WO2014135068A1 - 一种可伸缩的轨道车辆车头及其轨道车辆 - Google Patents

一种可伸缩的轨道车辆车头及其轨道车辆 Download PDF

Info

Publication number
WO2014135068A1
WO2014135068A1 PCT/CN2014/072860 CN2014072860W WO2014135068A1 WO 2014135068 A1 WO2014135068 A1 WO 2014135068A1 CN 2014072860 W CN2014072860 W CN 2014072860W WO 2014135068 A1 WO2014135068 A1 WO 2014135068A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
vehicle
rods
telescopic
telescoping
Prior art date
Application number
PCT/CN2014/072860
Other languages
English (en)
French (fr)
Inventor
刘慧军
康洪军
王广明
李芳�
杨永勤
Original Assignee
唐山轨道客车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山轨道客车有限责任公司 filed Critical 唐山轨道客车有限责任公司
Publication of WO2014135068A1 publication Critical patent/WO2014135068A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/02Construction details of vehicle bodies reducing air resistance by modifying contour ; Constructional features for fast vehicles sustaining sudden variations of atmospheric pressure, e.g. when crossing in tunnels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to rail vehicle technology, and more particularly to a rail vehicle telescopic head and railcar.
  • the resistance of the EMU will increase significantly.
  • the speed of the EMU reaches 200km/h
  • the air resistance accounts for about 70% of the total running resistance.
  • air resistance accounts for about 85% of the total running resistance. Most of the energy consumed in the operation of the EMU is used to overcome the air resistance.
  • the relationship between the aerodynamic performance and the main profile of the head shape includes the length of the streamlined head, the variation of the main profile of the longitudinal section, the variation of the main profile of the horizontal plane, and the relationship between the maximum cross-sectional area; head shape and train air
  • the general rule of dynamic performance is: Train pressure wave: the flat width is the smallest, the ellipsoid is the largest; the head resistance: the ellipsoid is the smallest, the flat width is the maximum; the tail resistance: the flat shape is the smallest, the drum width shaped maximum, see "China Railway Science" in October 2002, Vol. 23, No.
  • the aerodynamic drag of the double arch head is better than that of the single arch, and the whole train is simple in reducing the aerodynamic drag.
  • the arch shape is slightly better than the double arch shape; therefore, the existing EMUs are designed and manufactured in the same way, that is, the head car is the same as the tail car.
  • the main vehicle is taken.
  • the intermediate car and tail car model grouping in which the head car and the tail car adopt a consistent data model and a proportional model, use the simulation calculation and the wind tunnel test to select the optimal front plan.
  • the invention provides a rail vehicle telescopic head and a rail vehicle for overcoming the defects in the prior art, realizing automatic change of the shape of the front and the tail, and reducing the resistance of the vehicle during operation.
  • the present invention provides a telescopic head of a railway vehicle, wherein the front end is formed by a front end portion of the front end and a front end portion, and the front end portion of the front end includes a plurality of unit sections which are connected in a shape of a bow and a tail;
  • the unit section includes a cylindrical joint body, a telescopic frame disposed in the tubular body and at least one connecting rod;
  • the telescopic frame includes at least two swing bars, the swing bars are disposed at intersections and are rotationally connected at an intersection, and one end of the connecting rod is fixed to the tubular section
  • the other end is rotatably connected to the intersection of the swing rods; the swing joints of the adjacent unit joints are connected end to end to form a rhombic that can expand and contract along the length of the front end.
  • the telescopic head of the rail vehicle provided by the invention divides the front end into a plurality of telescopic unit sections.
  • the front end head unit section shrinks into an ellipsoidal shape, which fully exerts the drag reducing advantage of the elliptical head, and the tail end dynamic elongation
  • the change is flat and fusiform, which reduces the rear end resistance.
  • the extended rear end delays the air separation point and greatly reduces the eddy current resistance.
  • the present invention provides a rail vehicle including a vehicle body and a front end connected to both ends of the vehicle body, the front end being the above-described rail vehicle telescopic head.
  • FIG. 1 is a schematic diagram of a rail vehicle according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of the front end of the vehicle along the A-A in Figure 1;
  • Figure 3 is a cross-sectional view of the tail end of the tail end along the line A-A in Figure 1;
  • Figure 4 is a partial enlarged view of the nose cone of the vehicle head
  • Figure 5 is a right side view of Figure 4.
  • Figure 6 is a schematic view of the state after the rail vehicle is assembled
  • Figure 7 is a schematic diagram of a rail vehicle traveling from the X site to the Y site;
  • Figure 8 is a schematic diagram of a rail vehicle moving from the Y site to the X site. detailed description
  • FIG. 1 is a schematic view of a rail vehicle according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the front end of the vehicle head along AA of FIG. 1
  • FIG. 3 is a cross-sectional view of the front end of the vehicle head along AA of FIG.
  • Figure 5 is a right side view of Figure 4
  • Figure 6 is a schematic view of the state of the rail vehicle after assembly
  • Figure 7 is a schematic view of the rail vehicle from the X site to the Y site
  • Schematic diagram of the X station as shown in FIG. 1-8, an embodiment of the present invention provides a telescopic head of a railway vehicle.
  • the front end is configured by a front end portion 1 of the front end of the vehicle head and a front end portion 1 including a plurality of head and tail connections.
  • the unit section includes a cylindrical section, a telescopic frame provided in the cylindrical section 10, and at least one connecting rod 20; the telescopic frame 3 includes at least two swinging rods 3a, and the two swinging rods 3a are crossed
  • the rotating joint is arranged at the intersection, the connecting rod 20 end is fixed on the inner wall of the cylindrical joint, and the other end of the connecting rod 20 is rotatably connected with the swing rod 3a; the swinging connection of the adjacent unit joints is formed along the end and the tail.
  • Head longitudinal direction stretchable diamond is configured by a front end portion 1 of the front end of the vehicle head and a front end portion 1 including a plurality of head and tail connections.
  • the unit section includes a cylindrical section, a telescopic frame provided in the cylindrical section 10, and at least one connecting rod 20; the telescopic frame 3 includes at least two swing
  • the telescopic head of the rail vehicle provided by the invention divides the front end into a plurality of telescopic unit sections.
  • the front end head unit section When going forward, as shown in FIG. 2, the front end head unit section is spheroidally contracted, which fully exerts the advantage of reducing the resistance of the ellipsoid head.
  • the dynamic elongation of the tail end is flat and fusiform.
  • the rear end resistance is reduced.
  • the extended rear end delays the air separation point and greatly reduces the eddy current resistance.
  • the size of the tubular body is sequentially increased from the head end to the rear end of the vehicle head in the longitudinal direction of the vehicle head.
  • the cylindrical body is composed of two parts, a constricted section 11 and a straight section 12, wherein the constricted section 11 is from its end to the direction of the straight section 12
  • the opening gradually increases.
  • the unit section includes a first unit section 1a, a second unit section lb, a third unit section lc, a fourth unit section ld, and a fifth unit section in order from the head end to the tail end of the vehicle head.
  • the sixth unit section If and the seventh unit section lg, the connecting rods disposed in the unit section are the first connecting rod 2a, the second connecting rod 2b, the third connecting rod 2c, the fourth connecting rod 2d, and the fifth The connecting rod 2e, the sixth connecting rod 2f and the seventh connecting rod 2g.
  • the front end of the vehicle head can be contracted by an air resistance to form an ellipsoidal shape
  • the rear end of the vehicle head has a flat shuttle shape as a function of the dynamic elongation of the vehicle.
  • the two ends of the connecting rod are fixed to the inner wall of the straight cylinder section. The structure is simple and easy to install.
  • the telescopic frame includes four, and each of the two swing bars 3a constitutes one set.
  • the left swing pen is a group, right.
  • the swinging rods on the side are a group, and the two swinging rods in each group are arranged at the intersection.
  • the two sets of swinging rods arranged in parallel are arranged in parallel in the cylindrical joint body, and the ends and ends of the two sets of swinging rods are at the intersection and the intersection.
  • the intersections are rotatably connected by a shaft 3b.
  • a connecting rod is arranged on the top surface, the bottom surface and the two sides of the inner wall of the single block of the cylinder, and the connecting rods on the two sides respectively connect the intersections of the two sets of swing rods, and the connecting rods of the top surface and the bottom surface respectively It is fixed on the shaft connecting the two intersections.
  • the end of the front body 4 and the front end of the front end further includes a stop groove 7 and at least one telescopic frame.
  • the opening of the stop groove 7 is provided with at least one fixing rod 8 for expansion and contraction.
  • the two pendulum rods of the frame are rotatably connected to the middle of the fixed rod 8 , and one end of the swing rod is rotatably connected with the tail end of the swing rod at the tail end unit section, and the other end of the swing rod is defined in the stop groove 7 Inside.
  • the tail end of the swing rod provided on the front body of the vehicle body abuts against the inner wall of the stopper groove 7, and when it cannot move, the front end of the telescopic head of the tail end is extended.
  • the EMU is driven from the X station to the Y station.
  • the airflow is evenly split by the front end portion 1 of the telescopic head, and flows along the head body 4 to the periphery of the vehicle body 5, where a small amount of airflow passes.
  • the lower portion of the front end portion 1 of the telescopic head passes through the bogie 6 to the bottom of the vehicle.
  • the front end portion 1 of the telescopic head and the head body 4 are a single-arched streamlined whole in the state of Fig. 2, and the head shape is small in the windward state.
  • the telescopic frame 3 drives the front end of the front end and the connecting rod to translate along the length of the vehicle.
  • the swing lever that drives the front end of the rotating head moves forward until the telescopic frame 3 moves to the state of FIG. 3, and the tail end of the front end of the front end of the front end of the front end of the front end of the front end of the front end of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the front end portion of the
  • the structure of the telescopic frame is similar to that of the Maza, and consists of four pendulum rods 3a and five shafts 3b.
  • the shaft 3b is connected to the center of the two pendulum rods 3a which are crossed, and the two shafts 3b at the upper end and the two shafts at the lower end are connected to the two ends of the two pairs of pendulum rods 3a which are crossed, and are also connected adjacent thereto.
  • the two sections of the unit section are swinging the ends of the rod 3a.
  • the present embodiment also provides a rail vehicle.
  • the vehicle includes a vehicle body 5 and a front end connected to both ends of the vehicle body 5, and the front end is a rail vehicle telescopic head according to any of the embodiments.

Abstract

一种可伸缩的轨道车辆车头及其轨道车辆,该车头包括可伸缩的车头前端部(1)、后端的车头体(4)、内部的伸缩构架(3),可伸缩的车头前端部(1)包括多个首尾相连的仿蜈蚣状的单元节(1a,1b,1c,1d,1e,1f,1g)和固定设置在上述单元节(1a,1b,1c,1d,1e,1f,1g)内相对应的连接杆(2a,2b,2c,2d,2e,2f,2g),伸缩构架(3)包括若干摆杆(3a)和摆轴(3b),上述摆杆(3a)通过轴杆(3b)首尾转动连接成沿车头长度方向可伸缩的菱形构架,上述伸缩构架(3)驱动上述连接杆(2a,2b,2c,2d,2e,2f,2g)连同仿蜈蚣状的单元节(1a,1b,1c,1d,1e,1f,1g)一同沿车头长度方向前后平移,通过驱动可伸缩的车头前端部(1),改变车头的气动阻力。一种轨道车辆包括车身和连接在车身首尾的伸缩车头,通过驱动首尾的可伸缩的车头前端部(1),组合改变车头和车尾的气动阻力。

Description

一种可伸缩的轨道车辆车头及其轨道车辆
技术领域
本发明涉及轨道车辆技术, 尤其涉及一种轨道车辆伸缩车头及轨道车 辆。 背景技术 随着轨道车辆尤其是动车组速度的不断提高,动车组的阻力将明显增大, 当动车组速度达到 200km/h时, 空气阻力占运行总阻力的 70%左右, 当动车组 速度达到 300km/h时, 空气阻力占运行总阻力的 85%左右, 见动车组运行中消 耗的能量的大部分都用来克服空气阻力。
经研究表明, 建立气动性能与头形各主型线参数包括流线型头部长度, 纵剖面主型线变化量, 水平面主型线变化量, 最大截面面积之间的关系; 头 部形状与列车空气动力性能的总体规律是: 列车交会压力波: 扁宽形为最小, 椭球形为最大; 头车阻力: 椭球形为最小, 扁宽形为最大; 尾车阻力: 扁梭 形为最小, 鼓宽形为最大, 参见 《中国铁道科学》 2002年 10月第 23卷, 第 5 期, P138; 作者: 田红旗、 梁习锋, 许平; "列车空气动力性能研究及外形、 结构设计方法"一文, 但是现有的动车组从起点站开往终点站时, 车头在前, 车尾在后, 由终点站返回原起点站时, 原车头变车尾, 原车尾变车头, 所以, 综合考虑列车头、 尾车的头形, 以一致为简单。 以后就在车头、 车尾一致的 前提下进行了进一步地研究。
经研究表明, 参见《中国铁道科学》 2003年 4月第 24卷, 第 2期, P14; 作 者: 田红旗、 高广军; "270km/h高速列车气动力性能研究"一文指出: 当头车 是单拱头形且尾车是双拱头形编组方式时, 列车气动阻力最小, 对减小列车 气动阻力来说, 这种编组方式非常有利; 但由于作为固定编组的动车组, 其 列车头部同时又是尾部, 因此, 作为头车, 单拱头形的气动阻力优于双拱的, 作为尾车, 双拱头形的气动阻力优于单拱的, 而整列车, 在减小气动阻力方 面单拱头形稍优于双拱头形; 因此现有的动车组均设计和制造成一致, 即头 车与尾车造型一样。 为了减小动车组运行中的空气阻力, 则主要采取头车加 中间车加尾车模型编组, 其中头车和尾车采用一致的数据模型和比例模型, 利用仿真计算和风洞试验, 来遴选出最优的车头方案。
《车辆与动力技术》 2005年, 第 3期, P12; 作者: 康宁, 乔军平 "尾涡 特性对轿车气动阻力影响的研究"中运用商用 CFD软件 STAR— CD对两种车 型的外部流场进行了数值模拟, 根据速度矢量图和三维流线图以很清楚地看 到在车型的尾部, 气流发生了分离, 形成了较大尺寸的上下两对旋涡, 并且 最终合并到一起, 延伸到尾流; 斜背式车型尾涡卷的较松散, 在车身后部耗 散得较快, 而快背式车型的尾涡卷的较紧, 两对尾涡合并为一对尾涡后, 一 直向车身后方延伸, 在车身尾部较长的一段距离内存在, 正是由于较强强度 的尾涡存在, 使得快背式车形的气动阻力较大。 发明内容
本发明提供一种轨道车辆伸缩车头及轨道车辆, 用于克服现有技术中 的缺陷,实现车头和车尾的形状自动变化,减小车辆在运行过程中的阻力。
本发明提供一种轨道车辆伸缩车头,所述车头由车头前端部和车头体转 动连接构成, 该车头前端部包括多个首尾连接呈蜈蚣状的单元节; 所述单 元节包括筒状节体、 设在该筒状节体内的伸缩构架和至少一根连接杆; 所 述伸缩构架包括至少两根摆杆, 所述摆杆交叉设置且交叉处转动连接, 所 述连接杆一端固定在筒状节体内壁上, 另一端与所述摆杆的交叉处转动连 接; 相邻单元节的摆杆首尾转动连接形成沿车头长度方向能够伸缩的菱 形。
本发明提供的轨道车辆伸缩车头, 将车头分成多段伸缩的单元节, 前行 时, 前端车头单元节之间收缩呈椭球形, 充分发挥了椭球形车头的减阻优势, 尾端的车头动态伸长变化呈扁梭形, 使车尾阻力得以降低, 延长后的车尾更 是延后了气流分离点, 使涡流阻力大大降低。
本发明提供一种轨道车辆, 该车辆包括车体和连接在车体两端的车头, 所述车头为上述的轨道车辆伸缩车头。
本发明提供的轨道车辆, 由于采用了可伸缩的车头, 大大降低了轨道 车辆在运行过程中车头和车尾的运行阻力。 附图说明 图 1为本发明实施例提供的轨道车辆的示意图;
图 2为图 1中沿 A-A向前端车头的剖视图;
图 3为图 1中沿 A-A向尾端车头的剖视图;
图 4为车头鼻锥的局部放大图;
图 5为图 4的右视图;
图 6为轨道车辆组装完后的状态示意图;
图 7为轨道车辆由 X站点开往 Y站点的示意图;
图 8为轨道车辆由 Y站点开往 X站点的示意图。 具体实施方式
图 1为本发明实施例提供的轨道车辆的示意图; 图 2为图 1中沿 A-A 向前端车头的剖视图; 图 3为图 1中沿 A-A向尾端车头的剖视图; 图 4 为车头鼻锥的局部放大图; 图 5为图 4的右视图; 图 6为轨道车辆组装完 后的状态示意图; 图 7为轨道车辆由 X站点开往 Y站点的示意图; 图 8 为轨道车辆由 Y站点开往 X站点的示意图; 如图 1-8所示, 本发明实施例 提供一种轨道车辆伸缩车头, 车头由车头前端部 1和车头体 4转动连接构 成, 该车头前端部 1包括多个首尾连接呈蜈蚣状的单元节; 单元节包括筒 状节体、 设在该筒状节体 10内的伸缩构架和至少一连接杆 20; 伸缩构架 3包括至少两根摆杆 3a, 两根摆杆 3a交叉设置且交叉处转动连接, 连接 杆 20—端固定在筒状节体内壁上, 连接杆 20另一端与摆杆 3a交叉处转 动连接; 相邻单元节的摆杆首尾转动连接形成沿车头长度方向能够伸缩的 菱形。
本发明提供的轨道车辆伸缩车头, 将车头分成多段伸缩的单元节, 前行 时, 如图 2所示, 前端车头单元节之间收缩呈椭球形, 充分发挥了椭球形车 头的减阻优势, 尾端车头动态伸长变化呈扁梭形, 如图 3所示, 使车尾阻力 得以降低, 延长后的车尾更是延后了气流分离点, 使涡流阻力大大降低。
作为上述实施例的优选实施方式, 如图 4所示, 筒状节体的尺寸自车 头首端至车头尾端沿车头长度方向依次递增。 筒状节体由收缩段 11和直 筒段 12两部分构成, 其中所述收缩段 11 自其端部至靠近直筒段 12方向 开口逐渐增加。 如图 2、 图 3所示, 单元节自车头首端至车头尾端依次包 括第一单元节 la、 第二单元节 lb、 第三单元节 lc、 第四单元节 ld、 第五 单元节 le、 第六单元节 If和第七单元节 lg, 设置在上述单元节内的连接 杆依次为第一连接杆 2a、第二连接杆 2b、第三连接杆 2c、第四连接杆 2d、 第五连接杆 2e、 第六连接杆 2f和第七连接杆 2g。
这样以保证前端车头能够在空气阻力作用下收缩呈椭球状, 后端车头 随车辆运行动态伸长变化呈扁梭状。 更好的符合研究成果, 将车辆运行阻 力降到最小。 在本实施例中, 所述连接杆两端固定在所述直筒段内壁。 结 构简单, 易于安装。
作为上述实施例的一种变形, 如图 4、 与 5所示, 伸缩构架包括四根, 每两根摆杆 3a构成一组, 如图 5所示, 左侧的摆杆为一组, 右侧的摆杆 为一组, 每组中的两根摆杆交叉设置, 两组交叉设置的摆杆平行布置在筒 状节体内, 两组摆杆的端部与端部之间以及交叉处与交叉处之间均通过轴 杆 3b转动连接。 为了增加伸缩构架的稳定性, 在筒体单节内壁的顶面、 底面及两侧面均设连接杆, 两侧面的连接杆分别连接两组摆杆的交叉处, 顶面和底面的连接杆分别固定在连接两交叉处的轴杆上。 为了限定尾部车 头被拉伸的长度, 车头体 4与车头前端部连接的一端还包括一止挡槽 7和 至少一所述伸缩构架, 止挡槽 7开口处设有至少一固定杆 8, 伸缩构架的 两摆杆交叉处与固定杆 8中部转动连接, 所述摆杆一端部与位于车头尾端 单元节的摆杆尾端转动连接, 所述摆杆另一端均限定在该止挡槽 7内。 设 在车头体上的摆杆尾端抵至止挡槽 7内壁, 不能移动时, 尾端的伸缩车头 前端完成伸长操作。
下面以动车组在 X站点与 Y站点之间行驶为例对伸缩动车头的工作过程 进行详细说明:
动车组由 X站点开往 Y站点, 参照图 2、 图 3、 图 7, 在动车组前端头车, 气流由伸缩车头前端部 1均匀分流, 沿车头体 4流向车身 5周围, 其中少量气流 通过伸缩车头前端部 1下部, 经过转向架 6流向车底, 伸缩车头前端部 1和车头 体 4在图 2状态下为单拱形的流线型整体, 车头造型在迎风状态下阻力小。
在动车组尾端车头, 尾车的伸缩车头前端部则需调整至图 3的状态, 具体 步骤如下: 伸缩构架 3带动车头前端部与连接杆随其沿车辆长度方向平移, 从 而带动旋转车头前端部的摆杆向前移动, 直至伸缩构架 3运动至图 3状态, 车 头前端部尾端的摆杆尾部抵至伸出止挡槽 7, 不能移动, 伸缩车头前端部完成 伸长操作。 该状态的车尾, 由于比未伸长前大大加长, 类似于汽车的斜背式 车尾, 延后了气流分离点, 使涡流阻力大大降低。 因此编组状态下如图 7的整 车气动阻力小。
动车组由 Y站点开往 X站点时, 参照图 2、 图 3、 图 8, 动车组原头车伸缩 车头前端部 1的按以上步骤伸长, 成为动车组尾部车头, 原尾部车头的伸缩构 架 3通过车头前端部与伸缩装置的连接杆带动伸缩车头前端部的单元节移动, 直至伸缩构架 3的尾端抵至回缩到止挡槽 7上壁, 原尾部车头成为动车组前部 车头,调整至图 8的状态。该状态下动车组新头车风阻小,新尾车涡流阻力小。 因此编组状态下如图 8的整车气动阻力小。
伸缩构架的构造与马札的结构类似, 由四根摆杆 3a和五个轴杆 3b组 成。 其中轴杆 3b连接着交叉的两摆杆 3a的中心, 上端的两根的轴杆 3b 和下端的两根轴杆连接着交叉的两对摆杆 3a的两端, 同时还连接着与其 相邻的单元节的两对摆杆 3a的两端。
本实施例还提供一种轨道车辆, 如图 6所示, 该车辆包括车身 5和连 接在车身 5两端的车头,所述车头为任意实施例所述的轨道车辆伸缩车头。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然以对前述各实施例所记载的技术方案进行 修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者 替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种轨道车辆伸缩车头, 所述车头由车头前端部和车头体转动连 接构成,其特征在于,该车头前端部包括多个首尾连接呈蜈蚣状的单元节; 所述单元节包括筒状节体、 设在该筒状节体内的伸缩构架和至少一根连接 杆; 所述伸缩构架包括至少两根摆杆, 所述摆杆交叉设置且交叉处转动连 接, 所述连接杆一端固定在筒状节体内壁上, 另一端与所述摆杆的交叉处 转动连接; 相邻单元节的摆杆首尾转动连接形成沿车头长度方向能够伸缩 的菱形。
2、 根据权利要求 1所述的轨道车辆伸缩车头, 其特征在于, 所述筒 状节体的尺寸自车头首端至车头尾端沿所述车头长度方向依次递增。
3、 根据权利要求 2所述的轨道车辆伸缩车头, 其特征在于, 所述筒 状节体由收缩段和直筒段两部分构成, 其中所述收缩段自其端部至靠近所 述直筒段方向开口逐渐增大。
4、 根据权利要求 3所述的轨道车辆伸缩车头, 其特征在于, 所述连 接杆固定在所述直筒段内壁上。
5、 根据权利要求 1-4任一所述的轨道车辆伸缩车头, 其特征在于, 所 述车头体与车头前端部连接的一端还包括一止挡槽和至少一所述伸缩构 架, 所述止挡槽开口处设有至少一固定杆, 所述伸缩构架的两摆杆交叉处 与固定杆中部转动连接, 所述摆杆一端部与位于车头尾端单元节的摆杆尾 端转动连接, 所述摆杆另一端均限定在该止挡槽内。
6、 根据权利要求 5所述的轨道车辆伸缩车头, 其特征在于, 所述伸 缩构架包括四根摆杆,每两根摆杆构成一组,每组中的两根摆杆交叉设置, 两组交叉设置的摆杆并行布置在所述筒状节体内, 两组摆杆的端部与端部 之间以及交叉处与交叉处之间均通过轴杆转动连接; 筒体单节内壁的顶 面、 底面及两侧面均设所述连接杆, 两侧面的连接杆分别连接两组摆杆的 交叉处, 顶面和底面的连接杆分别固定在连接两交叉处的轴杆上。
7、 一种轨道车辆, 该车辆包括车身和连接在车身两端的车头, 其特 征在于, 所述车头为上述权利要求 1-6任一所述的轨道车辆伸缩车头。
PCT/CN2014/072860 2013-03-05 2014-03-04 一种可伸缩的轨道车辆车头及其轨道车辆 WO2014135068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310068652.4A CN103121454B (zh) 2013-03-05 2013-03-05 轨道车辆伸缩车头及轨道车辆
CN201310068652.4 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014135068A1 true WO2014135068A1 (zh) 2014-09-12

Family

ID=48452667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072860 WO2014135068A1 (zh) 2013-03-05 2014-03-04 一种可伸缩的轨道车辆车头及其轨道车辆

Country Status (2)

Country Link
CN (1) CN103121454B (zh)
WO (1) WO2014135068A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114245A1 (de) * 2018-06-14 2019-12-19 Voith Patent Gmbh Schienenfahrzeugbugnase

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104608773A (zh) * 2013-11-01 2015-05-13 太平洋商业管理(上海)有限公司 不停站运输乘客方法及应用该方法的轨道式交通工具
CN110481578B (zh) * 2019-08-23 2020-07-21 西南交通大学 一种高速列车的减阻系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041872A (en) * 1935-01-21 1936-05-26 New York Air Brake Co Fluid pressure brake
DE10132562A1 (de) * 2001-07-10 2003-01-30 Klaus Manns Vorrichtung zur Unfallfolgenminderung an Bahnübergängen (Sicherheitstender)
CN202071837U (zh) * 2011-05-11 2011-12-14 铁道部运输局 高速列车车头结构
EP2420425A1 (de) * 2010-08-17 2012-02-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wagenkasten für Schienenfahrzeuge
CN202320333U (zh) * 2011-12-01 2012-07-11 广州中车轨道交通装备股份有限公司 高速动车组空调的整流罩装置
CN102935850A (zh) * 2012-11-21 2013-02-20 唐山轨道客车有限责任公司 动车组车头和动车组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1013562B (de) * 1952-03-20 1957-08-08 Tox Duebel Und Werkzeugfabrik Verfahren zur Herstellung von Verduebelungskoerpern
JPH09272435A (ja) * 1996-04-10 1997-10-21 Mitsubishi Heavy Ind Ltd 鉄道車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041872A (en) * 1935-01-21 1936-05-26 New York Air Brake Co Fluid pressure brake
DE10132562A1 (de) * 2001-07-10 2003-01-30 Klaus Manns Vorrichtung zur Unfallfolgenminderung an Bahnübergängen (Sicherheitstender)
EP2420425A1 (de) * 2010-08-17 2012-02-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wagenkasten für Schienenfahrzeuge
CN202071837U (zh) * 2011-05-11 2011-12-14 铁道部运输局 高速列车车头结构
CN202320333U (zh) * 2011-12-01 2012-07-11 广州中车轨道交通装备股份有限公司 高速动车组空调的整流罩装置
CN102935850A (zh) * 2012-11-21 2013-02-20 唐山轨道客车有限责任公司 动车组车头和动车组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114245A1 (de) * 2018-06-14 2019-12-19 Voith Patent Gmbh Schienenfahrzeugbugnase

Also Published As

Publication number Publication date
CN103121454A (zh) 2013-05-29
CN103121454B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
CN105129090B (zh) 一种低阻低声爆布局的超声速飞行器
WO2014135068A1 (zh) 一种可伸缩的轨道车辆车头及其轨道车辆
CN204355267U (zh) 一种小型单兵作战飞行器机翼折叠结构
JP6254437B2 (ja) 可変幅空気力学的装置
CN101896401A (zh) 用于减小飞机的尾涡的翼尖延长部
CN105329462A (zh) 基于可变壁面压力分布规律的吻切流场乘波前体设计方法
CN106335624B (zh) 一种采用双尖锥鱼尾型前缘气动布局的飞行器
CN209617451U (zh) 一种飞行器
CN110979682A (zh) 一种变面积鸭式前掠翼变体飞行器
CN204937478U (zh) 一种具有可伸缩鸭翼的超音速巡航飞机
CN107187599A (zh) 一种采用双机身高后翼三翼面的高空长航时飞行器气动布局
CN109131833A (zh) 一种高增升的大展弦比机翼
CN105059531B (zh) 一种后掠角可控的曲线头部密切锥乘波体
CN108502138A (zh) 一种采用前缘支撑翼的前掠翼宽体高亚声速飞行器气动布局
CN203714171U (zh) 一种高效且稳定的斜形逆变机翼
CN202071837U (zh) 高速列车车头结构
CN106240799A (zh) 一种提高带锯齿后掠翼跨声速横向飞行品质的机翼
CN102774391A (zh) 高速列车车头结构
CN103407570A (zh) 用于控制大迎角细长体侧向力的涡流发生装置
CN107016199A (zh) 一种无激波边界层排移鼓包的设计方法
CN109263855B (zh) 一种采用后缘支撑翼的超大展弦比飞行器气动布局
CN106994978B (zh) 一种低气动阻力的超高速管道列车外形结构
CN205370766U (zh) 一种兼顾锥导与密切乘波的鼓包进气道
CN106800086B (zh) Nasa ms(1)-0317翼型的一种单缝富勒式襟翼设计
CN204433042U (zh) 一种降低飞机尾流的襟翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760928

Country of ref document: EP

Kind code of ref document: A1