WO2011088598A1 - 弱碱性负电位电解水制取装置及电解饮水机 - Google Patents

弱碱性负电位电解水制取装置及电解饮水机 Download PDF

Info

Publication number
WO2011088598A1
WO2011088598A1 PCT/CN2010/000766 CN2010000766W WO2011088598A1 WO 2011088598 A1 WO2011088598 A1 WO 2011088598A1 CN 2010000766 W CN2010000766 W CN 2010000766W WO 2011088598 A1 WO2011088598 A1 WO 2011088598A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
electrolytic
negative potential
water
Prior art date
Application number
PCT/CN2010/000766
Other languages
English (en)
French (fr)
Inventor
肖志邦
Original Assignee
常州兰夫活特制水设备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州兰夫活特制水设备制造有限公司 filed Critical 常州兰夫活特制水设备制造有限公司
Publication of WO2011088598A1 publication Critical patent/WO2011088598A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing

Definitions

  • the invention relates to a device for preparing electrolyzed functional water, and belongs to the technical field of electrolyzed water devices.
  • Electrolyzed water refers to electrolytic oxidized water and electrolytically reduced water produced at the anode and cathode after direct current is supplied to the electrolytic vessel; electrolytic oxidized water contains more acid ions (H + ions), which is oxidizing, also called acid.
  • Electrolytically reduced water contains more hydroxide ions (0H-), which is reductive, also known as alkaline water.
  • H- hydroxide ions
  • a large number of researches at home and abroad and decades of application practice have proved that drinking electrolytically reduced water (weak alkali or medium alkali) is beneficial to health, especially the weakly alkaline electrolytically reduced water with negative redox potential is called “longevity water”. .
  • a large number of reports on electrolyzed water can be found in the existing knowledge (see “Shanghai Standardization”, No. 3, 1998, “Functional ionized water coming to us", or “Household appliances", No. 8, 2000, ⁇ Ionized water Builder>etc.).
  • the existing electrolyzed water machine commonly used in the market for producing electrolyzed functional water generally adopts a membrane electrolysis container structure, which is not only complicated in structure but also easily contaminated. There are many techniques in this area, and the present invention does not need to be introduced (see “Electrochemical Ionized Water and Its Generators", No. 12, 2002).
  • the applicant first applied for an electrolyzed water device using a diaphragmless electrolytic vessel structure, such as the disclosed Chinese patent: ZL200820183101. 7—a water dispenser with a sterilization function, ZL200820184175. 2—Electrolysis function water cup, ZL200820184176.
  • a portable electrolysis functional water preparation device These electrolyzed water devices have disclosed a diaphragmless electrolytic vessel structure The use of a micro-current generated by a DC pulse power source to electrolyze water, creating a new method and apparatus for producing electrolyzed water without a diaphragm electrolysis container.
  • the technical problem solved by the invention is as follows: A device and a water dispenser which are simple in structure and can quickly and efficiently produce a weakly alkaline negative redox potential electrolyzed water suitable for human consumption are proposed.
  • the first technical solution proposed by the present invention is: A weakly alkaline negative potential electrolyzed water preparation device, comprising an electrolytic vessel, a cathode and an anode placed in the electrolytic vessel, and electrically connected to the cathode and the anode A DC pulsed power source having a surface area greater than the surface area of the anode.
  • the cathode area is larger than the anode, the side reaction of the anion at the anode is more likely to affect the oxidation reaction of the hydroxide. Degree, and the side reaction generated by the cation at the cathode has a relatively small influence on the hydrogen radical, so that a weakly alkaline water can also be obtained.
  • Negative Redox Potential The transfer of energy during electrolysis is actually the transfer of electrons.
  • the high-voltage negative ion generator uses the principle of energy electron transfer to use a single electrode to emit negative ions into the air.
  • electrical energy is mainly converted into thermal energy that raises the temperature of the water and chemical energy that causes the electrochemical reaction of the water.
  • the electrode voltage also changes wavy, increasing the instantaneous voltage per unit time, which can increase the generation of chemical energy and reduce the heat energy consumption.
  • High chemical energy will cause electrons to accumulate in the water.
  • the hydrogen atoms in the water easily capture electrons to form a relatively stable hydride state at high voltage and high energy.
  • the redox potential of the water continues to decrease, eventually becoming a steady state negative potential water.
  • hydrogen attached to the cathode first forms hydrogen in its original state during the formation of molecules, that is, active hydrogen with electrons.
  • active hydrogen For water containing electrolytes, it is around the cathode due to electrolysis.
  • a large number of nano-sized metal particles are floated. These suspended metal particles have the property of adsorbing active hydrogen, and the active hydrogen adheres to the metal particles to form a relatively stable storage state.
  • the active hydrogen and the metal particles are only attached to each other without a reaction connection. Therefore, it maintains its original state (ie, ⁇ -).
  • the cathode area is larger than the anode, the reduced hydrogen attached to the cathode can be more fully contacted with the metal particles and adsorbed, so that more active hydrogen exists in the water. Steady state.
  • active hydrogen ( ⁇ -) moves in water to encounter hydrogen ions ( ⁇ +)
  • some of the active hydrogen reacts with hydrogen ions to reduce the amount of hydrogen ions ( ⁇ + ) in the water.
  • the weak alkaline negative potential electrolyzed water preparation device of the invention not only has a simple structure, but also can quickly and effectively produce a weakly alkaline negative redox potential electrolyzed water suitable for human consumption.
  • a modification of the above first aspect is that the orthographic projection of the anode in a plane perpendicular to the geometric center line of the cathode and anode is within the range of the orthographic projection of the cathode in the plane.
  • the inventors found in the above-mentioned key techniques that the sizes of the anode and the cathode are not equal, and found in further experiments that the orthographic projections of the anode and the cathode in a plane perpendicular to the geometric center line are superimposed on each other.
  • the orthographic projection of the anode in the plane is within the range of the orthographic projection of the cathode in the plane, it is more preferable to obtain a weakly basic and negative redox potential index of the electrolyzed water.
  • the effective reaction area of the electrode and the geometric area of the electrode are different. This is because the electrolysis reaction differs depending on the relative positions of the anode and the cathode. As shown in Fig.
  • a further improvement of the above first technical solution is that the ratio of the surface area of the anode to the cathode is 1:1.5 to 1:8; the distance between the anode and the cathode ranges from 4 mm to 1000 mm.
  • the present inventors have further summarized from numerous experiments that: when the ratio of the surface area of the anode to the cathode and the distance between the anode and the cathode satisfy the above-mentioned condition range, electrolyzed water which satisfies the indicators of weak alkalinity and negative redox potential can be obtained.
  • the DC pulse power supply is an adjustable DC pulse generator capable of outputting a waveform, amplitude, a duty ratio, and a power of a DC pulse voltage. According to a large number of experiments by the inventors of the present invention, the use of such a DC pulse power source can more effectively complete the preparation of a weakly alkaline negative redox potential electrolyzed water suitable for human consumption.
  • the anode is an inert electrode made of a titanium-based surface-plated inert material, and the inert material is a platinum group element oxide.
  • the second refinement of the first technical solution described above is that the projected areas of the cathode and the anode in a plane perpendicular to the line connecting the geometric center thereof are substantially the same, and the anode is uniformly distributed with a pass L.
  • the third refinement of the first technical solution described above is that the cathode and the anode are placed obliquely in the electrolytic vessel and form an angle with the inner side wall of the electrolytic vessel.
  • the fourth refinement of the above first technical solution is that the anode is a sphere and the cathode is a flat plate.
  • the fifth refinement of the above first technical solution is that the anode is an irregular approximate sphere, and the cathode is an irregular curved panel.
  • the anode is an irregular plate with a through hole
  • the cathode is a four-sided chamfered plate larger than the anode.
  • the seventh refinement of the first technical solution described above is that the anode is a cylinder located at the center of the electrolytic vessel, and the inner wall of the electrolytic vessel serves as a cathode.
  • the second technical solution derived from the above first technical solution of the present invention is: an electrolytic water dispenser comprising a weakly alkaline negative potential electrolyzed water preparation device, further comprising a water inlet and a water outlet a nozzle and a heating device connected in series to the water outlet;
  • the electrolytic container is a metal barrel, the inner wall of which serves as a cathode; and the anode is disposed at a center of the inside of the metal barrel.
  • the improvement of the above second technical solution is that the ratio of the surface area of the anode to the cathode is 1:6, and the distance between the anode and the cathode ranges from 30 mm to 1000 mm.
  • the metal barrel is a stainless steel metal barrel
  • the anode is a cylindrical annular inert electrode made of a titanium-based surface-plated inert material
  • the inert material is a platinum group element oxide.
  • FIG. 1 is a schematic view showing the structure of a first type of anode and cathode which is different from the weakly alkaline negative potential electrolyzed water preparation apparatus of the present invention.
  • Fig. 2 is a view showing the structure of a second type of anode and cathode placement which is different from the weakly alkaline negative potential electrolyzed water preparation apparatus of the present invention.
  • FIG. 3 is a schematic view showing the structure of a weakly alkaline negative potential electrolyzed water preparation device according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3 .
  • Fig. 5 is a schematic view showing the structure of a weak alkaline negative potential electrolyzed water preparation apparatus according to an embodiment of the present invention.
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 5 .
  • Fig. 7 is a schematic cross-sectional view showing the structure of a three-weak alkaline negative potential electrolyzed water preparation device according to an embodiment of the present invention.
  • Fig. 8 is a structural schematic view showing a fourth weak alkaline negative potential electrolyzed water preparation device according to an embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a five-weak alkaline negative potential electrolyzed water preparation device according to an embodiment of the present invention.
  • Fig. 10 is a schematic view showing the structure of a six-weak alkaline negative potential electrolyzed water preparation apparatus according to an embodiment of the present invention.
  • Figure 11 is a schematic cross-sectional view showing the structure of a weakly alkaline negative potential electrolyzed water preparation device according to a seventh embodiment of the present invention.
  • Fig. 12 is a view showing the construction of an apparatus for a weakly alkaline negative potential electrolyzed water preparation apparatus according to an eighth embodiment of the present invention.
  • Figure 13 is a schematic view showing the structure of a nine-electrolytic water dispenser according to an embodiment of the present invention.
  • the weakly alkaline negative potential electrolyzed water preparation device of the present embodiment includes an electrolytic vessel 1, a cathode 2 and an anode 3 placed in the electrolytic vessel 1, and an anode 2 and an anode 3 electrically connected thereto.
  • DC pulse power supply 4 The electrolytic vessel 1 is made of a non-conductive material, and both the cathode 2 and the anode 3 are flat and are inert electrodes made of an inert material of a platinum group element oxide such as platinum, rhodium or ruthenium on the surface of the titanium, cathode and anode. 3 is placed in the electrolytic vessel 1 in parallel with the side wall of the electrolytic vessel 1.
  • the surface area of the cathode 2 is larger than the surface area of the anode 3, wherein the ratio of the surface area of the anode 3 to the cathode 2 is 1:1.5, and the anode 3 is positive in a plane perpendicular to the geometric center line of the cathode 2 and the anode 3.
  • the projection is within the range of the orthographic projection of the cathode 2 in this plane.
  • the ideal range of the distance between the anode 3 and the cathode 2 is 80 mm - 300 mm.
  • the DC pulse power supply 4 is an adjustable DC pulse generator whose output DC pulse voltage can be adjusted in waveform, amplitude, duty ratio and power.
  • the weakly alkaline negative potential electrolyzed water preparation device of the present embodiment is an improvement on the basis of the first embodiment.
  • the cathode 2 and the anode 3 are different.
  • the projected area in a plane perpendicular to the line connecting its geometric center is basically the same,
  • the anode 3 is formed with a uniformly dense through hole 5, and the ratio of the surface area of the anode 3 to the cathode 2 is 1:5 (the surface area of the anode 3 in this embodiment means the surface area remaining after the removal of the through hole 5).
  • the ideal range of the distance between the anode 3 and the cathode 2 is 10 mm to 450 ⁇ .
  • This embodiment is an improvement on the basis of the second embodiment. As shown in FIG. 7, except for the same as the second embodiment, the difference is that the through holes 5 on the anode 3 are larger and denser, so that the anode 3 and the cathode 2 are The surface area ratio is 1:8 (the surface area of the anode 3 in this embodiment means the surface area remaining after the via 5 is removed). At this time, according to the experimental calculation, the ideal range of the distance between the anode 3 and the cathode 2 is 4 mm to 600 mm.
  • the weakly alkaline negative potential electrolyzed water preparation device in the above three embodiments was separately prepared from the electrolyzed water device having the same cathode and anode surface area, and the main experimental conditions were as follows:
  • the electrolytic vessels 1 in the three embodiments are 180 mm X 130 ram X 130 mm in a square plastic container, about 3 liters, and the actual water injection volume is 2200 ml.
  • the cathode and the anode electrodes 2 and 3 are respectively placed near the inner walls of both sides of the electrolytic vessel 1.
  • the surface area of the anode 3 is 150 cm 2 , and the distance between the cathode 2 and the anode 3 is maintained at 180 mm;
  • DC pulse power supply adopts variable pulse width DC pulse power supply, the output peak voltage range is 0-220V, and the output peak DC current range is 0-500 mA, where:
  • the water in the electrolytic vessel 1 will be completed after each water cycle is completed. Pour out to the outer container, stir well and let stand for 2 minutes before measuring PH and 0RP (abbreviation of Oxidation-Reduction Potential, which indicates the redox potential of the solution), and compare the pH value with litmus reagent.
  • PH and 0RP abbreviation of Oxidation-Reduction Potential
  • This embodiment is a variation based on the first embodiment.
  • the structure is basically the same as that of the first embodiment, and the variation is as follows: the cathode 2 and the anode 3 are placed obliquely in the electrolytic container 1, two The electrode plate forms an angle with the inner side wall of the electrolytic vessel 1.
  • This embodiment is another variation based on the first embodiment. As shown in Fig. 9, the structure is basically the same as that of the first embodiment, and the variation is that the anode 3 is a sphere and the cathode 2 is a flat plate.
  • This embodiment is another variation based on the first embodiment. As shown in FIG. 10, the structure is basically the same as that of the first embodiment. The variation is that the anode 3 is irregular and approximately spherical, and the cathode 2 is not. The curved shape of the rule.
  • This embodiment is a variation on the basis of the third embodiment.
  • the structure is basically the same as that of the third embodiment, and the variation is: the anode 3 is an irregular flat plate with a through hole 5, and the cathode 2 is a plate shape slightly larger than the four sides of the anode 3 with chamfers.
  • This embodiment is a variation based on the above embodiments. As shown in Fig. 12, the structure is the same as that of the above embodiments, and the variation is that the anode 3 is located in the electrolytic capacity.
  • the cylinder at the center of the device 1 is made of a conductive material, and the inner wall of the electrolytic vessel 1 serves as a cathode 2.
  • the inventors of the present invention conducted the experiments of the five weakly alkaline negative potential electrolyzed water preparation apparatuses of the above-mentioned Embodiments 4 to 8 according to the experimental methods of the first to third embodiments, and the results obtained by the experiment are the same as those of the foregoing embodiment 1 to the implementation.
  • the experimental results of the third example are similar, and will not be repeated here.
  • the present embodiment is an electrolytic water dispenser improved on the basis of the above-mentioned eighth embodiment.
  • the electrolytic water dispenser includes the weak alkaline negative potential electrolyzed water preparation device of the above embodiment. ) further comprising a water inlet 6, a water outlet 7 and a heating device 8 connected in series to the water outlet 7; 2) the electrolytic container 1 is a stainless steel metal barrel having an inner wall serving as a cathode 2; 3) the anode 3 is platinized by a titanium-based surface a cylindrical annular inert electrode made of an inert material of a platinum group element oxide such as ruthenium or osmium.
  • the anode 3 is installed in the center of the inside of the stainless steel metal barrel; 4)
  • the ratio of the surface area of the anode 3 to the cathode 2 is 1:6 (
  • the surface area of the anode 3 of the present embodiment includes the entire surface area exposed to contact with water, and the surface area of the cathode 2 is the area of the inner wall of the stainless steel metal barrel.
  • the ideal range of the distance between the anode 3 and the cathode 2 is 30 mm - 1000 mm. .
  • the water dispenser casing can be omitted to reduce the product cost; the stainless steel metal barrel itself is a large-capacity water storage bucket, which can save the external water storage tank of the water dispenser.
  • the inner wall of the stainless steel metal barrel also serves as a cathode electrode, which can avoid the problem of excessive precipitation of heavy metals which is difficult to solve by conventional water dispensers.
  • the electrolytic water dispenser of the present embodiment may be a commercially available bottled water (pure water or mineral water) in China, or may be used as a source water in the city of China.
  • the heating device of the electrolytic water dispenser provides normal temperature water according to the user's needs or provides hot water or boiling water immediately.
  • the electrolytic water dispenser of the embodiment adopts typical experimental data of the above three source waters respectively.
  • Table 4 In Table 4:
  • the electrolytic water dispenser of the present embodiment can prepare electrolyzed water suitable for human consumption which satisfies the standard of the basic value and the redox potential value.
  • the industrial standard for electrolytic water machine (CAS 124-2007) on April 30, 2007 limits the pH value of alkaline electrolyzed water 7. 0 ⁇ 9. 5, 0RP ⁇ 0mV, China National Standard (GB 5749-2006) 5 ⁇
  • the pH is not less than 6.5 and not more than 8.5.
  • the electrolytic water dispenser of the present embodiment in the activation operation, calcium and magnesium ions in the source water are constantly moved toward the cathode, and adhered to the inner wall of the stainless steel metal can as the electrolytic container 1, so that the hardness of the water is lowered.
  • the polarity of the anode and cathode can be reversed so that the voltage applied to the inner wall of the stainless steel metal barrel as the cathode 2 is positive, and the voltage on the anode 3 is negative, so that the metal can be attached to the stainless steel.
  • the scum is peeled off and discharged through the sewage outlet 9.
  • the electrode for preparing functional water of the present invention is not limited to the specific technical solutions described in the above embodiments, for example: the anode, the anode 2, and the 3 are not necessarily made of an inert material such as platinum-plated, tantalum or niobium on the titanium-based surface.
  • the inert electrode may also be a non-inert electrode made of a common metal material (such as copper, aluminum, stainless steel, etc.) coated with other metal materials, but from the viewpoint of drinking water safety, the anode 3 is preferably made of the above inert electrode; . Any technical solution formed by equivalent replacement is the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

说 明 书
弱碱性负电位电解水制取装置及电解饮水机 技术领域
本发明涉及一种用于制取电解功能水的装置, 属于电解水装置技 术领域。
背景技术
功能水是通过适当的手段, 在特定的条件下, 将外部的能量, 例 如机械能、 磁能、 电能、 远红外热能等作用于普通水, 改变水的分子 团结构使之具有有益功能的一类水的统称。 目前得到普遍公认而且唯 一有标准可执行的是电解功能水, 俗称电解水或离子水。 电解水是指 在电解容器中通入直流电后, 在阳极与阴极所产生的电解氧化水和电 解还原水; 电解氧化水含有较多的酸根离子 (H +离子), 具有氧化性, 又称酸性水, 电解还原水含有较多的氢氧根离子 (0H— ), 具有还原性, 又称碱性水。 国内外大量研究与数十年应用实践证明, 饮用电解还原 水 (弱碱或中碱)有益于养生, 尤其是具有负氧化还原电位的弱碱性电 解还原水更是被称为 "长寿水"。 现有知识中有关于电解水的大量报道 可资参考(参见《上海标准化》 1998年第 3期的 <功能离子水向我们走 来>, 或《家用电器》 2000年第 8期的 <离子水生成器 >等)。
市面上常见用于制取电解功能水的现有电解水机, 一般采用有隔 膜电解容器结构, 不仅结构复杂, 而且膜容易被污染。 这方面的技术 现有很多, 本发明也无需多作介绍 (参见 《化学通报》 2002年第 12 期的 <电解离子水及其生成器>等)。
本申请人在先申请了采用无隔膜电解容器结构的电解水装置, 如 已公开的中国专利: ZL200820183101. 7—种具有杀菌功能的饮水机、 ZL200820184175. 2—种电解功能水杯、 ZL200820184176. 7一种便携式 电解功能水制备器。 这些已公开无隔膜电解容器结构的电解水装置由 于采用了直流脉冲电源产生的微电流对水进行电解, 开创了无隔膜电 解容器制取电解水的新方法和装置。 这些已公开的电解水装置虽然可 以实现无隔膜电解水, 但是, 一是受到微电流范围的限制, 导致控制 电路过于复杂和成本高; 二是制取电解水时间过长, 导致无法快速有 效地制取适宜人饮用的弱碱性负氧化还原电位的电解水。
发明内容
本发明解决的技术问题是: 提出一种结构简单并能快速有效制取 适宜人饮用的弱碱性负氧化还原电位电解水的装置及饮水机。
为了解决上述技术问题, 本发明提出的第一技术方案是: 一种弱 碱性负电位电解水制取装置, 包括电解容器, 置于电解容器内的阴极 和阳极, 以及与阴极和阳极电连接的直流脉冲电源, 所述阴极的表面 积大于阳极的表面积。
本发明的弱碱性负电位电解水制取装置的有益效果可以用本文后 面实施例的实验数据来证实, 同时可以用本发明人经深入研究后得出 的以下理论分析来加以说明:
1、 弱碱性的形成
水通电后产生电解反应, 反应式是: 0=H++0H―, 电解反应产生的 氢根 (H+)和氢氧根(0H— )分别在阴极和阳极发生还原反应和氧化反 应, 生成的氧气和氢气会分别附着在阳极和阴极。 由于氢键比氢氧键 更容易打开而形成氢气, 这样当阴极面积大于阳极时, 就更有利于析 氢反应的发生, 而阳极相对阴极面积小则会导致阳极的电解反应不够 充分; 最终导致水中氢氧根的生成大于氢根的生成而使电解后的水整 体显示弱碱性。 即使对于含有电解质的水 (如自来水或含矿物质的纯 水)来说, 在电解时, 水中的阴离子如 (C1—)移向阳极发生氧化反应, 而阳离子 (Ca2+、 Mg2+、 Na )移向阴极发生还原反应, 由于阴极面积大 于阳极, 阴离子在阳极产生的副反应更容易影响氢氧根的氧化反应程 度, 而阳离子在阴极产生的副反应对氢根影响相对要小, 因此同样可 以得到弱碱性的水。
2、 负氧化还原电位的形成- 电解时能量的转移实际上是电子的转移, 如高电压负离子发生器 即是利用能量电子转移的原理来利用单电极向空气中发射负离子。 在 水电解时, 电能主要转化为使水温度升高的热能和使水发生电化学反 应的化学能。 当用脉冲电流电解时, 电极电压也随之发生波状变化, 提高了单位时间瞬间电压, 可以提高化学能产生而降低热能消耗。 高 化学能则会使水中电子聚集, 此时水中的氢原子在高电压高能量情况 下容易夺得电子形成相对稳定的氢负离子态。 随着水中氢负离子的不 断积聚, 使水的氧化还原电位持续降低, 最终成为稳定态的负电位水。
此外, 水电解时, 附着在阴极的氢在形成分子的过程中会先形成 原始状态的氢, 也就是带电子的活性氢(ίΟ。 对于含有电解质的水来 说, 会因电解而在阴极周围浮游很多纳米级金属微粒。 这些悬浮的金 属微粒具有吸附活性氢的性能, 活性氢就会附着在金属微粒上形成相 对稳定的存储状态。 活性氢与这些金属微粒只是相互附着并无发生反 应连接。 因此仍保持其的原始状态(即 Η—)。 当阴极面积大于阳极时, 可以使附着在阴极的还原氢能更充分地与金属微粒接触并发生吸附反 应, 从而使水中存在更多的活性氢稳定态。 当活性氢(Η—)在水中运动 遇到氢离子 (Η+), 部分活性氢就会与氢离子发生反应而使水中的氢离 子(Η+)数量减少。
综合以上理论分析, 可以得出: 本发明的弱碱性负电位电解水制 取装置, 不仅结构简单, 而且能够快速有效制取适宜人饮用的弱碱性 负氧化还原电位电解水。
值得一提的是: 以上理论分析从现有理论是无法得到任何有关启 示的; 恰恰相反, 现有的普遍认识是: 阴、 阳两电极面积大小不等是 根本制不出有用的弱碱性负氧化还原电位电解水的。 在本发明之前的 电解水领域尚缺乏足够的理论指导情况下, 为了突破现有技术无法简 单、 快速、 有效制取弱碱性负氧化还原电位电解水的瓶颈, 本发明人 进行了长期的反复实验, 最终找到阴、 阳两电极面积大小不等这一事 后看似容易, 但事前却难以想象并需经历艰辛实验过程方能得到的认 识和灵感。 这就足以证明本发明的弱碱性负电位电解水制取装置不是 显而易见就能得到的。
上述第一技术方案的改进是: 所述阳极在与所述阴极和阳极的几 何中心连线相垂直的平面内的正投影位于所述阴极在所述平面内的正 投影的范围之内。
本发明人在找到上述阴、 阳两电极面积大小不等这一关键技术后, 在进一步实验中发现, 当阳极和阴极在与其几何中心连线相垂直的平 面内的正投影彼此包围重合的情况下 (即阳极在该平面内的正投影位 于阴极在该平面内的正投影的范围之内的情况下), 制取电解水的弱碱 性和负氧化还原电位指标更为理想。 在此需要强调说明的是: 电极的 有效反应面积和电极的几何面积是有区别的。 这是因为电解反应会因 阴、 阳两极的相对位置不同而不同。 如图 1所示, 当面积大小不同的 阴、 阳两电极之间只是平行错开放置时, 电解反应主要是在两电极在 与其几何中心连线相垂直的平面内相互重合的部分之间发生 (电流只 沿阻抗最小路径流通),这样阴、阳两电极的有效反应面积仍然趋于 1 : 1。
上述第一技术方案的进一步改进是: 所述阳极与阴极的表面积之 比是 1 : 1. 5〜1: 8; 所述阳极与阴极的间距的范围是 4mm-1000mm。
本发明人又从无数实验中总结出: 阳极与阴极的表面积之比和阳 极与阴极的间距同时满足上述条件范围时, 能够制取满足弱碱性和负 氧化还原电位指标的电解水。 需要强调说明的是: 如图 2所示, 当表 面积大小不同的阴、 阳两电极之间的间距超出上述条件范围时, 两极 板边缘出现倾角 α, 仍然会出现阴、 阳两电极的有效反应面积不等同 于其几何面积比的情况; 对于电导率较高的源水 (例如北方城市自来 水) 来说, 保持合适的阳极与阴极表面积之比和阳极与阴极的间距尤 为重要。
上述第一技术方案的再进一步改进是: 所述直流脉冲电源是输出 直流脉冲电压的波形、 幅值、 占空比、 功率均可调节的可调直流脉冲 发生器。 经过本发明的发明人大量实验得出, 采用这种直流脉冲电源 可以更有效地完成制取适宜人饮用的弱碱性负氧化还原电位电解水。
上述第一技术方案的更进一步改进是: 所述阳极是由钛基表面镀 惰性材料制成的惰性电极, 所述惰性材料是铂族元素氧化物。
上述第一技术方案的细化之一是: 所述阴极和阳极均是与电解容 器侧壁平行放置在电解容器内的平板。
上述第一技术方案的细化之二是: 所述阴极和阳极在与其几何中 心连线相垂直的平面内的投影面积基本相同, 所述阳极上制有均匀密 布通孑 L。
上述第一技术方案的细化之三是: 所述阴极和阳极倾斜放置在电 解容器内并与电解容器内侧壁形成一夹角。
上述第一技术方案的细化之四是: 所述阳极是球体, 所述阴极是 平板。
上述第一技术方案的细化之五是: 所述阳极是不规则的近似球体, 所述阴极是不规则的曲面板。
上述第一技术方案的细化之六是: 所述阳极是带有通孔的不规则 平板, 所述阴极是大于阳极的四边带倒角的平板。
上述第一技术方案的细化之七是: 所述阳极是位于电解容器中央 处的圆柱体, 所述电解容器的内壁作为阴极。 为了解决上述技术问题, 本发明在上述第一技术方案的基础上所 衍生的第二技术方案是: 一种电解饮水机, 包括弱碱性负电位电解水 制取装置, 还包括进水口、 出水口和串接于出水口的加热装置; 所述 电解容器是金属桶, 其内壁作为阴极; 所述阳极安置在所述金属桶内 部正中央。
上述第二技术方案的改进是: 所述阳极与阴极的表面积之比是 1 : 6, 所述阳极与阴极的间距的范围是 30mm— 1000mm。
上述第二技术方案的进一步改进是: 所述金属桶是不锈钢金属桶, 所述阳极是由钛基表面镀惰性材料制成的圆柱环状惰性电极, 所述惰 性材料是铂族元素氧化物。
附图说明
下面结合附图对本发明弱碱性负电位电解水制取装置及电解饮水 机作进一步说明。
图 1 是说明不同于本发明弱碱性负电位电解水制取装置的第一种 阴阳极放置情况的结构示意图。
图 2是说明不同于本发明弱碱性负电位电解水制取装置的第二种 阴阳极放置情况的结构示意图。
图 3是本发明实施例一弱碱性负电位电解水制取装置结构示意图。 图 4是图 3的 A- A向截面图。
图 5是本发明实施例二弱碱性负电位电解水制取装置的结构示意 图。
图 6是图 5的 B-B向截面图。
图 7是本发明实施例三弱碱性负电位电解水制取装置的截面结构 示意图。
图 8是本发明实施例四弱碱性负电位电解水制取装置的结构示意 图。 图 9是本发明实施例五弱碱性负电位电解水制取装置的结构示意 图。
图 10是本发明实施例六弱碱性负电位电解水制取装置的结构示意 图。
图 11是本发明实施例七弱碱性负电位电解水制取装置的截面结构 示意图。
图 12是本发明实施例八弱碱性负电位电解水制取装置的结构示意 图。
图 13是本发明实施例九电解饮水机的结构示意图。
具体实施方式
实施例一
本实施例的弱碱性负电位电解水制取装置, 如图 3和图 4所示, 包括电解容器 1、 置于电解容器 1内的阴极 2和阳极 3、 电连接阴极 2 和阳极 3的直流脉冲电源 4。 电解容器 1采用非导电材质制成, 阴极 2 和阳极 3均呈平板状并均是由钛基表面镀铂、 铱或钌等铂族元素氧化 物的惰性材料制成的惰性电极, 阴极和阳极 3与电解容器 1的侧壁平 行放置在电解容器 1内。 阴极 2的表面积大于阳极 3的表面积, 其中, 阳极 3与阴极 2彼此的表面积之比是 1 : 1. 5, 阳极 3在与阴极 2和阳 极 3的几何中心连线相垂直的平面内的正投影位于阴极 2在该平面内 的正投影的范围之内。 此时根据实验测算, 阳极 3与阴极 2的间距的 理想范围是 80mm-300mm。直流脉冲电源 4是输出直流脉冲电压的波形、 幅值、 占空比、 功率均可调节的可调直流脉冲发生器。
实施例二
本实施例的弱碱性负电位电解水制取装置是在实施例一基础上的 改进, 如图 5和图 6所示, 除与实施例一相同以外所不同的是: 阴极 2 和阳极 3在与其几何中心连线相垂直的平面内的投影面积基本相同, 但阳极 3上制有均匀密布通孔 5, 阳极 3与阴极 2的表面积之比是 1 : 5 (本实施例阳极 3表面积是指去除通孔 5后所余的表面积)。 此时实 验测算, 阳极 3与阴极 2的间距的理想范围是 10mm- 450蘭。
实施例三
本实施例是在实施例二基础上的改进, 如图 7所示, 除与实施例 二相同以外所不同的是: 阳极 3上的通孔 5更大更密集,从而使阳极 3 与阴极 2的表面积之比为 1 : 8 (本实施例阳极 3的表面积是指去除通 孔 5后所余的表面积)。 此时根据实验测算, 阳极 3与阴极 2的间距的 理想范围是 4mm-600mm。
将上述三个实施例中的弱碱性负电位电解水制取装置与采用阴极 和阳极表面积相同的电解水装置分别进行制取电解水实验, 主要实验 条件是:
1 )选用中国市售娃哈哈牌瓶装纯净水、 中国市售农夫山泉牌瓶装 矿泉水和中国南京市供自来水三种水源;
2 )三个实施例中的电解容器 1均为方形塑料容器 180mmX 130ram X 130mm, 约 3升,实际注水容积 =2200ml, 阴、 阳两电极 2、 3分别放 置在电解容器 1两侧内壁附近, 阳极 3的表面积 150cm2,并保持阴极 2和阳极 3的间距 180mm;
3 )直流脉冲电源采用可变脉宽的直流脉冲电源, 输出峰值电压范 围 0-220V, 输出峰值直流电流范围 0-500毫安,其中: A. 实验源水为 娃哈哈牌纯净水时, 保持最大输出峰值电压 220V, 制水周期均为 30 分钟,期间电解平均电流从 I=3mA-60mA变化不等(由于纯水电导率低, 电流从开始到稳定有一波动范围); B.实验源水为农夫山泉牌矿泉水 时, 制水周期均为 15分钟, 保持电解平均电流 I=80mA; C.实验源水为 南京市供自来水时,制水周期均为 5分钟,保持电解平均电流 I=150mA;
4)为使实验结果准确, 每一制水周期完成后将电解容器 1中水全 部倒出至外部容器, 充分搅拌并静置 2 分钟再测量 PH 及 0RP 值 (Oxidation-Reduction Potential的缩写,它表示溶液的氧化还原电 位) ,用石蕊试剂对比检测 PH值。
实验结果如下表 1-表 3:
Figure imgf000011_0001
Figure imgf000011_0002
从表 1-表 3可见:
( 1 ) 随着阳极与阴极表面积比值的增大, 所制取电解水的 PH值 和氧化还原负电位 (0RP) 值也增加, 不同源水水质 (如电导率不同) 均是如此;
(2)对于自来水, 水中所含离子情况十分复杂, 可能会发生各种 副反应, 水解生成碱性物质, 因此当阳极与阴极表面积相等时, 也可 能有一定弱碱性和 0RP值, 但远不如阳极与阴极不等比表面积时效果 明显。
实施例四
本实施例是在实施例一基础上的一种变化, 如图 8所示, 其结构与 实施例一基本相同, 变化之处在于: 阴极 2、 阳极 3在电解容器 1内是倾 斜放置, 两电极板与电解容器 1内侧壁形成一夹角。
实施例五
本实施例是在实施例一基础上的另一种变化, 如图 9所示, 其结构 与实施例一基本相同, 变化之处在于: 阳极 3是球体, 阴极 2是平板状。 实施例六
本实施例是在实施例一基础上的又一种变化, 如图 10所示, 其结 构与实施例一基本相同,变化之处在于:阳极 3是不规则的近似球体状, 阴极 2是不规则的曲面板状。
实施例七
本实施例是在实施例三基础上的一种变化, 如图 11所示, 其结构 与实施例三基本相同, 变化之处在于: 阳极 3是带有通孔 5的不规则平 板状, 阴极 2是略大于阳极 3的四边带倒角的平板状。
实施例八
本实施例是在上述各实施例基础上的一种变化, 如图 12所示, 其 结构除与上述各实施例相同以外, 变化之处在于: 阳极 3是位于电解容 器 1中央处的圆柱体, 电解容器 1采用导电材料制作, 电解容器 1的内壁 作为阴极 2。
本发明的发明人将上述实施例四至实施例八的五种弱碱性负电位 电解水制取装置按照前述实施例一至实施例三的实验方法分别进行实 验, 实验所得结果与前述实施例一至实施例三的实验结果大同小异, 在此不再赘述。
实施例九
本实施例是在上述实施例八基础上改进而来的一种电解饮水机, 如图 13所示, 该电解饮水机除包括上述实施例的弱碱性负电位电解水 制取装置以外, 1 )还包括进水口 6、 出水口 7和串接于出水口 7上的 加热装置 8; 2) 电解容器 1是不锈钢金属桶, 其内壁作为阴极 2; 3) 阳极 3是由钛基表面镀铂、 铱或钌等铂族元素氧化物的惰性材料制成 的圆柱环状惰性电极, 阳极 3安装在不锈钢金属桶体内部正中央; 4) 阳极 3与阴极 2的表面积之比是 1 : 6 (本实施例阳极 3的表面积包括 裸露在外与水接触的全部表面积, 阴极 2的表面积是不锈钢金属桶内 壁的面积), 此时根据实验测算, 阳极 3与阴极 2的间距的理想范围是 30mm- 1000mm。
由于不锈钢金属桶体具有很好的机械强度和外表面装饰性, 可以 省去饮水机外壳以降低产品成本; 不锈钢金属桶本身又是一个大容量 的储水桶, 可以省去饮水机外部储水罐; 尤其是, 对于制取弱碱性负 电位小分子团饮用水, 不锈钢金属桶内壁兼作为阴极电极, 可以避免 常规饮水机 (热胆) 难以解决的重金属析出超标问题。
本实施例的电解饮水机可以采用中国市售桶装水 (纯净水或矿泉 水), 也可以是中国市供自来水作为源水。 电解饮水机的加热装置根据 用户需要提供常温水或即时提供热水或开水。
本实施例的电解饮水机分别采用上述三种源水的典型实验数据示 于表 4:
表 4
Figure imgf000014_0001
从表 4可以看出, 本实施例的电解饮水机可以制取碱性值和氧化 还原电位值完全满足标准的适宜人饮用的电解水。 注: 2007年 4月 30 日出台的电解制水机行业标准 (CAS 124-2007) 限定碱性电解水的 pH 值 7. 0〜9. 5、 0RP<0mV, 中国国家标准(GB 5749—2006)规定 PH值 不小于 6. 5且不大于 8. 5。
本实施例的电解饮水机, 电解容器 1在活化工作中, 源水中的钙 镁离子等不断移向阴极, 附着在作为电解容器 1 的不锈钢金属桶内壁 上, 使得水的硬度得以降低。 当完成若干制水周期后, 可以倒换阴阳 极的极性, 使施加在作为阴极 2的不锈钢金属桶内壁上的电压为正, 而阳极 3上的电压为负, 这样就可以使附着在不锈钢金属桶内壁上的 浮垢剥离下来, 经排污口 9排出。
本发明的用于制取功能水的电极不局限于上述实施例所述的具体 技术方案, 比如: 阴、 阳极 2、 3不一定是由钛基表面镀铂、 铱或钌等 惰性材料制成的惰性电极, 也可以是由普通金属材料 (如铜、 铝、 不 锈钢等)表面镀其他金属材料制成的非惰性电极, 但从饮水安全角度 考虑, 阳极 3最好采用上述惰性电极; 等等。 凡采用等同替换形成的 技术方案均为本发明要求的保护范围。

Claims

权 利 要 求 书
1、 一种弱碱性负电位电解水制取装置, 包括电解容器, 置于电解 容器内的阴极、 阳极, 以及与阴极、 阳极电连接的直流脉冲电源, 其 特征在于:所述阴极的表面积大于阳极的表面积。
2、 根据权利要求 1所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阳极在与所述阴极、 阳极的几何中心连线相垂直的平面内的 正投影位于所述阴极在所述平面内的正投影的范围之内。
3、 根据权利要求 2所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阳极与阴极的表面积之比是 1: 1. 5〜1: 8; 所述阳极与阴极 的间距的范围是 4mm- 1000騰。
4、 根据权利要求 3所述弱碱性负电位电解水制取装置, 其特征在 于: 所述直流脉冲电源是输出直流脉冲电压的波形、 幅值、 占空比、 功率均可调节的可调直流脉冲发生器。
5、 根据权利要求 1-4之任一所述弱碱性负电位电解水制取装置, 其特征在于: 所述阳极是由钛基表面镀惰性材料制成的惰性电极, 所 述惰性材料是铂族元素氧化物。
6、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阴极、 阳极均是与电解容器侧壁平行放置在电解容器内的平 板。
7、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阴极、 阳极在与其几何中心连线相垂直的平面内的投影面积 基本相同, 所述阳极上制有均匀密布通孔。
8、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阴极、 阳极倾斜放置在电解容器内并与电解容器内侧壁形成 一夹角。
9、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阳极是球体, 所述阴极是平板。
10、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征在 于: 所述阳极是不规则的近似球体, 所述阴极是不规则的曲面板。
11、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征 在于: 所述阳极是带有通孔的不规则平板, 所述阴极是大于阳极的四 边带倒角的平板。
12、 根据权利要求 5所述弱碱性负电位电解水制取装置, 其特征 在于: 所述阳极是位于电解容器中央处的圆柱体, 所述电解容器的内 壁作为阴极。
13、 一种电解饮水机, 其特征在于: 包括权利要求 1-4之任一所 述弱碱性负电位电解水制取装置, 还包括进水口、 出水口和串接于出 水口的加热装置; 所述电解容器是金属桶, 其内壁作为阴极; 所述阳 极安置在所述金属桶内部正中央。
14、 根据权利要求 13所述弱碱性负电位电解水制取装置, 其特征 在于: 所述阳极与阴极的表面积之比是 1 : 6, 所述阳极与阴极的间距 的范围是 30mm- 1000mm 。
15、 根据权利要求 14所述弱碱性负电位电解水制取装置, 其特征 在于: 所述金属桶是不锈钢金属桶, 所述阳极是由钛基表面镀惰性材 料制成的圆柱环状惰性电极, 所述惰性材料是铂族元素氧化物。
PCT/CN2010/000766 2010-01-25 2010-05-31 弱碱性负电位电解水制取装置及电解饮水机 WO2011088598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010105001.4 2010-01-25
CN201010105001A CN101759252A (zh) 2010-01-25 2010-01-25 弱碱性负电位电解水制取装置及电解饮水机

Publications (1)

Publication Number Publication Date
WO2011088598A1 true WO2011088598A1 (zh) 2011-07-28

Family

ID=42490659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000766 WO2011088598A1 (zh) 2010-01-25 2010-05-31 弱碱性负电位电解水制取装置及电解饮水机

Country Status (2)

Country Link
CN (3) CN101759252A (zh)
WO (1) WO2011088598A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120441A1 (pt) * 2020-12-09 2022-06-16 Duvoisin Charles Adriano Equipamento e método para eletroenergização de fluidos por armadilha de elétrons direcionada, recipiente para fluidos eletroenergizados, fluido eletroenergizado e uso de fluido eletroenergizado
WO2024055081A1 (pt) * 2022-09-12 2024-03-21 Duvoisin Charles Adriano Equipamento e método produtor eletrossensorial de fuidos e alimentos através de armadilhas de elétrons direcionadas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759252A (zh) * 2010-01-25 2010-06-30 肖志邦 弱碱性负电位电解水制取装置及电解饮水机
CN102452705A (zh) * 2010-10-28 2012-05-16 深圳安吉尔饮水产业集团有限公司 可回收弱酸水的电解饮水机
CN102259957A (zh) * 2011-07-28 2011-11-30 成都凯迈科技有限公司 一种污水处理电解池
CN102901208A (zh) * 2012-10-15 2013-01-30 叶凝雯 光能热水器
WO2014102865A1 (en) * 2012-12-27 2014-07-03 Osaka Electro-Communication University Device and method for producing electrolyzed liquid
WO2014132294A1 (en) 2013-03-01 2014-09-04 Osaka Electro-Communication University Device and method for producing electrolyzed liquid
CN105439254A (zh) * 2015-12-21 2016-03-30 南京沁尔心环保科技有限公司 一种电解水容器
CN106430450B (zh) * 2016-11-24 2024-01-02 付明平 正负极片相对位置可调的生活水电解装置
CN106587283A (zh) * 2016-12-15 2017-04-26 中建水务(深圳)有限公司 过滤器及控制方法
CN108706688A (zh) * 2018-05-28 2018-10-26 佛山市顺德区悍高五金制品有限公司 一种应用于水槽的电解装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615764A (en) * 1994-10-18 1997-04-01 Satoh; Yukimasa Electrolytic ionized water producer
CN1608033A (zh) * 2001-11-02 2005-04-20 姜松植 利用电解的水净化器
WO2006112065A1 (ja) * 2005-03-30 2006-10-26 Ebara Jitsugyo Co., Ltd. アルカリ性還元水を生成する電解槽
CN201087135Y (zh) * 2007-09-21 2008-07-16 易明 负电位天然水微电解器
CN201313837Y (zh) * 2008-12-17 2009-09-23 肖志邦 一种具有杀菌功能的饮水机
CN201321395Y (zh) * 2008-12-30 2009-10-07 肖志邦 一种便携式电解功能水制备器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009920A1 (en) * 2001-07-25 2003-02-06 Biosource, Inc. Electrode array for use in electrochemical cells
CN101450824B (zh) * 2007-12-07 2012-07-18 鲁道夫·安东尼奥·M·戈麦斯 水的电解活化
CN201660470U (zh) * 2010-01-25 2010-12-01 肖志邦 弱碱性负电位电解水制取装置及电解饮水机
CN101759252A (zh) * 2010-01-25 2010-06-30 肖志邦 弱碱性负电位电解水制取装置及电解饮水机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615764A (en) * 1994-10-18 1997-04-01 Satoh; Yukimasa Electrolytic ionized water producer
CN1608033A (zh) * 2001-11-02 2005-04-20 姜松植 利用电解的水净化器
WO2006112065A1 (ja) * 2005-03-30 2006-10-26 Ebara Jitsugyo Co., Ltd. アルカリ性還元水を生成する電解槽
CN201087135Y (zh) * 2007-09-21 2008-07-16 易明 负电位天然水微电解器
CN201313837Y (zh) * 2008-12-17 2009-09-23 肖志邦 一种具有杀菌功能的饮水机
CN201321395Y (zh) * 2008-12-30 2009-10-07 肖志邦 一种便携式电解功能水制备器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120441A1 (pt) * 2020-12-09 2022-06-16 Duvoisin Charles Adriano Equipamento e método para eletroenergização de fluidos por armadilha de elétrons direcionada, recipiente para fluidos eletroenergizados, fluido eletroenergizado e uso de fluido eletroenergizado
WO2024055081A1 (pt) * 2022-09-12 2024-03-21 Duvoisin Charles Adriano Equipamento e método produtor eletrossensorial de fuidos e alimentos através de armadilhas de elétrons direcionadas

Also Published As

Publication number Publication date
CN102001730B (zh) 2013-06-05
CN201999775U (zh) 2011-10-05
CN102001730A (zh) 2011-04-06
CN101759252A (zh) 2010-06-30

Similar Documents

Publication Publication Date Title
WO2011088598A1 (zh) 弱碱性负电位电解水制取装置及电解饮水机
Ghernaout et al. Application of electrocoagulation in Escherichia coli culture and two surface waters
WO2016134621A1 (zh) 一种显著提高电解效率的无膜电解水新方法
CN101805046B (zh) 碱性还原水无隔膜电解装置
CN103936109A (zh) 饮水电解制取装置
JP5764474B2 (ja) 電解合成装置、電解処理装置、電解合成方法及び電解処理方法
KR101645307B1 (ko) 수소수 제조장치
KR101648121B1 (ko) 수소수 제조장치
CN2828014Y (zh) 一种电化学反应器
KR20180042886A (ko) 수중 세균 및 미생물 제거 장치 및 그 방법
CN205527903U (zh) 中央净水器
JP2011132678A (ja) 便器の洗浄水の調製装置および調製方法
CN202201742U (zh) 一种中性富氢水电解装置
JP5210455B1 (ja) 洗浄水生成装置
WO2015154711A1 (zh) 净水器辅助清理装置
JP2004060011A (ja) 電解式オゾン水製造装置
CN110129819B (zh) 一种高铁酸钾的电解制备优化方法
KR20080040659A (ko) 전기분해 유도용 조성물과 이를 이용한 전기분해 장치
CN204958479U (zh) 一种纯电解水杯
CN203833686U (zh) 净水器辅助清理装置
CN201660470U (zh) 弱碱性负电位电解水制取装置及电解饮水机
JPH11235590A (ja) イオン水生成器
CN1477065A (zh) 消毒液的制备方法及其装置
CN201198454Y (zh) 掺硼金刚石电极电解离子水生成器
JP2015224391A (ja) 水素溶液生成法、生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843641

Country of ref document: EP

Kind code of ref document: A1