WO2014141684A1 - 光増幅器およびその制御方法 - Google Patents

光増幅器およびその制御方法 Download PDF

Info

Publication number
WO2014141684A1
WO2014141684A1 PCT/JP2014/001351 JP2014001351W WO2014141684A1 WO 2014141684 A1 WO2014141684 A1 WO 2014141684A1 JP 2014001351 W JP2014001351 W JP 2014001351W WO 2014141684 A1 WO2014141684 A1 WO 2014141684A1
Authority
WO
WIPO (PCT)
Prior art keywords
control element
current
laser diode
current control
laser diodes
Prior art date
Application number
PCT/JP2014/001351
Other languages
English (en)
French (fr)
Inventor
元良 河井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015505288A priority Critical patent/JPWO2014141684A1/ja
Priority to US14/776,030 priority patent/US9496676B2/en
Priority to EP14764211.0A priority patent/EP2975705A4/en
Priority to CN201480013884.2A priority patent/CN105051990B/zh
Publication of WO2014141684A1 publication Critical patent/WO2014141684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094061Shared pump, i.e. pump light of a single pump source is used to pump plural gain media in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series

Definitions

  • the present invention relates to an optical amplifier used in an optical communication system and a control method thereof, and more particularly to a pumping light module built in the optical amplifier.
  • optical communication systems In recent years, domestic and international communication capacity has increased dramatically, and long-distance transmission is mainly performed by optical communication systems.
  • an optical amplifier built in a repeater arranged at a predetermined distance in the optical transmission line amplifies the signal light attenuated in the transmission line.
  • FIG. 3 is a block diagram illustrating an example of an optical amplifier of a repeater in an optical communication system.
  • the optical amplifier amplifies the optical signals of the two transmission paths as in the transmission direction A and the transmission direction B.
  • the repeater of the optical communication system has a maximum of about eight optical amplifiers mounted in a highly airtight casing.
  • the optical amplifier 10 includes a control circuit 7 that controls the excitation light source modules 4 and 5, an optical coupler 6 that synthesizes the two excitation lights and demultiplexes them into two at a predetermined ratio, and the excitation light and the signal light. It includes a WDM (Wavelength Division Multiplexing) coupler 8 that multiplexes and sends to the EDF 9.
  • WDM Widelength Division Multiplexing
  • the excitation light source module 4 includes a 974 nm band excitation laser diode 1 using InGaAs / GaAs and a monitoring photodiode 3, and the excitation light source module 5 includes a 976 nm band excitation laser diode 2 using InGaAs / GaAs and a monitoring photodiode. 3 is provided.
  • the optical amplifier 10 multiplexes and demultiplexes the pumping light of the two pumping light source modules with the optical coupler 6 so that the pumping light levels of the EDFs 9 in the transmission direction A and the transmission direction B are the same. With this configuration, even if the pumping light level of one pumping light source module is lowered, the optical signal is amplified by the EDF 9 by the pumping light of the remaining pumping light source module. As a result, a redundant configuration that does not cause line disconnection in the system is realized. Further, the optical amplifier 10 controls the control circuit 7 so that the output of the monitoring photodiode 3 incorporated in the excitation light source module becomes constant. As a result, fluctuations in the excitation light level are suppressed even when the ambient temperature and the pump laser diode element change with time.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-128382
  • Patent Document 2 Japanese Patent Laid-Open No. 04-003029
  • Patent Document 1 describes a highly reliable optical amplifier that controls the pumping light source so that the pumping light source is prevented from having a short life and the pumping light level is constant
  • Patent Document 2 describes an optical amplifier that has a redundant configuration using a plurality of pumping light sources, and reduces the drive current by connecting the pumping light sources in series.
  • Patent Document 3 Japanese Patent Laid-Open No. 08-304860.
  • JP 2006-128382 A Japanese Patent Laid-Open No. 04-003029 Japanese Patent Laid-Open No. 08-304860
  • the spare pumping laser diode arranged in parallel is operated to compensate the pumping light level. So that it is controlled. Also, in the case of pump laser diodes arranged in series, control is performed so as to compensate the pump light level by increasing the drive current. For this reason, the amount of power consumed increases.
  • An object of the present invention is to solve this problem and provide an optical amplifier capable of maintaining the level of pumping light without increasing the amount of supplied current when the current pumping laser diode deteriorates, and a control method thereof. There is.
  • An optical amplifier includes at least one of a plurality of pump laser diodes that oscillate pump light input to an optical fiber amplifier, a first current control element that controls a current flowing through the pump laser diodes, and a pump laser diode. And a control means for controlling the first current control element and the second current control element.
  • optical amplifier control method of the present invention outputs from a plurality of pump laser diodes that oscillate pump light are combined and input to an optical fiber amplifier, a drive current is caused to flow in series through the pump laser diodes, The output of one of the pumping laser diodes is detected, and the amount of current that bypasses the other pumping laser diode in the drive current is controlled based on the output.
  • the optical amplifier and the control method thereof according to the present invention can suppress an increase in power consumption (current consumption) even if a spare pump laser diode is operated when the pump laser diode deteriorates or fails.
  • FIG. 1 is a block diagram illustrating an example of an optical amplifier of a repeater in an optical communication system according to the first embodiment of the present invention.
  • the optical amplifier amplifies optical signals in two transmission directions, that is, transmission direction A and transmission direction B.
  • the optical amplifier of the repeater of the optical communication system includes an erbium-doped optical fiber (EDF) 9 in each of the transmission direction A and the transmission direction B.
  • EDF erbium-doped optical fiber
  • WDM Widelength Division Multiplexing
  • the excitation light source module 4 includes a 974 nm band excitation laser diode 1 using InGaAs / GaAs and a monitoring photodiode 3, and the excitation light source module 5 includes a 976 nm band excitation laser diode 2 using InGaAs / GaAs and a monitoring photodiode. 3 is provided.
  • the preliminary excitation light source module 12 includes a preliminary 974 nm band excitation laser diode 11 and a monitoring photodiode 3 using InGaAs / GaAs.
  • the excitation light source module 4, the excitation light source module 5, and the spare excitation light source module 12 are connected in series.
  • the first current control element 13 is connected in series with the excitation laser diode 1, the excitation laser diode 2 and the spare excitation laser diode 11, and the second current control element 14 is connected in parallel with the spare excitation laser diode 11. Yes.
  • the first current control element 13 and the second current control element 14 are controlled by the control circuit 7 and adjust the currents flowing through the excitation laser diodes 1 and 2 and the spare excitation laser diode 11, respectively.
  • the polarization beam combiner 15 controls the polarization of the two pump lights of the pump laser diode 1 and the pump laser diode 2 and combines them into one. Further, the optical coupler 6 combines the combined pumping light and the pumping light of the standby pumping laser diode 11 and splits them into two at a predetermined ratio.
  • the WDM coupler 8 combines the excitation light and the signal light and sends them to the EDF 9.
  • the monitoring photodiode 3 detects the excitation light of the excitation laser diodes 1 and 2 and the preliminary excitation laser diode 11 and outputs a signal corresponding to the detected excitation light to the control circuit 7.
  • the control circuit 7 receives the detection signal output from the monitoring photodiode 3 and adjusts the current flowing through the first current control element 13 and the second current control element 14.
  • control circuit 7 controls the first current control element 13 so that the initial current value flows through the pumping laser diode 1 and the pumping laser diode 2 connected in series.
  • control circuit 7 controls the second current control element 14 so that no current flows through the spare excitation laser diode 11 connected to the excitation laser diodes 1 and 2.
  • the initial current value passed through the pump laser diode 1 and the pump laser diode 2 is approximately 90% to 95% of the maximum current value as compared with the maximum current value that can be passed through the first current control element 13. %.
  • all of the initial current value flows through the second current control element 14 connected in parallel with the diode 11.
  • the control circuit 7 changes the current value flowing through the first current control element 13 to the preliminary excitation laser diode 11 connected in parallel with the second current control element 14.
  • the second current control element 14 is controlled so that the current flows as the upper limit.
  • the pumping light from the spare pumping laser diode 11 is distributed to the EDFs 9 in the transmission direction A and the transmission direction B via the optical coupler 6 and the WDM coupler 8. As described above, the excitation light level is kept constant.
  • the control circuit 7 controls the first current control element 13 to flow the maximum current value, and The second current control element 14 is controlled so that no current flows.
  • a current is supplied from the first current control element 13 to the preliminary excitation laser diode 11. Since the spare pump laser diode 11 is connected in series with the first current control element 13 and the pump laser diodes 1 and 2, the current flowing through them does not increase. As described above, the current consumption is kept constant even when the spare pump laser diode is operated.
  • FIG. 2 is a block diagram illustrating an example of an optical amplifier of a repeater in the optical communication system according to the second embodiment of the present invention.
  • the optical amplifier of the repeater in the second embodiment is different from the configuration of the first embodiment in that the preliminary pumping light source module 17, the second current control element 14, and the polarization combining coupler 15 are used. Has been added.
  • the preliminary excitation light source module 17 includes a preliminary 976 nm band excitation laser diode 16 and a monitoring photodiode 3 using InGaAs / GaAs.
  • the preliminary excitation laser diode 16 is connected in series with the first current control element 13, the excitation laser diode 1, the excitation laser diode 2, and the auxiliary excitation laser diode 11.
  • the second current control element 14 is connected in parallel with the spare excitation laser diode 16.
  • the polarization beam combiner 15 combines the polarizations of the two pumping light beams of the standby pumping laser diode 11 and the standby pumping laser diode 16 into one. Further, the optical coupler 6 combines the combined pumping light and the pumping light combined from the pumping laser diodes 1 and 2, and splits them into two at a predetermined ratio.
  • the control circuit 7 controls the first current control element 13 so that a predetermined current value flows through the pumping laser diode 1 and the pumping laser diode 2 connected in series. Further, the control circuit 7 controls the second current control element 14 so that no current flows through the spare pump laser diode 11 and the spare pump laser diode 16.
  • the initial current value that flows through the pump laser diode 1 and the pump laser diode 2 is approximately 90% to 95% of the maximum current value as compared with the maximum current value that can be passed through the first current control element 13.
  • the second current control element 14 connected in parallel to the diodes 11 and 16 has an initial current value. Everything flows.
  • the control circuit 7 causes a current to flow through the preliminary excitation laser diode 11 or the preliminary excitation laser diode 16 with the current value flowing through the first current control element 13 as an upper limit.
  • the second current control element 14 is controlled. At this time, since the current flowing through the second current control element 14 is passed through the standby pumping laser diode 11 or 16, the pumping laser diodes 1 and 2 and the standby pumping laser diodes 11 and 16 connected in series are connected. The flowing current has not increased.
  • the pumping light of the spare pumping laser diodes 11 and 16 is transmitted to the EDF 9 in the transmission direction A and the transmission direction B via the polarization beam combiner 15, the optical coupler 6, and the WDM coupler 8, respectively. Distributed. As described above, the excitation light level is kept constant.
  • the profile shape of the output light of the EDF can be maintained.
  • the gain of the EDF having wavelength dependency can be maintained.
  • the repeaters of the optical communication system are connected and operated in multiple stages, but the accumulated profile shape of the output light of the EDF can be maintained and the gain of the EDF can be maintained.
  • the control circuit 7 controls the first current control element 13 to flow the maximum current value, In addition, control is performed so that no current flows through the second current control element 14. As a result, current is supplied from the first current control element 13 to the spare pump laser diode 11 and the spare pump laser diode 16. Since the preliminary excitation laser diodes 11 and 16 are connected in series with the first current control element 13 and the excitation laser diodes 1 and 2, the current flowing through them does not increase.
  • the pumping light of the preliminary pumping laser diodes 11 and 16 compensates for the level reduction of the pumping light of the pumping laser diodes 1 and 2, and is thereby distributed to the respective EDFs 9 in the transmission direction A and the transmission direction B.
  • the excitation light level is kept constant.
  • the profile shape of the output light of the EDF can be maintained.
  • the optical amplifier of the present invention operates the spare pump laser diode connected in series with the pump laser diode when the pump light level of the pump laser diode is reduced or pump light is not output. Therefore, the level of the excitation light can be maintained and an increase in the amount of current consumed can be suppressed.
  • SYMBOLS 1 974nm band excitation laser diode 2 976nm band excitation laser diode 3 Monitor photodiode 4, 5 Excitation light source module 6 Optical coupler 7 Control circuit 8 WDM coupler 9 EDF DESCRIPTION OF SYMBOLS 10 Optical amplifier 11 Spare 974 nm band excitation laser diode 12 Spare excitation light source module 13 First current control element 14 Second current control element 15 Polarization combining coupler 16 Spare 976 nm band excitation laser diode 17 Spare excitation light source module

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

[課題] 光増幅器では、励起レーザダイオードの励起光レベルが低下し、もしくは励起光の出力がなくなると、予備用励起レーザダイオードを動作させるため、消費電流量が増加する。 [解決手段] 本発明の光増幅器は、光ファイバ増幅器に入力する励起光を発振する複数の励起レーザダイオードと、励起レーザダイオードの複数に流れる電流を制御する第1電流制御素子と、励起レーザダイオードの少なくとも1つに流れる電流を制御する第2電流制御素子と、第1電流制御素子および第2電流制御素子を制御する制御手段を備えている。

Description

光増幅器およびその制御方法
 本発明は、光通信システムに使用される光増幅器およびその制御方法に関し、特に光増幅器に内蔵される励起光モジュールに関する。
 近年、国内および国際間の通信容量が飛躍的に増大しており、長距離伝送は主に光通信システムにより行われている。この光通信システムにおいては、光伝送路に所定の距離ごとに配置される中継器に内蔵された光増幅器が、伝送路で減衰した信号光を増幅している。
 図面を用いて、一般的な光通信システムの中継器の光増幅器を詳細に説明する。
 図3は、光通信システムの中継器の光増幅器の一例を示すブロック図である。通信システムが送信側からも受信側からも情報を送ることができる双方向の通信の場合、光増幅器は、伝送方向Aと伝送方向Bのように2つの伝送路の光信号を増幅する。光通信システムの中継器は、最大8台程度の光増幅器を、気密性の高い筐体内に実装している。
 図3の光増幅器10は、伝送方向Aと伝送方向Bのそれぞれにエルビウム添加光ファイバ(EDF:Erbium Doped optical Fiber)9を備え、励起光を発振する励起光源モジュール4および5を備えている。そして、光増幅器10は、励起光源モジュール4および5を制御する制御回路7と、2つの励起光を合成し定められた比率で2つに分波する光カプラ6と、励起光と信号光を合波してEDF9に送るWDM(Wavelength Division Multiplexing)カプラ8とを備えている。
 励起光源モジュール4は、InGaAs/GaAsを用いた974nm帯励起レーザダイオード1とモニタ用フォトダイオード3を備え、励起光源モジュール5は、InGaAs/GaAsを用いた976nm帯励起レーザダイオード2とモニタ用フォトダイオード3を備えている。
 光増幅器10は、光カプラ6で2台の励起光源モジュールの励起光を合分波し、伝送方向Aと伝送方向BのそれぞれのEDF9の励起光レベルを同じにしている。この構成によって、1台の励起光源モジュールの励起光レベルが低下しても、残り1台の励起光源モジュールの励起光によって、EDF9で光信号が増幅される。その結果、システムでの回線断にならない冗長構成が実現されている。更に、光増幅器10は、制御回路7により、励起光源モジュールに内蔵されたモニタ用フォトダイオード3の出力が一定になるように制御を行う。その結果、環境温度や励起レーザダイオード素子の経時変化があっても励起光レベルの変動は抑制される。
 通信システムの中継器の光増幅器において、さらに信頼性を高めた光増幅器の技術が特許文献1(特開2006-128382号公報)および特許文献2(特開平04-003029号公報)に開示されている。特許文献1では、励起光源の短寿命を防ぎ、励起光のレベルが一定になるように励起光源を制御し、信頼性の高い光増幅器が記載されている。特許文献2では、複数の励起光源による冗長構成であり、その複数の励起光源を直列に接続することによって駆動電流を少なくしている光増幅器が記載されている。
 その他、光増幅器に関する公報は、特許文献3(特開平08-304860号公報)に開示されている。
特開2006-128382号公報 特開平04-003029号公報 特開平08-304860号公報
 上述のような励起レーザダイオードを使った光増幅器においては、もしも励起レーザダイオードの励起光が低下または出力しなくなると、並列に配置された予備の励起レーザダイオードを動作させて励起光レベルを補償するように制御している。また、直列に配置された励起レーザダイオードの場合も、駆動電流を増加させて励起光レベルを補償するように制御している。このため、消費される電力量が増加する。
 本発明の目的は、この課題を解決し、現用励起レーザダイオードが劣化した場合に供給電流量を増加させることなく、励起光のレベルを維持することが可能な光増幅器およびその制御方法を提供することにある。
 本発明の光増幅器は、光ファイバ増幅器に入力する励起光を発振する複数の励起レーザダイオードと、励起レーザダイオードの複数に流れる電流を制御する第1電流制御素子と、励起レーザダイオードの少なくとも1つに流れる電流を制御する第2電流制御素子と、第1電流制御素子および第2電流制御素子を制御する制御手段を備えている。
 本発明の光増幅器の制御方法は、励起光を発振する複数の励起レーザダイオードからの出力を合波して光ファイバ増幅器に入力し、複数の励起レーザダイオードに駆動電流を直列に流し、複数の励起レーザダイオードのうち一の励起レーザダイオードの出力を検出し、その出力に基づいて駆動電流のうち他の励起レーザダイオードを迂回する電流量を制御する。
 本発明の光増幅器およびその制御方法は、励起レーザダイオードが劣化または故障した場合に、予備の励起レーザダイオードを動作させても、消費電力(消費電流)の増加を抑えることができる。
本発明の第1の実施形態における光通信システムの中継器の光増幅器の一例を示すブロック図である。 本発明の第2の実施形態における光通信システムの中継器の光増幅器の一例を示すブロック図である。 関連する技術における光通信システムの中継器の光増幅器の一例を示すブロック図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。(第1の実施形態)
 図1は、本発明の第1の実施形態における光通信システムの中継器の光増幅器の一例を示すブロック図である。通信システムが送信側からも受信側からも情報を送ることができる双方向の通信の場合、光増幅器は、伝送方向Aと伝送方向Bの2つの伝送方向の光信号を増幅する。
 図1に示すように、第1の実施形態における光通信システムの中継器の光増幅器は、伝送方向Aと伝送方向Bのそれぞれにエルビウム添加光ファイバ(EDF:Erbium Doped optical Fiber)9を備える。また、励起光源モジュール4、5および予備用の励起光源モジュール12と、第1電流制御素子13および第2電流制御素子14と、制御回路7と、偏波合成カプラ15と、光カプラ6と、WDM(Wavelength Division Multiplexing)カプラ8とを備える。
 励起光源モジュール4は、InGaAs/GaAsを用いた974nm帯励起レーザダイオード1とモニタ用フォトダイオード3を備え、励起光源モジュール5は、InGaAs/GaAsを用いた976nm帯励起レーザダイオード2とモニタ用フォトダイオード3を備える。
 予備用励起光源モジュール12は、InGaAs/GaAsを用いた予備用974nm帯励起レーザダイオード11とモニタ用フォトダイオード3を備える。
 励起光源モジュール4、励起光源モジュール5および予備用励起光源モジュール12は直列に接続されている。
 第1電流制御素子13は、励起レーザダイオード1、励起レーザダイオード2および予備用励起レーザダイオード11と直列に接続し、第2電流制御素子14は、予備用励起レーザダイオード11と並列に接続している。
 第1電流制御素子13と第2電流制御素子14は、制御回路7によって制御され、それぞれ励起レーザダイオード1、2、および予備用励起レーザダイオード11に流れる電流を調整する。
 偏波合成カプラ15は、励起レーザダイオード1と励起レーザダイオード2の2つの励起光の偏波を制御して1つに合波する。更に、光カプラ6はその合波した励起光と予備用励起レーザダイオード11の励起光を合成し、所定の比率で2つに分波する。
 WDMカプラ8は、励起光と信号光を合波してEDF9に送る。
 モニタ用フォトダイオード3は、励起レーザダイオード1、2および予備用励起レーザダイオード11の励起光を検出し、検出した励起光に対応する信号を制御回路7に出力する。
 制御回路7は、モニタ用フォトダイオード3から出力される検出信号を受信し、第1電流制御素子13および第2電流制御素子14に流れる電流を調整する。
 次に、本発明の第1の実施形態の光増幅器の動作について説明をする。
 光増幅器が動作を開始する場合、制御回路7は、直列に接続している励起レーザダイオード1および励起レーザダイオード2に初期の電流値が流れるよう、第1電流制御素子13を制御する。また、制御回路7は、上記励起レーザダイオード1、2に接続している予備用励起レーザダイオード11に電流を流さないよう、第2電流制御素子14を制御する。
 この例では、励起レーザダイオード1および励起レーザダイオード2に流す初期の電流値は、第1電流制御素子13に流すことができる最大の電流値と比較すると、およそ最大の電流値の90%から95%である。また、予備用励起レーザダイオード11には電流が流れていないので、ダイオード11と並列に接続されている第2電流制御素子14には、初期の電流値の全部が流れる。
 もしも励起レーザダイオード1あるいは励起レーザダイオード2の励起光のレベルが低下または故障等で励起光が全く出力されなくなると、モニタ用フォトダイオード3から出力される検出信号が低下する。この出力される検出信号の変化に応じて、制御回路7は、第2電流制御素子14と並列に接続している予備用励起レーザダイオード11に第1電流制御素子13に流れている電流値を上限として電流を流すよう、第2電流制御素子14を制御する。この際、第2電流制御素子14に流れていた電流を予備用励起レーザダイオード11に流しているため、直列に接続された励起レーザダイオード1、2および予備用励起レーザダイオード11に流れる電流は増加していない。予備用励起レーザダイオード11の励起光は、光カプラ6とWDMカプラ8を介して、伝送方向Aと伝送方向BのそれぞれのEDF9へ分配される。以上のように、励起光レベルは一定に保たれる。
 さらに、励起レーザダイオード1と励起レーザダイオード2が共に故障等で励起光を全く出力しなくなった場合、制御回路7は、第1電流制御素子13に最大の電流値を流すように制御し、かつ、第2電流制御素子14に電流を流さないように制御する。その結果、予備用励起レーザダイオード11に、第1電流制御素子13から電流が供給される。予備用励起レーザダイオード11は、第1電流制御素子13、励起レーザダイオード1および2と直列に接続しているので、これらに流れる電流は増加しない。以上のように、予備の励起レーザダイオードを動作させても、消費電流は一定に保たれる。
 なお、予備用励起レーザダイオード11の励起光は、故障等で全く出力しなくなった励起光を補うものであるが、伝送方向Aと伝送方向BのそれぞれのEDF9へ分配される励起光レベルは、故障等が発生する前のレベルの最大50%まで低下する。
(第2の実施形態)
 図2は、本発明の第2の実施形態における光通信システムの中継器の光増幅器の一例を示すブロック図である。
 図2に示すように、第2の実施形態における中継器の光増幅器は、第1の実施形態の構成に対して、予備用励起光源モジュール17、第2電流制御素子14および偏波合成カプラ15がさらに追加されている。
 予備用励起光源モジュール17は、InGaAs/GaAsを用いた予備用976nm帯励起レーザダイオード16とモニタ用フォトダイオード3を備えている。
 予備用励起レーザダイオード16は、第1電流制御素子13、励起レーザダイオード1、励起レーザダイオード2および予備用励起レーザダイオード11と直列に接続している。第2電流制御素子14は、予備用励起レーザダイオード16と並列に接続する。
 偏波合成カプラ15は、予備用励起レーザダイオード11と予備用励起レーザダイオード16の2つの励起光の偏波を1つに合波する。更に、光カプラ6はその合波した励起光と励起レーザダイオード1と2から合波した励起光を合成し、定められた比率で2つに分波する。
 その他、第1の実施形態と同一の構成要素には同一参照数字を付記してその説明を省略する。
 次に、本発明の第2の実施形態の光増幅器の動作の説明をする。
 光増幅器が動作を開始する場合、制御回路7は、直列に接続している励起レーザダイオード1および励起レーザダイオード2に所定の電流値を流すよう、第1電流制御素子13を制御する。また、制御回路7は、予備用励起レーザダイオード11および予備用励起レーザダイオード16に電流を流さないよう、第2電流制御素子14を制御する。
 励起レーザダイオード1および励起レーザダイオード2に流す初期の電流値は、第1電流制御素子13に流すことができる最大の電流値と比較すると、およそ最大の電流値の90%から95%である。また、予備用励起レーザダイオード11および予備用励起レーザダイオード16には電流が流れていないので、これらダイオード11および16に並列に接続されている第2電流制御素子14には、初期の電流値の全部が流れる。
 もしも励起レーザダイオード1あるいは励起レーザダイオード2の励起光のレベルが低下または出力されなくなると、モニタ用フォトダイオード3から出力される検出信号が低下する。この出力される検出信号の変化に応じて、制御回路7は、予備用励起レーザダイオード11あるいは予備用励起レーザダイオード16に、第1電流制御素子13に流れている電流値を上限として電流を流すよう、第2電流制御素子14を制御する。この際、第2電流制御素子14に流れていた電流を予備用励起レーザダイオード11あるいは16に流しているため、直列に接続された励起レーザダイオード1、2、予備用励起レーザダイオード11および16に流れる電流は増加していない。さらに動作の説明を続けると、予備用励起レーザダイオード11および16の励起光は、偏波合成カプラ15、光カプラ6およびWDMカプラ8を介して、伝送方向Aと伝送方向BのそれぞれのEDF9へ分配される。以上のように、励起光レベルは一定に保たれる。
 別の効果として、波長が同じ励起レーザダイオードで低減した励起光レベルを補うので、EDFの出力光のプロファイル形状も維持できる。これにより、波長依存性が存在するEDFの利得も維持できる効果がある。そして、実使用上、光通信システムの中継器は多段に接続して運用されるが、EDFの出力光の累積のプロファイル形状も維持でき、EDFの利得も維持できる。
 さらに、励起レーザダイオード1と励起レーザダイオード2が共に故障等で励起光を全く出力しなくなった場合、制御回路7は、第1電流制御素子13に最大の電流値を流すように制御して、かつ、第2電流制御素子14に電流を流さないように制御する。その結果、予備用励起レーザダイオード11および予備用励起レーザダイオード16に、第1電流制御素子13から電流が供給される。予備用励起レーザダイオード11および16は、第1電流制御素子13、励起レーザダイオード1および2と直列に接続しているので、これらに流れる電流は増加しない。
 以上のように、予備用励起レーザダイオード11および16の励起光は励起レーザダイオード1および2の励起光のレベル低減を補い、これにより、伝送方向Aと伝送方向BのそれぞれのEDF9へ分配される励起光レベルは一定に保たれる。
 この場合の別の効果として、EDFの出力光のプロファイル形状も維持できる。
 以上説明したように、本発明の光増幅器は、励起レーザダイオードの励起光のレベルが低下または励起光が出力しなくなる場合、この励起レーザダイオードと直列に接続された予備用励起レーザダイオードを動作させることができるので、励起光のレベルを維持し、かつ消費される電流量の増加を抑えることができる。
 尚、本願発明は、上述の実施形態に限定されるものではなく、請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。
 この出願は、2013年3月15日に出願された日本出願特願2013-053439を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  974nm帯励起レーザダイオード
 2  976nm帯励起レーザダイオード
 3  モニタ用フォトダイオード
 4、5  励起光源モジュール
 6  光カプラ
 7  制御回路
 8  WDMカプラ
 9  EDF
 10  光増幅器
 11  予備用974nm帯励起レーザダイオード
 12  予備用励起光源モジュール
 13  第1電流制御素子
 14  第2電流制御素子
 15  偏波合成カプラ
 16  予備用976nm帯励起レーザダイオード
 17  予備用励起光源モジュール

Claims (7)

  1.  光ファイバ増幅器に入力する励起光を発振する複数の励起レーザダイオードと、
     前記励起レーザダイオードの複数に流れる電流を制御する第1電流制御素子と、
     前記励起レーザダイオードの少なくとも1つに流れる電流を制御する第2電流制御素子と、
     前記第1電流制御素子および前記第2電流制御素子を制御する制御手段を備えていることを特徴とする光増幅器。
  2.  前記励起レーザダイオードにはその出力光を検出するフォトダイオードがそれぞれ配置され、
     前記制御回路は、前記フォトダイオードからの出力信号に基づいて、前記第1電流制御素子および前記第2電流制御素子の少なくとも一方を制御する
    ことを特徴とする請求項1に記載の光増幅器。
  3.  前記第2電流制御素子が接続している励起レーザダイオードは、予備用として機能することを特徴とする請求項1または請求項2に記載の光増幅器。
  4.  前記第2電流制御素子は、前記励起レーザダイオードの少なくとも一つに対して並列に接続されている
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の光増幅器。
  5.  前記第1電流制御素子は、前記制御回路の制御に基づき、直列に接続された前記励起レーザダイオードの複数に流れる電流値を制御する
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の光増幅器。
  6.  前記複数の励起レーザダイオードのうち、2個の励起レーザダイオードが発振する波長が略等しい
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の光増幅器。
  7.  励起光を発振する複数の励起レーザダイオードからの出力を、合波して光ファイバ増幅器に入力し、
     前記複数の励起レーザダイオードに駆動電流を直列に流し、
     前記複数の励起レーザダイオードのうち一の励起レーザダイオードの出力を検出し、
     前記出力に基づいて、前記駆動電流のうち他の励起レーザダイオードを迂回する電流量を制御する
    光増幅器の制御方法。
PCT/JP2014/001351 2013-03-15 2014-03-11 光増幅器およびその制御方法 WO2014141684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015505288A JPWO2014141684A1 (ja) 2013-03-15 2014-03-11 光増幅器およびその制御方法
US14/776,030 US9496676B2 (en) 2013-03-15 2014-03-11 Optical amplifier and control method thereof
EP14764211.0A EP2975705A4 (en) 2013-03-15 2014-03-11 OPTICAL AMPLIFIER AND METHOD FOR CONTROLLING THEREOF
CN201480013884.2A CN105051990B (zh) 2013-03-15 2014-03-11 光学放大器及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-053439 2013-03-15
JP2013053439 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141684A1 true WO2014141684A1 (ja) 2014-09-18

Family

ID=51536363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001351 WO2014141684A1 (ja) 2013-03-15 2014-03-11 光増幅器およびその制御方法

Country Status (5)

Country Link
US (1) US9496676B2 (ja)
EP (1) EP2975705A4 (ja)
JP (1) JPWO2014141684A1 (ja)
CN (1) CN105051990B (ja)
WO (1) WO2014141684A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068312A (ja) * 2018-10-25 2020-04-30 パナソニックIpマネジメント株式会社 レーザ装置
JP2021022593A (ja) * 2019-07-24 2021-02-18 パナソニックIpマネジメント株式会社 レーザ加工装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598668A4 (en) * 2017-03-17 2020-03-18 Nec Corporation OPTICAL UNDERWATER CABLE SYSTEM AND OPTICAL UNDERWATER RELAY DEVICE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043029A (ja) 1990-04-20 1992-01-08 Fujitsu Ltd 光増幅用ポンピング光源の駆動方法
JPH05235445A (ja) * 1992-02-19 1993-09-10 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ増幅器
JPH05268166A (ja) * 1992-03-18 1993-10-15 Kokusai Denshin Denwa Co Ltd <Kdd> 光増幅中継回路
JPH05268167A (ja) * 1992-03-19 1993-10-15 Mitsubishi Electric Corp 光中継装置
JPH08304860A (ja) 1995-05-11 1996-11-22 Kokusai Denshin Denwa Co Ltd <Kdd> 光ファイバ増幅器
JPH10284789A (ja) * 1997-04-08 1998-10-23 Nec Corp レーザダイオード駆動回路
JP2000286755A (ja) * 1999-03-31 2000-10-13 Mitsubishi Electric Corp 光増幅装置
JP2005530332A (ja) * 2002-03-02 2005-10-06 ロフィン−ジナール レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング 複数のレーザダイオードを備えるレーザダイオード装置
JP2006128382A (ja) 2004-10-28 2006-05-18 Mitsubishi Electric Corp 光増幅器
JP2011199079A (ja) * 2010-03-20 2011-10-06 Fujikura Ltd 励起光源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2833910B2 (ja) 1992-03-09 1998-12-09 日本電気株式会社 通信制御装置
JP2991893B2 (ja) * 1993-05-31 1999-12-20 富士通株式会社 発光素子の駆動回路及びこれを用いた光増幅中継器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043029A (ja) 1990-04-20 1992-01-08 Fujitsu Ltd 光増幅用ポンピング光源の駆動方法
JPH05235445A (ja) * 1992-02-19 1993-09-10 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ増幅器
JPH05268166A (ja) * 1992-03-18 1993-10-15 Kokusai Denshin Denwa Co Ltd <Kdd> 光増幅中継回路
JPH05268167A (ja) * 1992-03-19 1993-10-15 Mitsubishi Electric Corp 光中継装置
JPH08304860A (ja) 1995-05-11 1996-11-22 Kokusai Denshin Denwa Co Ltd <Kdd> 光ファイバ増幅器
JPH10284789A (ja) * 1997-04-08 1998-10-23 Nec Corp レーザダイオード駆動回路
JP2000286755A (ja) * 1999-03-31 2000-10-13 Mitsubishi Electric Corp 光増幅装置
JP2005530332A (ja) * 2002-03-02 2005-10-06 ロフィン−ジナール レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング 複数のレーザダイオードを備えるレーザダイオード装置
JP2006128382A (ja) 2004-10-28 2006-05-18 Mitsubishi Electric Corp 光増幅器
JP2011199079A (ja) * 2010-03-20 2011-10-06 Fujikura Ltd 励起光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975705A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068312A (ja) * 2018-10-25 2020-04-30 パナソニックIpマネジメント株式会社 レーザ装置
JP7199034B2 (ja) 2018-10-25 2023-01-05 パナソニックIpマネジメント株式会社 レーザ装置
JP2021022593A (ja) * 2019-07-24 2021-02-18 パナソニックIpマネジメント株式会社 レーザ加工装置
JP7312956B2 (ja) 2019-07-24 2023-07-24 パナソニックIpマネジメント株式会社 レーザ加工装置

Also Published As

Publication number Publication date
US20160028209A1 (en) 2016-01-28
JPWO2014141684A1 (ja) 2017-02-16
EP2975705A4 (en) 2016-11-16
CN105051990A (zh) 2015-11-11
EP2975705A1 (en) 2016-01-20
US9496676B2 (en) 2016-11-15
CN105051990B (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
EP2816678B1 (en) Relay device, and excitation light supply device and excitation light supply method therefor
JPH1012954A (ja) 光増幅器
JP4746951B2 (ja) 光増幅器および光増幅方法
WO2014208048A1 (ja) レーザーダイオード駆動装置、光直接増幅装置、光信号伝送システム及びレーザーダイオード駆動方法
JPH11121849A (ja) 光通信装置における光増幅器
WO2018097075A1 (ja) 光通信装置および光増幅用の励起光を供給する装置
JP6809534B2 (ja) 光通信装置および光増幅用の励起光を供給する装置
US7917030B2 (en) Fiber optic communication system with automatic line shutdown/power reduction
JP5012478B2 (ja) 分布ラマン増幅装置およびwdm光伝送システム
WO2014141684A1 (ja) 光増幅器およびその制御方法
US20220102932A1 (en) Optical amplification device and optical amplification method
JP2669483B2 (ja) 光増幅中継回路
JP5151453B2 (ja) 光増幅器を用いた光伝送システム
JP6673027B2 (ja) 光中継システムおよび光中継方法
JP3923060B2 (ja) 光増幅器
JP2004069831A (ja) 光伝送システム及び光伝送システムの光増幅方法
WO2014034073A1 (ja) 光増幅器の励起用光源およびその制御方法
JP2004242114A (ja) 光増幅中継伝送システム
JP4312577B2 (ja) 光ファイバ増幅器
JP6965954B2 (ja) 光中継器、光通信システム、および光通信方法
JP6273704B2 (ja) 光中継器
JP2007318013A (ja) 光増幅器および光伝送システム
JPWO2018168593A1 (ja) 光増幅モジュールおよび光増幅方法
JPH07253602A (ja) 励起光源を有する光増幅回路
JP2008306081A (ja) Mmpldを使用した光増幅方法と光増幅器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013884.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014764211

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015505288

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14776030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE