WO2014142325A1 - セルラーゼ生産菌の変異株、セルラーゼの製造方法およびセロオリゴ糖の製造方法 - Google Patents
セルラーゼ生産菌の変異株、セルラーゼの製造方法およびセロオリゴ糖の製造方法 Download PDFInfo
- Publication number
- WO2014142325A1 WO2014142325A1 PCT/JP2014/056982 JP2014056982W WO2014142325A1 WO 2014142325 A1 WO2014142325 A1 WO 2014142325A1 JP 2014056982 W JP2014056982 W JP 2014056982W WO 2014142325 A1 WO2014142325 A1 WO 2014142325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- cellulase
- trichoderma
- mutant
- strain
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/244—Endo-1,3(4)-beta-glucanase (3.2.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2445—Beta-glucosidase (3.2.1.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
Definitions
- the present invention relates to a mutant of a cellulase-producing bacterium and a method for producing the same, a method for producing a cellulase using the mutant, and a method for producing a cellooligosaccharide using the cellulase.
- Cellooligosaccharides are oligosaccharides in which 2 to 6 molecules of glucose are polymerized, and are oligosaccharides having 2 to 6 glucopyranose units and linear ⁇ -1,4-glycosidic bonds. Cellooligosaccharide is expected as a material that can be used in the fields of functional food, energy, feed, chemical industrial products and the like.
- Non-patent Document 1 a reaction that generates glucose from cellooligosaccharides by the action of ⁇ -glucosidase is included.
- cellulase is composed of an endoglucanase (hereinafter also abbreviated as EG) that randomly decomposes cellulose, cellobiohydrolase (hereinafter abbreviated as CBH) that releases cellobiose from the end of the cellulose chain, and cellobiose. It is composed of three enzyme activities of ⁇ -glucosidase (hereinafter also abbreviated as BGL) which decomposes to produce two molecules of glucose.
- EG endoglucanase
- CBH cellobiohydrolase
- BGL ⁇ -glucosidase
- Patent Document 1 cellobiose is removed from cellulose using cellulase from which ⁇ -glucosidase present in cellulase is removed by adsorbing cellulase to a weakly acidic cation exchange resin equilibrated to pH 3.5 to 5.0.
- a method of selectively generating is disclosed.
- Patent Document 2 discloses a method for producing a cellooligosaccharide in which an enzyme component other than ⁇ -glucosidase is adsorbed in advance to cellulose or a cellulose-containing substance, and then enzymatically decomposed.
- Patent Document 3 a cellulosic raw material is charged into a tubular or column reactor, and a cellulase solution containing cellobiohydrase and containing ⁇ -glucosidase as an impurity is continuously passed from one direction,
- a method for separating and removing ⁇ -glucosidase from cellulase is described, which comprises selectively separating and removing a fraction containing ⁇ -glucosidase.
- Patent Document 4 discloses that ⁇ -gluconolactone or gluconic acid, which is an inhibitor of ⁇ -glucosidase, coexists in the cellulose degradation by cellulase. A method for producing cellobiose is described.
- Patent Document 5 discloses a method in which glucose oxidase coexists in the decomposition of cellulose by cellulase to produce ⁇ -gluconolactone from the produced glucose, and as a result, attempts to suppress ⁇ -glucosidase activity. Are listed.
- the present invention is a mutant of a cellulase-producing bacterium that produces cellulase that can preferentially produce cellooligosaccharides when cellulooligosaccharides are selectively produced by enzymatic degradation of cellulosic substances in the presence of cellulase, It is an object of the present invention to provide a method for producing the cellulase and a method for producing cellooligosaccharides using the cellulase.
- the present inventors create a strain in which the major ⁇ -glucosidase, the major cellobiohydrolase gene and the major endoglucanase gene of cellulase-producing bacteria are genetically engineered, and use the cellulase produced by the strain.
- the major ⁇ -glucosidase, the major cellobiohydrolase gene and the major endoglucanase gene of cellulase-producing bacteria are genetically engineered, and use the cellulase produced by the strain.
- the present invention is as follows. 1. A mutant of a cellulase-producing bacterium in which the cellobiohydrolase gene and ⁇ -glucosidase gene are disrupted. 2. 2. The cellobiohydrolase gene is a gene belonging to a carbohydrate hydrolase family (GLY) Family 6 (GHF) and a gene belonging to GHF7, and the ⁇ -glucosidase gene is a gene belonging to GHF1 or GHF3 Mutants. 3. 3. The mutant according to item 2 above, wherein the ⁇ -glucosidase gene is a gene belonging to GHF3. 4). Further, the mutant strain according to item 1, wherein the endoglucanase gene is disrupted. 5. 5.
- the ⁇ -glucosidase gene and the cellobiohydrolase gene have been conventionally considered to be essential for the survival of cellulase-producing bacteria, and it is difficult to obtain cellulase-producing bacteria when these genes are destroyed. It was done. In the present invention, it has been found that even if the ⁇ -glucosidase gene and the cellobiohydrolase gene are disrupted, the cellulase-producing bacterium can survive and grow. The present inventors have found that sugar can be produced efficiently and easily with high selectivity.
- the ⁇ -glucosidase activity of the cellulase produced by the mutant is remarkably reduced due to the disruption of the main ⁇ -glucosidase gene.
- the main cellobiohydrolase gene is disrupted in the mutant strain, it is possible to produce cellooligosaccharides of three or more sugars with high selectivity by using cellulase produced by the mutant strain.
- the mutant strain is capable of producing more than trisaccharide cellooligosaccharides with a higher selectivity by disrupting the major endoglucanase gene. can do.
- the mutant of the cellulase-producing bacterium of the present invention it is possible to produce cellooligosaccharides from cellulosic substances with high selectivity.
- the cellulase produced by the mutant of the cellulase-producing bacterium of the present invention it is possible to produce cellooligosaccharides from cellulosic substances with high selectivity without requiring a complicated purification step. .
- FIG. 1 shows a schematic diagram of the mechanism of cellulose degradation by cellulase.
- FIG. 2 shows a schematic diagram of an enzyme fractionation method using chromatographic fractionation.
- FIG. 3 shows a schematic diagram of a method for producing a mutant strain that produces only endoglucanase by disrupting a gene of a cellulase-producing bacterium.
- FIG. 4 shows a schematic diagram of a cellulolytic enzyme produced by Trichoderma reesei.
- FIG. 5 shows a schematic diagram of a method for producing cellooligosaccharides by disrupting a gene of a cellulase-producing bacterium.
- FIGS. 6A and 6B are schematic diagrams illustrating the selection marker pyr4. FIGS.
- FIGS. 7A and 7B are schematic diagrams of a marker recycling method using a pyr4 disruption strain.
- FIG. 8 shows a schematic diagram of the disruption of the egl1 gene using the pyr4 disruption strain.
- FIGS. 9A to 9C are schematic diagrams showing a method for producing a multigene-disrupted strain using the marker recycling method.
- FIG. 10 shows a schematic diagram of transformation of Trichoderma reesei.
- FIG. 11 shows the results of SDS-PAGE for the transformants prepared in the examples.
- FIG. 12 (a) shows the protein concentration of the culture broth of the transformant prepared in the example.
- FIGS. 12B to 12D show the results of evaluating the activity of the enzyme obtained from the transformant prepared in the example.
- FIG. 13 shows the results of evaluating the activity of the enzyme obtained from the transformant prepared in the example.
- FIG. 14 shows the results of evaluating the xylanase activity of the enzyme obtained from the transformant prepared in the example.
- FIG. 15 shows the results of evaluating the oligosaccharide production ability using an enzyme obtained from a single enzyme-disrupted strain.
- FIG. 16 shows the results of evaluating the oligosaccharide production ability using the enzyme obtained from the enzyme gene triple disruption strain ( ⁇ C2 ⁇ C1 ⁇ B1).
- FIG. 17 shows fractionated enzymes ( ⁇ C2-C1-B1) obtained by removing CBHI, CBHII and ⁇ -glucosidase 1 from cellulases obtained from the parent strain, and cbh1, cbh2 and bgl1 disrupted strains ( ⁇ C2 ⁇ C1 ⁇ B1, enzyme gene triple disrupted strain)
- FIG. 18 shows the results of evaluating the oligosaccharide production ability using the enzyme obtained from the enzyme gene quadruple disruption strain ( ⁇ C2 ⁇ C1 ⁇ B1 ⁇ EG1).
- FIG. 19 shows the results of evaluating the effects of oligosaccharide production ability and saccharification time using the enzyme obtained from the enzyme gene quadruple strain.
- the present invention relates to a mutant of a cellulase-producing bacterium in which the cellobiohydrolase gene, ⁇ -glucosidase gene, and endoglucanase gene are disrupted.
- cellulase-producing bacteria include, for example, the genus Tricodederma, the genus Acremonium, the Aspergillus genus, the Bacillus genus, the Pseudomonas genus, the Penicillium genus, and the Penicillium genus.
- Trichoderma e.g., Trichoderma aggressivum, Trichoderma atroviride, Trichoderma asperellum, Trichoderma aureoviride, Trichoderma austrokoningii, Trichoderma brevicompactum, Trichoderma candidum, Trichoderma caribbaeum var. aequatorial, Trichoderma caribbaeum var.
- Trichoderma catoptron Trichoderma cremeum, Trichoderma ceramicum, Trichoderma cerinum, Trichoderma chlorosporum, Trichoderma chromospermum, Trichoderma cinnamomeum, Trichoderma citrinoviride, Trichoderma crassum, Trichoderma cremeum, Trichoderma dingleyeae, Trichoderma dorotheae, Trichoderma effusum, Trichoderma erinaceum, Trichoderm estonicum, Trichoderma fertile, Trichoderma gelatinosus, Trichoderma ghanense, Trichoderma hamatum, Trichoderma harzianum, Trichoderma helicum, Trichoderma intricatum, Trichoderma konilangbra, Trichoderma koningii, Trichoderma koningiposis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma minutisporum, Trichoderma oblongisporum, richoderma ovalisporum,
- MA 3642 Trichoderma sp. PPRI 3559, Trichoderma spirale, Trichoderma stramineum, Trichoderma strigosum, Trichoderma stromaticum, Trichoderma surrotundum, Trichoderma taiwanense, Trichoderma thailandcum, Trichoderma thelephorucolum, Trichoderma theobromicola, Trichoderma tomentosum, Trichoderma, Trichoderma, Trichoderma, Trichoderma velutinum, Trichoderma virens, Trichoder a viride and Trichoderma Viridescens the like.
- Trichoderma reesei Trichoderma viride, Trichoderma atrobide, or Trichoderma trocha tumra bra, from the viewpoint of cellulase secretory production ability. Trichoderma reesei is more preferred.
- Trichoderma reesei examples include Trichoderma reesei strain QM9414 and Trichoderma reesei strain PC-3-7.
- the cellobiohydrolase gene and the ⁇ -glucosidase gene are targeted for destruction.
- a mutant strain that produces only endoglucanase can be obtained by disrupting the cellobiohydrase gene and ⁇ -glucosidase gene of the cellulase-producing bacterium. According to the mutant strain, complete deletion of enzyme components is possible compared to the enzyme fractionation method, and cellooligosaccharides can be produced efficiently.
- cellooligosaccharides of three or more sugars can be produced with higher selectivity.
- the cellobiohydrolase gene is a gene that belongs to the carbohydrate hydrolase family [Glycoside Hydrolase Family, GHF (http://www.cazy.org/Glycoside-Hydrolases.html)]6 and GHF7 Is preferred.
- the ⁇ -glucosidase gene is preferably a gene belonging to GHF1 or GHF3, more preferably a gene belonging to GHF3.
- Fig. 4 shows cellulolytic enzymes produced by Trichoderma reesei.
- Trichoderma reesei cellulolytic enzymes include at least 2 cellobiohydrases (CBHI, CBHII), 8 endoglucanases (EGI-EGVIII), 10 ⁇ -glucosidases (BGLI). , BGLII, Cel1b, Cel3b to Cel3h).
- CBHI cellobiohydrases
- EGI-EGVIII 8 endoglucanases
- BGLI ⁇ -glucosidases
- BGLII ⁇ -glucosidases
- CBHI CBHII
- CBHII Cel6a
- EGI (Cel7b) is GHF7
- EGII (Cel5a) is GHF5
- EGIII (Cel12a) is GHF12
- EGIV (Cel61a) is GHF61
- EGV (Cel45a) is In GHF45
- EGVI (Cel74a) belongs to GHF74
- EGVII (Cel61b) belongs to GHF61
- EGVIII (Cel5b) belongs to GHF5.
- BGLI ⁇ -glucosidases
- BGLI ⁇ -glucosidases
- Cel1b ⁇ -glucosidases
- Cel3b ⁇ -glucosidases
- BGLI Cel3a
- BGLII Cel1a
- Cel1b belongs to GHF1
- Cel3b to h belong to GHF3.
- Trichoderma reesei When the microorganism belonging to the genus Trichoderma is Trichoderma reesei, it is preferable that the genes shown in Table 1 (cellobiohydrase, ⁇ -glucosidase gene) are targeted for destruction (FIG. 5). More preferably, endoglucanase is the target of destruction.
- the names, numbers, functions, etc. of each gene in Table 1 are described based on GenBank and JGI (Trichoderma reesei) (http://genome.jgi-psf.org/Trire2/Trire2.home.html). Yes.
- Reference 1 JP 1985149387-A / 1 Reference 2: Gene 51 (1), 43-52 (1987) Reference 3: Thesis (1993) Mikobielle Biochemie, Inst. biochem. Technol Reference 4: Nat Biotechnol. 26,553-560 (2008) Reference 5: “Homology between cellulase genes of Trichoderma reeseikoron complete nucleotide sequence of the endlucanase I gene” Pentilla, M. et al. Lehtovaara, P .; Nevalainen, H .; , Bhikhabhai, R .; and Knowles, J.A. Gene 45 (3), 253-263 (1986)
- a cellooligosaccharide having 3 or more sugars with a high selectivity preferably 3 or more, more preferably 4 or more, still more preferably 5 or more of the above 8 genes. It is preferable to disrupt the gene. More specifically, it is preferable to destroy at least three genes, cbh1, cbh2, and bgl1. More preferably, the four genes cbh1, cbh2, bgl1 and egl1 are disrupted. Note that mutant strains in which these genes are disrupted are Mol. Gen. Genet. 241 (5-6), 523-530 (1993).
- the gene described in Table 1 is a gene having the same function as the gene, for example, consisting of a nucleotide sequence in which one or several nucleotide sequences are deleted, substituted, or added in the nucleotide sequence of the gene. Good. Furthermore, it has the same function as the gene described in Table 1, and / or 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably in each gene and base sequence of Table 1 and Table 2. Genes having an identity of 95% or more, particularly preferably 98% or more are also considered to be genes corresponding to the genes listed in Table 1, and are included in the genes that can be destroyed in the present invention.
- genes can be inactivated by inserting other DNA fragments inside them, or by mutating the transcription / translation initiation region of the gene, but physically deleting the target gene. Is more preferable.
- a method by homologous recombination may be used.
- a circular recombinant plasmid obtained by cloning a DNA fragment containing a part of the target gene into an appropriate plasmid vector is taken into the parent cell, and homologous recombination in a partial region of the target gene is performed on the parent strain genome. It is possible to disrupt and inactivate the target gene.
- a target gene into which an inactivating mutation due to base substitution or base insertion has been introduced, or a linear DNA fragment containing an outer region of the target gene but not including the target gene is constructed by a method such as PCR.
- the target gene on the genome is caused by two-fold homologous recombination at two sites outside the mutation site in the target gene of the parent strain genome or two regions outside the target gene. Can be replaced with a disrupted gene fragment.
- a method for deleting or inactivating a random gene for example, a method for causing homologous recombination similar to the above method using a randomly cloned DNA fragment, The method of irradiating etc. is mentioned.
- the Marker Recycling Law [Curr. Genet. , 48 (3), 204-211 (2005)] a method for constructing a multigene (cbh1, cbh2, bgl1) disruption strain will be described.
- the gene disruption method in the present invention is not limited to the following.
- pyr4 (SEQ ID NO: 8) is a selectable marker gene. As shown in FIGS. 6 (a) and (b), the pyr4 + strain can grow without adding uridine to the medium, but the pyr4 ⁇ strain (pyr4 disruption) Strain) is resistant to 5-fluoroorotic acid (5-FOA) and becomes a uridine-requiring strain.
- 5-FOA 5-fluoroorotic acid
- a marker recycling method using a pyr4 disruption strain will be described with reference to FIG.
- a uridine-free medium in which a target gene is replaced with pyr4 and a recombination cassette having direct repeats is introduced into a uridine-requiring strain (pyr4 ⁇ ) obtained by gene disruption using 5-FOA resistance as an indicator.
- the transformant that grows in the above is obtained [FIG. 7 (a)].
- a strain in which one copy of the disruption cassette is introduced into the target position by double crossover is selected from the obtained transformants by Southern blot analysis. Thereafter, the spores of the obtained strain were applied to a medium containing 5-FOA, and pyr4 was excised by intramolecular homologous recombination.
- sugar source used for the culture examples include various celluloses such as Avicel, filter paper powder, and biomass containing cellulose.
- examples of the nitrogen source include polypeptone, ammonium sulfate, gravy, corn steep liquor (CSL), and soybean meal.
- ingredients necessary for producing the target cellulase can be added to this medium.
- xylanase can be increased by adding various xylan components to the medium.
- various culture methods such as shaking culture, agitation culture, agitation shaking culture, stationary culture, and continuous culture can be employed, and preferably, shaking culture or agitation culture is used.
- the culture temperature is usually 20 ° C. to 35 ° C., preferably 25 ° C. to 31 ° C.
- the culture time is usually 4 to 10 days, preferably 4 to 9 days.
- the cellulase produced by the mutant strain can be recovered from outside the mutant strain.
- Cellulase can be measured by analyzing cell lysate or culture supernatant samples directly by dodecyl sodium sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting as known in the art.
- SDS-PAGE dodecyl sodium sulfate polyacrylamide gel electrophoresis
- Cellulase produced during cell culture is secreted in the medium, and purified or separated by removing unnecessary components from the cell medium, for example.
- Cellulase purification methods include, for example, affinity chromatography, ion exchange chromatography, hydrophobic interaction chromatography, ethanol precipitation, reverse phase HPLC, cation exchange chromatography on silica or DEAE, chromatofocusing, SDS-PAGE. And ammonium sulfate precipitation method and gel filtration method. These methods can be used alone or in combination.
- Cellooligosaccharide production method Cellooligosaccharide production by enzymatic degradation of cellulose using cellulase may be any known method, and is not particularly limited. For example, a cellulose-based substance as a substrate in an aqueous medium may be used. A method of suspending, adding the cellulase produced by the method of the present invention, and performing saccharification reaction by heating while stirring or shaking is mentioned.
- the suspension conditions, the stirring method, the cellulase / substrate addition method / addition order, the reaction conditions such as the concentration thereof can be appropriately adjusted so that the cellooligosaccharide can be obtained in a higher yield.
- the pH and temperature of the reaction solution may be within the range in which the enzyme is not deactivated. Generally, when the reaction is performed at normal pressure, the temperature is 5 to 95 ° C., and the pH is 1 to 11. Range may be sufficient.
- the cellulosic material may be water-soluble or water-insoluble, and its origin may be plant or animal. Examples of animals and plants that produce it include wood, bamboo, wheat straw, rice straw, corn cob, cotton, ramie, bagasse, kenaf, beet, squirts, and bacterial cellulose.
- a regenerated cellulosic material obtained by regenerating natural cellulosic material once chemically or physically dissolved or swollen and a cellulosic material You may use the cellulose derivative type material which modified chemically.
- these cellulosic materials include natural cellulosic raw materials such as pulp, cellulose powder and crystalline cellulose, regenerated cellulose such as rayon, various regenerated cellulose raw materials such as alkali cellulose and phosphoric acid swollen cellulose (PSC), Any of various cellulose derivatives such as carboxymethylcellulose sodium salt (CMC) may be used.
- cellooligosaccharides for pharmaceuticals, foods and cosmetics, it is preferable to use natural cellulosic materials. Even if one kind of cellulosic material is used as a raw material, a mixture of two or more kinds can be used.
- Cellooligosaccharide production by enzymatic degradation of cellulose using cellulase may be performed in a batch system or a continuous system.
- Examples of the method for maintaining the cellobiose concentration in the reaction system within a specific range include, for example, a method of extracting cellobiose generated from the reaction system by membrane filtration such as ultrafiltration or reverse osmosis filtration, and dry plant powder such as activated carbon, bamboo or wood.
- Organic porous substrates such as silicon dioxide, inorganic porous substrates such as silicon dioxide, etc. are introduced into the reaction system, cellobiose is adsorbed to them, a cellulose substrate is immobilized on a column, etc., and a reaction solution containing cellulase is circulated. Examples thereof include a method and a method in which cellulase is immobilized on a polymer or the like and a reaction solution containing cellulose is circulated.
- the aqueous solution mainly composed of cellooligosaccharide obtained by the enzyme decomposition reaction can be subjected to purification treatment such as decolorization, desalting or enzyme removal as necessary.
- the purification method is not particularly limited as long as it is a known method, and examples thereof include activated carbon treatment, ion exchange resin treatment, chromatography treatment, filtration treatment such as microfiltration, ultrafiltration or reverse osmosis filtration, and crystallization treatment. It is done. These may be used alone or in combination of two or more.
- the aqueous solution mainly composed of cellooligosaccharide purified by the above method can be used as it is, but if necessary, it may be solidified by drying.
- the drying method is not particularly limited as long as it is a known method, but for example, spray drying, freeze drying, drum drying, thin film drying, shelf drying, airflow drying, vacuum drying, etc. may be used, and these may be used alone. You may use, or may combine 2 or more types.
- an organic solvent or the like may be used as necessary in addition to water.
- an organic solvent used here For example, what is used in the process of manufacturing a pharmaceutical, foodstuffs, and those additives is preferable, and “pharmaceutical additive encyclopedia” (Pharmaceutical Daily Inc.) Issued), “Japanese Pharmacopoeia” and “Food Additives Official Document” (both published by Yodogawa Shoten).
- Water and organic solvents can be used alone or in combination of two or more, and once dispersed in one medium, the medium is removed and dispersed in a different medium. Also good.
- the form of the cellooligosaccharide that has undergone the above-mentioned process, but it can be used in the form of a solid, suspension, emulsion, syrup or solution at room temperature, for example.
- the solid cellooligosaccharide include powder, granules, pellets, molded products, laminates, and solid dispersions.
- cellooligosaccharide is not particularly limited, but for example, food ingredients, cosmetic ingredients, pigment ingredients, perfume ingredients, pharmaceutical medicinal ingredients, agricultural chemical ingredients, feed ingredients in the fields of food, cosmetics, pharmaceuticals or general industrial products, etc.
- food ingredients include food ingredients, cosmetic ingredients, pigment ingredients, perfume ingredients, pharmaceutical medicinal ingredients, agricultural chemical ingredients, feed ingredients in the fields of food, cosmetics, pharmaceuticals or general industrial products, etc.
- examples include fertilizer components, medium components, analytical reagent components, additives, intermediate raw materials, and fermentation raw materials.
- Cellooligosaccharides produced by the method of the present invention are used in foods, for example, gels such as jelly, pudding or yogurt, mayonnaise, dressings, sauces, sauces, soups, processed vegetables, seasonings such as curry, coconut Meat sauce, retort food such as stew or soup, chilled food, hamburger, bacon, sausage, salami sausage or processed livestock products such as hams, water paste products such as salmon, chikuwa, fish ham / sausage or fried rice cake, bread, raw noodles , Dried noodles, macaroni, spaghetti, Chinese bun skin, cake mix, premix, white processed food such as dumplings and spring rolls, curry, sauce, soup, canned food such as boiled or jam, bottling , Candy, troche, tablet confectionery, chocolate, biscuits, cookies, Confectionery such as confectionery, Japanese and Western confectionery, Western confectionery, snack confectionery, sugar confectionery or pudding, fried foods, croquettes, dumplings or Chinese buns, vegetable paste, meat mince, fruit paste or seafood paste Used for
- dairy products such as ice cream, ice milk, lacto ice, whipped cream, condensed milk, butter, yogurt, cheese or white sauce, and processed oils and fats such as margarine, fat spread or shortening.
- carbonated drinks such as cola, carbonated drinks, alcohol drinks, fruit drinks mixed with dairy products, fruit juices, drinks containing fruit drinks or dairy drinks, coffee, milk, soy milk, cocoa milk, fruit milk or yogurt, etc.
- tea beverages such as lactic acid / milk beverages, sencha, oolong tea, matcha tea or black tea.
- Cellooligosaccharides produced by the method of the present invention are useful for intestinal useful bacterial flora such as activation of lactic acid bacteria, lactobacilli, etc., blood sugar concentration, blood insulin concentration reduction, blood cholesterol reduction, body fat
- intestinal useful bacterial flora such as activation of lactic acid bacteria, lactobacilli, etc.
- functional foods and health foods can be used in addition to the above normal food applications. It may also be used in applications such as diet foods.
- Cellooligosaccharides are, for example, food ingredients, cosmetic ingredients, pigment ingredients, fragrance ingredients, pharmaceutical medicinal ingredients, agricultural chemical ingredients, feed ingredients, fertilizer ingredients, culture medium ingredients, analytical reagent ingredients, additives, intermediate raw materials and Used as a fermentation raw material.
- the cellooligosaccharide produced by the method of the present invention since the cellooligosaccharide produced by the method of the present invention has high purity, it may be used as a raw material for chemical conversion into various cellooligosaccharide derivatives.
- cbh1 and cbh2 disruption strain ( ⁇ C2 ⁇ C1), cbh1, cbh2 and bgl1 disruption strain ( ⁇ C2 ⁇ C1 ⁇ B1, enzyme gene triple disruption strain), cbh1, cbh2 and bgl1 and egl1 ( ⁇ C2 ⁇ C1 ⁇ B1 ⁇ EG1)
- cbh1 and cbh2 disrupted strains were prepared by the marker recycling method using the cbh2 disrupted strains. Further, as shown in FIG. 9 (c) and FIG.
- cbh1, cbh2, and bgl1 disrupted strains were prepared by the marker recycling method using the cbh1 and cbh2 disrupted strains. Furthermore, cbh1, cbh2, bgl1, and egl1 disrupted strains were prepared by the marker recycling method using the cbh1, cbh2, and bgl1 disrupted strains.
- the composition of the trace element was as follows. 6 mg H 3 BO 3 , 26 mg (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O, 100 mg FeCl 3 ⁇ 6H 2 O, 40 mg, CuSO 4 ⁇ 5H 2 O, 8 mg MnCl 2 ⁇ 4H 2 O, 200 mg ZnCl 2 Made up to 100 ml with distilled water.
- FIG. 11 shows 20 ⁇ L of the obtained enzyme solution subjected to SDS-PAGE.
- the molecular weight of the cellulase encoded by the disrupted gene is 68 kDa for CBHI, 58 kDa for CBHII, 82 kDa for BGLI, and 54 kDa for EGI.
- SDS-PAGE deletion of the cellulase component encoded by the disrupted gene was confirmed.
- Protein concentration was determined by measuring absorbance at 595 nm using Bio-Rad protein assay (Bio-Rad) and using bovine ⁇ globulin as a standard substance.
- the ⁇ -glucosidase activity was measured by measuring the glucose concentration with Glucose CII Test Wako (Wako Pure Chemical Industries, Ltd.) using cellobiose as a substrate. The amount of enzyme that decomposes 1 ⁇ mol of cellobiose per minute is 1 U. As determined.
- Endoglucanase activity is determined using carboxymethylcellulose as a substrate, the resulting reducing sugar is measured by the Sommoji-Nelson method, and the amount of enzyme that releases 1 ⁇ mol of reducing sugar in terms of glucose per minute is determined as 1 U. did.
- Cellobiohydrolase activity is an enzyme that uses crystalline cellulose as a substrate, measures the resulting reducing sugar by the Sommoji Nelson method, and releases 1 ⁇ mol of reducing sugar in terms of glucose per minute. The amount was determined as 1U.
- Cellobiase activity was determined by measuring the glucose concentration with glucose CII test Wako (Wako Pure Chemical Industries, Ltd.) using cellobiose as a substrate, and determining the amount of enzyme that liberates 2 ⁇ mol of glucose per minute as 1 U.
- Avicelase activity was determined using Avicel as a substrate, the resulting reducing sugar was measured by the Sommoji Nelson method, and the amount of enzyme that released 1 ⁇ mol of reducing sugar in terms of glucose per minute was determined as 1 U.
- CMCase activity was determined by measuring the generated reducing sugar using carboxymethyl cellulose as a substrate by the Sommoji Nelson method, and determining the amount of enzyme that releases 1 ⁇ mol of reducing sugar in terms of glucose per minute as 1 U. did.
- Xylanase activity was determined using xylan as a substrate, and the resulting xylose was measured using the DNS (Dintosalicylic acid) method, and the amount of enzyme that releases 1 ⁇ mol of reducing sugar per minute in terms of xylose was determined as 1 U. did.
- oligosaccharide production ability by cellulase was evaluated by HPLC analysis using KS-802, a sugar analysis column, using phosphate-swelled cellulose as a substrate.
- KS-802 a sugar analysis column
- phosphate-swelled cellulose as a substrate.
- (1) Evaluation of oligosaccharide production ability using an enzyme obtained from a single gene disruption strain Obtained from a parent strain (Trichoderma reesei PC-3-7), a bgl1 disruption strain ( ⁇ B1), and a cbh2 disruption strain ( ⁇ C2) The results of evaluating the oligosaccharide-producing ability of the cellulase are shown in Table 2 and FIG.
- the cellulase obtained from the enzyme gene triple disruption strain exhibits oligosaccharide production ability equivalent to that of the fractionation enzyme, and also exhibits excellent productivity for the trisaccharide cellotriose. I understood.
- the cellulase obtained from the enzyme gene quadruple disruption exhibits an oligosaccharide production ability equivalent to that of the degrading enzyme, and also exhibits an excellent productivity for the trisaccharide cellotriose. I understood. It was found that disruption of the egl1 gene has a higher effect on the production of cellooligosaccharides higher than trisaccharide.
- Cellooligosaccharides are thought to have various physiologically active functions and are considered to be very useful as raw materials for functional foods.
- Cellobiose which is a disaccharide, accounts for 90% or more of what is sold as cellooligosaccharide.
- cellooligosaccharides more than pure cellotrisaccharides are difficult to obtain, and the physiological function analysis remains unresolved. Since the mutant of the cellulase-producing bacterium of the present invention can produce not only cellobiose but also more oligosaccharides than trisaccharides, it is very useful industrially and academically.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
1.セロビオハイドロラーゼ遺伝子およびβ-グルコシダーゼ遺伝子が破壊されているセルラーゼ生産菌の変異株。
2.前記セロビオハイドロラーゼ遺伝子が糖質加水分解酵素ファミリー(Glycoside Hydrolase Family,GHF)6に属する遺伝子およびGHF7に属する遺伝子であり、前記β-グルコシダーゼ遺伝子がGHF1またはGHF3に属する遺伝子である前項1に記載の変異株。
3.前記β-グルコシダーゼ遺伝子がGHF3に属する遺伝子である前項2に記載の変異株。
4.さらに、エンドグルカナーゼ遺伝子が破壊されている前項1記載の変異株。
5.前記エンドグルカナーゼ遺伝子がGHF7に属する遺伝子である前項4に記載の変異株。
6.前記セルラーゼ生産菌がトリコデルマ(Trichoderma)属に属する微生物である前項1~5のいずれか1項に記載の変異株。
7.前記トリコデルマ属に属する微生物が、トリコデルマ・リーセイ(Trichoderma reesei)、トリコデルマ・ビリデ(Trichoderma viride)、トリコデルマ・ロンジブラチアタム(Trichoderma longibrachiatum)からなる群から選ばれる1である前項6に記載の変異株。
8.前記トリコデルマ属に属する微生物が、トリコデルマ・リーセイである前項7に記載の変異株。
9.前記セロビオハイドロラーゼ遺伝子がcbh1遺伝子およびcbh2遺伝子であり、前記β-グルコシダーゼ遺伝子bgl1遺伝子である前項8に記載の変異株。
10.前記エンドグルカナーゼ遺伝子がegl1遺伝子である前項8または9に記載の変異株。
11.前項1~10のいずれか1項に記載の変異株を培養することにより、セルラーゼを生産することを特徴とするセルラーゼの生産方法。
12.前項1~10のいずれか1項に記載の変異株が生産するセルラーゼを用いてセルロース系物質を分解する工程を含むセロオリゴ糖の製造方法。
13.セルラーゼ生産菌の変異株の作製方法であって、セロビオハイドロラーゼ遺伝子およびβ-グルコシダーゼ遺伝子を破壊する変異株の作製方法。
本発明は、セロビオハイドロラーゼ遺伝子、β-グルコシダーゼ遺伝子およびエンドグルカナーゼ遺伝子が破壊しているセルラーゼ生産菌の変異株に関する。セルラーゼ生産菌としては、例えば、トリコデルマ(Tricoderma)属、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、ペニシリウム(Penicillium)属、アエロモナス(Aeromonus)属、イルペックス(Irpex)属、スポロトリクム(Sporotrichum)属、フミコーラ(Humicola)属等の「セルラーゼ」(講談社サイエンティフィック発行(1987))、「セルロースの事典」(朝倉書店発行(2000))に記載される微生物が挙げられる。これらの中でも、トリコデルマ(Tricoderma)属に属する微生物が好ましい。
参考文献2:Gene 51(1),43-52(1987)
参考文献3:Thesis(1993)Mikrobielle Biochemie,Inst.biochem.Technol
参考文献4:Nat Biotechnol.26,553-560(2008)
参考文献5:「Homology between cellulase genes of Trichoderma reeseikoron complete nucleotide sequence of the endoglucanase I gene」Penttila,M., Lehtovaara,P., Nevalainen,H., Bhikhabhai,R. and Knowles,J. Gene 45(3),253-263(1986)
セルラーゼを用いたセルロースの酵素的分解によるセロオリゴ糖生産は、公知の方法を使用すればよく、特に制限されるものではないが、例えば、基質としてセルロース系物質を水性媒体中に懸濁させ、本発明の方法で製造されたセルラーゼを添加し、攪拌または振とうしながら、加温して糖化反応を行う方法が挙げられる。
(1)cbh2破壊株(ΔC2)、bgl1破壊株(ΔB1)の作製
図9(a)に示すように、マーカーリサイクル法により、cbh2破壊株を取得した。5-FOA耐性を指標にして、遺伝子破壊法にて取得したウリジン要求性株(pyr4―)をcbh2遺伝子破壊カセットでプロトプラスト―PEG法により形質転換し、ウリジンを含まない培地で生育する形質転換体を取得した。さらに、得られた形質転換体の中からサザンブロット解析によって、破壊カセットが二重交叉により目的の位置に1コピー導入された株を選択した。その後、得られた株の胞子を5-FOAを含む培地に塗布し、分子内相同組換えによってpyr4が切り出された結果再び5-FOA耐性となり生育してきたコロニーを得た。このうちの一株をcbh2破壊株(ΔC2)とした。同様の方法でbgl1破壊株(ΔB1)を作製した。
図9(b)に示すように、該cbh2破壊株を用いて、マーカーリサイクル法により、cbh1およびcbh2破壊株を作製した。さらに、図9(c)および図10に示すように、該cbh1およびcbh2破壊株を用いて、マーカーリサイクル法により、cbh1およびcbh2およびbgl1破壊株を作製した。さらに、該cbh1およびcbh2およびbgl1破壊株を用いて、マーカーリサイクル法により、cbh1およびcbh2およびbgl1およびegl1破壊株を作製した。
得られた遺伝子破壊株のセルラーゼの発現を確認するために、胞子107個を、トリコデルマ・リーセイ用液体培地50mLを含む300mL容三角フラスコに植菌した。培地の組成は次の通りとした。
1% Avicel、0.14% (NH4)2SO4、0.2% KH2PO4、0.03% CaCl2・2H2O、0.03% MgSO4・7H2O、0.1% Bacto Polypepton、0.05% Bacto Yeast extract、0.1% Tween 80、0.1% Trace element、50mM 酒石酸緩衝液(pH4.0)
6mg H3BO3、26mg (NH4)6Mo7O24・4H2O、100mg FeCl3・6H2O、40mg、CuSO4・5H2O、8mg MnCl2・4H2O、200mg ZnCl2を蒸留水で100mlにメスアップしたもの。
タンパク質濃度は、バイオ・ラッドプロテインアッセイ(バイオ・ラッド社)を用い、595nmにおける吸光度を測定し、ウシγグロブリンを標準物質として決定した。
β-グルコシダーゼ活性は、セロビオースを基質として用い、グルコースCIIテストワコー(和光純薬株式会社)によってグルコース濃度を測定し、1分間に1μmolのセロビオースを分解する酵素量を1Uとして決定した。
エンドグルカナーゼ活性は、カルボキシメチルセルロースを基質として用い、生じた還元糖をソモジ・ネルソン法によって測定し、1分間にグルコース換算で1μmolの還元糖を遊離する酵素量を1Uとして決定した。
セロビオハイドロラーゼ活性は、結晶性セルロースを基質として用い、生じた還元糖をソモジ・ネルソン法によって測定し、1分間にグルコース換算で1μmolの還元糖を遊離する酵素量を1Uとして決定した。
セロビアーゼ活性は、セロビオースを基質として用い、グルコースCIIテストワコー(和光純薬株式会社)によってグルコース濃度を測定し、1分間に2μmolのグルコースを遊離する酵素量を1Uとして決定した。
アビセラーゼ活性は、Avicelを基質として用い、生じた還元糖をソモジ・ネルソン法によって測定し、1分間にグルコース換算で1μmolの還元糖を遊離する酵素量を1Uとして決定した。
CMCアーゼ活性は、カルボキシメチルセルロースを基質として用い、生じた還元糖をソモジ・ネルソン法によって測定し、1分間にグルコース換算で1μmolの還元糖を遊離する酵素量を1Uとして決定した。
キシラナーゼ活性は、キシランを基質として用い、生じたキシロースはDNS(Dinitrosalicylic acid)法を用いて測定し、1分間にキシロース換算で1μmolの還元糖を遊離する酵素量を1Uとして決定した。
陰イオン交換樹脂であるDEAE-Sepharoseに50mMリン酸緩衝液(pH6.0)の条件下で吸着した画分をNaClで溶出することにより、ΔC2株より得られたセルラーゼからCBH1を除去した酵素標品を得た。該酵素標品を陽イオン交換樹脂であるMono-Sに50mM酢酸緩衝液(pH4.0)の条件下で供し、吸着しなかった画分をβ-グルコシダーゼ1を除去した分画酵素(ΔC2-C1-B1)とした。
セルラーゼによるオリゴ糖生産能の評価は、リン酸膨潤セルロースを基質として用い、糖分析カラムであるKS-802を用いてHPLC分析することによって行った。
(1)単一遺伝子破壊株より得られた酵素を用いたオリゴ糖生産能の評価
親株(トリコデルマ・リーセイPC-3-7)、bgl1破壊株(ΔB1)、cbh2破壊株(ΔC2)から得られたセルラーゼのオリゴ糖生産能を評価した結果を表2および図15に示す。
cbh1、cbh2およびbgl1破壊株(ΔC2ΔC1ΔB1、酵素遺伝子3重破壊株)から得られたセルラーゼのオリゴ糖生産能を評価した結果を表3および図16に示す。
親株(トリコデルマ・リーセイPC3-7)より得られたセルラーゼからCBH1、CBH2およびβ-グルコシダーゼ1を除去した分画酵素(ΔC2-C1-B1)、およびcbh1、cbh2およびbgl1破壊株(ΔC2ΔC1ΔB1、酵素遺伝子3重破壊株)より得られたセルラーゼを用いてオリゴ糖生産能を評価した。その結果を表4および図17に示す。
cbh1、cbh2、bgl1およびegl1破壊株(ΔC2ΔC1ΔB1ΔEG1、酵素遺伝子4重破壊株)から得られたセルラーゼのオリゴ糖生産能を評価した結果を表5および図18に示す。
図19に示すように、cbh1、cbh2、bgl1およびegl1破壊株(ΔC2ΔC1ΔB1ΔEG1、酵素遺伝子4重破壊株)から得られたセルラーゼによるセロトリオースの生産量は、糖化時間が72時間のとき最大0.19g/g-substrateであった。72時間以上糖化を行ったとき、三糖の生産量はほぼ変化しなったが、二糖および単糖の生産量は増加した。このことから、酵素糖化72時間のとき三糖の生産速度とセロトリオースの分解速度が平衡状態にあることが分かった。
Claims (13)
- セロビオハイドロラーゼ遺伝子およびβ-グルコシダーゼ遺伝子が破壊されているセルラーゼ生産菌の変異株。
- 前記セロビオハイドロラーゼ遺伝子が糖質加水分解酵素ファミリー(Glycoside Hydrolase Family,GHF)6に属する遺伝子およびGHF7に属する遺伝子であり、前記β-グルコシダーゼ遺伝子がGHF1またはGHF3に属する遺伝子である請求項1に記載の変異株。
- 前記β-グルコシダーゼ遺伝子がGHF3に属する遺伝子である請求項2に記載の変異株。
- さらに、エンドグルカナーゼ遺伝子が破壊されている請求項1記載の変異株。
- 前記エンドグルカナーゼ遺伝子がGHF7に属する遺伝子である請求項4に記載の変異株。
- 前記セルラーゼ生産菌がトリコデルマ(Trichoderma)属に属する微生物である請求項1~5のいずれか1項に記載の変異株。
- 前記トリコデルマ属に属する微生物が、トリコデルマ・リーセイ(Trichoderma reesei)、トリコデルマ・ビリデ(Trichoderma viride)、トリコデルマ・アトロビリデ(Trichoderma atroviride)、トリコデルマ・ロンジブラチアタム(Trichoderma longibrachiatum)からなる群から選ばれる1である請求項6に記載の変異株。
- 前記トリコデルマ属に属する微生物が、トリコデルマ・リーセイである請求項7に記載の変異株。
- 前記セロビオハイドロラーゼ遺伝子がcbh1遺伝子およびcbh2遺伝子であり、前記β-グルコシダーゼ遺伝子bgl1遺伝子である請求項8に記載の変異株。
- 前記エンドグルカナーゼ遺伝子がegl1遺伝子である請求項8または9に記載の変異株。
- 請求項1~10のいずれか1項に記載の変異株を培養することにより、セルラーゼを生産することを特徴とするセルラーゼの生産方法。
- 請求項1~10のいずれか1項に記載の変異株が生産するセルラーゼを用いてセルロース系物質を分解する工程を含むセロオリゴ糖の製造方法。
- セルラーゼ生産菌の変異株の作製方法であって、セロビオハイドロラーゼ遺伝子およびβ-グルコシダーゼ遺伝子を破壊する変異株の作製方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/776,679 US10059932B2 (en) | 2013-03-15 | 2014-03-14 | Mutant of cellulase-producing microorganism, production method of cellulase and production method of cello-oligosaccharide |
EP14764708.5A EP2975113B1 (en) | 2013-03-15 | 2014-03-14 | Variant of cellulase-producing fungus, cellulase manufacturing method, and cello-oligosaccharide manufacturing method |
BR112015023537-9A BR112015023537B1 (pt) | 2013-03-15 | 2014-03-14 | Mutante de um microrganismo produtor de celulase,e, método para produção de uma celulase |
DK14764708.5T DK2975113T3 (da) | 2013-03-15 | 2014-03-14 | Variant af cellulaseproducerende svamp, fremgangsmåde til fremstilling af cellulase og fremgangsmåde til fremstilling af cello-oligosaccharid |
JP2015505609A JP6535280B2 (ja) | 2013-03-15 | 2014-03-14 | セルラーゼ生産菌の変異株、セルラーゼの製造方法およびセロオリゴ糖の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013053166 | 2013-03-15 | ||
JP2013-053166 | 2013-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014142325A1 true WO2014142325A1 (ja) | 2014-09-18 |
Family
ID=51536972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056982 WO2014142325A1 (ja) | 2013-03-15 | 2014-03-14 | セルラーゼ生産菌の変異株、セルラーゼの製造方法およびセロオリゴ糖の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10059932B2 (ja) |
EP (1) | EP2975113B1 (ja) |
JP (1) | JP6535280B2 (ja) |
BR (1) | BR112015023537B1 (ja) |
DK (1) | DK2975113T3 (ja) |
WO (1) | WO2014142325A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153587A1 (ja) * | 2020-01-28 | 2021-08-05 | 東レ株式会社 | トリコデルマ属糸状菌変異株 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149387A (ja) | 1983-08-31 | 1985-08-06 | アルコ リミティド | セロビオヒドロラーゼiをコードする遺伝子 |
JPH0475594A (ja) | 1990-07-16 | 1992-03-10 | Kohjin Co Ltd | セロオリゴ糖の製造方法 |
JPH05115293A (ja) | 1991-10-29 | 1993-05-14 | Food Design Gijutsu Kenkyu Kumiai | セロオリゴ糖の製造方法 |
JPH0833496A (ja) | 1994-07-25 | 1996-02-06 | K I Kasei Kk | オリゴ糖の製造法 |
JP2006034206A (ja) | 2004-07-29 | 2006-02-09 | Forestry & Forest Products Research Institute | セロビオースの製造方法、β−グルコシダーゼの分離除去方法およびセルラーゼの回収方法 |
JP2006204294A (ja) | 2004-12-27 | 2006-08-10 | Nippon Paper Chemicals Co Ltd | セロオリゴ糖の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328841A (en) * | 1990-10-05 | 1994-07-12 | Genencor International, Inc. | Methods for isolating EG III cellulase component and EG III cellulase in polyethylene glycol using inorganic salt and polyethylene glycol |
US5650322A (en) * | 1990-10-05 | 1997-07-22 | Genencor International, Inc. | Methods for stonewashing fabrics using endoglucanases |
US5997913A (en) * | 1990-12-10 | 1999-12-07 | Genencor International, Inc. | Method enhancing flavor and aroma in foods by overexpression of β-glucosidase |
WO2005001036A2 (en) * | 2003-05-29 | 2005-01-06 | Genencor International, Inc. | Novel trichoderma genes |
US20140073017A1 (en) * | 2011-03-17 | 2014-03-13 | Danisco Us Inc. | Cellulase compositions and methods of using the same for improved conversion of lignocellulosic biomass into fermentable sugars |
US9663772B2 (en) | 2011-08-24 | 2017-05-30 | Novozymes, Inc. | Aspergillus fumigatus cellulolytic enzyme compositions and uses thereof |
-
2014
- 2014-03-14 BR BR112015023537-9A patent/BR112015023537B1/pt active IP Right Grant
- 2014-03-14 WO PCT/JP2014/056982 patent/WO2014142325A1/ja active Application Filing
- 2014-03-14 EP EP14764708.5A patent/EP2975113B1/en active Active
- 2014-03-14 US US14/776,679 patent/US10059932B2/en active Active
- 2014-03-14 DK DK14764708.5T patent/DK2975113T3/da active
- 2014-03-14 JP JP2015505609A patent/JP6535280B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149387A (ja) | 1983-08-31 | 1985-08-06 | アルコ リミティド | セロビオヒドロラーゼiをコードする遺伝子 |
JPH0475594A (ja) | 1990-07-16 | 1992-03-10 | Kohjin Co Ltd | セロオリゴ糖の製造方法 |
JPH05115293A (ja) | 1991-10-29 | 1993-05-14 | Food Design Gijutsu Kenkyu Kumiai | セロオリゴ糖の製造方法 |
JPH0833496A (ja) | 1994-07-25 | 1996-02-06 | K I Kasei Kk | オリゴ糖の製造法 |
JP2006034206A (ja) | 2004-07-29 | 2006-02-09 | Forestry & Forest Products Research Institute | セロビオースの製造方法、β−グルコシダーゼの分離除去方法およびセルラーゼの回収方法 |
JP2006204294A (ja) | 2004-12-27 | 2006-08-10 | Nippon Paper Chemicals Co Ltd | セロオリゴ糖の製造方法 |
Non-Patent Citations (13)
Title |
---|
"Cellulase", 1987, KODANSHA SCIENTIFIC |
"Cellulase", 1987, KODANSHA SCIENTIFIC, pages: 97 - 104 |
"Cellulose No Jiten", 2000, ASAKURA PUBLISHING CO., LTD. |
"Mikrobielle Biochemie", 1993, INST. BIOCHEM. TECHNOL |
CURR. GENET., vol. 48, no. 3, 2005, pages 204 - 211 |
GENE, vol. 51, no. 1, 1987, pages 43 - 52 |
MITSUKO KOMATSU ET AL.: "Biomass Bunkai ni Hitsuyo na Trichoderma reesei Toka Koso no Senbatsu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2013, 5 March 2013 (2013-03-05), XP008181197 * |
MITSUKO KOMATSU ET AL.: "Trichoderma reesei Yurai Toka Koso no Biomass Bunkai ni Okeru Yakuwari", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2012, 5 March 2012 (2012-03-05), XP008181198 * |
MOL. GEN. GENET., vol. 241, no. 5-6, 1993, pages 523 - 530 |
NAT BIOTECHNOL., vol. 26, 2008, pages 553 - 560 |
PENTTILA, M.; LEHTOVAARA, P.; NEVALAINEN, H.; BHIKHABHAI, R.; KNOWLES, J.: "Homology between cellulase genes of Trichoderma reeseikoron complete nucleotide sequence of the endoglucanase I gene", GENE, vol. 45, no. 3, 1986, pages 253 - 263, XP023543785, DOI: doi:10.1016/0378-1119(86)90023-5 |
See also references of EP2975113A4 |
YUJI SAITO ET AL.: "Trichoderma reesei Endoglucanase I Oyobi II no Biomass Bunkai ni Okeru Yakuwari", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2012, 5 March 2012 (2012-03-05), XP008181196 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153587A1 (ja) * | 2020-01-28 | 2021-08-05 | 東レ株式会社 | トリコデルマ属糸状菌変異株 |
CN114981405A (zh) * | 2020-01-28 | 2022-08-30 | 东丽株式会社 | 木霉属丝状菌突变株 |
Also Published As
Publication number | Publication date |
---|---|
EP2975113A4 (en) | 2016-08-10 |
JP6535280B2 (ja) | 2019-06-26 |
US20160046918A1 (en) | 2016-02-18 |
EP2975113A1 (en) | 2016-01-20 |
EP2975113B1 (en) | 2021-04-28 |
BR112015023537B1 (pt) | 2022-11-29 |
BR112015023537A2 (pt) | 2017-10-24 |
US10059932B2 (en) | 2018-08-28 |
JPWO2014142325A1 (ja) | 2017-02-16 |
DK2975113T3 (da) | 2021-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Souza et al. | Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry | |
JP7373856B2 (ja) | キシログルカン-オリゴ糖を調製する方法 | |
KR100894374B1 (ko) | 셀로올리고당의 제조 방법 | |
Bhatia et al. | Microbial β-glucosidases: cloning, properties, and applications | |
Paloheimo et al. | Xylanases and cellulases as feed additives. | |
KR20180026665A (ko) | 아라비노자일로-올리고당류를 포함하는 제제 | |
Meena et al. | Penicillium enzymes for the food industries | |
Mathur et al. | Isolation of Bacillus producing chitinase from soil: production and purification of chito-oligosaccharides from chitin extracted from fresh water crustaceans and antimicrobial activity of chitinase | |
JP5243435B2 (ja) | セルラーゼ及びセロオリゴ糖の製造法 | |
JP4789501B2 (ja) | セルラーゼの製造方法 | |
JPWO2002026979A1 (ja) | β−グルコシダーゼ活性を有する新規酵素とその用途 | |
JP2010200720A (ja) | 味質改善剤 | |
JP4689807B2 (ja) | 新規なβ−グルコシダーゼ | |
JP6535280B2 (ja) | セルラーゼ生産菌の変異株、セルラーゼの製造方法およびセロオリゴ糖の製造方法 | |
FI103583B (fi) | Vesiliukoisesta karboksimetyyliselluloosasta entsymaattisesti valmiste ttu hydrolysaatti | |
JP5069576B2 (ja) | 高濃度のセロビオースを蓄積できる酵素組成物、及びそれを用いたセロオリゴ糖の製造方法 | |
TWI429748B (zh) | Cellulase and fiber oligosaccharide production method | |
JP5038181B2 (ja) | セルラーゼ及びセロオリゴ糖の製造方法 | |
JP4971511B2 (ja) | 糖組成物及び飲食品 | |
JP2014057529A (ja) | 酵素製剤およびそれを用いたフェルラ酸の製造方法 | |
Chew et al. | Xanthophyllomyces dendrorhous as a new source of enzymes and its enzymatic potential in non-carotenoid related applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14764708 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015505609 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014764708 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14776679 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015023537 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015023537 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150915 |