WO2014136666A1 - 吸気音低減装置 - Google Patents

吸気音低減装置 Download PDF

Info

Publication number
WO2014136666A1
WO2014136666A1 PCT/JP2014/055015 JP2014055015W WO2014136666A1 WO 2014136666 A1 WO2014136666 A1 WO 2014136666A1 JP 2014055015 W JP2014055015 W JP 2014055015W WO 2014136666 A1 WO2014136666 A1 WO 2014136666A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction device
rectifying net
intake
noise reduction
center
Prior art date
Application number
PCT/JP2014/055015
Other languages
English (en)
French (fr)
Inventor
修司 義経
茂 渡部
井上 雅彦
慎正 細沼
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to EP14759868.4A priority Critical patent/EP2966321B1/en
Priority to US14/772,002 priority patent/US9500166B2/en
Priority to CN201480011565.8A priority patent/CN105008774B/zh
Priority to JP2015504271A priority patent/JP6341905B2/ja
Publication of WO2014136666A1 publication Critical patent/WO2014136666A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1216Flow throttling or guiding by using a plurality of holes, slits, protrusions, perforations, ribs or the like; Surface structures; Turbulence generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/104Shaping of the flow path in the vicinity of the flap, e.g. having inserts in the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1211Flow throttling or guiding by using inserts in the air intake flow path, e.g. baffles, throttles or orifices; Flow guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber

Definitions

  • the present invention relates to an intake noise reduction device that is provided in an intake pipe and reduces intake noise.
  • FIG. 10 is a view for explaining the air flow at the beginning of opening of the throttle valve in the intake pipe.
  • a throttle valve 300 is provided in the intake pipe 200.
  • the throttle valve 300 is configured to rotate around a rotating shaft installed so as to extend in the horizontal direction. Therefore, when the throttle valve 300 starts to open, an upper air flow X1 and a lower air flow X2 in the intake pipe 200 are generated. It is considered that abnormal noise is generated when the upper air flow X1 and the lower air flow X2 merge.
  • Patent Document 1 a technique for rectifying the air flow by providing a rectifying net and a rectifying plate in order to suppress the occurrence of the above-described abnormal noise is known.
  • Patent Document 2 a technique of providing a partition so that the upper air flow and the lower air flow do not merge is also known (see Patent Document 2).
  • An object of the present invention is to provide an intake noise reduction device that can suppress abnormal noise in the intake pipe.
  • the present invention employs the following means in order to solve the above problems.
  • the intake noise reduction device of the present invention is In the intake noise reduction device that is disposed downstream of the throttle valve in the intake pipe and includes a rectification net that rectifies the flow of air,
  • the rectifying net is characterized in that the mesh in the vicinity of the center of the flow path in the intake pipe is fine, and the mesh becomes coarse as the distance from the center increases.
  • the air flow from the two locations farthest from the rotary shaft of the throttle valve becomes the mainstream. That is, as described in the background art, when the rotary shaft is provided so as to extend in the horizontal direction, the air flow on the upper side and the air flow on the lower side become mainstream.
  • positioned downstream of a throttle valve is comprised so that the center vicinity of the flow path in an intake pipe may become fine, and it becomes rough as it goes away from the center vicinity. For this reason, since air tends to flow in a coarse area of the mesh, the air is rectified so as to flow more in a region far from the vicinity of the center in the intake pipe.
  • the merging of the air flow from the two places can be suppressed by the mesh. Therefore, it can suppress that resistance at the time of air flowing becomes high compared with the case where the confluence
  • the rectifying net has a mesh formed by a plurality of radial portions extending radially outward from the vicinity of the center of the flow path in the intake pipe and a plurality of concentric portions provided concentrically from the vicinity of the center.
  • the “concentric circular portion” in the present invention includes not only a complete circular shape but also a circular arc shape such as a semicircle.
  • An annular gasket portion that seals a gap between an end face of one of the two pipes constituting the intake pipe and an end face of the other pipe;
  • the rectifying net may be provided inside the gasket portion with respect to the gasket portion.
  • the surface of the rectifying net may be covered with an elastic covering portion provided integrally with the gasket portion.
  • the gasket part and the covering part may be formed by insert molding using the rectifying net as an insert part.
  • the surface of the rectifying net can be easily covered with the elastic covering portion provided integrally with the gasket portion.
  • noise in the intake pipe can be suppressed.
  • FIG. 1 is a plan view of an intake noise reduction device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a state in use of the intake sound reduction device according to Embodiment 1 of the present invention.
  • FIG. 3 is a graph showing the sound pressure ratio of abnormal noise in various samples.
  • FIG. 4 is a graph showing the sound pressure ratio of abnormal noise when the distance between the throttle valve and the intake noise reduction device is changed.
  • FIG. 5 is a schematic cross-sectional view showing a state in use of the intake noise reduction device according to Embodiment 2 of the present invention.
  • FIG. 6 is a plan view of an intake noise reduction device according to Embodiment 3 of the present invention.
  • FIG. 7 is a plan view of a rectifying net according to Embodiment 4 of the present invention.
  • FIG. 8 is a part of a plan view of an intake noise reduction device according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic cross-sectional view of an intake noise reduction device according to Embodiment 4 of the present invention.
  • FIG. 10 is a view for explaining the air flow at the beginning of opening of the throttle valve in the intake pipe.
  • Example 1 With reference to FIG. 1 to FIG. 3, an intake noise reduction apparatus according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a plan view of an intake noise reduction device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a state in use of the intake sound reduction device according to Embodiment 1 of the present invention. 2 is a cross-sectional view taken along the line AA in FIG.
  • the intake sound reduction device 100 is disposed downstream of the throttle valve 300 in the intake pipe. Further, in the present embodiment, the intake noise reduction device 100 is disposed near the connection portion between the intake manifold 210 and the throttle body 220 constituting the intake pipe.
  • the rotary shaft of the throttle valve 300 is installed so as to extend in the horizontal direction.
  • the throttle valve 300 is configured to open the valve by rotating in the direction of the arrow in FIG. With the above configuration, when the throttle valve 300 starts to open, an upper air flow and a lower air flow in the intake pipe are generated. This point is as described with reference to FIG. 10 in the background art.
  • the intake sound reduction device 100 includes a rectifying net 110 and a gasket portion 120.
  • the intake sound reduction device 100 is made of an elastic body such as various rubber materials or resin elastomers.
  • the rectifying net 110 and the gasket portion 120 are integrated.
  • the rectifying net 110 may be formed of a rigid body such as a metal.
  • the rectifying net 110 and the gasket portion 120 are configured as separate members.
  • the rectifying net 110 and the gasket portion 120 can be integrated.
  • the intake pipe has a cylindrical shape. Therefore, the gasket portion 120 has an annular shape.
  • the gasket portion 120 is disposed in an annular notch 211 formed along the inner periphery of the end face of the intake manifold 210.
  • the gasket part 120 exhibits the function which seals the clearance gap between these end surfaces by being pinched
  • the rectifying net 110 is provided inside the gasket portion 120 with respect to the gasket portion 120.
  • the rectifying net 110 includes a plurality of radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g extending radially outward from the center of the circle of the gasket portion 120 having a circular planar shape, It consists of a plurality of concentric portions 112a, 112b, 112c, 112d, 112e provided concentrically from the center.
  • the plurality of radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g and the plurality of concentric circular portions 112a, 112b, 112c, 112d, and 112e form a mesh.
  • the center of the circle of the gasket portion 120 is located near the center of the flow path in the intake pipe when the intake noise reduction device 100 is disposed in the intake pipe.
  • the rectifying net 110 includes a plurality of radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g that extend radially from the vicinity of the center of the flow path in the intake pipe and the vicinity of the center of the flow path in the intake pipe. It can also be said that it is composed of a plurality of concentric portions 112a, 112b, 112c, 112d, 112e provided concentrically.
  • the mesh near the center of the circle of the gasket portion 120 is fine, and the mesh becomes coarse as the distance from the center increases. That is, in a state where the intake noise reduction device 100 is disposed in the intake pipe, the mesh of the rectifying net 110 is fine in the vicinity of the center of the flow path in the intake pipe and becomes rougher as it goes away from the vicinity of the center.
  • the plurality of radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g are set to have substantially the same angle between adjacent radial portions.
  • radial intervals between adjacent concentric circular portions are set to be substantially equal.
  • the mesh of the rectifying net 110 is fine near the center of the circle of the gasket portion 120 and becomes rougher as the distance from the center increases.
  • the distance between the throttle valve 300 and the rectifying net 110 is shorter than the length of the valve body portion of the throttle valve 300. Therefore, the rectifying net 110 is provided so as to occupy a substantially half region inside the gasket portion 120 having a circular planar shape so that the throttle valve 300 does not hit the rectifying net 110.
  • the remaining substantially semicircular region is a cavity.
  • the semicircular region where the rectifying net 110 is provided is disposed in the upper portion, and the hollow semicircular region is disposed in the lower portion.
  • the throttle valve 300 does not hit the rectifying net 110 (see FIG. 2).
  • the air flows from two locations farthest from the rotation shaft of the throttle valve 300 become mainstream. That is, in the present embodiment, the upper air flow and the lower air flow are mainstream.
  • the mesh of the rectifying net 110 disposed on the downstream side of the throttle valve 300 is fine near the center of the flow path in the intake pipe and becomes rougher as it moves away from the vicinity of the center. It is configured as follows. As a result, the air tends to flow in a coarse area of the mesh, so that the air is rectified so as to flow more in a region farther from the vicinity of the center in the intake pipe.
  • the rectifying net 110 is arranged in the upper half area of the intake pipe, the air flow is rectified as described above with respect to the upper air flow. That is, the downward flow of the upper air flow can be reduced.
  • the merging of the upper air flow and the lower air flow can be suppressed. Thereby, abnormal noise can be suppressed. Further, since the merging of these air flows can be suppressed by the mesh, the resistance when the air flows becomes higher than the case where the merging of the air flows from two places is suppressed by the partition walls. This can be suppressed.
  • the rectifying net 110 includes a plurality of radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g extending radially outward from the vicinity of the center of the flow path in the intake pipe, and from the vicinity of the center.
  • a mesh is formed by the plurality of concentric circular portions 112a, 112b, 112c, 112d, and 112e provided concentrically.
  • the rectifying net 110 in which the mesh in the vicinity of the center of the flow path in the intake pipe is fine and the mesh becomes coarser as the distance from the center increases.
  • the rectifying net 110 is made of an elastic body. Therefore, the rectifying net 110 is elastically deformed by the air flow.
  • a network is formed by the plurality of radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g and the plurality of concentric portions 112a, 112b, 112c, 112d, and 112e.
  • the shape of the net 110 projected in the direction of air flow has little change both before and after deformation.
  • the rectification function is stably exhibited. Further, when the rectifying net 110 is elastically deformed, a uniform force acts on the radial portions 111a, 111b, 111c, 111d, 111e, 111f, and 111g, and the rectifying net 110 is uniform over the entire rectifying net 110. Because the force works, it has excellent durability.
  • the intake sound reduction device 100 since the intake sound reduction device 100 according to the present embodiment includes the gasket portion 120, it has both a function of reducing intake sound and a function as a gasket.
  • FIG. 3 is a graph showing the sound pressure ratio of abnormal noise in various samples.
  • the sound pressure at the beginning of opening of the throttle valve 300 was measured using an intake pipe having an inner diameter of 66 mm. Further, the distance L (see FIG. 2) between the throttle valve 300 and the intake noise reduction device was set to 20 mm.
  • the sound pressure ratio is shown in a graph by assuming that the sound pressure in the case of using the sample S11 that is not provided with the rectifying net and includes only the gasket portion 120 having an inner diameter of 66 mm is 1.
  • Samples S12, S13, and S14 are each provided with a rectifying net in the upper half-circle region inside the gasket portion 120 having an inner diameter of 66 mm.
  • the mesh of the rectification net is configured in a rectangular shape as in the past, and the size of each mesh is configured to be equal. More specifically, a plurality of linear portions having a line width of 0.5 mm are provided in the vertical and horizontal directions, and the vertical and horizontal lengths of each mesh are all 6 mm. Each linear portion is made of metal.
  • Samples S13 and S14 used the intake sound reduction device 100 according to the above-described embodiment. However, in sample S13, the rectifying net 110 was made of metal, and in sample S14, the rectifying net 110 was made of rubber.
  • the shape of the mesh (the shape of the radial portion and the concentric portion) is as shown in FIG. In addition, the line width of a radial part and a concentric part is 0.5 mm.
  • Example 2 shows a second embodiment of the present invention.
  • a configuration in the case where a cylindrical portion is provided between a rectifying net and a gasket portion constituting the intake sound reduction device will be described. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 4 is a graph showing the sound pressure ratio of abnormal noise when the distance L between the throttle valve 300 and the intake noise reduction device 100 is changed.
  • S21 indicates that the distance L is 20 mm
  • S22 indicates that the distance L is 26 mm
  • S23 indicates that the distance L is 29 mm
  • S24 indicates that the distance L is 33 mm
  • S25 indicates that the distance L is 36 mm.
  • the sound pressure ratio is represented by a graph with the sound pressure when the distance L is 33 mm being 1. From this experimental result, it was found that the noise suppression effect differs depending on the distance L between the throttle valve 300 and the intake noise reduction device 100.
  • the distance L that can most suppress abnormal noise varies depending on various conditions.
  • the distance L between the throttle valve 300 and the intake sound reduction device 100 is determined by the arrangement position of the throttle valve 300 provided in the throttle body 220. In order to change this arrangement position according to various conditions, the cost is significantly increased. Therefore, in this embodiment, a configuration in which the distance L can be changed by the intake sound reduction device 100 will be described.
  • FIG. 5 is a schematic cross-sectional view showing a state in use of the intake sound reduction device according to the second embodiment of the present invention.
  • the intake sound reduction device 100 according to the present embodiment includes a rectifying net 110, a gasket portion 120, and a tubular portion 130.
  • the intake noise reduction device 100 is made of an elastic body such as various rubber materials or resin elastomers, and the rectifying net 110, the gasket portion 120, and the cylindrical portion 130 are integrated.
  • network 110 and the gasket part 120 since it is the same structure as the case of Example 1, the description is abbreviate
  • the cylindrical portion 130 that connects the gasket portion 120 and the rectifying net 110 has a cylindrical shape.
  • the distance L between the throttle valve 300 and the intake noise reduction device 100 can be adjusted by appropriately adjusting the length of the cylindrical portion 130 in the axial direction.
  • the rectifying net 110 may be formed of a rigid body such as a metal.
  • the rectifying net 110 and the gasket portion 120 are configured as separate members.
  • the cylindrical portion 130 may be provided integrally with the rectifying net 110 or may be provided integrally with the gasket portion 120.
  • the rectifying net 110 and the gasket portion 120 can be integrated by performing insert molding using the rectifying net 110 integrally provided with the cylindrical portion 130 as an insert part.
  • the rectifying net 110 and the gasket part 120 are integrated with each other via a cylindrical part 130 provided integrally with the gasket part 120 by performing insert molding using the rectifying net 110 as an insert part. It becomes possible to make it.
  • FIG. 6 shows a third embodiment of the present invention.
  • region inside a gasket part was shown.
  • region inside a gasket part is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the intake sound reduction device 100 is also composed of the rectifying net 110 and the gasket portion 120 as in the case of the first embodiment.
  • the intake sound reduction device 100 is made of an elastic body such as various rubber materials or resin elastomers, and the rectifying net 110 and the gasket portion 120 are integrated.
  • the rectifying net 110 may be formed of a rigid body such as a metal.
  • the rectifying net 110 includes a plurality of radial portions 111 extending radially outward from the center of the circle of the gasket portion 120 having a circular planar shape, It comprises a plurality of concentric circular portions 112 provided concentrically from the center of the circle.
  • the rectifying net 110 is provided so as to occupy a substantially half area inside the gasket portion 120 having a circular planar shape, whereas in the case of the present embodiment, the gasket is provided.
  • the rectifying net 110 is provided over the entire area inside the portion 120.
  • Other configurations are the same as those described in the first embodiment.
  • the same effect as in the first embodiment can be obtained.
  • the rectifying net 110 is provided over the entire area inside the gasket portion 120, the lower air flow is the same as the upper air flow. The air flow can be rectified. Therefore, abnormal noise can be further suppressed.
  • the configuration of the rectifying net 110 according to the present embodiment is also applicable to the intake sound reduction device 100 shown in the second embodiment.
  • Example 4 A fourth embodiment of the present invention is shown in FIGS.
  • the rectifying net and the gasket portion can be formed of separate members.
  • the rectifying net and the gasket portion are constituted by separate members. Since the basic configuration and operation are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the case where the rectifying net and the gasket portion are formed as separate members in the configuration shown in the first embodiment will be described as an example. However, this embodiment can also be applied to the second and third embodiments.
  • FIG. 7 is a plan view of a rectifying net according to Embodiment 4 of the present invention.
  • FIG. 8 is a part of a plan view of the intake sound reduction device according to the fourth embodiment of the present invention, and is an enlarged view of a part of the plan view of the intake sound reduction device.
  • FIG. 9 is a schematic cross-sectional view of an intake noise reduction device according to Embodiment 4 of the present invention. 9 is a cross-sectional view taken along the line BB in FIG.
  • the intake sound reduction device 100 is also composed of a rectifying net 110X and a gasket portion 120X, as in the above embodiments.
  • the rectifying net 110X and the gasket portion 120X are constituted by separate members.
  • the rectifying net 110X is made of a metal or a hard resin material.
  • the gasket portion 120X is made of an elastic body such as various rubber materials or resin elastomers as in the case of the above embodiments.
  • the surface of the rectifying net 110X is covered with an elastic covering portion 140 provided integrally with the gasket portion 120X.
  • the entire rectifying net 110X is covered with the covering portion 140.
  • the surface of the rectifying net 110X is covered with the elastic covering portion 140 provided integrally with the gasket portion 120X. Therefore, even if the rectifying net 110X and the gasket portion 120X are configured as separate members, the coupling force between the rectifying net 110X and the gasket portion 120X can be sufficiently increased. Therefore, it is possible to suppress the rectifying net 110X from being detached from the gasket portion 120X.
  • the intake noise reduction device 100 according to the present embodiment can be obtained by performing insert molding using the rectifying net 110X as an insert part. That is, the gasket portion 120X and the covering portion 140 are formed by insert molding using the rectifying net 110X as an insert part.
  • the surface of the rectifying net 110X can be easily covered with the elastic covering portion 140 provided integrally with the gasket portion 120X.
  • other manufacturing methods can be adopted.
  • the case where the pipe of the intake pipe is formed in a cylindrical shape has been shown.
  • the case where the gasket part 120 in the intake sound reduction device 100 is formed in an annular shape is shown.
  • the intake noise reduction device according to the present invention can also be applied when the pipe of the intake pipe is not cylindrical.
  • the gasket 120 may be configured to have a rectangular planar shape.
  • the rectifying net 110 provided on the inner side of the gasket portion 120 can be the same as the configuration shown in the first and third embodiments.
  • a mesh is formed by a plurality of radial portions extending radially outward from the vicinity of the center of the flow path in the intake pipe and a plurality of concentric portions provided concentrically from the vicinity of the center.
  • the structure in the case where is formed is shown. This is particularly effective when the rectifying net 110 is made of an elastic body.
  • the rectifying net is configured so that the mesh near the center of the flow path in the intake pipe is fine and the mesh becomes coarser as it goes away from the vicinity of the center, it is possible to suppress the merging of the air flows at two locations.
  • the mesh may not be formed by the radial portion and the concentric portion as described above, but may be formed by a portion extending vertically and horizontally, for example.
  • the vertical and horizontal intervals are not made uniform, but the intervals near the center of the flow path in the intake pipe are made narrower, so that the mesh near the center of the flow path in the intake pipe becomes finer, and as the distance from the center increases. A rectifying net with a coarse mesh can be obtained.
  • Intake sound reduction device 110 110X Rectifier net 111, 111a, 111b, 111c, 111d, 111e, 111f, 111g Radial part 112, 112a, 112b, 112c, 112d, 112e Concentric part 120, 120X Gasket part 130 Cylindrical part 140 Covering portion 200 Intake pipe 210 Intake manifold 220 Throttle body 300 Throttle valve

Abstract

 吸気管内での異音を抑制可能とする吸気音低減装置を提供する。 吸気管内においてスロットルバルブの下流側に配置され、空気の流れを整流させる整流ネット110を備える吸気音低減装置100において、整流ネット110は、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗く構成されることを特徴とし、例えば、整流ネット110は、吸気管内の流路の中央付近から外側に向かって放射状に伸びる複数の放射状部分111と、前記中央付近から同心円状に設けられる複数の同心円状部分112とによって、網目が形成される。

Description

吸気音低減装置
 本発明は、吸気管内に備えられ、吸気音を低減させる吸気音低減装置に関する。
 吸気管内には、吸気量を制御するためにスロットルバルブが設けられている。ここで、スロットルバルブが急激に開いた際に、異音が発生する問題がある。この異音が発生するメカニズムについて、図10を参照して、説明する。図10は吸気管内においてスロットルバルブの開き始めの空気の流れを説明する図である。図示のように、吸気管200内にはスロットルバルブ300が設けられている。一般的に、スロットルバルブ300は水平方向に伸びるように設置された回転軸を中心に回転するように構成されている。そのため、スロットルバルブ300の開き始めの状態においては、吸気管200内の上部側の空気の流れX1と、下部側の空気の流れX2が生じる。この上部側の空気の流れX1と下部側の空気の流れX2が合流する際に異音が発生すると考えられている。
 そこで、従来、上記のような異音が発生することを抑制するために、整流ネットや整流板を設けることで、空気の流れを整流させる技術が知られている(特許文献1参照)。また、上部側の空気の流れと下部側の空気の流れが合流しないように、隔壁を設ける技術も知られている(特許文献2参照)。
 しかしながら、整流板や隔壁を設ける場合には、空気が流れる際に抵抗となる。このような抵抗は、吸気の効率を低下させる原因となってしまう。これに対して、整流ネットの場合には、空気が流れる際の抵抗はそれほど大きくならない。しかし、従来例に係る整流ネットの場合には、整流機能はある程度発揮されるものの、上部側の空気の流れX1と下部側の空気の流れX2との合流を十分に抑制することが難しかった。
特開平11-141420号公報 特開2000-291452号公報
 本発明の目的は、吸気管内での異音を抑制可能とする吸気音低減装置を提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、本発明の吸気音低減装置は、
 吸気管内においてスロットルバルブの下流側に配置され、空気の流れを整流させる整流ネットを備える吸気音低減装置において、
 前記整流ネットは、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗く構成されることを特徴とする。
 スロットルバルブの開き始めにおいては、スロットルバルブの回転軸から最も離れた2箇所からの空気の流れが主流となる。すなわち、背景技術の中でも説明したように、回転軸が水平方向に伸びるように設けられた場合には、上部側の空気の流れと下部側の空気の流れが主流となる。そして、本発明においては、スロットルバルブの下流側に配置された整流ネットの網目が、吸気管内の流路の中央付近が細かく、中央付近から遠ざかるにつれて粗くなるように構成されている。そのため、空気は網目の粗いところに流れやすいため、吸気管内のうち中央付近から遠い領域ほど多く流れるように整流される。従って、2箇所からの空気の流れの合流を抑制することができる。また、網目によって、2箇所からの空気の流れの合流を抑制することができる。そのため、隔壁によって2箇所からの空気の流れの合流を抑制する場合に比べて、空気が流れる際の抵抗が高くなってしまうことを抑制できる。
 前記整流ネットは、吸気管内の流路の中央付近から外側に向かって放射状に伸びる複数の放射状部分と、前記中央付近から同心円状に設けられる複数の同心円状部分とによって、網目が形成されるとよい。なお、本発明における「同心円状部分」は、完全な円形状の場合だけではなく、半円などの円弧状の場合も含む。
 これにより、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗く構成される整流ネットを実現できる。また、整流ネットを弾性体により構成した場合には、空気の流れによって整流ネットは弾性的に変形する。しかし、上記のように構成される整流ネットを、空気の流れる方向に投影した形状は、変形前も変形後も変化が少ない。そのため、安定的に整流機能が発揮される。また、整流ネットを弾性体により構成したとしても、空気の流れにより弾性変形した際には、放射状部分に対して均一的な力が働き、整流ネット全体に対して均一的な力が働く。そのため、耐久性に優れる。
 吸気管を構成する2つの管のうち一方の管の端面と他方の管の端面との間の隙間を封止する環状のガスケット部を備え、
 前記整流ネットは、前記ガスケット部に対して、該ガスケット部の内側に設けられているとよい。
 これにより、吸気音を低減する機能とガスケットとしての機能を兼ね備えさせることができる。
 また、前記整流ネットの表面が前記ガスケット部と一体に設けられた弾性体製の被覆部によって覆われているとよい。
 これにより、整流ネットとガスケット部を別部材で構成しても、整流ネットとガスケット部の結合力を十分に高くすることができる。従って、整流ネットがガスケット部から離脱してしまうことを抑制できる。
 前記整流ネットをインサート部品として、インサート成形によって前記ガスケット部及び前記被覆部が成形されるとよい。
 これにより、整流ネットの表面を、ガスケット部と一体に設けられた弾性体製の被覆部により容易に覆うことができる。
 なお、上記各構成は、可能な限り組み合わせて採用し得る。
 以上説明したように、本発明によれば、吸気管内での異音を抑制することができる。
図1は本発明の実施例1に係る吸気音低減装置の平面図である。 図2は本発明の実施例1に係る吸気音低減装置の使用時の様子を示す模式的断面図である。 図3は各種サンプルにおける異音の音圧比を示すグラフである。 図4はスロットルバルブと吸気音低減装置との距離を変えた際の異音の音圧比を示すグラフである。 図5は本発明の実施例2に係る吸気音低減装置の使用時の様子を示す模式的断面図である。 図6は本発明の実施例3に係る吸気音低減装置の平面図である。 図7は本発明の実施例4に係る整流ネットの平面図である。 図8は本発明の実施例4に係る吸気音低減装置の平面図の一部である。 図9は本発明の実施例4に係る吸気音低減装置の模式的断面図である。 図10は吸気管内においてスロットルバルブの開き始めの空気の流れを説明する図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (実施例1)
 図1~図3を参照して、本発明の実施例1に係る吸気音低減装置について説明する。
 <吸気音低減装置>
 図1及び図2を参照して、本実施例に係る吸気音低減装置の構成について説明する。図1は本発明の実施例1に係る吸気音低減装置の平面図である。図2は本発明の実施例1に係る吸気音低減装置の使用時の様子を示す模式的断面図である。なお、図2中の吸気音低減装置は、図1におけるAA断面図である。
 本実施例に係る吸気音低減装置100は、吸気管内においてスロットルバルブ300の下流側に配置される。また、本実施例においては、吸気管を構成するインテークマニホールド210とスロットルボディ220との接続部付近に、吸気音低減装置100が配置される。なお、本実施例においては、スロットルバルブ300の回転軸は水平方向に伸びるように設置される。また、このスロットルバルブ300は、図2中矢印方向に回転することで、弁を開くように構成されている。以上の構成により、スロットルバルブ300の開き始めの状態においては、吸気管内の上部側の空気の流れと、下部側の空気の流れが生じる。この点については、背景技術の中で、図10を参照して説明した通りである。
 本実施例に係る吸気音低減装置100は、整流ネット110と、ガスケット部120とから構成される。また、吸気音低減装置100は、各種ゴム材や樹脂エラストマーなどの弾性体により構成されている。そして、整流ネット110とガスケット部120とは一体となっている。ただし、整流ネット110に関しては、金属などの剛体で構成しても良い。この場合には、整流ネット110とガスケット部120とは別部材で構成される。しかしながら、例えば、整流ネット110をインサート部品として、インサート成形を行うことによって、整流ネット110とガスケット部120を一体的にさせることが可能となる。
 本実施例においては、吸気管の管は円筒形状である。そのため、ガスケット部120は円環形状となっている。このガスケット部120は、インテークマニホールド210の端面の内周に沿って形成された環状の切り欠き211に配置される。これにより、ガスケット部120は、インテークマニホールド210の端面と、スロットルボディ220の端面との間に挟み込まれることで、これらの端面間の隙間を封止する機能を発揮する。
 整流ネット110は、ガスケット部120に対して、ガスケット部120の内側に設けられている。そして、整流ネット110は、平面形状が円形であるガスケット部120の円の中心から外側に向かって放射状に伸びる複数の放射状部分111a,111b,111c,111d,111e,111f,111gと、上記円の中心から同心円状に設けられる複数の同心円状部分112a,112b,112c,112d,112eとから構成される。これら複数の放射状部分111a,111b,111c,111d,111e,111f,111gと、複数の同心円状部分112a,112b,112c,112d,112eによって、網目が形成される。なお、上記ガスケット部120の円の中心は、吸気音低減装置100が吸気管内に配置された場合に、吸気管内の流路の中央付近に位置する。つまり、整流ネット110は、吸気管内の流路の中央付近から外側に向かって放射状に伸びる複数の放射状部分111a,111b,111c,111d,111e,111f,111gと、吸気管内の流路の中央付近から同心円状に設けられる複数の同心円状部分112a,112b,112c,112d,112eとから構成されると言うこともできる。
 上記のように構成された整流ネット110においては、ガスケット部120の円の中心付近の網目が細かく、中心から遠ざかるにつれて網目が粗く構成される。つまり、吸気音低減装置100が吸気管内に配置された状態においては、整流ネット110の網目は、吸気管内の流路の中央付近が細かく、中央付近から遠ざかるにつれて粗く構成される。なお、本実施例においては、複数の放射状部分111a,111b,111c,111d,111e,111f,111gは、隣り合う放射状部分の間の角度がほぼ等しく設定されている。また、複数の同心円状部分112a,112b,112c,112d,112eは、隣り合う同心円状部分の径方向の間隔がほぼ等しく設定されている。これにより、整流ネット110の網目は、ガスケット部120の円の中心付近が細かく、中心から遠ざかるにつれて粗くなっている。
 また、本実施例においては、図2に示すように、スロットルバルブ300と整流ネット110との間隔が、スロットルバルブ300のバルブ本体部分の長さよりも短い。そのため、スロットルバルブ300が整流ネット110に突き当たらないように、整流ネット110は、平面形状が円形であるガスケット部120の内側のほぼ半分の領域を占めるように設けられている。なお、残りのほぼ半円形の領域は空洞となっている。そして、吸気音低減装置100が吸気管内に配置された状態においては、整流ネット110が設けられている半円形の領域が上部に配置され、空洞状の半円形の領域が下部に配置される。これにより、スロットルバルブ300が完全に開いた状態においても、スロットルバルブ300が整流ネット110に突き当たることはない(図2参照)。
 <本実施例に係る吸気音低減装置の優れた点>
 スロットルバルブ300の開き始めにおいては、スロットルバルブ300の回転軸から最も離れた2箇所からの空気流れが主流となる。すなわち、本実施例においては、上部側の空気の流れと下部側の空気の流れが主流となる。そして、本実施例に係る吸気音低減装置100においては、スロットルバルブ300の下流側に配置された整流ネット110の網目が、吸気管内の流路の中央付近が細かく、中央付近から遠ざかるにつれて粗くなるように構成されている。これにより、空気は網目の粗いところに流れやすいため、吸気管内のうち中央付近から遠い領域ほど多く流れるように整流される。ただし、本実施例においては、吸気管内のうち、上半分の領域に整流ネット110が配置されているので、上部側の空気の流れについて、上記のように空気の流れが整流される。つまり、上部側の空気の流れについて、下方に向かう流れを少なくすることができる。
 従って、上部側の空気の流れと下部側の空気の流れの合流を抑制することができる。これにより、異音を抑制させることができる。また、網目によって、これらの空気の流れの合流を抑制することができるので、隔壁によって2箇所からの空気の流れの合流を抑制する場合に比べて、空気が流れる際の抵抗が高くなってしまうことを抑制できる。
 また、本実施例に係る整流ネット110は、吸気管内の流路の中央付近から外側に向かって放射状に伸びる複数の放射状部分111a,111b,111c,111d,111e,111f,111gと、中央付近から同心円状に設けられる複数の同心円状部分112a,112b,112c,112d,112eとによって、網目が形成される。
 これにより、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗く構成される整流ネット110を実現できる。また、本実施例においては、整流ネット110を弾性体により構成している。そのため、空気の流れによって整流ネット110は弾性的に変形する。しかし、上記のように、複数の放射状部分111a,111b,111c,111d,111e,111f,111gと、複数の同心円状部分112a,112b,112c,112d,112eとにより網目が形成されるため、整流ネット110を空気の流れる方向に投影した形状は、変形前も変形後も変化が少ない。従って、安定的に整流機能が発揮される。また、弾性的に整流ネット110が変形した場合には、放射状部分111a,111b,111c,111d,111e,111f,111gに対して均一的な力が働き、整流ネット110全体に対して均一的な力が働くため、耐久性に優れる。
 また、本実施例に係る吸気音低減装置100は、ガスケット部120を備えているので、吸気音を低減する機能とガスケットとしての機能を兼ね備えている。
 ここで、各種サンプルについて、異音の音圧を測定した実験結果について説明する。図3は各種サンプルにおける異音の音圧比を示すグラフである。この実験においては、内径が66mmの吸気管を用い、スロットルバルブ300の開き始めにおける音圧を測定した。また、スロットルバルブ300と吸気音低減装置との距離L(図2参照)を20mmとした。
 また、図3では、整流ネットを備えておらず、内径が66mmのガスケット部120のみで構成されるサンプルS11を用いた場合の音圧を1として、音圧の比をグラフで示している。サンプルS12,S13,S14は、いずれも内径が66mmのガスケット部120の内側の上半分の半円領域に整流ネットが設けられている。
 そして、サンプルS12の場合には、整流ネットの網目が、従来のように矩形で構成されており、各網目の大きさは等しくなるように構成されている。より具体的には、線幅が0.5mmの線状部分を縦横に複数設け、各網目の縦横の長さがいずれも6mmとなるように構成されている。また、各線状部分は金属で構成されている。
 サンプルS13,S14は上述した実施例に係る吸気音低減装置100を用いた。ただし、サンプルS13は整流ネット110を金属により構成し、サンプルS14は整流ネット110をゴムにより構成した。網目の形状(放射状部分及び同心円状部分の形状)については、図1に示す通りである。なお、放射状部分及び同心円状部分の線幅は0.5mmである。
 図3に示すように、本実施例に係る吸気音低減装置100の構成を採用し、かつ整流ネット110を金属により構成する場合が最も異音を抑制できることが確認できた。また、本実施例に係る吸気音低減装置100の構成を採用することにより、整流ネット110をゴムで構成した場合でも、整流ネットが金属で構成された従来品よりも異音を抑制できることを確認できた。
 (実施例2)
 図4及び図5には、本発明の実施例2が示されている。本実施例においては、吸気音低減装置を構成する整流ネットとガスケット部との間に、筒状部分を設ける場合の構成について示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 上述した実験で用いた吸気管及びサンプルS13を用いて、スロットルバルブ300と吸気音低減装置100との距離L(図2参照)を変えて、スロットルバルブ300の開き始めにおける音圧を測定した実験結果について説明する。図4はスロットルバルブ300と吸気音低減装置100との距離Lを変えた際の異音の音圧比を示すグラフである。
 グラフ中、S21は距離Lが20mmの場合、S22は距離Lが26mmの場合、S23は距離Lが29mmの場合、S24は距離Lが33mmの場合、S25は距離Lが36mmの場合をそれぞれ示している。また、距離Lが33mmの場合の音圧を1として、音圧の比をグラフで示している。この実験結果から、スロットルバルブ300と吸気音低減装置100との距離Lによって、異音の抑制効果が異なることが分かった。
 なお、最も異音を抑制することが可能な距離Lが、諸条件によって変わることは言うまでもない。ここで、上記実施例1に係る吸気音低減装置100を用いた場合、スロットルバルブ300と吸気音低減装置100との距離Lは、スロットルボディ220に設けられたスロットルバルブ300の配置位置により決まる。この配置位置を諸条件に応じて変更するには、コストが大幅に高くなってしまう。そこで、本実施例においては、吸気音低減装置100によって、上記距離Lを変更可能とする構成を説明する。
 図5は本発明の実施例2に係る吸気音低減装置の使用時の様子を示す模式的断面図である。本実施例に係る吸気音低減装置100は、整流ネット110と、ガスケット部120と、筒状部130とから構成される。また、吸気音低減装置100は、各種ゴム材や樹脂エラストマーなどの弾性体により構成されており、整流ネット110とガスケット部120と筒状部130は一体となっている。整流ネット110とガスケット部120の構成については、実施例1の場合と同一の構成のため、その説明は省略する。
 実施例1で説明したように、ガスケット部120は円環形状であるので、ガスケット部120と整流ネット110とを繋いでいる筒状部130は、円筒形状である。この筒状部130の軸線方向の長さを適宜調整することによって、スロットルバルブ300と吸気音低減装置100との距離Lを調整することが可能である。
 なお、本実施例では、整流ネット110とガスケット部120と筒状部130が一体となる場合を示した。しかしながら、実施例1でも説明したように、整流ネット110を金属などの剛体で構成してもよい。この場合には、整流ネット110とガスケット部120とは別部材で構成される。この場合、筒状部130については、整流ネット110に一体に設けても良いし、ガスケット部120に一体に設けても良い。前者の場合には、筒状部130が一体に設けられた整流ネット110をインサート部品として、インサート成形を行うことによって、整流ネット110とガスケット部120を一体的にさせることが可能となる。また、後者の場合には、整流ネット110をインサート部品として、インサート成形を行うことによって、整流ネット110とガスケット部120とを、ガスケット部120に一体に設けられた筒状部130を介して一体的にさせることが可能となる。
 (実施例3)
 図6には、本発明の実施例3が示されている。上記実施例1では、整流ネットがガスケット部の内側の略半円形の領域に設けられる場合を示した。本実施例においては、整流ネットがガスケット部の内側の全領域に亘って設けられる場合の構成を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 本実施例に係る吸気音低減装置100においても、上記実施例1の場合と同様に、整流ネット110と、ガスケット部120とから構成される。また、吸気音低減装置100は、各種ゴム材や樹脂エラストマーなどの弾性体により構成されており、整流ネット110とガスケット部120とは一体となっている。ただし、整流ネット110に関しては、金属などの剛体で構成しても良いことは、実施例1で説明した通りである。
 そして、本実施例における整流ネット110は、上記実施例1の場合と同様に、平面形状が円形であるガスケット部120の円の中心から外側に向かって放射状に伸びる複数の放射状部分111と、上記円の中心から同心円状に設けられる複数の同心円状部分112とから構成される。上記実施例1の場合、整流ネット110は、平面形状が円形であるガスケット部120の内側のほぼ半分の領域を占めるように設けられているのに対して、本実施例の場合には、ガスケット部120の内側の全領域に亘って整流ネット110が設けられている。その他の構成については、上記実施例1で示した構成と同一である。
 本実施例においても、上記実施例1の場合と同様の効果を得ることができる。そして、本実施例の場合には、ガスケット部120の内側の全領域に亘って整流ネット110が設けられているので、下部側の空気の流れについても、上部側の空気の流れと同様に、空気の流れを整流させることができる。従って、より一層、異音を抑制させることができる。なお、本実施例に係る整流ネット110の構成は、上記実施例2に示す吸気音低減装置100にも適用可能である。
 (実施例4)
 図7~図9には、本発明の実施例4が示されている。上記実施例1の中で説明したように、整流ネットとガスケット部を別部材で構成することもできる。本実施例においては、整流ネットとガスケット部を別部材で構成する場合の好適な例を説明する。基本的な構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。なお、本実施例においては、上記実施例1で示す構成において、整流ネットとガスケット部を別部材に構成する場合を例にして説明する。ただし、本実施例は、上記実施例2,3にも適用可能である。
 図7は本発明の実施例4に係る整流ネットの平面図である。図8は本発明の実施例4に係る吸気音低減装置の平面図の一部であり、吸気音低減装置の平面図の一部を拡大した図である。図9は本発明の実施例4に係る吸気音低減装置の模式的断面図である。なお、図9は図8中のBB断面図である。
 本実施例に係る吸気音低減装置100も、上記各実施例の場合と同様に、整流ネット110Xと、ガスケット部120Xとから構成される。そして、本実施例の場合には、整流ネット110Xとガスケット部120Xが別部材により構成されている。整流ネット110Xは、金属や硬質の樹脂材により構成される。ガスケット部120Xについては、上記各実施例の場合と同様に、各種ゴム材や樹脂エラストマーなどの弾性体により構成されている。
 また、本実施例に係る吸気音低減装置100においては、整流ネット110Xの表面がガスケット部120Xと一体に設けられた弾性体製の被覆部140によって覆われている。なお、本実施例では、整流ネット110Xの全体が被覆部140によって覆われている。
 以上のように、本実施例に係る吸気音低減装置100によれば、整流ネット110Xの表面がガスケット部120Xと一体に設けられた弾性体製の被覆部140によって覆われている。従って、整流ネット110Xとガスケット部120Xを別部材で構成しても、整流ネット110Xとガスケット部120Xの結合力を十分に高くすることができる。従って、整流ネット110Xがガスケット部120Xから離脱してしまうことを抑制できる。
 また、本実施例に係る吸気音低減装置100は、整流ネット110Xをインサート部品として、インサート成形を行うことにより得られる。すなわち、整流ネット110Xをインサート部品として、インサート成形によってガスケット部120X及び被覆部140が成形される。これにより、整流ネット110Xの表面を、ガスケット部120Xと一体に設けられた弾性体製の被覆部140により容易に覆うことができる。ただし、その他の製法を採用することもできる。
 (その他)
 上記各実施例においては、吸気管の管が円筒形状で構成される場合を示した。これに伴い、吸気音低減装置100におけるガスケット部120は円環形状で構成される場合を示した。しかしながら、本発明に係る吸気音低減装置は、吸気管の管が円筒形状でない場合にも適用できる。例えば、吸気管の管が、空気の流れ方向に対して垂直な断面で見た場合に矩形の場合には、ガスケット部120も、平面形状が矩形となるように構成すればよい。なお、この場合にも、ガスケット部120の内側に設けられる整流ネット110については、上記実施例1や実施例3で示す構成と同様のものを用いることができる。ただし、この場合には、複数の同心円状部分について、外側のいくつかの同心円状部分は、半円形や円形にはならず、円弧状になることは言うまでもない。
 上記各実施例では、整流ネット110において、吸気管内の流路の中央付近から外側に向かって放射状に伸びる複数の放射状部分と、中央付近から同心円状に設けられる複数の同心円状部分とによって、網目が形成される場合の構成を示した。これは、整流ネット110を弾性体で構成する場合に、特に効果的である。ただし、整流ネットが、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗く構成されさえすれば、2箇所の空気の流れの合流を抑制することができる。従って、使用条件等によっては、上述したような放射状部分と同心円状部分とにより網目を形成するのではなく、例えば、縦横に伸びる部分によって網目を形成してもよい。この場合には、縦横の間隔を均一にするのではなく、吸気管内の流路の中央付近ほど間隔を狭くすることで、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗い整流ネットを得ることができる。
 100 吸気音低減装置
 110,110X 整流ネット
 111,111a,111b,111c,111d,111e,111f,111g 放射状部分
 112,112a,112b,112c,112d,112e 同心円状部分
 120,120X ガスケット部
 130 筒状部
 140 被覆部
 200 吸気管
 210 インテークマニホールド
 220 スロットルボディ
 300 スロットルバルブ

Claims (5)

  1.  吸気管内においてスロットルバルブの下流側に配置され、空気の流れを整流させる整流ネットを備える吸気音低減装置において、
     前記整流ネットは、吸気管内の流路の中央付近の網目が細かく、中央付近から遠ざかるにつれて網目が粗く構成されることを特徴とする吸気音低減装置。
  2.  前記整流ネットは、吸気管内の流路の中央付近から外側に向かって放射状に伸びる複数の放射状部分と、前記中央付近から同心円状に設けられる複数の同心円状部分とによって、網目が形成されることを特徴とする請求項1に記載の吸気音低減装置。
  3.  吸気管を構成する2つの管のうち一方の管の端面と他方の管の端面との間の隙間を封止する環状のガスケット部を備え、
     前記整流ネットは、前記ガスケット部に対して、該ガスケット部の内側に設けられていることを特徴とする請求項1に記載の吸気音低減装置。
  4.  前記整流ネットの表面が前記ガスケット部と一体に設けられた弾性体製の被覆部によって覆われていることを特徴とする請求項3に記載の吸気音低減装置。
  5.  前記整流ネットをインサート部品として、インサート成形によって前記ガスケット部及び前記被覆部が成形されることを特徴とする請求項4に記載の吸気音低減装置。
PCT/JP2014/055015 2013-03-05 2014-02-28 吸気音低減装置 WO2014136666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14759868.4A EP2966321B1 (en) 2013-03-05 2014-02-28 Suction noise reduction device
US14/772,002 US9500166B2 (en) 2013-03-05 2014-02-28 Intake noise reduction device
CN201480011565.8A CN105008774B (zh) 2013-03-05 2014-02-28 吸气声音降低装置
JP2015504271A JP6341905B2 (ja) 2013-03-05 2014-02-28 吸気音低減装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013042765 2013-03-05
JP2013-042765 2013-03-05
JP2013-143486 2013-07-09
JP2013143486 2013-07-09

Publications (1)

Publication Number Publication Date
WO2014136666A1 true WO2014136666A1 (ja) 2014-09-12

Family

ID=51491185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055015 WO2014136666A1 (ja) 2013-03-05 2014-02-28 吸気音低減装置

Country Status (5)

Country Link
US (1) US9500166B2 (ja)
EP (1) EP2966321B1 (ja)
JP (2) JP6341905B2 (ja)
CN (1) CN105008774B (ja)
WO (1) WO2014136666A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091280A (zh) * 2015-09-07 2015-11-25 珠海格力电器股份有限公司 整流罩、进风系统及圆形柜机
WO2016056484A1 (ja) * 2014-10-07 2016-04-14 Nok株式会社 吸気音低減装置
JP2016061172A (ja) * 2014-09-16 2016-04-25 Nok株式会社 吸気音低減装置
JP2016065483A (ja) * 2014-09-24 2016-04-28 Nok株式会社 吸気音低減装置
JP2016075224A (ja) * 2014-10-07 2016-05-12 Nok株式会社 吸気音低減装置
WO2016076150A1 (ja) * 2014-11-14 2016-05-19 Nok株式会社 吸気音低減装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990508A (zh) * 2017-12-29 2018-05-04 北京三五二环保科技有限公司 检测仪和新风机与净化器的联动系统
US11639706B1 (en) * 2021-10-29 2023-05-02 Nissan North America, Inc. Flow control member for a vehicle
CN115342010B (zh) * 2022-10-14 2023-03-24 潍柴动力股份有限公司 进气管导流组件安装结构及布置方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208283A (ja) * 1994-01-06 1995-08-08 H K S:Kk エアクリーナ装置
JPH11141420A (ja) 1997-11-10 1999-05-25 Toyota Motor Corp 吸気異音低減構造
JP2000291452A (ja) 1999-04-08 2000-10-17 Aisan Ind Co Ltd 内燃機関の吸気量制御装置
JP2006010075A (ja) * 2004-06-22 2006-01-12 Freudenberg-Nok General Partnership エラストマーを被覆したスクリーンガスケット
JP2007247547A (ja) * 2006-03-16 2007-09-27 Kokoku Intech Co Ltd 吸気異音低減装置及びこれを備えた内燃機関、内燃機関の吸気異音低減装置取付構造
JP2008303751A (ja) * 2007-06-06 2008-12-18 Kojima Press Co Ltd 吸気パイプ
JP2009533634A (ja) * 2006-04-17 2009-09-17 フェデラル−モーグル コーポレイション ガスケットおよびそれを用いたシール形成方法
JP2011236853A (ja) * 2010-05-12 2011-11-24 Denso Corp 内燃機関の吸気異音低減装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1008178A (fr) 1949-01-11 1952-05-14 Paso Corp Reg Trust Dispositif applicable aux moteurs à combustion interne
US3544290A (en) * 1965-10-21 1970-12-01 Raymond C Larson Sr Fuel atomizing unit
DE2511530A1 (de) * 1974-03-22 1975-09-25 Gianni Luciano Brennstoffekonomiser fuer vergasermotoren, insbesondere fuer kraftfahrzeuge
US4094290A (en) * 1974-06-06 1978-06-13 Courtney C. Pace Fuel atomizer
US5891207A (en) * 1994-01-06 1999-04-06 Hks Co., Ltd. Engine intake-air filter apparatus
JP3454016B2 (ja) 1996-05-14 2003-10-06 トヨタ自動車株式会社 内燃機関の吸気通路構造
DE69805883T2 (de) * 1997-03-04 2003-02-13 Nippon Soken Vorrichtung zum Verhindern von Durchströmgeräuschen bei Drosselklappen
US5722357A (en) * 1997-05-01 1998-03-03 Ford Global Technologies, Inc. Noise suppression in the intake system of an internal combustion engine
JP3341653B2 (ja) 1997-11-05 2002-11-05 トヨタ自動車株式会社 吸気異音低減構造
US6824119B2 (en) * 2001-08-30 2004-11-30 Visteon Global Technologies, Inc. Throttle plate having reduced air rush noise and method
US6824583B2 (en) * 2002-01-29 2004-11-30 George F. Bulger Velocity stack air system for motorcycles
DE102004019446B4 (de) * 2004-04-19 2006-01-12 Siemens Ag Geräuscharmes Saugrohr
JP2007192060A (ja) * 2006-01-17 2007-08-02 Denso Corp 消音装置
JP2008014279A (ja) * 2006-07-07 2008-01-24 Nok Corp ガスケット
JP2009185729A (ja) * 2008-02-07 2009-08-20 Nok Corp スロットルの異音低減構造
US7707986B1 (en) * 2008-10-15 2010-05-04 Gm Global Technology Operations, Inc. Noise attenuation for internal combustion engine
JP2011012760A (ja) * 2009-07-02 2011-01-20 Nok Corp ガスケット
JP2011127507A (ja) 2009-12-17 2011-06-30 Aisan Industry Co Ltd インテークマニホールド
CN101806262A (zh) * 2010-03-30 2010-08-18 重庆长安汽车股份有限公司 一种汽油发动机进气系统的降噪结构
CN102454489A (zh) * 2010-10-15 2012-05-16 北汽福田汽车股份有限公司 气体整流装置以及发动机的进气系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208283A (ja) * 1994-01-06 1995-08-08 H K S:Kk エアクリーナ装置
JPH11141420A (ja) 1997-11-10 1999-05-25 Toyota Motor Corp 吸気異音低減構造
JP2000291452A (ja) 1999-04-08 2000-10-17 Aisan Ind Co Ltd 内燃機関の吸気量制御装置
JP2006010075A (ja) * 2004-06-22 2006-01-12 Freudenberg-Nok General Partnership エラストマーを被覆したスクリーンガスケット
JP2007247547A (ja) * 2006-03-16 2007-09-27 Kokoku Intech Co Ltd 吸気異音低減装置及びこれを備えた内燃機関、内燃機関の吸気異音低減装置取付構造
JP2009533634A (ja) * 2006-04-17 2009-09-17 フェデラル−モーグル コーポレイション ガスケットおよびそれを用いたシール形成方法
JP2008303751A (ja) * 2007-06-06 2008-12-18 Kojima Press Co Ltd 吸気パイプ
JP2011236853A (ja) * 2010-05-12 2011-11-24 Denso Corp 内燃機関の吸気異音低減装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061172A (ja) * 2014-09-16 2016-04-25 Nok株式会社 吸気音低減装置
JP2016065483A (ja) * 2014-09-24 2016-04-28 Nok株式会社 吸気音低減装置
WO2016056484A1 (ja) * 2014-10-07 2016-04-14 Nok株式会社 吸気音低減装置
JP2016075224A (ja) * 2014-10-07 2016-05-12 Nok株式会社 吸気音低減装置
JPWO2016056484A1 (ja) * 2014-10-07 2017-07-20 Nok株式会社 吸気音低減装置
CN107076069A (zh) * 2014-10-07 2017-08-18 Nok株式会社 进气声降低装置
WO2016076150A1 (ja) * 2014-11-14 2016-05-19 Nok株式会社 吸気音低減装置
CN107076068A (zh) * 2014-11-14 2017-08-18 Nok株式会社 吸气音降低装置
EP3219973A4 (en) * 2014-11-14 2018-04-25 Nok Corporation Intake noise reduction device
US10267274B2 (en) 2014-11-14 2019-04-23 Nok Corporation Intake noise reduction device
CN105091280A (zh) * 2015-09-07 2015-11-25 珠海格力电器股份有限公司 整流罩、进风系统及圆形柜机

Also Published As

Publication number Publication date
US9500166B2 (en) 2016-11-22
CN105008774B (zh) 2017-07-21
EP2966321A1 (en) 2016-01-13
JP2017089656A (ja) 2017-05-25
JPWO2014136666A1 (ja) 2017-02-09
CN105008774A (zh) 2015-10-28
EP2966321B1 (en) 2019-04-10
EP2966321A4 (en) 2016-11-02
US20160010603A1 (en) 2016-01-14
JP6341905B2 (ja) 2018-06-13

Similar Documents

Publication Publication Date Title
WO2014136666A1 (ja) 吸気音低減装置
JP6065116B2 (ja) 密封装置
US11225976B2 (en) Housing for a fluid machine, in particular for a radial fan
JP5273090B2 (ja) 内燃機関の吸気異音低減装置
US20130098326A1 (en) Air intake device for internal combustion engine
JP6384141B2 (ja) 吸気音低減装置
JP2007224873A (ja) 内燃機関の吸気装置および吸気マニホルド
JP6304390B2 (ja) 吸気音低減装置
JP7008479B2 (ja) 吸気系の旋回流発生装置
JP6123953B2 (ja) 吸気音低減装置
JP6350087B2 (ja) 吸気音低減装置
JP6876494B2 (ja) 吸気音低減装置
JP2005188363A (ja) エアクリーナ
JP2006329100A (ja) クロスフローファン
JP5648521B2 (ja) 吸気ダクト接続構造及びエアクリーナ装置
JP6089749B2 (ja) ガスケット
JP2016079841A (ja) 吸気音低減装置
JP2016075224A (ja) 吸気音低減装置
JP6361397B2 (ja) 吸気音低減装置
JP2022539391A (ja) 組立可能なチェックバルブ
JP2016037864A (ja) 吸気音低減装置
JP2016065457A (ja) 吸気音低減装置
JP2016061170A (ja) 吸気音低減装置
JP2021188654A (ja) 逆止弁
JP2011012760A (ja) ガスケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504271

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14772002

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014759868

Country of ref document: EP