4種類の性状の資料を用意した。
a)煮沸による脱塩処理した電解質イオン水(原水)
b)煮沸による脱塩処理したナノバブル水
c)未処理の原水
d)未脱塩処理のナノバブル水
上記4種類の資料の科学的性状は次の様であった。
  水温(℃)        pH          有効塩素濃度(mg/ml)     オゾン濃度(mg/ml)
a) 24.4         6.6              0                     0
b) 24.5         6.7              0                     0
c) 24.1         6.5            0.30                    0
d) 24.6         6.6            0.35                    0
 2)殺菌率(3系統の平均値で算出)
Staphylococus aureus NBRC12732(黄色ブドウ球菌)については、次の様であった。
  菌数:時間(0分)    10分処理    殺菌率     
a)  500,000        290,000 
b)  500,000          34,000          88%
c)、d)は、有効塩素濃度が有り、検出下限以下
Escherichia coli NBR3972(大腸菌)については、次の様であった。
  菌数:時間(0分)    10分処理    殺菌率     
a)  450,000        420,000 
b)  450,000         200,000          52%
c)、d)は、有効塩素濃度が有り、検出下限以下
Aggregatibacter actinomycetemcomitans(歯周病菌一)については、次の様であった。
  菌数:時間(0分)    10分処理    殺菌率
a) 1,300,000     1,100,000 
b) 1,300,000        120,000          89%
c)、d)は、有効塩素濃度が有り、検出下限以下
Porphyromonas gingivalis JCM12257(歯周病菌二)については、次の様であった。
  菌数:時間(0分)    10分処理    殺菌率
a)  480,000        50,000
b)  480,000          <10            99.98%
              (10として算出)
c)  480,000       10
d)  480,000      <10  c)の対照が検出以下のため算出不能
 上記試験に基づいて、次のように纏められる。
 本発明にしたがうナノバブル発生装置の原理は、通電方式によるナノバブル発生方式であり、電解質を含む水の電気分解を原理とする。したがって、水素を含むバブルが上昇・圧壊した後、水中に残存するバブルは、マイナスイオンに取り囲まれた酸素のナノバブルと考えられる。マイナスイオンに取り囲まれた酸素の微粒気泡は、プラス荷電の種々の菌と電気的に会合し易いと考えられる。
 酸素を主体とするナノバブル中にオゾンは検出されなかった。原水に含まれる塩素はバブル化しても減退せず、ナノバル水の殺菌能検討には脱塩素する必要が認められた。
 脱塩素電解質イオン水を用いたナノバブル水により以下の結果が導かれた。
 図4~図7のヒストグラムにおけるバブルの散乱強度分布から、よりバブルが高密度となるバブル発生後実質20分前後のものを使用し、対象試験菌にナノバブル水を10分間被爆させ、菌数の増減を検討した。
 その結果は、次の通りであった。すなわち、Escherichia coli NBR3972(大腸菌)の殺菌率は52%、Staphylococus aureus NBRC12732(黄色ブドウ球菌)の殺菌率は88%、Aggregatibacter actinomycetemcomitans(歯周病菌一)は89%、Porphyromonas gingivalis JCM12257(歯周病菌二)は99.98%である。
 10分被爆で常在菌叢をある程度残し、菌数を整える目的に十分な制菌効果が得られると判断できる。
 また、菌の大きさは、Staphylococus aureus NBRC12732(黄色ブドウ球菌)が1×1μm、Escherichia coli NBR3972(大腸菌)が1×2~6μm、そしてAggregatibacter actinomycetemcomitans(歯周病菌一)が0.1×0.2μmであり、菌の大きさが殺菌率に影響していると考えられる。
 対象菌としてEscherichia coli NBR3972(大腸菌)は、一般細菌の指標として検討したものであり、口腔内の意義は、少ないと思われる。また、ナノバブル水の身体全体の洗浄等の応用には、被爆時間との関係もあり検討を必要とする。
 一方、小型の菌で口腔内の常在菌であるStaphylococus aureus NBRC12732(黄色ブドウ球菌)には効率に殺菌効果を示した。さらに、歯周病の原因菌であるAggregatibacter actinomycetemcomitansにも効率に殺菌効果を示した。
 上記結果は、ナノバブルの殺菌能は菌の大きさに依存し、ナノバブルが菌と会合出来れば十分な殺菌性を発揮できると推察された。
 一般的にナノバブルは、液層への浸透性が高く粘液内にも移行しやすいと言われている。歯周病の炎症部位は、歯間に満たされる粘液深部に嫌気性の歯周病菌が介在することにより慢性炎症を引き起こす。標準的な治療は隙間の歯垢を掻き出すものである。治療により歯間部が広げられると歯周病菌は更に深部に進み、口腔内環境が更に悪化する可能性がある。
 ナノバブルは粘液中に浸透し嫌気性環境に巣くう歯周病菌にナノ泡粒として会合することが想定され、嫌気性の口腔内環境を改善することが期待される。
 [具体的な適用例]
 次に、上記した本発明のナノバブル発生装置1の制菌能を考慮した具体的な適用例について更に説明する。
 図9A、図9Bは、図1の実施例構成に対して、携帯容易な構造にしたナノバブル発生装置1の実施例構成である。図9Cは、図9A、図9Bの実施例構成の使用形態を説明する図である。
 図9Aは、コードレスでバッテリを有する形態、図9Bは、電源コードを通し、商用電源で使用する形態である。
 図9A、図9Bにおいて、ナノバブル発生装置1は、ナノバブル発生部Iと本体部IIを有する構造である。ナノバブル発生部Iは、2種類の電極棒12,13を有し、2本の第1の種類の電極棒12と、第1の種類と異なる第2の種類の電極棒13を交互に平行に間隔を置いて並ぶように端部が固定部11で固定されている。第1の種類の電極棒12と、第1の種類と異なる第2の種類の電極棒13を入れ替えて配置してもよい。
 さらに、2種類の電極棒12,13のそれぞれを1本ずつとして、平行に並べて対にした構成でもよい。ただし、この場合は、同じ電流では、バブル発生に要する時間が長くなる。
 図9Aの構成例では、本体部IIには、電源部としてバッテリ20が収納され、更に詳細図示を省略しているが、バッテリ20の出力電圧を昇圧する昇圧回路、タイマーそして、電流制御としてPWM(パルス幅制御)機能を有する制御部22を有する。電圧及び、電流更に通電時間が制御される、制御部22の陽極(+)出力端子と、陰極(-)出力端子が、それぞれ第1の種類の電極棒12と第2の種類の電極棒13に接続される。
 制御指示部21により、前記圧及び、電流更に通電時間の設定が使用者により行われる。
 なお、バッテリ20は、乾電池、あるいは充電可能なバッテリとすることが出来る。
 図9Bは、商用電源で使用する形態であり、100Vの商用電源をAC/DCコンバータ23を通して、本体部IIの制御部22に入力する。本体部IIの制御部22は、図9Aについて説明したと同じであるので、同様の説明は省略する。
 図9Cは、図9A、図9Bに示した携帯容易な構造にしたナノバブル発生装置1の使用方法である。
 コップ24に水道水を満たし、これに制御指示部21により電圧、電流、更に動作時間を設定してナノバブル発生装置1のナノバブル発生部Iをコップ内に浸ける状態にする。これにより、先に図1~図3において説明したように、コップ内の水道水にナノバブルが発生する。したがって、コップ内に発生したナノバブル水は、上記したようにその殺菌能力が確かめられたので、口腔内洗浄に使用することが出来る。
 図10は、ナノバブル発生装置1を利用した、据え置き型のナノバブル水を提供する装置の実施例構成を示す図である。
 筐体内にナノバブル発生装置1を水26が満たされたタンク25内に配置する。このナノバブル発生装置1には、先の実施例構成で説明したように、商用電源から供給される交流電圧を直流電圧に変換するAC/DCコンバータ23により得られる直流電圧が、制御部22を通して供給される。
 制御部22により、ナノバブル発生装置1への直流電流の大きさ、供給時間が制御される。制御部22は、更に、ポンプ27を駆動する電力を供給する。ポンプ27は、水タンク25と導水管により繋がれているので、制御部22により制御されて、水タンク25内のナノバブル水を吸い上げて、配管28を通して、排出する。したがって、排出されるナノバブル水をコップ24で受けて、飲料あるいは、口腔内洗浄に使用することが出来る。
 さらに、図11は、他の適用例であり、ナノバブル水により、バスタブ内の湯を正常に保つためのシステムに本発明に従うナノバブル発生装置1を用いる構成例である。
 すなわち、かかる図11の構成ではバスタブ30内に張られた湯水31中に、ナノバブル発生装置1を沈める。この時、入浴者の体とナノバブル発生装置1の電極とが接触しないように、絶縁体の外装に覆われるようにしている。
 外部には、防水ボックス32を有し、防水ボックス32内に、商用電源から供給される交流電圧を直流電圧に変換するAC/DCコンバータ23により得られる直流電圧により充電されるバッテリ20と、制御部22を有する。したがって、バッテリ20と、制御部22は、防水ボックス32の防水構造で保護される。
 すなわち、商用電源から切り離されて防水ボックス32のみを浴室内に置くことができる。防水ボックス32内の制御部22により、先の構成例と同様に、PWM機能を有してバスタブ内のナノバブル発生装置1に供給される直流電流が制御される。
 上記したように、本発明に従うナノバブル発生装置は、簡易な構造でナノバブルを発生することが可能であり、発生したナノバブルの殺菌能が確認された。よって、上記したように生成されたナノバブルの殺菌能を考慮して、種々の適用が可能である。一例として、ナノバブル水を飲料として、あるいはナノバブル水を使用する種々の洗浄装置を構成して提供することが可能である。
1 ナノバブル発生装置
2 ポット容器
3 電解質イオン水
10、23 AC/DCコンバータ
11L、11R 電極棒支持体
12 陽極側電極棒
13 陰極側電極棒
14、15 共通電極
20 バッテリ
21 制御指示部
22 制御部

Claims (5)

  1.  第1の種類の電極棒と、
     前記第1の種類の電極棒と異なる種類の第2の種類の電極棒を有し、
     前記第1の種類の電極棒と第2の種類の電極棒は、間隔を置いて並行に配置され、更に、
     前記第1の種類の電極棒と前記第2の種類の電極棒間に、直流電流を供給する電源を有し、
     前記第1の種類の電極棒と前記第2の種類の電極棒は、電解質イオン水中で前記電源により通電される、
     ことを特徴とする通電方式によるナノバブル発生装置。
  2.  請求項1において、
     前記第1の種類の電極棒と前記第2の種類の電極棒の少なくとも一方の電極棒を2本有し、
     前記第1の種類の電極棒と前記第2の種類の電極棒が、交互に並行に配置されている、
     ことを特徴とする通電方式によるナノバブル発生装置。
  3.  それぞれ一端側が共通電極に接続された複数の第1の種類の電極棒と前記第1の種類の電極棒と異なる種類の複数の第2の種類の電極棒を有し、
     前記複数の第1の種類の電極棒と前記複数の第2の種類の電極棒は、交互に間隔を置いて平行に配置され、更に、
     前記第1の種類の電極棒と第2の種類の電極棒に直流電流を供給する電源を有し、
     前記複数の第1の種類の電極棒と第2の種類の電極棒は、電解質イオン水中で前記電源により通電される、
     ことを特徴とする通電方式によるナノバブル発生装置。
  4.  一端側が共通電極に接続された複数の第1の種類の電極棒と、
     前記一端側と反対側で共通電極に接続された複数の第2の種類の電極棒を有し、
     前記複数の第1の種類の電極棒と前記複数の第2の種類の電極棒は、交互に平行に配置され前記一端側と反対側で絶縁体により固定され、更に、
     前記第1の種類の電極棒と第2の種類の電極棒に直流電流を供給する電源を有し、
     前記複数の第1の種類の電極棒と第2の種類の電極棒は、電解質イオン水中で前記電源により通電される、
     ことを特徴とする通電方式によるナノバブル発生装置。
  5.  請求項1乃至4のいずれか1項において、
     前記第1の種類の電極棒はチタンの電極棒で陽極側とし、前記第2の電極棒は少なくとも表面が白金で陰極側として直流電流が供給される、
     ことを特徴とする通電方式によるナノバブル発生装置。
PCT/JP2014/056964 2013-03-18 2014-03-14 通電方式によるナノバブル発生装置 WO2014148397A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506748A JP6252955B2 (ja) 2013-03-18 2014-03-14 ナノバブルによる殺菌方法及びこれに用いるナノバブルの発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-054768 2013-03-18
JP2013054768 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148397A1 true WO2014148397A1 (ja) 2014-09-25

Family

ID=51580081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056964 WO2014148397A1 (ja) 2013-03-18 2014-03-14 通電方式によるナノバブル発生装置

Country Status (2)

Country Link
JP (1) JP6252955B2 (ja)
WO (1) WO2014148397A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211213A (ja) * 2016-05-23 2017-11-30 メイク株式会社 ナノバブル発生確認装置
JP2018126690A (ja) * 2017-02-08 2018-08-16 ビーイー電子工業株式会社 通電方式によるナノバブル発生装置
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
WO2020079032A1 (en) 2018-10-15 2020-04-23 University College Dublin, National University Of Ireland, Dublin A system and method for the treatment of biogas and wastewater
CN111099701A (zh) * 2018-10-26 2020-05-05 添可智能科技有限公司 清洗机组件及清洗机
WO2023202990A1 (en) 2022-04-18 2023-10-26 English N Method and generator of producing solvated nanoclusters
KR102649121B1 (ko) 2023-07-21 2024-03-19 주식회사 에이피알 전기분해관을 포함하는 마이크로버블 클렌저

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095808A (ja) * 2003-09-26 2005-04-14 Shinwa Kogyo Kk 水素水製造用攪拌具
JP2009285647A (ja) * 2008-03-29 2009-12-10 Alpha Kikaku:Kk 溶液改質装置及び溶液改質方法
JP2012501385A (ja) * 2008-08-28 2012-01-19 テナント カンパニー 電解セル及び液体を通して点灯するインジケータライトを有する装置
JP2012096203A (ja) * 2010-11-05 2012-05-24 Shigeo Tochikubo 電解酸素マイクロナノバブル水生成器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
JP4080440B2 (ja) * 2004-03-05 2008-04-23 独立行政法人産業技術総合研究所 酸素ナノバブル水およびその製造方法
JP4495056B2 (ja) * 2005-09-14 2010-06-30 シャープ株式会社 超純水製造装置の殺菌装置
JP2007275089A (ja) * 2006-04-03 2007-10-25 Naga International Kk 長期持続型オゾン水、長期持続型オゾン水を利用した環境殺菌・脱臭浄化方法
JP4925215B2 (ja) * 2008-02-14 2012-04-25 独立行政法人産業技術総合研究所 芽胞細菌の殺菌乃至不活化方法
JP5390285B2 (ja) * 2009-07-13 2014-01-15 株式会社大日工業 ナノバブル発生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095808A (ja) * 2003-09-26 2005-04-14 Shinwa Kogyo Kk 水素水製造用攪拌具
JP2009285647A (ja) * 2008-03-29 2009-12-10 Alpha Kikaku:Kk 溶液改質装置及び溶液改質方法
JP2012501385A (ja) * 2008-08-28 2012-01-19 テナント カンパニー 電解セル及び液体を通して点灯するインジケータライトを有する装置
JP2012096203A (ja) * 2010-11-05 2012-05-24 Shigeo Tochikubo 電解酸素マイクロナノバブル水生成器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
JP2017211213A (ja) * 2016-05-23 2017-11-30 メイク株式会社 ナノバブル発生確認装置
JP2018126690A (ja) * 2017-02-08 2018-08-16 ビーイー電子工業株式会社 通電方式によるナノバブル発生装置
JP6993780B2 (ja) 2017-02-08 2022-01-14 ビーイー電子工業株式会社 通電方式によるナノバブル発生装置
WO2020079032A1 (en) 2018-10-15 2020-04-23 University College Dublin, National University Of Ireland, Dublin A system and method for the treatment of biogas and wastewater
WO2020079020A1 (en) 2018-10-15 2020-04-23 University College Dublin, National University Of Ireland, Dublin A system, method and generator for generating nanobubbles or nanodroplets
CN113272253A (zh) * 2018-10-15 2021-08-17 爱尔兰国家大学都柏林学院 用于处理沼气和废水的系统与方法
EP4299531A1 (en) 2018-10-15 2024-01-03 University College Dublin, National University of Ireland, Dublin A system and method for the treatment of biogas and wastewater
CN111099701A (zh) * 2018-10-26 2020-05-05 添可智能科技有限公司 清洗机组件及清洗机
CN111099701B (zh) * 2018-10-26 2022-06-21 添可智能科技有限公司 清洗机组件及清洗机
WO2023202990A1 (en) 2022-04-18 2023-10-26 English N Method and generator of producing solvated nanoclusters
KR102649121B1 (ko) 2023-07-21 2024-03-19 주식회사 에이피알 전기분해관을 포함하는 마이크로버블 클렌저

Also Published As

Publication number Publication date
JP6252955B2 (ja) 2017-12-27
JPWO2014148397A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6252955B2 (ja) ナノバブルによる殺菌方法及びこれに用いるナノバブルの発生装置
KR100346824B1 (ko) 고효율 전해수 제조 장치
JP5691023B1 (ja) 水素水製造装置
JP5070644B2 (ja) 還元水生成装置および還元水生成方法
WO2009157388A1 (ja) 殺菌方法および殺菌装置
JP2015116561A (ja) 液体処理装置及び液体処理方法
WO2011088598A1 (zh) 弱碱性负电位电解水制取装置及电解饮水机
US6929740B2 (en) Water purification system
CN107055708A (zh) 一种连续式生活用消毒保健水的制备装置
JPWO2015072049A1 (ja) 液体処理装置及び液体処理方法
JP5210455B1 (ja) 洗浄水生成装置
KR101903387B1 (ko) 전기를 이용하는 장치
WO2018100356A1 (en) Electrochemical cell assembly and method for operation of the same
WO2019064935A1 (ja) 除菌水生成装置及び水回り機器
KR20160127619A (ko) 부분 전원 제어 가능한 전해수 제조장치
KR20060007369A (ko) 고전기장 전해 전지
JP2009142797A (ja) 水中の微生物を殺減する装置及び水中の微生物を殺減する方法
KR20160002488U (ko) 전기분해를 이용한 살균수 생성장치
WO2019099034A1 (en) Portable hypochlorite-producing device powered with universal serial bus (usb) connector and method to produce hypochlorite
Umimoto et al. Development of device producing electrolyzed water for home care
TW200932956A (en) Configurable ozone generators
KR101070866B1 (ko) 전기분해 및 플라즈마 방전을 이용한 차아염소산소다 생성 장치
CN110482655A (zh) 一种一体式便携消毒装置
KR100253661B1 (ko) 고농도 오존수 제조장치
KR100607868B1 (ko) 전기분해 발생 코어가 병렬 연결되어 있는 오존발생기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769847

Country of ref document: EP

Kind code of ref document: A1