WO2014136975A1 - 磁気計測装置 - Google Patents

磁気計測装置 Download PDF

Info

Publication number
WO2014136975A1
WO2014136975A1 PCT/JP2014/056077 JP2014056077W WO2014136975A1 WO 2014136975 A1 WO2014136975 A1 WO 2014136975A1 JP 2014056077 W JP2014056077 W JP 2014056077W WO 2014136975 A1 WO2014136975 A1 WO 2014136975A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
amorphous
current
amorphous material
sensor
Prior art date
Application number
PCT/JP2014/056077
Other languages
English (en)
French (fr)
Inventor
晋介 中山
宮崎 秀樹
Original Assignee
国立大学法人名古屋大学
フジデノロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, フジデノロ株式会社 filed Critical 国立大学法人名古屋大学
Priority to US14/773,633 priority Critical patent/US10012705B2/en
Priority to EP14760217.1A priority patent/EP2975423B1/en
Publication of WO2014136975A1 publication Critical patent/WO2014136975A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers

Definitions

  • the present invention relates to a magnetic measurement device, and more particularly to a magnetic detection device that detects magnetism based on a change in magnetic moment in a material having magnetic anisotropy.
  • the magnetic detection device using the SQUID uses the superconducting Josephson effect and the superconducting coil, and precisely shields a large-scale device for maintaining an ultra-low temperature for realizing superconductivity and an environmental magnetic field. For this reason, there is a problem that a facility is required.
  • a magnetic sensor using an MI sensor is a sensor that uses a phenomenon in which the impedance of an MI element changes depending on the frequency of the AC current that is applied due to the skin effect when an alternating current is applied to an MI (Magnetoimpedance) element.
  • FIG. 12 is a diagram showing the relationship between the tension in the amorphous wire experimentally obtained by the present inventors and the sensitivity of the sensor.
  • the horizontal axis in FIG. 12 represents the magnitude of tension applied to the amorphous wire
  • the vertical axis represents the sensitivity of the MI sensor using the amorphous wire.
  • the tension of the amorphous wire and the sensitivity of the sensor are such that the greater the tension, the worse the sensitivity of the sensor, that is, the resolution, and the two are closely related.
  • the variation in tension when the amorphous wire is attached to the sensor cannot be ignored in maintaining the performance of the completed sensor.
  • a gradio sensor gradient magnetic field detection device
  • the sensitivity of the two sensors must be made to match, as described above.
  • JP 2003-004830 A International Publication No. 2005/019851 JP 2010-256109 A International Publication No. 2009/130814 JP 2012-185103 A
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to use a magnetic material having magnetic anisotropy, enabling a simpler configuration while enabling accurate measurement.
  • An object of the present invention is to provide a magnetic measuring device.
  • the inventors of the present application indicate that the magnetic material having magnetic anisotropy changes the orientation of its internal magnetization between a state in which no magnetic field is applied from the surroundings and a state in which an external magnetic field to be measured is applied. It was found that the internal magnetization of the magnetic material is aligned along the induced magnetic field when a current of a certain amount or more is passed through the conducting wire arranged in the vicinity of the magnetized material. The present invention has been made based on such findings.
  • the gist of the present invention for achieving the above object is as follows: (a) a magnetic material made of either solid or liquid having magnetic anisotropy or a composite thereof; and (b) the magnetic material. Proximity, having a conductor arranged to give a current-induced magnetic field vector having a component perpendicular to the easy magnetization direction of the magnetic material, and (c) a coil for detecting the magnetic field A magnetic measuring device, wherein (d) a current is repeatedly passed through the conductor, (e) an electromotive force generated in the coil is detected, and an output of the coil is used as a signal. .
  • the magnetic material can generate a magnetic field based on a current passed through the conductor, and can generate an electromotive force in the coil by the magnetic field. Since magnetic detection can be performed by measuring, it is not necessary to actively energize the magnetic material. In addition, since it is not necessary to energize the magnetic material, it is not necessary to electrically connect the magnetic material, and the magnetic measuring device can be configured without being affected by modification due to heat, vibration, or the like.
  • the magnetic material is an amorphous material.
  • the magnetization of the magnetic material is easily changed by the magnetic field to be measured and the magnetic field generated by the current flowing through the conductor, an electromotive force is easily generated in the coil by the magnetic field. Therefore, it is possible to easily and accurately measure magnetism.
  • the current is a pulse current, a current that repeatedly changes in a predetermined pattern, or a current in which these are superimposed. In this way, since the magnitude of the current flowing through the conductor changes periodically, magnetism can be measured based on the change in the electromotive force of the coil synchronized with the period.
  • the magnetic material is an amorphous wire having an easy magnetization direction in at least one longitudinal direction
  • the conductor is at least one conducting wire.
  • the magnetic material has a symmetrical shape with a straight line or a plane perpendicular to the easy magnetization direction passing through a midpoint in the easy magnetization direction of the magnetic material as a symmetric line or plane of symmetry.
  • a pair of the coils are provided so as to be symmetric with respect to the symmetry line or the symmetry plane, thereby constituting (c) a gradio sensor.
  • the two coils are provided so as to be symmetric with respect to the line of symmetry or the plane of symmetry with respect to the common magnetic material, and the effects of environmental magnetic fields such as geomagnetism can be suitably offset, The accuracy when the gradio sensor is manufactured can be improved.
  • the magnetic material includes an amorphous material having magnetic anisotropy
  • the amorphous material is configured in a cylindrical shape so as to surround the conductor in at least one layer. In this way, the magnetic measurement device can be configured in a state where the amorphous material and the conductor are close to each other.
  • the magnetic material includes a longitudinal amorphous material having magnetic anisotropy
  • the longitudinal amorphous material surrounds the conductor with at least one layer. It is configured in a coil shape. In this way, the magnetic measurement device can be configured in a state where the amorphous material and the conductor are close to each other.
  • the amorphous material and the conductor are electrically insulated.
  • the magnetic field generated by the amorphous material is not affected by the current flowing through the amorphous material.
  • the amount of current flowing through the conductor is such that it does not affect the measurement of magnetism, it is not always necessary to insulate the amorphous material from the conductor.
  • FIG. It is a figure explaining the structure of the magnetic measuring device in another Example of this invention, Comprising: It corresponds to FIG. It is a figure explaining the structure of the magnetic measuring device in another Example of this invention, Comprising: It corresponds to FIG. It is a figure which shows the result of the measurement experiment of the magnetism performed using the magnetic measurement apparatus of Example 1.
  • FIG. It is a figure which shows the relationship between the tension
  • FIG. 1 is a diagram for explaining the outline of a magnetic measuring device 10 of the present invention.
  • the magnetic measurement device 10 includes a probe unit 12 for detecting magnetism and a circuit unit 14 for driving the probe unit 12.
  • the probe unit 12 constitutes a magnetic gradio sensor, and includes two magnetic sensors as will be described later. The configuration of the probe unit 12 will be described later.
  • the circuit unit 14 includes a clock unit 20, a power supply unit 21, and a pulse generator (pulse generator) 22 provided to supply current to conductor units 42 and 44 of the probe unit 12 described later.
  • the clock unit 20 is a CMOS IC, for example, and outputs a pulse signal at a predetermined interval.
  • the pulse generator 22 supplies a current Ie that periodically changes based on the pulse signal output from the clock unit 20 and the power supply voltage supplied from the power supply unit 21 to the conductors 42 and 44 of the probe unit 12. To do.
  • the periodically changing current Ie is, for example, a square wave that changes in a pulse shape.
  • the circuit unit 14 includes sample and hold circuits 24 and 26, a differential amplifier 28, a filter 30 and an amplifier 32 provided to detect induced electromotive forces Ecoil1 and Ecoil2 of coils 50 and 52 of the probe unit 12 described later.
  • a filter 34 is provided.
  • the sample and hold circuits 24 and 26 detect the amplitude peaks (peak values) of the electromotive forces Ecoil1 and Ecoil2 of the coils 50 and 52, respectively.
  • a trigger signal is supplied from the clock unit 20 to the sample and hold circuits 24 and 26. Detection of peak values in the sample and hold circuits 24 and 26 is performed in a predetermined manner in synchronization with the trigger signal. This is done for each phase.
  • the differential amplifier 28 outputs the difference between the output values of the sample and hold circuits 24 and 26.
  • the filter 30 removes high frequency components and low frequency components (high cut and low cut) from the output of the differential amplifier 28, and extracts only the desired frequency components.
  • the amplifier 32 amplifies the output signal of the filter 30 by, for example, about 1000 times with a predetermined offset voltage Offset.
  • the filter 34 again removes the high frequency component and the low frequency component from the output of the amplifier 32, and extracts only the desired frequency component.
  • the signal output in this way is displayed on a display device such as a monitor (not shown), recorded on a recording device, or transmitted to another device.
  • FIG. 2 is a diagram conceptually illustrating the basic configuration of the probe unit 12.
  • the probe unit 12 includes sensors 36 and 38.
  • the magnetic measurement device 10 of this embodiment constitutes a gradio sensor
  • one of the sensors 36 and 38 is used as a sensor for measuring magnetic Bmes to be detected, and the other is a reference. It is used as a sensor. Therefore, the sensors 36 and 38 have the same configuration.
  • Each of the sensors 36 and 38 includes amorphous materials 46 and 48 as magnetic materials, conductive wires 42 and 44 as conductors, and coils 50 and 52.
  • the amorphous materials 46 and 48 are amorphous wires having a longitudinal shape.
  • the conducting wires 42 and 44 are provided close to the amorphous materials 46 and 48, respectively, and extend so as to be parallel to the longitudinal direction of the amorphous materials 46 and 48.
  • Each of the coils 50 and 52 is provided as a solenoid-like coil including amorphous materials 46 and 48 and conductive wires 42 and 44 therein.
  • the amorphous materials 46 and 48 and the conductive wires 42 and 44 are not electrically joined, for example, by providing a space or by interposing an insulator.
  • the configuration of the sensor is not limited to such a configuration. For example, if the shape of the amorphous materials 46 and 48 extends in the longitudinal direction, the configuration is limited to a rod-shaped configuration as shown in FIG. is not.
  • the positional relationship between the coils 50 and 52 and the amorphous materials 46 and 48 and the conductive wires 42 and 44 is not limited to that including the amorphous materials 46 and 48 and the conductive wires 42 and 44 inside the coils 50 and 52.
  • 48 may be arranged so that the current induced by 48 can be generated.
  • the sensors 36 and 38 are positioned so that one of them detects the magnetic Bmes to be detected while the other does not detect the other.
  • FIG. 3 is a diagram for explaining the electrical configuration of the sensors 36 and 38.
  • the electromotive forces Ecoil1 and Ecoil2 of the coils 50 and 52 are output to the sample and hold circuits 24 and 26, respectively.
  • the sensors configured as the sensors 36 and 38 are referred to as iPA sensors (induced para-magnetic alignment sensors) or iPA sensor elements.
  • FIG. 4 illustrates only the amorphous materials 46 and 48 and the conductive wires 42 and 44 in the iPA sensor, and is a diagram illustrating the distribution of magnetic charges in the amorphous materials 46 and 48.
  • Each of the arrows in the amorphous materials 46 and 48 conceptually indicates the direction of the magnetic charge.
  • 4A shows a non-magnetic state where no external magnetic field is applied to the iPA sensor, or a so-called control state S (0) where only an environmental magnetic field is applied.
  • 4B shows a state S (1) in which the magnetic field Bmes from the measurement object is applied
  • FIG. 4C shows the state S when a sufficient excitation current Ie is applied to the conductors 42 and 44. (E) is shown.
  • the magnetization in the amorphous materials 46 and 48 is, for example, from S (0) in FIG. 4A to FIG. ) As S (1). That is, in the control state S (0), the magnetizations (Mam) of the amorphous materials 46 and 48 are oriented in a direction perpendicular to the longitudinal direction, for example. On the other hand, in the state S (1) to which the magnetic field Bmes is applied, the orientation of the magnetic moment that forms a part of the easy magnetization direction changes. On the other hand, as shown in FIG.
  • the magnitude is different from a transient magnetic field.
  • the transient magnetic fields generated by the amorphous wires 46 and 48 in this way are detected as the electromotive force changes Ecoil1 and Ecoil2 in the coils 50 and 52 by the coils 50 and 52 (see FIGS. 2 and 3), respectively.
  • This change in electromotive force corresponds to the change in magnetization in the amorphous materials 46 and 48 before and after the excitation current Ie is applied.
  • the electromotive force changes Ecoil1 and Ecoil2 in the coils 50 and 52 reflect the magnetic field Bmes to be measured, and the magnitude of the magnetic field Bmes can be calculated based on the electromotive force changes Ecoil1 and Ecoil2.
  • ⁇ t is the time required for the magnetization to be aligned, and is, for example, a time in nanoseconds.
  • the excitation current Ie is a pulse current
  • the period is repeated at high frequency. Therefore, the difference between the excited state period and the relaxed state period of the induced electromotive force in the coils 50 and 52 can be detected. It is also possible to calculate an average value by repeating this multiple times.
  • the magnitude of the excitation current Ie is determined so as to be a current that can align the internal magnetization of the amorphous wires 46 and 48 in an environmental magnetic field, that is, geomagnetism received in a normal indoor environment.
  • r is the distance from the center of the conducting wires 42 and 44.
  • an induced magnetic field Be of 4 ⁇ 10 ⁇ 5 T can be applied to the amorphous materials 46 and 48 at a distance of 1000 ⁇ m (10 ⁇ 3 m) from the centers of the conductive wires 42 and 44. This value is added to the geomagnetism. Because it is comparable, it is considered sufficient to align the magnetization of the amorphous materials 46, 48 under geomagnetism.
  • the magnetic measurement apparatus 10 of the present embodiment includes the amorphous materials 46 and 48 that are magnetic materials made of a solid, liquid, or a composite thereof having magnetic anisotropy, and the amorphous wire 46.
  • an electromotive force can be generated in the coils 50 and 52 by the magnetic field.
  • the easy magnetization direction is a direction in which the magnetic moment is easily directed in the amorphous materials 46 and 48. Since magnetic detection can be performed by measuring the electromotive force of the coils 50 and 52, there is no need to positively energize the amorphous materials 46 and 48. In addition, since it is not necessary to energize the amorphous materials 46 and 48, it is not necessary to electrically connect the amorphous materials 46 and 48, and the magnetic measuring device 10 is not affected by modification due to processing such as soldering. Can be configured.
  • the magnetization of the amorphous materials 46 and 48 is easy due to the magnetism to be measured and the magnetic field generated by the current flowing through the conductors 42 and 44. Therefore, an electromotive force is easily generated in the coils 50 and 52 by the magnetic field. Therefore, it is possible to easily and accurately measure magnetism.
  • the current flowing through the conducting wires 42 and 44 is a pulse current, a current that repeatedly changes in a predetermined pattern, or a current in which these are superimposed.
  • the magnetism can be measured based on the change in the electromotive force of the coils 50 and 52 synchronized with the changing current.
  • the magnetic material is the amorphous wires 46 and 48 having the easy magnetization direction in at least one longitudinal direction
  • the conductor is the at least one conductive wire 42 and 44.
  • the magnetic measurement device 10 in which materials and conductors are suitably arranged can be configured.
  • FIG. 5 is a diagram for explaining the outline of a sensor (iPA sensor) 136 constituting the magnetic measuring device 10 in another embodiment of the present invention.
  • FIG. 5A is a diagram for explaining the structure
  • FIG. 5B is a cross-sectional view in a plane perpendicular to the longitudinal direction. This sensor 136 can be used in place of the sensors 36 and 38 in the above-described embodiment.
  • the sensor 136 shown in FIG. 5 has substantially the same configuration as the sensors 36 and 38 in the first embodiment.
  • the sensor 136 includes an amorphous material 146 as a magnetic material, a conductive wire 42 as a conductor, and a coil 50, and the amorphous material 146 is an amorphous wire having a longitudinal shape.
  • Each of the conductive wires 42 is provided close to the amorphous material 146 and extends so as to be parallel to the longitudinal direction of the amorphous material 146.
  • the coil 50 is provided as a solenoidal coil that includes an amorphous material 146 and a conductive wire 42 therein.
  • a plurality of (four in FIG. 5) amorphous materials 146 are provided as the amorphous materials 146 146 a to 146 d.
  • the sensors 36 and 38 shown in FIG. 2 are provided with a single amorphous material 46 and 48, which are different in this respect.
  • a plurality of amorphous wires can be provided, and the shapes thereof can be varied.
  • the number and shape may be changed in accordance with the detection sensitivity required for the magnetic measurement device 10.
  • two amorphous materials 146a and 146c having a circular cross section and two amorphous materials 146b and 146d having a quadrangular cross section are provided, but the present invention is limited to such an embodiment.
  • the cross-section may be an amorphous material having a shape other than a circle or a rectangle, and the number and combination thereof are not limited to those shown in FIG.
  • the excitation current decreases or the total current amount increases.
  • the same effect as that of the first embodiment can be obtained, and the sensitivity of the sensor 136 can be set by the number and shape of the amorphous material 146.
  • FIG. 6 is a diagram for explaining the outline of a sensor (iPA sensor) 236 constituting the magnetic measuring device 10 in still another embodiment of the present invention.
  • FIG. 6A is a diagram for explaining the structure
  • FIG. 6B is a cross-sectional view in a plane perpendicular to the longitudinal direction.
  • This sensor 236 can be used in place of the sensors 36 and 38 in the above-described embodiment.
  • the senor 136 includes an amorphous material 246 as a magnetic material, a conductive wire 42 as a conductor, and a coil 50.
  • the amorphous material 246 is produced by winding a thin-film magnetic anisotropic amorphous material into a cylindrical shape.
  • the conducting wire 42 has penetrated the center part of the amorphous material 246 made cylindrical.
  • the amorphous material 246 may be manufactured so as to be wound around the conductive wire 42. At this time, the amorphous material 246 is preferably insulated from the conductive wire 42 surrounded by the amorphous material 246.
  • a part of the amorphous material 246 is passed from the conductor 42 to the amorphous material 246.
  • the current may be shunted, and the amorphous material 246 and the conductor 42 need not necessarily be insulated.
  • the amorphous material 246 having a cylindrical shape may be wound in at least one layer, but may be wound in a plurality of layers. The number of layers may be changed according to the detection sensitivity required for the magnetic measurement device 10.
  • the conductive wire 42 is close to the amorphous material 246 and is parallel to the longitudinal direction of the amorphous material 246.
  • the coil 50 is provided as a solenoid-like coil including the amorphous material 246 and the conductive wire 42 therein.
  • the magnetic material is a sheet-like amorphous material 246 having magnetic anisotropy, and the sheet-like amorphous material 246 has at least one conductive wire 42. Since it is wound so as to be surrounded by layers, or more than one layer is stacked, the same effect as in the first embodiment can be obtained, and the magnetic measuring device 10 can be configured with the amorphous material 246 and the conductive wire 42 in proximity to each other. Can do.
  • FIG. 7 is a diagram for explaining the outline of a sensor (iPA sensor) 336 constituting the magnetic measurement device 10 in still another embodiment of the present invention.
  • FIG. 7A is a diagram for explaining the structure
  • FIG. 7B is a cross-sectional view in a plane perpendicular to the longitudinal direction.
  • the sensor 336 can be used in place of the sensors 36 and 38 in the above-described embodiment.
  • the sensor 336 shown in FIG. 7 has substantially the same configuration as the sensors 36 and 38 in the first embodiment.
  • the sensor 136 includes an amorphous material 346 as a magnetic material, a conductive wire 42 as a conductor, and a coil 50.
  • the amorphous material 346 is formed by winding at least one layer of a magnetically anisotropic amorphous material having a long shape such as a wire shape or a wide string shape so as to surround the conductive wire 42.
  • the amorphous material 346 may be manufactured so as to be wound around the conducting wire 42, or after being wound so as to provide a space at the center so as to be cylindrical, the conducting wire 42 is placed in the space generated at the center. It may be arranged.
  • the amorphous material 346 and the conductive wire 42 surrounded by the amorphous material 346 may or may not be insulated as in the case of the third embodiment.
  • interval at the time of winding the amorphous material 346 may be changed so that adjacent amorphous materials are in contact with each other so as not to cause a gap, or may be wound at a predetermined gap. Further, at the time of winding, at least one layer may be wound, but a plurality of layers may be wound.
  • the conductive wire 42 is close to the amorphous material 346, but a certain effect is produced even if the longitudinal direction of the amorphous material 346 and the longitudinal direction of the conductive wire 42 are not parallel.
  • the coil 50 is provided as a solenoid-like coil including the amorphous material 346 and the conductive wire 42 therein.
  • the magnetic material is the amorphous material 346 having a longitudinal magnetic anisotropy, and the amorphous material 346 surrounds the conducting wire 42 with at least one layer.
  • the same effect as in the first to third embodiments can be obtained, and the magnetic measuring device 10 can be configured in a state where the amorphous material 346 and the conductive wire 42 are close to each other.
  • FIG. 8 is a diagram for explaining the configuration of the probe unit 12 in another embodiment of the present invention, and corresponds to FIG. That is, the probe unit 12 of this embodiment is used in place of the probe unit 12 of FIG.
  • the two sensors 36 and 38 have amorphous materials 46 and 48 and conductive wires 42 and 44, respectively.
  • the probe unit 12 of this embodiment shown in FIG. 36 and 38 differ in that they have a common amorphous material 446 and one conductor 442.
  • the common amorphous material 446 means that the two sensors 36 and 38 share the amorphous material 446 coupled in series in a magnetic circuit manner.
  • the amorphous material 446 has a symmetrical shape with a straight line passing through the midpoint in the easy magnetization direction, that is, the longitudinal direction and perpendicular to the easy magnetization direction as a symmetry line.
  • the pair of coils 50 and 52 in the pair of sensors 36 and 38 are provided at positions symmetrical with respect to the symmetry line or the symmetry plane.
  • a magnetic field applied in common to the two sensors 36 and 38 such as an environmental magnetic field, is symmetric with respect to its midpoint or symmetry line in the amorphous material 446. It becomes. Therefore, when a gradio sensor is configured using these two sensors 36 and 38, the influence of the environmental magnetic field can be suitably canceled, and the magnetic measurement apparatus 10 with higher accuracy can be provided. This is also described in Patent Document 5.
  • the amorphous material 446 has a symmetrical shape with a straight line passing through the midpoint in the easy magnetization direction and perpendicular to the easy magnetization direction as a symmetry line, and the pair of coils in the sensors 36 and 38.
  • a pair of sensors 50 and 52 are provided so as to be symmetric with respect to the symmetry line, and the sensors 36 and 38 constitute a gradio sensor. By making the difference, it can be canceled appropriately, and the accuracy of the magnetic measuring device 10 configured using the gradio sensor can be improved.
  • FIG. 9 is a diagram illustrating the configuration of the magnetic measurement device 10 according to another embodiment of the present invention.
  • a part of the magnetic measurement device 10 including the probe unit 12 is used as a sensor probe 212.
  • the sensor probe 212 is separated from the main body of the magnetic measurement device 10 and is connected to each other by a cable so that the magnetism at a place away from the main body can be measured.
  • the sensor probe 212 includes a pulse generator 22, an AC coupler 224, and an instrumentation amplifier 228 that are part of the circuit unit 14 in addition to the probe unit 12.
  • the present invention is not limited to such an embodiment, and some of these may not be included in the sensor probe 212, and conversely, other components of the circuit unit 14 may be included in the sensor probe 212. Good.
  • the circuit unit 14 in this embodiment includes a clock unit 20, a power supply unit 21, a pulse generator 22, an AC coupling unit 224, an instrumentation amplifier 228, an AC coupling unit 260, a lock-in amplifier 262, a low-pass filter 264, and the like. It is configured to include. Among them, the clock unit 20, the power supply unit 21, and the pulse generator 22 are the same as those in the first embodiment, and the description thereof is omitted. Note that the clock signal output from the clock unit 20 is preferably a clock signal having a high accuracy, for example, having a precision of 5 digits or more.
  • the clock unit 20 does not need to be provided in the circuit unit 14, and may be provided outside the magnetic measurement device 10 and supply a clock signal to the magnetic measurement signal 10, for example.
  • the outputs from the sensors 36 and 38 are input to the instrumental amplifier via the AC coupler 224.
  • the output from the sensors 36 and 38 may be input to the AC coupler 224 via a bandpass filter (not shown) that passes 10 kHz to 100 MHz, for example, in order to remove noise.
  • the coupling is calculated by the AC coupler 224, and the difference between them is calculated by the instrumentation amplifier 228, and further amplified by a predetermined amplification factor.
  • the output of the instrumentation amplifier 228 is further input to the AC coupler 260 to be coupled. Further, a high-frequency filter corresponding to the frequency of the clock signal is removed by a high-pass filter as necessary. Then, it is input to the lock-in amplifier 262.
  • the lock-in amplifier 262 detects the amplitude of the output, which is the induced electromotive force of the sensors 36 and 38, based on the clock signal supplied from the clock unit 20. After the detected amplitude is made a continuous value, it is offset by a preset offset voltage and amplified with a predetermined amplification factor such as 1000 times. Further, after the low frequency filter 264 removes components on the lower frequency side than the predetermined frequency, an output is made. At this time, in addition to the amplified signal, an offset voltage and a detection phase (delay time) may be output together.
  • the sensor probe 212 is configured separately from the main body of the magnetic measurement device 10, so Magnetic measurement is possible.
  • FIG. 10 is a diagram for explaining the configuration of the magnetic measurement device 10 in still another embodiment of the present invention, and corresponds to FIG. FIG. 10 is different in that a digital processing unit 280 is used for the circuit unit 14.
  • the digital processing unit 280 has a function of performing AD conversion of signals.
  • the clock unit 20 is provided in the circuit unit 14 as shown in FIG. 9, but in this embodiment, the clock unit 282 is provided inside the digital processing unit 280 as shown in FIG. A clock is used. Specifically, a clock signal as a digital signal output from a clock unit 282 provided in the digital processing unit 280 is converted into analog data via the first DA conversion unit 283 and supplied to the pulse generator 22. As in the sixth embodiment, the clock signal may be supplied from other than the magnetic measurement device 10.
  • the differential between the AC coupling unit 224 that processes signals from the sensors 36 and 38 and the instrumentation amplifier 228 is also the same as that in the above-described embodiment, and thus the description thereof is omitted.
  • the output of the instrumentation amplifier 228 is input to the AC coupling unit 270 for coupling. Further, only a component in a predetermined frequency band corresponding to the frequency of the clock signal is passed by the band pass filter as necessary.
  • the output of the AC couple unit 270 is input to the digital processing unit 280, and the first AD conversion unit 284 performs high-speed AD conversion to a digital signal.
  • the first AD converter 284 is supplied with a clock signal from the clock unit 282 via the first DA converter 283 described above, and the first AD converter 284 operates in synchronization with this clock signal.
  • the digital data converted by the first AD conversion unit 284 is transmitted to a data processing unit 286, which will be described later, for processing, and may be stored in, for example, a storage device in the digital processing unit 280 (not shown).
  • the digital signal may be output for other devices.
  • the difference between the output signals of the sensors 36 and 38 converted into the digital signal is continuously integrated to reduce noise. Then, the amplitude in an arbitrary phase (delay time) is detected. This amplitude corresponds to the magnetic field to be measured. Data obtained by processing in the data processing unit 286 is converted into an analog signal by the second DA conversion unit 288 and output to a monitor (not shown) or the like.
  • FIG. 11 is a diagram showing the results of a magnetic measurement experiment performed using the magnetic measurement apparatus 10 of this example.
  • the magnetic measuring device 10 shown in FIG. 1 is used, and the sensors 36 and 38 shown in FIG. 8 are used.
  • the excitation current Ie supplied from the pulse generator 22 to the conductors 42 and 44 of the sensors 36 and 38 is a pulsed 100 mA current having a width of 100 ns and an amplitude of 5V.
  • the distances between the conducting wires 42 and 44 and the amorphous materials 46 and 48 were 300 ⁇ m, respectively.
  • FIG. 11 shows the time change of the output of one of the sensors 36 and 38 of the magnetic measuring device 10 at this time (for example, 36).
  • the differential amplifier 228 does not perform amplification, and the vertical axis in FIG. 11 corresponds to the output voltage of the sensor (for example, 36).
  • the digital processing unit 280 since the digital processing unit 280 is used, calculation, data recording, and output can be performed. It can be done as digital data.
  • the example of the magnetic detection device 10 in which the gradio sensor is configured by the two sensors 36 and 38 is shown.
  • the present invention is not limited thereto, and it is possible to perform magnetic measurement by using one sensor. is there. In this case, it is not necessary to provide the components of the circuit unit 14 provided on the premise that the outputs of the two sensors are operated, that is, the differential amplifier 28 and the like.
  • the current supplied from the pulse generator 22 to the conductor portions 42 and 44 of the probe portion 12 is a square wave, but is not limited thereto.
  • any waveform shape such as a sine wave, sawtooth wave, triangular wave, or AC wave may be used as long as it changes repeatedly in a predetermined pattern, and the predetermined pattern is offset in a positive or negative direction by a certain value.
  • the direct current component may be superimposed. Further, the period when the current changes repeatedly does not need to be constant, and the high output time and the low output time do not need to be equal in a square wave, for example.
  • the wire material or the sheet-like amorphous material 46, 48, 146, 246, 346, 446 is used as the magnetic material.
  • the material is not limited to this as long as the material has magnetic anisotropy.
  • a liquid having magnetic anisotropy such as an ionic liquid containing particles having magnetic anisotropy may be included in a predetermined container. Further, it can be provided as a composite of an amorphous material and the ionic liquid.
  • the sample hold circuits 24 and 26 detect the amplitude peaks (peak values) of the electromotive forces Ecoil1 and Ecoil2 of the coils 50 and 52, respectively. At this time, the outputs of the electromotive forces Ecoil 1 and Ecoil 2 of the coils 50 and 52 may be input to the sample and hold circuits 24 and 26 after AC coupling by a band-pass filter (not shown).
  • the conductors 42 and 44 and the amorphous materials 46 and 48 are insulated from each other. However, this is not always necessary, and the current flowing through the conductors 42 and 44 is not always necessary. Of these, a minute component may flow through the amorphous materials 46 and 48.
  • the conductors 42 and 44 and the amorphous materials 46 and 48 are provided inside the coils 50 and 52 on the solenoid, but this is not an essential configuration. That is, the coils 50 and 52 are not limited to the arrangement as in the embodiment as long as an electromotive force can be generated based on the change in magnetization in the amorphous materials 46 and 48.
  • the coils 50 and 52 are arranged outside the solenoid coils 50 and 52, for example.
  • Amorphous materials 46, 48 and conductors 42, 44, or one of them may be provided.
  • the cylindrical amorphous material 246 is formed by winding a sheet-like amorphous material, but the method is not limited thereto. Specifically, for example, a material that has been extended in a cylindrical shape or a tube shape in the process of manufacturing the amorphous material may be used as it is as the amorphous material 246.
  • the amorphous material 446 common to the two sensors 36 and 38 may be integrally formed, or two or more magnetic materials may be magnetically coupled. At this time, as long as they are equivalent to those connected in series in terms of a magnetic circuit, they do not need to be in close contact with each other, and a space may be interposed between them.
  • the amorphous material 446 has a symmetric shape with a straight line perpendicular to the easy magnetization direction as a symmetric line.
  • the present invention is not limited to this.
  • the easy magnetization direction It may have a symmetric shape with a plane perpendicular to the plane as a symmetry plane. That is, the magnetic field distribution in the amorphous material 446 only needs to be a target with respect to the midpoint in the easy magnetization direction.
  • the amorphous material 446 is a single amorphous wire.
  • the present invention is not limited to this, and the configurations of the second to fourth embodiments may be used. That is, the longitudinal amorphous material (amorphous wire) 446 may be a plurality of pieces instead of one, and the cross-sectional shape is not limited to a circle.
  • a sheet-like amorphous material may be wound in a cylindrical shape, or a longitudinal amorphous material may be wound in a solenoid shape to penetrate the coils 50 and 52.
  • the sensor probe 212 is separated from the main body of the magnetic measurement device 10 and the circuit of the circuit unit 10 is different from that of the first embodiment.
  • the present invention is not limited to this. Instead, the sensor probe 212 may be separated from the main body of the magnetic measurement device 10 while the configuration of the circuit unit 10 is the same as that of FIG.
  • the circuit unit 14 of the sixth or seventh embodiment may be replaced with the circuit unit 14 of the first embodiment.
  • the difference between the output signals of the two sensors 36 and 38 is calculated and amplified by the instrumentation amplifier 228 as analog signals, and then converted into digital signals by the first AD converter 284.
  • the data processing unit 286 it is not limited to such a mode.
  • the amplified signals are converted into digital signals by AD converters provided for the respective signals, and these digital signals are converted into data processing units While being input to 286, the difference between these digital signals may be calculated by calculation in the data processing unit 286.
  • the integrated time series data can be subjected to Fourier transform. As a result, more accurate calculation can be performed from the amplitude and area of the target peak in the frequency domain, and signal changes in the time domain that appear apparently due to causes other than magnetic field changes can be estimated.
  • the circuit unit 14 when the first AD converter 284 measures at least a part of the coil electromotive force during and after energization of the excitation current by performing high-speed AD conversion, the circuit unit 14 includes a bandpass filter If the circuit unit 14 is used as an appropriate resonance / resonance circuit by adjusting the band to be passed, the induced electromotive force of the sensors 36 and 38 can be detected effectively. That is, not only the peak value of the direct induced electromotive force generated by energization, but also the resonance waveform for a while after energization can be detected, and this is Fourier transformed, and in the frequency domain of interest in the frequency domain including this waveform. The sensitivity of the magnetic measuring device 10 can be improved by adjusting the signal intensity of.
  • DC couplers may be used instead of the AC couplers 224 and 260 used in the above-described embodiments. In such a case, the same effect can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 精度のよい高感度な磁気計測装置10を提供する。 磁気計測装置10は、磁気異方性を有する固体、液体のいずれかからなる磁性材料であるアモルファス材料46、48と、アモルファスワイヤ46、48に近接して、そのアモルファスワイヤ46、48の容易磁化方向に対して直角方向の成分を有する電流誘起磁界ベクトルを与えられるように配置された導線42、44と、磁界を検出するためのコイル50、52と、を有し、導線42、44に電流を反復的に流し、コイル50、52に生じさせられた起電力を検出して、出力信号とするので、アモルファス材料46、48は導線42、44に流された電流に基づいて磁界を生ずるととともに、その磁界によってコイル50、52に起電力を生じさせることができ、コイル50、52の起電力を測定することにより磁気検出を行うことができる。

Description

磁気計測装置
 本発明は、磁気計測装置に関するものであり、特に磁気異方性を有する材料における磁気モーメントの変化に基づいて磁気を検出する磁気検出装置に関する。
 例えばピコテスラやナノテスラのような次元での高感度の磁気の計測を行うための磁気計測装置に関する研究が広く行われており、例えば、超伝導量子干渉素子(superconducting quantum interference device;SQUID)や磁気インピーダンスセンサ(MIセンサ)を用いた磁気計測装置が提案されている。
 このうち、SQUIDを用いた磁気検出装置は、超電導ジョセフソン効果及び超電導コイルを用いるものであり、超電導を実現するための超低温を維持するための大規模な装置や、環境磁界を緻密に遮蔽するための設備が必要となるという課題がある。
 一方、MIセンサを用いた磁気センサは、MI(Magnetoimpedance)素子に交流電流を通電することにより、表皮効果によりMI素子のインピーダンスが通電した交流電流の周波数に依存して変化する現象を利用するセンサであり、上述のSQUIDを用いた磁気検出装置のような大規模な装置や設備を要しない利点がある。
 しかしながら、かかるMIセンサにおいては、磁気異方性アモルファスワイヤに交流電流を通電するための導線を電気的に接続する必要がある。これには、半田付けや超音波接合などの方法が用いられている。これらを行う際にアモルファスワイヤに加えられる熱や振動などにより、アモルファスワイヤが熱膨張や収縮、位置ずれを生じ、その結果アモルファスワイヤの張力がばらつくことになり、これにより磁界の検出効果を損なってしまう。このとき、アモルファスワイヤの変性、すなわち半田付けなどにより膨張・収縮、位置ずれによる張力のばらつきを制御することは困難であるにもかかわらず、製品としての均質性を求められることとなる。このように、均質なMIセンサを作製することが困難となる恐れがあった。図12は、本発明者らによって実験的に得られたアモルファスワイヤにおける張力とセンサの感度との関係を表す図である。図12の横軸はアモルファスワイヤにかかる張力の大きさを、縦軸はそのアモルファスワイヤを用いたMIセンサの感度をそれぞれ表している。図12に示すように、アモルファスワイヤの張力とセンサの感度とはその張力が大きいほどセンサの感度、すなわち分解能が悪化するものであり、両者は密接な関係を有している。このように、アモルファスワイヤをセンサに取り付ける際の張力のばらつきは、完成されたセンサの性能を維持する上で無視できないものである。
 特に、2つのセンサの出力差に基づいて磁界を検出するグラジオセンサ(勾配磁界検出装置)を構成しようとする場合、2つのセンサにおける感度が一致するように作製されなければならず、上述のようにアモルファスワイヤを半田付けなどによって用いる方法では困難が生ずる可能性がある。
特開2003-004830号公報 国際公開第2005/019851号 特開2010-256109号公報 国際公開第2009/130814号 特開2012-185103号公報
Uchiyama, T., Nakayama, S., Mohri, K., Bushida, K., "Biomagnetic field detection using very high sensitive MI sensor for medical application" Physica Status Solidi A-Applications and Materials Science, 2009, 206, 639-643. Nakayama, S., Atsuta, S., Shinmi, T., Uchiyama, T., "Pulse-driven magnetoimpedance sensor detection of biomagnetic fields in musculatures with spontaneous electric activity" Biosensors and Bioelectronics, 2011, 27, 34-39. Nakayama, S., Sawamura, K., Mohri, K., Uchiyama, T., "Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity", PLoS ONE, 2011, 6(10), e25834. Melo LGC, Menard D, Yelon A, Ding L, Saez S, Dolabdjian C, "Optimization of the magnetic noise and sensitivity of giant magnetoimpedance sensors" J Appl Phys, 2008 ,103: 033903.
 本発明は以上の事情を背景として為されたもので、その目的とするところは、磁気異方性を有する磁性材料を用い、より簡易な構成を可能にする一方で精度のよい計測を可能にする磁気計測装置を提供することにある。
 本願の発明者らは、磁気異方性を有する磁性材料は、周囲から磁界が加わっていない状態と測定対象となる外部磁界が加わった状態とでは、その内部磁化の配向が変化すること、また、その磁化材料の近傍に配された導線に一定量以上の電流が流された場合には、その誘導磁界に沿って磁性材料の内部磁化は整列させられることを見いだした。本発明はかかる知見に基づいて成されたものである。
 すなわち、前記目的を達成するための本発明の要旨とするところは、(a)磁気異方性を有する固体、液体のいずれかまたはその複合物からなる磁性材料と、(b)該磁性材料に近接して、該磁性材料の容易磁化方向に対して直角方向の成分を有する電流誘起磁界ベクトルを与えられるように配置された導電体と、(c)磁界を検出するためのコイルと、を有する磁気計測装置であって、(d)該導電体に電流を反復的に流し、(e)前記コイルに生じさせられた起電力を検出して、該コイルの出力を信号とすること、にある。
 請求項1の磁気計測装置によれば、前記磁性材料は導電体に流された電流に基づいて磁界を生ずるととともに、その磁界によって前記コイルに起電力を生じさせることができ、その起電力を測定することにより磁気検出を行うことができるので、磁性材料に積極的に通電する必要がない。また、磁性材料に通電する必要がないことから、その磁性材料を電気的に接続する必要がなく、熱、振動などによる変性の影響を受けずに磁気計測装置を構成することができる。
 好適には、前記磁性材料はアモルファス材料である。このようにすれば、前記測定しようとする磁気、および導電体を流れる電流により発生する磁界によって前記磁性材料の磁化が容易に変化するので、その磁界によりコイルに起電力を生じさせやすい。そのため、磁気の測定を容易かつ精度よく行うことができる。
 また好適には、前記電流は、パルス電流、所定のパターンで反復的に変化する電流、もしくはこれらが重畳された電流である。このようにすれば、前記導電体を流れる電流の大きさが周期的に変化するので、その周期に同期した前記コイルの起電力の変化に基づいて磁気を計測し得る。
 また好適には、(a)前記磁性材料は、少なくとも1本の長手方向に容易磁化方向を有するアモルファスワイヤであり、(b)前記導電体は、少なくとも1本の導線である。このようにすれば、前記磁性材料と前記導電体とを好適に配置した磁気測定装置を構成しうる。
 また好適には、(a)前記磁性材料は、前記磁性材料の容易磁化方向における中点を通り、該容易磁化方向に対して直角な直線または面を対称線または対称面として対称の形状を有し、(b)前記コイルは、該対称線または対称面に対して対称となるように一対設けられることにより、(c)グラジオセンサを構成するものである。このようにすれば、2つのコイルが共通する磁性材料に対してその対称線または対称面に対して対称となるように設けられ、地磁気などの環境磁界の影響を好適に相殺することができ、グラジオセンサを作製した際の精度が向上し得る。
 また好適には、(a)前記磁性材料は、磁気異方性を有するアモルファス材料を含み、(b)該アモルファス材料は、少なくとも一層で前記導電体を囲むように筒状に構成されている。このようにすれば、アモルファス材料と導電体とが近接した状態で磁気計測装置を構成することができる。
 また好適には、(a)前記磁性材料は、磁気異方性を有する長手状のアモルファス材料を含んで構成され、(b)該長手状アモルファス材料は、少なくとも一層で前記導電体を囲むようにコイル状に構成されている。このようにすれば、アモルファス材料と導電体とが近接した状態で磁気計測装置を構成することができる。
 さらに好適には、前記アモルファス材料と前記導電体とは電気的に絶縁されるものである。このようにすれば、アモルファス材料が生ずる磁界について、そのアモルファス材料を流れる電流の影響が生じないこととなる。しかしながら、該導電体を流れる電流量が磁気の計測に影響を生じない程度のものである場合には、前記アモルファス材料と前記導電体とを必ずしも絶縁する必要はない。
本発明の磁気計測装置の概要を説明する図である。 プローブ部の基本構成を概念的に説明する図である。 センサの電気的な構成を説明する図である。 アモルファス材料中の磁荷の分布を説明する図である。 本発明の別の実施例における、磁気計測装置を構成するセンサの概要を説明する図である。 本発明のさらに別の実施例における、磁気計測装置を構成するセンサの概要を説明する図である。 本発明のさらに別の実施例における、磁気計測装置を構成するセンサの概要を説明する図である。 本発明の別の実施例におけるプローブ部の構成を説明する図であって、図3に対応する図である。 本発明の別の実施例における磁気計測装置の構成を説明する図であって、図1に対応するものである。 本発明の更に別の実施例における磁気計測装置の構成を説明する図であって、図9に対応するものである。 実施例1の磁気計測装置を用いて行った磁気の計測実験の結果を示す図である。 アモルファスワイヤの張力とそのアモルファスワイヤを用いたMIセンサの感度との関係を示す図である。
 以下、本発明の一実施例について、図面を参照しつつ詳細に説明する。
 図1は、本発明の磁気計測装置10の概要を説明する図である。磁気計測装置10は磁気を検出するためのプローブ部12とそのプローブ部12を駆動するための回路部14とを含んで構成されている。本実施例においては、プローブ部12は磁気グラジオセンサを構成しており、後述するように2つの磁気センサを含んで構成されている。プローブ部12の構成は後述する。
 回路部14は、後述するプローブ部12の導体部42、44に電流を供給するために設けられたクロック部20、電源供給部21およびパルスジェネレータ(パルス生成器)22を有している。クロック部20は例えばCMOS ICなどであり、所定の間隔でパルス信号を出力する。パルスジェネレータ22は該クロック部20から出力されるパルス信号および電源供給部21から供給される電源電圧に基づいて、周期的に変化する電流Ieをプローブ部12の導体部42、44に電流を供給する。周期的に変化する電流Ieとは、例えばパルス状に変化する方形波である。
 また、回路部14は、後述するプローブ部12のコイル50、52の誘導起電力Ecoil1、Ecoil2を検出するために設けられたサンプルホールド回路24、26、差動アンプ28、フィルタ30、アンプ32、フィルタ34を有している。サンプルホールド回路24、26は、それぞれコイル50、52の起電力Ecoil1、Ecoil2の振幅のピーク(ピーク値)を検出する。なお、前記クロック部20からは、これらサンプルホールド回路24、26にトリガ信号が供給されるようになっており、サンプルホールド回路24、26におけるピーク値の検出はこのトリガ信号に同期して所定の位相ごとに行われる。差動アンプ28は、サンプルホールド回路24、26の出力値の差分を出力する。これにより、プローブ部12の2つの磁気センサを作動させたグラジオセンサが実現される。フィルタ30は差動アンプ28の出力から高周波成分および低周波成分を除去(ハイカットおよびローカット)し、所望の周波数成分のみを取り出す。アンプ32は、フィルタ30の出力信号を、所定のオフセット電圧Offsetにより例えば1000倍程度に増幅を行う。フィルタ34はアンプ32の出力から再度高周波成分および低周波成分を除去し、所望の周波数成分のみを取り出す。このようにして出力された信号が、図示しないモニタなどの表示装置に表示されたり、記録装置に記録されたり、他の装置に送信されるようになっている。
 図2はプローブ部12の基本構成を概念的に説明する図である。本実施例においてはプローブ部12にはセンサ36、38を含んで構成されている。前述のように、本実施例の磁気計測装置10はグラジオセンサを構成しているので、センサ36、38のうち一方は検出対象となる磁気Bmesを計測するためのセンサとして用いられ、他方は参照用のセンサとして用いられる。そのため、センサ36、38は同様の構成を有している。センサ36、38はそれぞれ、磁性材料としてのアモルファス材料46、48、導電体としての導線42、44、コイル50、52を有して構成されている。このうち、アモルファス材料46、48は長手状の形状を有するアモルファスワイヤである。導線42、44はそれぞれアモルファス材料46、48に近接して設けられており、アモルファス材料46、48の長手方向に平行となるように伸びている。コイル50、52はそれぞれ、アモルファス材料46、48および導線42、44をそれぞれその内部に含むようなソレノイド状のコイルとして設けられている。なお、アモルファス材料46、48と導線42、44とは例えば空間が設けられたり、絶縁体が介在させられることなどによりそれぞれ電気的に接合していない状態とされている。後述するように、センサの構成としてはこのようなものに限られず、例えばアモルファス材料46、48の形状は長手方向に延びるものであれば、図2に示すような棒状のものに限定されるものではない。また、コイル50、52とアモルファス材料46、48および導線42、44との位置関係は、コイル50、52の内部にアモルファス材料46、48および導線42、44を含むものに限られず、アモルファス材料46、48によって誘導される電流を発生することができるようにコイル50、52が配置されればよい。なお、センサ36、38は、その一方が検出対象となる磁気Bmesを検出する一方、他方は検出しないように、両者が離れた位置とされている。
 図3は、センサ36、38の電気的な構成を説明する図である。導線42、44には図1に示すパルスジェネレータ22から供給されるパルス電流Ieが流れる。また、コイル50、52の起電力Ecoil1,Ecoil2はそれぞれサンプルホールド回路24、26に出力される。なお、本実施例においてはセンサ36、38のように構成されるセンサをiPAセンサ(induced para-magnetization alignment sensor)もしくはiPAセンサ素子と呼ぶ。
 図4を用いて、センサ36、38、すなわちiPAセンサの動作原理の概要を説明する。図4は、iPAセンサのうち、アモルファス材料46、48および導線42、44のみを記載したものであり、アモルファス材料46、48中の磁荷の分布を説明する図である。アモルファス材料46、48中の矢印のそれぞれが磁荷の向きを概念的に示している。図4のうち、(a)はiPAセンサに外部磁界が加わっていない無磁界状態、あるいは環境磁界のみが印加されているいわゆるコントロール状態S(0)を示している。図4の(b)は、計測対象からの磁界Bmesが印加された状態S(1)を示しており、(c)は導線42、44に十分な励起電流Ieが印加された際の状態S(e)を示している。
 図4の(a)および(b)に示すように、アモルファス材料46、48における磁化は、外部から印加される微小な磁界により、例えば図4(a)のS(0)から図4(b)のS(1)のように変化させられる。すなわち、前記コントロール状態S(0)では、アモルファス材料46、48の磁化(Mam)は例えばその長手方向に直交する方向を向いている。一方、磁界Bmesが印加された状態S(1)では、一部の容易磁化方向を形成する磁気モーメントの配向が変化する。一方、図4(c)に示すように、アモルファス材料46、48に近接して配設された導線42、44に十分な励起電流Ieが流された場合には、その励起電流Ieが図4(c)における点線で示されるような磁界Beを発生する。そして、アモルファス材料46、48中の磁化の一定量は、その磁界Beの方向に整列した状態S(e)となる。このように、励起電流Ieが流されることにより磁化が整列するため、一過性の磁界を発生することとなる。ここで、励起電流Ieを流す前の磁界、より詳細にはその磁界の下でのアモルファス材料46、48の磁化の状態により、磁化の整列に伴って生ずる前記一過性の磁界の大きさが異なる。具体的には、アモルファスワイヤ46、48が状態S(0)から状態S(e)に変化する際の一過性の磁界と、状態S(1)から状態S(e)に変化する際の一過性の磁界とはその大きさが異なる。
 このようにしてアモルファスワイヤ46、48が生ずる一過性の磁界を、コイル50、52(図2、3参照)のそれぞれにより、それらコイル50、52における起電力の変化Ecoil1、Ecoil2として検出する。この起電力の変化は、励起電流Ieの通電前後のアモルファス材料46、48における磁化の変化に対応するものとなる。具体的には、励起電流Ieの通電前におけるアモルファスワイヤ46、48が受けていた磁界に応じて異なり、通電前におけるアモルファスワイヤ46、48の状態がS(0)であった場合には、
  { Mam(S(e))-Mam(S(0))}/Δt
となり、通電前におけるアモルファスワイヤ46、48の状態がS(1)であった場合には、
  { Mam(S(e))-Mam(S(1))}/Δt
となる。このように、コイル50、52における起電力の変化Ecoil1、Ecoil2は、計測対象の磁界Bmesを反映したものとなり、起電力の変化Ecoil1、Ecoil2に基づいて磁界Bmesの大きさを算出し得ることとなる。なお、前記Δtは磁化が整列するのに要する時間であり、例えばナノ秒単位の時間である。
 本実施例においては、励起電流Ieはパルス電流であるので、電流が通電されアモルファス材料46、48の磁化が整列される励起状態期間と、通電が停止され、磁化が元の状態に戻る弛緩状態期間とが高周波で繰り返される。そのため、コイル50、52における誘導起電力の前記励起状態期間と弛緩状態期間とにおける差を検出することができる。また、これを複数回くり返して平均値などを算出することもできる。
 前記励起電流Ieは、環境磁界、すなわち通常の室内環境において受ける地磁気中においてアモルファスワイヤ46、48の内部磁化を整列させることができる程度の電流となるようにその大きさが定められる。具体的には、図2乃至図4に示すように導線42、44が直線上のものである場合には、励起電流Ieの通電時におけるその近傍の誘導磁界Beの大きさは、アンペールの法則より
  Be=μI/2πr
のように近似される。ここでμは真空の透磁率(=4π×10-7(T/A/m)であり、rは導線42、44の中心からの距離である。ここで、励起電流Ieの大きさIを200mAとすると、導線42、44の中心から1000μm(10-3m)の距離におけるアモルファス材料46、48にも4×10-5Tの誘導磁界Beを加えることができる。この値は地磁気に匹敵するものであるから、地磁気の下においてアモルファス材料46、48の磁化を整列するのに十分であると考えられる。
 前述の実施例によれば、本実施例の磁気計測装置10は、磁気異方性を有する固体、液体のいずれかまたはその複合物からなる磁性材料であるアモルファス材料46、48と、アモルファスワイヤ46、48に近接して、該磁性材料の容易磁化方向に対して直角方向の成分を有する電流誘起磁界ベクトルを与えられるように配置された導線42、44と、磁界を検出するためのコイル50、52と、を有し、導線42、44に電流を反復して流し、コイル50、52に生じさせられた起電力を検出して、出力信号とするので、アモルファス材料46、48は導線42、44に流された電流に基づいて磁界を生ずるととともに、その磁界によってコイル50、52に起電力を生じさせることができる。なお、容易磁化方向とは、アモルファス材料46、48においてその磁気モーメントが向きやすい方向である。そしてコイル50、52の起電力を測定することにより磁気検出を行うことができるので、アモルファス材料46、48に積極的に通電する必要がない。また、アモルファス材料46、48に通電する必要がないことから、そのアモルファス材料46、48を電気的に接続する必要がなく、半田づけ等の加工による変性の影響を受けずに磁気計測装置10を構成することができる。
 また、前述の実施例においては、磁性材料としてアモルファス材料46、48が用いられるので、測定しようとする磁気、および導線42、44を流れる電流により発生する磁界によってアモルファス材料46、48の磁化が容易に変化するので、その磁界によりコイル50、52に起電力を生じさせやすい。そのため、磁気の測定を容易かつ精度よく行うことができる。
 また、前述の実施例においては、導線42、44を流れる電流は、パルス電流、所定のパターンで反復的に変化する電流、もしくはこれらが重畳された電流であるので、導線42、44を流れる電流の大きさが反復して変化し、その変化する電流に同期したコイル50、52の起電力の変化に基づいて磁気を計測し得る。
 また、前述の実施例においては、磁性材料は、少なくとも1本の長手方向に容易磁化方向を有するアモルファスワイヤ46、48であり、導電体は、少なくとも1本の導線42、44であるので、磁性材料と導電体とを好適に配置した磁気測定装置10を構成しうる。
 続いて、本発明の別の実施例について説明する。以下の説明において、実施例相互に共通する部分については、同一の符号を付して説明を省略する。
 図5は、本発明の別の実施例における、磁気計測装置10を構成するセンサ(iPAセンサ)136の概要を説明する図である。図5(a)はその構造を説明するための図であり、図5(b)はその長手方向に垂直な面における断面図である。このセンサ136は、前述の実施例におけるセンサ36、38に代えて用いられ得る。
 図5に示すセンサ136においては、前述の実施例1におけるセンサ36、38とほぼ同様の構成を有する。具体的には、センサ136は、磁性材料としてのアモルファス材料146、導電体としての導線42、コイル50を有して構成されており、アモルファス材料146は長手状の形状を有するアモルファスワイヤである。導線42はそれぞれアモルファス材料146に近接して設けられており、アモルファス材料146の長手方向に平行となるように伸びている。コイル50は、アモルファス材料146および導線42をそれぞれその内部に含むようなソレノイド状のコイルとして設けられている。
 図5のセンサ136においては、アモルファス材料146として複数の(図5においては4本の)アモルファス材料146として146a乃至146dが設けられている。前述の実施例1における図2に図示するセンサ36、38では一本のアモルファス材料46、48が設けられており、両者はこの点について異なる。
 図5に示すようにアモルファスワイヤの本数を複数設けることができ、また、その形状を異ならせることもできる。ここで、その本数や形状は磁気計測装置10に要求される検出感度に応じて変化させればよい。具体的には、図5においては、断面が円のアモルファス材料146a、146cと断面が四角形のアモルファス材料146b、146dとがそれぞれ二本ずつ設けられているが、このような態様に限定されるものでない。すなわち、断面が円あるいは四角形以外の形状のアモルファス材料であってもよいし、その本数や組み合わせも図5のものに限定されるものではない。すなわち、本発明においては、アモルファス材料46、146a~146dに積極的に電流を流すものではないので、アモルファス材料の本数、断面積が変化したとしても励起電流が減少したり、総電流量が増加したりすることがないという利点がある。
 実施例2のセンサ136によれば、実施例1と同様の効果が得られるとともに、センサ136の感度をアモルファス材料146の本数や形状などによって設定することができる。
 図6は、本発明のさらに別の実施例における、磁気計測装置10を構成するセンサ(iPAセンサ)236の概要を説明する図である。図6(a)はその構造を説明するための図であり、図6(b)はその長手方向に垂直な面における断面図である。このセンサ236は、前述の実施例におけるセンサ36、38に代えて用いられ得る。
 図6に示すセンサ236においては、前述の実施例1におけるセンサ36、38とほぼ同様の構成を有する。具体的には、センサ136は、磁性材料としてのアモルファス材料246、導電体としての導線42、コイル50を有して構成されている。アモルファス材料246は薄膜状の磁気異方性アモルファス材料を円筒状に巻くことによって作製されている。そして円筒状とされたアモルファス材料246の中心部分を導線42が貫いている。あるいは、アモルファス材料246が導線42に巻き付けられるようにして作製されてもよい。このとき、好適にはアモルファス材料246とそれによって囲まれる導線42とは絶縁されるが、導電体42に必要十分な量の電流が流れるのであれば、アモルファス材料246に導電体42から一部の電流が分流しても差し支えなく、アモルファス材料246および導線42とが必ずしも絶縁される必要はない。
 なお、円筒状とされるアモルファス材料246は少なくとも1層で巻かれればよいが、複数層巻かれるものであっても差し支えない。その層の数は、磁気計測装置10に要求される検出感度に応じて変化させればよい。
 本実施例においても導線42はアモルファス材料246に近接するとともに、アモルファス材料246の長手方向に平行となるようにされている。コイル50は、アモルファス材料246および導線42をその内部に含むようなソレノイド状のコイルとして設けられている。
 実施例3のセンサ236およびそれを用いた磁気計測装置10によれば、磁性材料はシート状の磁気異方性を有するアモルファス材料246であり、シート状のアモルファス材料246は、導線42を少なくとも1層で囲むように巻きつけられ、または一層以上重ねられているので、実施例1と同様の効果が得られるとともに、アモルファス材料246と導線42とが近接した状態として磁気計測装置10を構成することができる。
 図7は、本発明のさらに別の実施例における、磁気計測装置10を構成するセンサ(iPAセンサ)336の概要を説明する図である。図7(a)はその構造を説明するための図であり、図7(b)はその長手方向に垂直な面における断面図である。このセンサ336は、前述の実施例におけるセンサ36、38に代えて用いられ得る。
 図7に示すセンサ336においては、前述の実施例1におけるセンサ36、38とほぼ同様の構成を有する。具体的には、センサ136は、磁性材料としてのアモルファス材料346、導電体としての導線42、コイル50を有して構成されている。アモルファス材料346は、例えばワイヤ状、あるいは幅広の紐状などの長手状の磁気異方性アモルファス材料を導線42を囲むように少なくとも一層でコイル状に巻かれたものである。このとき、アモルファス材料346を導線42に巻き付けられるようにして作製されてもよいし、円筒状になるように中心に空間を設けるようにして巻いた後、その中心に生じた空間に導線42を配置するようにしてもよい。このとき、アモルファス材料346とそれによって囲まれる導線42とは、前述の実施例3の場合と同様に絶縁されてもよいし、されなくてもよい。
 なお、アモルファス材料346を巻き付ける際の間隔や巻き重ねる層の数は、例えば、磁気計測装置10に要求される検出感度に応じて変化させればよい。具体的には間隔が生じないように隣接するアモルファス材料が接するように巻いても良いし、所定の間隔により巻いてもよい。また巻き重ねる際は少なくとも1層で巻かれればよいが、複数層巻かれるものであっても差し支えない。
 本実施例のように、導線42はアモルファス材料346に近接する一方、アモルファス材料346の長手方向と導線42の長手方向とは平行となるものではない構成であっても一定の効果を生ずる。また、コイル50は、アモルファス材料346および導線42をその内部に含むようなソレノイド状のコイルとして設けられている。
 実施例4のセンサ336およびそれを用いた磁気計測装置10によれば、磁性材料は長手状の磁気異方性を有するアモルファス材料346であり、アモルファス材料346は、導線42を少なくとも1層で囲むように巻きつけられているので、実施例1乃至3と同様の効果が得られるとともに、アモルファス材料346と導線42とが近接した状態として磁気計測装置10を構成することができる。
 図8は、本発明の別の実施例におけるプローブ部12の構成を説明する図であって、図3に対応する図である。すなわち、本実施例のプローブ部12は図3のプローブ部12に代えて用いられる。図3のプローブ部12においては、2つのセンサ36、38はそれぞれアモルファス材料46、48および導線42、44を有していたが、図8に示す本実施例のプローブ部12は、2つのセンサ36、38は共通するアモルファス材料446および1つの導線442を有する点において異なる。ここで、共通するアモルファス材料446とは、2つのセンサ36、38が磁気回路的に直列に結合されたアモルファス材料446を共有することを意味している。
 図8において、アモルファス材料446は、その容易磁化方向、すなわち長手方向における中点を通り、容易磁化方向に対して直角な直線を対称線として対称の形状を有している。そして、一対のセンサ36、38における一対のコイル50、52は、その対称線または対称面に対して対称となる位置に設けられている。このようにすれば、本願発明者らの知見に基づけば、例えば環境磁界のように2つのセンサ36、38に共通して加わる磁界は、アモルファス材料446においてその中点あるいは対称線に対して対称となる。従って、これら2つのセンサ36、38を用いてグラジオセンサを構成する場合に、環境磁界の影響を好適に打ち消すことが可能になり、より精度のよい磁気計測装置10を提供することができる。なお、このことは特許文献5にも記載されている。
 本実施例によれば、アモルファス材料446は、その容易磁化方向における中点を通り、容易磁化方向に対して直角な直線を対称線として対称の形状を有し、センサ36、38における一対のコイル50、52は、その対称線に対して対称となるように一対設けられ、それらセンサ36、38によりグラジオセンサが構成されるので、地磁気などの環境磁界の影響をこれら一対のセンサ36、38を差動させることにより好適に相殺することができ、グラジオセンサを用いて構成した磁気計測装置10の精度が向上し得る。
 図9は、本発明の別の実施例における磁気計測装置10の構成を説明する図である。図9の磁気計測装置10においては、プローブ部12を含む磁気計測装置10の一部をセンサプローブ212としている。このセンサプローブ212は磁気計測装置10の本体と分離された形態とされ、両者がケーブルで接続されることにより、本体と離れた場所の磁気の計測が可能にされている。図9の実施例においては、センサプローブ212はプローブ部12に加え、回路部14の一部であるパルスジェネレータ22、ACカップリング器224、インスツルメンテーションアンプ228を含んで構成されているが、このような態様に限定されるものではなく、これらのうち一部はセンサプローブ212に含まれなくても良いし、逆に回路部14の他の構成部分がセンサプローブ212に含まれてもよい。
 本実施例における回路部14は、クロック部20、電源供給部21、パルスジェネレータ22、ACカップル器224、インスツルメンテーションアンプ228、ACカップル器260、ロックインアンプ262、およびローパスフィルタ264などを含んで構成されている。このうち、クロック部20、電源供給部21、パルスジェネレータ22は前述の実施例1におけるものと同様であるので説明を省略する。なお、クロック部20が出力するクロック信号は、精度のよい、例えば5桁以上の精度を有するクロック信号であることが好ましい。また、クロック部20は回路部14に設けられる必要がなく、例えば、磁気計測装置10の外に設けられ、磁気計測信号10にクロック信号を供給するものであってもよい。
 センサ36、38からの出力は、ACカップル器224を介してインスツルメンタルアンプに入力される。このとき、雑音の除去のため、センサ36、38からの出力は、例えば10kHzから100MHzを通過させる図示しないバンドパスフィルタを介してACカップル器224に入力されてもよい。そして、ACカップル器224によりカップリングが、またインスツルメンテーションアンプ228によりそれらの差分が算出されて、さらに所定の増幅率で増幅される。
 インスツルメンテーションアンプ228の出力はさらに、ACカップル器260に入力されカップリングが行われる。また、必要に応じてハイパスフィルタにより、クロック信号の周波数に対応した高周波成分が除去される。そしてロックインアンプ262に入力される。ロックインアンプ262においては、クロック部20から供給されるクロック信号に基づいて、差分されたセンサ36、38の誘導起電力である出力の振幅を検出する。検出された振幅は連続値とされた後、予め設定されたオフセット電圧分だけオフセットされて、例えば1000倍などの所定の増幅率で増幅される。さらに、ローパスフィルタ264により所定周波数より低周波側の成分を除去した後、出力がなされる。このとき、増幅した信号に加え、オフセット電圧や検出位相(ディレイ時間)も合わせて出力されるようにしてもよい。
 本実施例の磁気計測装置10によれば、前述の実施例1と同様の効果に加え、センサプローブ212が磁気計測装置10の本体と分離して構成されるので、本体部と離れた位置の磁気の計測が可能となる。
 図10は、本発明の更に別の実施例における磁気計測装置10の構成を説明する図であって、図9に対応するものである。図10においては、回路部14にデジタル処理部280が用いられている点において異なる。このデジタル処理部280は、信号のAD変換を行う機能を有している。
 電源供給部21、パルスジェネレータ22の差動は前述の実施例と共通するものであるので説明を省略する。なお、前述の実施例においては、図9に示すようにクロック部20が回路部14に設けられていたが、本実施例においては図10に示すようにクロック部282としてデジタル処理部280内部のクロックが用いられている。具体的にはデジタル処理部280の内部に設けられたクロック部282から出力されるデジタル信号としてのクロック信号を第1DA変換部283を介してアナログデータに変換し、パルスジェネレータ22に供給する。なお、実施例6と同様に、クロック信号は磁気計測装置10以外から供給されてもよい。
 センサ36、38からの信号を処理するACカップル部224およびインスツルメンテーションアンプ228の差動も前述の実施例と同様であるため説明を省略する。インスツルメンテーションアンプ228の出力はACカップル部270に入力されカップリングが行われる。また、必要に応じてバンドパスフィルタにより、クロック信号の周波数に対応した所定周波数帯域の成分のみが通過させられる。
 ACカップル部270の出力はデジタル処理部280に入力され、第1AD変換部284においてデジタル信号に高速AD変換される。この第1AD変換部284には前述の第1DA変換部283を介してクロック部282からのクロック信号が供給されており、第1AD変換部284はこのクロック信号に同期して動作する。第1AD変換部284により変換されたデジタルデータは後述するデータ処理部286に伝達されて処理が行われるのに加え、例えば、図示しないデジタル処理部280内の記憶装置などに記憶されてもよいし、デジタル信号のまま他の機器のために出力されてもよい。
 データ処理部286においては、前記デジタル信号に変換されたセンサ36、38の出力信号の差分を連続的に積算し、ノイズを低下させる。そして、任意の位相(ディレイ時間)における振幅を検出する。この振幅が測定しようとする磁界に対応するものとなる。データ処理部286において処理されて得られたデータは、第2DA変換部288によりアナログ信号に変換され、図示しないモニタなどに出力される。
 図11は、本実施例の磁気計測装置10を用いて行った磁気の計測実験の結果を示す図である。磁気計測装置10として図1に示すものを用い、センサ36、38としては図8に示すものを用いた。また、パルスジェネレータ22からセンサ36、38の導線42、44に供給される励起電流Ieは幅100ns、振幅5Vのパルス状の100mAの電流とした。センサ36、38において、導線42、44とアモルファス材料46、48との距離はそれぞれ300μmとした。計測対象となる磁界として、センサ36、38およびその周囲に、約2m四方の3方向ヘルムホルツコイルを通じて微弱な正弦波状に変化する磁界を印加した。このときの磁気計測装置10のセンサ36、38のうち、いずれか一方のセンサ(例えば36)の出力の時間変化を示したのが図11である。このように印加磁界と相同の正弦波出力が得られている。なお、本実験においては差動アンプ228においては増幅を行っておらず、図11の縦軸はセンサ(例えば36)の出力電圧に対応している。
 本実施例の磁気計測装置10によれば、前述の実施例6における磁気計測装置10と同様の効果が得られるのに加え、デジタル処理部280が用いられることから演算やデータの記録、出力がデジタルデータとして行うことができる。
 その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
 例えば、前述の実施例では2つのセンサ36、38によってグラジオセンサを構成する磁気検出装置10の例を示したが、これに限られず、1つのセンサを用いることによって磁気測定を行うことも可能である。この場合、2つのセンサの出力を作動させることを前提として設けられた回路部14の構成部分、すなわち差動アンプ28などは設けられる必要はない。
 また、前述の実施例においては、パルスジェネレータ22がプローブ部12の導体部42、44に供給する電流は、方形波とされたが、これに限られない。例えば正弦波、のこぎり波、三角波、交流波など波形の形状を問わず、所定のパターンで反復的に変化するものであればよく、さらに、その所定のパターンが一定値だけ正または負方向にオフセットされた、直流成分が重畳されたものであってもよい。また、電流が反復的に変化する際の周期は一定である必要はなく、また、例えば方形波において高出力の時間と低出力の時間とが均等である必要はない。
 また、前述の実施例においては、磁性材料としてワイヤ状もしくはシート状のアモルファス材料46、48、146、246、346、446が用いられたが、磁気異方性を有する材料であればこれに限定されない。具体的には、磁気異方性を有する粒子を含有するイオン液体などのように、磁気異方性を有する液体を所定の容器に含むような構成とすることも可能である。さらに、アモルファス材料と上記イオン液体との複合物として設けることも可能である。
 また、前述の実施例においては、回路部14において、サンプルホールド回路24、26は、それぞれコイル50、52の起電力Ecoil1、Ecoil2の振幅のピーク(ピーク値)を検出するものとされたが、この際、コイル50、52の起電力Ecoil1、Ecoil2の出力は、図示しないバンドパスフィルタによりACカップリングされた後、サンプルホールド回路24、26に入力されるようにしてもよい。
 また、前述の実施例においては、導線42、44とアモルファス材料46、48との間は絶縁するものとされたが、必ずしも必須ではなく、これらが接触することにより、導線42、44を流れる電流のうち微小な成分がアモルファス材料46、48を流れることとなっても差し支えない。
 また、前述の実施例においてはソレノイド上のコイル50、52の内側に導体42、44、アモルファス材料46、48が設けられたが、これは必須の構成ではない。すなわち、コイル50、52は、アモルファス材料46、48における磁化の変化に基づいて起電力を生ずることができれば、実施例のような配置に限られず、例えば、ソレノイド状のコイル50、52の外側にアモルファス材料46、48および導体42、44、あるいはそれらの一方が設けられてもよい。
 また、前述の実施例3においては、円筒状のアモルファス材料246はシート状のアモルファス材料が巻かれることによって構成されたが、かかる方法に限られない。具体的には例えば、アモルファス材料の製造過程において引き延ばす際に円筒状あるいはチューブ状に引き延ばされたものがそのままアモルファス材料246として用いられてもよい。
 また、前述の実施例5においては、2つのセンサ36、38に共通するアモルファス材料446は一体により構成されても良いし、2以上の磁性体材料を磁気的に結合したものであってもよい。このとき、磁気回路的に直列に結合したものと同等なものであれば、それらが密着する必要がなく、それらの間に空間が介在していてもよい。
 また、前述の実施例5においては、アモルファス材料446は、その容易磁化方向に対して直角な直線を対称線として対称の形状を有していたが、これに限られず、例えばその容易磁化方向に対して直角な面を対称面として対称の形状を有していてもよい。すなわち、アモルファス材料446における磁界の分布が、容易磁化方向における中点に対して対象となるものであればよい。
 また、前述の実施例5においては、アモルファス材料446は一本のアモルファスワイヤとされたが、これに限られず、実施例2~4のような構成であってもよい。すなわち、長手状のアモルファス材料(アモルファスワイヤ)446が一本でなく複数本であってもよいし、その断面形状が円に限られない。あるいは、長手状のアモルファス材料446に代えて、シート状のアモルファス材料を円筒状に巻き、あるいは、長手状のアモルファス材料をソレノイド状に巻いてコイル50、52を貫くようにしてもよい。
 また、前述の実施例6ではセンサプローブ212が磁気計測装置10の本体と分離されるとともに、回路部10の回路が実施例1のものとは異なるものとされたが、これに限られるものではなく、回路部10の構成は図1のものと同様としつつセンサープローブ212を磁気計測装置10の本体と分離するようにしてもよい。逆に、実施例6あるいは7の回路部14を実施例1の回路部14と置き換えることも差し支えない。
 また、前述の実施例7においては、2つのセンサ36、38の出力信号はアナログ信号のままインスツルメンテーションアンプ228によって差分の算出および増幅が行われ、その後第1AD変換部284によりデジタル信号に変換されてデータ処理部286において処理が行われたが、このような態様に限定されるものではない。例えばセンサ36、38の出力信号がそれぞれ増幅アンプにより増幅された後、増幅された信号のそれぞれに対して設けられたAD変換部によりデジタル信号への変換が行われ、それらデジタル信号がデータ処理部286に入力される一方、データ処理部286における演算によりそれらデジタル信号の差分が算出されるようにしてもよい。
 また、前述の実施例7においては、データ処理部286の前述の作動に加えて、積算した時系列データをフーリエ変換することもできる。これにより、周波数ドメインでの対象ピークの振幅や面積からより正確な計算ができるほか、磁界変化以外の原因で見かけ上発生する時間ドメインでの信号変化も推定できる。
 また、前述の実施例7において、第1AD変換部284により励起電流の通電中および通電後のコイル起電力の少なくとも一部を高速AD変換して計測する場合には、回路部14にバンドパスフィルターを設け、通過させる帯域を調整することで回路部14を適度な共鳴・共振回路として使用すれば、センサ36、38の誘導起電力を効果的に検出することができる。すなわち、通電によって発生する直接の誘導起電力のピーク値だけでなく、通電後しばらくの間の共振波形が検出できるので、これをフーリエ変換し、この波形も含め周波数ドメインで対象とする周波数領域での信号強度を調整することで、磁気計測装置10の感度を向上することができる。
 また、前述の実施例において用いられたACカップル器224、260に代えて、DCカップル器が用いられてもよく、かかる場合においても同様の効果が得られる。
10:磁気計測装置
36、38、136、236、336:センサ
42、44、442:導線(導電体)
46、48、146、246、346、446:アモルファス材料(磁性材料)
50、52:コイル

Claims (7)

  1.  磁気異方性を有する固体、液体のいずれかまたはその複合物からなる磁性材料と、
     該磁性材料に近接して、該磁性材料の容易磁化方向に対して直角方向の成分を有する電流誘起磁界ベクトルを与えられるように配置された導電体と、
     磁界を検出するためのコイルと、を有する磁気計測装置であって、
     該導電体に電流を反復的に流し、
     前記コイルに生じさせられた起電力を検出して、該コイルの出力を信号とすること、を特徴とする磁気計測装置。
  2.  前記磁性材料はアモルファス材料であること、を特徴とする請求項1に記載の磁気計測装置。
  3.  前記電流は、パルス電流、所定のパターンで反復的に変化する電流、もしくはこれらが重畳された電流であること、を特徴とする請求項1または2に記載の磁気計測装置。
  4.  前記磁性材料は、少なくとも1本の長手方向に容易磁化方向を有するアモルファスワイヤであり、
     前記導電体は、少なくとも1本の導線であること、を特徴とする請求項1乃至3のいずれか1に記載の磁気計測装置。
  5.  前記磁性材料は、前記磁性材料の容易磁化方向における中点を通り、該容易磁化方向に対して直角な直線または面を対称線または対称面として対称の形状を有し、
     前記コイルは、該対称線または対称面に対して対称となるように一対設けられることにより、
     グラジオセンサを構成すること、
     を特徴とする請求項1乃至4のいずれか1に記載の磁気計測装置。
  6.  前記磁性材料は、磁気異方性を有するアモルファス材料を含み、
     該アモルファス材料は、少なくとも一層で前記導電体を囲むように筒状に構成されていること
     を特徴とする請求項1乃至5のいずれか1に記載の磁気計測装置。
  7.  前記磁性材料は、磁気異方性を有する長手状のアモルファス材料を含んで構成され、
     該長手状のアモルファス材料は、少なくとも一層で前記導電体を囲むようにコイル状に構成されていること
     を特徴とする請求項1乃至5のいずれか1に記載の磁気計測装置。
PCT/JP2014/056077 2013-03-08 2014-03-07 磁気計測装置 WO2014136975A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/773,633 US10012705B2 (en) 2013-03-08 2014-03-07 Magnetism measurement device
EP14760217.1A EP2975423B1 (en) 2013-03-08 2014-03-07 Magnetism measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013046439A JP6281677B2 (ja) 2013-03-08 2013-03-08 磁気計測装置
JP2013-046439 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136975A1 true WO2014136975A1 (ja) 2014-09-12

Family

ID=51491482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056077 WO2014136975A1 (ja) 2013-03-08 2014-03-07 磁気計測装置

Country Status (4)

Country Link
US (1) US10012705B2 (ja)
EP (1) EP2975423B1 (ja)
JP (1) JP6281677B2 (ja)
WO (1) WO2014136975A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148704A (zh) * 2014-09-30 2017-09-08 世纪创新株式会社 连接构造体及其制造方法,以及输送设备、电力设备、发电设备、医疗设备、宇航设备
JP2018169361A (ja) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 磁気計測装置
CN118067830A (zh) * 2024-01-19 2024-05-24 国电投核力同创(北京)科技有限公司 一种稳定同位素电磁分离器的自动测磁控制装置和方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422012B2 (ja) * 2014-02-18 2018-11-14 フジデノロ株式会社 磁気検出装置
JP6021238B1 (ja) * 2015-10-11 2016-11-09 マグネデザイン株式会社 グラジオセンサ素子およびグラジオセンサ
JP6793930B2 (ja) * 2016-03-31 2020-12-02 国立大学法人東海国立大学機構 磁気センサ、及び、磁気計測装置
DE102016120785A1 (de) * 2016-11-01 2018-05-03 Krohne Messtechnik Gmbh Verfahren und Messgerät zur Bestimmung einer Eigenschaft eines Mediums
DE102017104994A1 (de) * 2017-03-09 2018-09-13 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines induktiven Leitfähigkeitsmessgeräts und diesbezügliches induktives Leitfähigkeitsmessgerät
JP7002739B2 (ja) * 2017-05-10 2022-01-20 フジデノロ株式会社 磁気センサ
RU2658078C1 (ru) * 2017-05-17 2018-06-19 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ измерения переменного тока в шине электроустановки
CN108469593A (zh) * 2018-04-02 2018-08-31 南京麦科尼传感技术有限公司 一种基于非晶丝正交阵列的高分辨率正交磁通门全方位磁场梯度传感器
JP7326130B2 (ja) * 2019-11-26 2023-08-15 ローム株式会社 磁界検出装置
US11644439B2 (en) * 2020-01-16 2023-05-09 Shimadzu Corporation Magnetic body inspection apparatus
JP2024013986A (ja) * 2022-07-21 2024-02-01 愛知製鋼株式会社 磁気検出器
CN117148232B (zh) * 2023-10-31 2024-01-02 清华大学 一种非晶微丝二维空间磁场检测探头及磁场检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814275U (ja) * 1971-06-26 1973-02-17
JPS6338189A (ja) * 1986-08-01 1988-02-18 シヨ−ンステツト インスツルメント カムパニ− 磁気コア及びその製造方法
JP2002277522A (ja) * 2001-03-21 2002-09-25 Sangaku Renkei Kiko Kyushu:Kk 磁界センサ
JP2003004830A (ja) 2001-06-19 2003-01-08 Aichi Micro Intelligent Corp 磁界検出装置
WO2005019851A1 (ja) 2003-08-25 2005-03-03 Aichi Steel Corporation 磁気センサ
WO2009130814A1 (ja) 2008-04-21 2009-10-29 国立大学法人名古屋大学 細胞組織磁気信号検出装置
JP2010256109A (ja) 2009-04-23 2010-11-11 Aichi Steel Works Ltd 超高感度マグネトインピーダンスセンサ
JP2011053160A (ja) * 2009-09-04 2011-03-17 Hioki Ee Corp 磁気検出センサ
JP2012185103A (ja) 2011-03-07 2012-09-27 Nagoya Univ 磁気検出装置
JP2012198038A (ja) * 2011-03-18 2012-10-18 Yokogawa Electric Corp 磁性体部材とその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS483377U (ja) 1971-05-25 1973-01-16
US4839624A (en) 1986-08-01 1989-06-13 Schonstedt Instrument Company Magnetic cores
DE4113490A1 (de) * 1991-04-25 1992-10-29 Leipzig Lacke Gmbh Verfahren und vorrichtung zum zerkleinern, dispergieren, benetzen und mischen von pumpfaehigen, unmagnetischen mehrphasengemischen
DE59406586D1 (de) * 1993-03-15 1998-09-10 Siemens Ag Homogenfeldmagnet mit über Korrekturluftspalte beabstandeten Polplatteneinrichtungen seiner Polschuhe
JPH08179020A (ja) 1994-12-22 1996-07-12 Sumitomo Metal Mining Co Ltd 磁気補正回路及びそれを用いた画像表示装置
US5491459A (en) * 1995-06-23 1996-02-13 The United States Of America As Represented By The Secretary Of The Army Magic sphere providing distortion-free access to a large internal working space containing a uniform high-intensity magnetic field
ES2317769B1 (es) 2006-12-15 2010-02-03 Micromag 2000, S.L. Etiqueta magnetoacustica basada en micro-hilo magnetico, y metodo de obtencion de la misma.
CN103454601B (zh) 2008-03-28 2016-05-18 爱知制钢株式会社 磁敏线、磁阻抗元件及磁阻抗传感器
US8872503B2 (en) * 2010-03-02 2014-10-28 National Institute For Materials Science Electromagnetic wave resonator and its fabrication process as well as electromagnetic wave generator
US8803519B2 (en) * 2011-07-29 2014-08-12 Seagate Technology Llc Enhanced magnetic sensor biasing yoke
JP5673951B2 (ja) * 2011-08-23 2015-02-18 独立行政法人産業技術総合研究所 電界強磁性共鳴励起方法及びそれを用いた磁気機能素子
US9406320B2 (en) * 2014-08-20 2016-08-02 HGST Netherlands B.V. Scissor unidirectional biasing with hard bias stabilized soft bias

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814275U (ja) * 1971-06-26 1973-02-17
JPS6338189A (ja) * 1986-08-01 1988-02-18 シヨ−ンステツト インスツルメント カムパニ− 磁気コア及びその製造方法
JP2002277522A (ja) * 2001-03-21 2002-09-25 Sangaku Renkei Kiko Kyushu:Kk 磁界センサ
JP2003004830A (ja) 2001-06-19 2003-01-08 Aichi Micro Intelligent Corp 磁界検出装置
WO2005019851A1 (ja) 2003-08-25 2005-03-03 Aichi Steel Corporation 磁気センサ
WO2009130814A1 (ja) 2008-04-21 2009-10-29 国立大学法人名古屋大学 細胞組織磁気信号検出装置
JP2010256109A (ja) 2009-04-23 2010-11-11 Aichi Steel Works Ltd 超高感度マグネトインピーダンスセンサ
JP2011053160A (ja) * 2009-09-04 2011-03-17 Hioki Ee Corp 磁気検出センサ
JP2012185103A (ja) 2011-03-07 2012-09-27 Nagoya Univ 磁気検出装置
JP2012198038A (ja) * 2011-03-18 2012-10-18 Yokogawa Electric Corp 磁性体部材とその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MELO LGC; MENARD D; YELON A; DING L; SAEZ S; DOLABDJIAN C: "Optimization of the magnetic noise and sensitivity of giant magnetoimpedance sensors", J APPL PHYS, vol. 103, 2008, pages 033903
NAKAYAMA, S.; ATSUTA, S.; SHINMI, T.; UCHIYAMA, T.: "Pulse-driven magnetoimpedance sensor detection of biomagnetic fields in musculatures with spontaneous electric activity", BIOSENSORS AND BIOELECTRONICS, vol. 27, 2011, pages 34 - 39, XP028252573, DOI: doi:10.1016/j.bios.2011.05.041
NAKAYAMA, S.; SAWAMURA, K.; MOHRI, K.; UCHIYAMA, T.: "Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity", PLOS ONE, vol. 6, no. 10, 2011, pages E25834
UCHIYAMA, T.; NAKAYAMA, S.; MOHRI, K.; BUSHIDA, K.: "Biomagnetic field detection using very high sensitive MI sensor for medical application", PHYSICA STATUS SOLIDIA-APPLICATIONS AND MATERIALS SCIENCE, vol. 206, 2009, pages 639 - 643

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148704A (zh) * 2014-09-30 2017-09-08 世纪创新株式会社 连接构造体及其制造方法,以及输送设备、电力设备、发电设备、医疗设备、宇航设备
JP2018169361A (ja) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 磁気計測装置
JP7007700B2 (ja) 2017-03-30 2022-01-25 国立大学法人東海国立大学機構 磁気計測装置
CN118067830A (zh) * 2024-01-19 2024-05-24 国电投核力同创(北京)科技有限公司 一种稳定同位素电磁分离器的自动测磁控制装置和方法

Also Published As

Publication number Publication date
US20160041236A1 (en) 2016-02-11
EP2975423B1 (en) 2020-02-26
JP6281677B2 (ja) 2018-02-21
EP2975423A4 (en) 2017-02-22
EP2975423A1 (en) 2016-01-20
US10012705B2 (en) 2018-07-03
JP2014173980A (ja) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6281677B2 (ja) 磁気計測装置
CN103492895B (zh) 磁检测装置
JP4193382B2 (ja) 磁場計測装置
JP5897719B2 (ja) 磁気抵抗センサ、グラジオメータ
Silva et al. High sensitivity giant magnetoimpedance (GMI) magnetic transducer: magnitude versus phase sensing
US20090295390A1 (en) Low field electron paramagnetic resonance imaging with squid detection
JP2018146314A (ja) 磁気センサ、磁気センサ装置
CN104849679A (zh) 磁探头和包括该磁探头的磁场传感器
JPH0980133A (ja) 磁気−インピーダンス素子及びその製造方法
Lu et al. Zero-biased magnetoelectric composite Fe73. 5Cu1Nb3Si13. 5B9/Ni/Pb (Zr1− x, Tix) O3 for current sensing
US7196514B2 (en) Multi-conductive ferromagnetic core, variable permeability field sensor and method
US9632151B2 (en) Magnetic resonance measuring equipment
JP2014190774A (ja) 磁気計測装置
JP6421379B2 (ja) 磁界センサ
US20200256930A1 (en) Current-sensing method of gmi magnetic field measurement
US6853186B2 (en) Variable permeability magnetic field sensor and method
US11726149B2 (en) Magnetic sensor and inspection device
US11513173B2 (en) Magnetic sensor and inspection device
Wang et al. Bio-magnetic sensor circuit design based on giant magneto-impedance effect
JP7007700B2 (ja) 磁気計測装置
Haraszczuk et al. Spectroscopic susceptibility measurements of magnetic markers by sv-gmr needle probe
Chankji et al. A method for mapping magnetic fields generated by current coils
He et al. High sensitive magnetic sensor with amorphous wire
Rathod et al. Low field methods (GMR, Hall Probes, etc.)
Trinh et al. Orthogonality correction for concentric tri-axis fluxgate magnetometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760217

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14773633

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014760217

Country of ref document: EP