WO2014132797A1 - タービン翼の加工方法、加工工具及びタービン翼 - Google Patents

タービン翼の加工方法、加工工具及びタービン翼 Download PDF

Info

Publication number
WO2014132797A1
WO2014132797A1 PCT/JP2014/053196 JP2014053196W WO2014132797A1 WO 2014132797 A1 WO2014132797 A1 WO 2014132797A1 JP 2014053196 W JP2014053196 W JP 2014053196W WO 2014132797 A1 WO2014132797 A1 WO 2014132797A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
processing
turbine blade
polishing
protective film
Prior art date
Application number
PCT/JP2014/053196
Other languages
English (en)
French (fr)
Inventor
知己 園尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP14756808.3A priority Critical patent/EP2952709B1/en
Priority to CN201480005848.1A priority patent/CN104968916B/zh
Priority to KR1020157019965A priority patent/KR101811112B1/ko
Priority to US14/762,062 priority patent/US9903208B2/en
Publication of WO2014132797A1 publication Critical patent/WO2014132797A1/ja
Priority to US15/869,696 priority patent/US20180156040A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/06Cooling passages of turbine components, e.g. unblocking or preventing blocking of cooling passages of turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/311Layer deposition by torch or flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to a turbine blade processing method, a processing tool, a turbine blade processing method, or a turbine blade processed by a processing tool in which a through hole is formed.
  • turbine stationary blades and turbine blades are arranged in a path through which fluid (combustion gas and steam) flows.
  • the stationary blade is supported by a stationary member such as a passenger compartment, and the turbine rotor blade is supported by a rotational member such as a rotating shaft.
  • Turbine blades including turbine stationary blades and turbine rotor blades may have through holes connected to the interior space on the surface.
  • This through hole is, for example, a film cooling hole that cools the turbine blades by discharging air for cooling from the inside.
  • Patent Document 1 describes a method of applying a bond coat to a blade base material, perforating film cooling holes, forming a top coat, and removing the top coat in an area including the cooling hole array with an air blast or a water jet.
  • Patent Document 2 describes a thermal barrier coating is applied to a metal part of a gas turbine engine having a cooling hole including a metering hole, a cooling hole outlet, and a trough portion, and is first attached to the metering hole by a water jet or a laser.
  • a method is described in which the coating is removed, then the deposit is removed at the cooling hole outlet and finally the trough coating is removed.
  • the turbine blade is formed by laminating a protective film (for example, a film that improves the heat resistance function) by spraying or the like on the surface of the substrate (base material) in which the through-holes are formed.
  • a protective film for example, a film that improves the heat resistance function
  • the protective film that affects the through hole is removed by air blast, water jet, and laser.
  • the present invention solves the above-described problems, and an object thereof is to provide a turbine blade processing method, a processing tool, and a turbine blade capable of efficiently processing a through-hole penetrating from the surface of the turbine blade to the inside. To do.
  • a turbine blade machining method is a turbine blade machining method in which a through hole of a turbine blade having a protective film formed on the surface of a substrate is machined, and a polishing region is provided at the tip.
  • the protective film overlying the through hole can be selectively removed by inserting the processing tool provided with the polishing region into the through hole and polishing to remove the protective film overlying the through hole. Further, by removing the protective film by polishing using a processing tool, the work can be performed while confirming the state of removal of the protective film, so that the processing can be performed efficiently. Thereby, the through-hole penetrating from the surface of the turbine blade to the inside can be efficiently processed.
  • the processing tool is characterized in that the polishing region has a shape along the shape of the through hole as viewed from the surface of the base.
  • the polishing area of the processing tool along the shape of the through hole, it is possible to perform processing while protecting the substrate of the through hole. Further, the protective film overlapping the through hole can be efficiently removed.
  • the machining tool is characterized in that the polishing region is formed on at least one surface of a pyramid shape that becomes narrower toward the tip.
  • the polishing region can be made thinner and flatter as it goes to the tip, and a part of the polishing region can be prevented from coming into contact with the through-hole substrate to form a groove or the like. Thereby, it can make it easy to process, protecting a through-hole.
  • the removing step is characterized in that the protective film is polished in the polishing region by vibrating the processing tool by a vibration unit.
  • polishing process can be performed efficiently by vibrating the vibrating part.
  • the excitation unit reciprocates the polishing region along an insertion direction into the through hole.
  • a rod-shaped processing tool provided with a rod-shaped polishing region at the tip is placed in the through-hole so that the polishing region faces the surface of the through-hole.
  • the protective film can be efficiently removed by removing a part of the protective film before the insertion step.
  • a rod-shaped processing tool provided with a rod-shaped polishing region at the tip is inserted into the through-hole so that the polishing region faces the surface of the through-hole.
  • the removal can be suitably performed even when the protective film remains in the through-hole by the post-treatment process.
  • the protective film is formed by thermal spraying on the surface of the base.
  • the protective film formed by thermal spraying can be suitably removed.
  • the machining tool is characterized in that diamond particles are bonded to the polishing region.
  • the protective film can be suitably removed.
  • a processing tool of the present invention is connected to a tip having at least one polishing surface on which a polishing region to which diamond particles are bonded is formed, and one end of the tip.
  • the polishing surface is a surface whose width becomes narrower toward the tip portion that is the end portion opposite to the end portion supported by the support portion.
  • the polishing surface can be suitably brought into contact with the through hole, and polishing becomes easy. Thereby, the through-hole penetrating from the surface of the turbine blade to the inside can be efficiently processed.
  • the polishing surface is characterized in that a cross section perpendicular to a direction connecting the end supported by the support and the tip is a straight line.
  • the protective film stacked in the through hole in which the flat surface is formed can be suitably removed.
  • the polishing surface has a curved surface in which a cross section perpendicular to a direction connecting the end portion supported by the support portion and the tip end portion is convex inward.
  • the polished surface as a curved surface that protrudes inward, it is possible to suitably remove the protective film stacked in the through-hole in which the curved surface that protrudes outward is formed.
  • the vibration is coupled to the support portion and reciprocates in the direction connecting the end portion supported by the support portion and the tip portion via the support portion. It further has a portion.
  • the processing can be performed while protecting the base of the through-hole to be processed.
  • a turbine blade of the present invention is characterized in that a through hole is processed by any of the above-described turbine blade processing methods.
  • the through hole can be shaped with higher accuracy, and the performance of the turbine blade can be improved.
  • the turbine blade of the present invention for achieving the above object is characterized in that a through hole is machined by any of the machining tools described above.
  • the through hole can be shaped with higher accuracy, and the performance of the turbine blade can be improved.
  • a through-hole penetrating from the surface of the turbine blade to the inside can be efficiently processed.
  • the through hole can be shaped with higher accuracy, and the performance of the turbine blade can be further improved.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a processing tool according to the present embodiment.
  • FIG. 2A is a top view showing a schematic configuration of the tool body.
  • 2B is a side view showing a schematic configuration of the tool main body shown in FIG. 2A.
  • FIG. 2C is a front view showing a schematic configuration of the tool main body shown in FIG. 2A.
  • FIG. 3A is a top view illustrating a schematic configuration of a modified tool body.
  • FIG. 3B is a side view showing a schematic configuration of the tool main body shown in FIG. 3A.
  • FIG. 4 is a front view showing a schematic configuration of a modified tool body.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of an example of a turbine stationary blade.
  • FIG. 6A is a perspective view showing a schematic configuration of cooling holes of the turbine stationary blade shown in FIG. 6B is a front view showing a schematic configuration of the cooling hole shown in FIG. 6A.
  • 6C is a cross-sectional view showing a schematic configuration of the cooling hole shown in FIG. 6A.
  • FIG. 7 is an explanatory diagram for explaining an example of a turbine blade machining method.
  • FIG. 8 is an explanatory diagram for explaining another example of a method for processing a turbine blade.
  • FIG. 1 is a perspective view showing a schematic configuration of a processing tool according to the present embodiment.
  • FIG. 2A is a top view showing a schematic configuration of the tool body.
  • 2B is a side view showing a schematic configuration of the tool main body shown in FIG. 2A.
  • FIG. 2C is a front view showing a schematic configuration of the tool main body shown in FIG. 2A.
  • the processing tool 10 includes a tool body 12 and a vibration unit 13.
  • the tool body 12 has a support portion 14 and a tip portion 16 fixed to one end portion of the support portion 14 as shown in FIGS. 1 and 2A to 2C.
  • the support part 14 is a rod-shaped member, and the end part on the side where the tip part 16 is not fixed is attached to the vibration part 13.
  • the distal end portion 16 has a shape in which the cross section becomes smaller toward the distal end, that is, from the portion connected to the support portion 14 toward the opposite end portion.
  • the tip 16 has a polishing region 18 in a certain range on the tip side.
  • the polishing region 18 has diamond particles bonded to the surface thereof. Diamond particles are joined to the tip 16 by electrodeposition or the like.
  • the polishing region 18 of the tip portion 16 has a quadrangular pyramid shape.
  • tip part 16 of a present Example is the shape by which the front-end
  • the polishing region 18 has one surface having the largest area as an upper surface 18a, a surface opposite to the upper surface 18a as a bottom surface 18b, and is sandwiched between the upper surface 18a and the bottom surface 18b and extends in the extending direction of the support portion 14.
  • the existing surface is a side surface 18c
  • the tip surface is a tip 18d.
  • the polishing region 18 of the present embodiment has a trapezoidal shape in which the upper surface 18a and the bottom surface 18b become narrower toward the tip 18d.
  • the top surface 18a and the bottom surface 18b are isotropic trapezoids, and the angle formed by the hypotenuse is ⁇ 1.
  • the upper surface 18 a is a surface parallel to the extending direction of the support portion 14, and the bottom surface 18 b is a surface inclined at a predetermined angle with respect to the extending direction of the support portion 14.
  • interval becomes wide as the upper surface 18a and the bottom face 18b leave
  • the upper surface 18a and the bottom surface 18b are flat surfaces (planes) in which the cross section perpendicular to the extending direction of the support portion 14 is a straight line.
  • the vibration unit 13 is a device that vibrates the tool body 12 in the extending direction (the direction of arrow A).
  • the extending direction is a direction in which the support part 14 extends, and is connected to the support part 14 and the tip of the tip part 16 (the narrowed part opposite to the end part connected to the support part 14). It is the direction which tied the edge part.
  • various drive sources can be used. For example, an electric polishing machine (a machine that reciprocates a machining tool with electric power) or an excitation source of an ultrasonic polishing machine can be used.
  • the processing tool 10 is configured as described above, and the polishing region 18 is formed on the distal end side of the distal end portion 16 of the tool body 12, and the polishing region 18 is brought into contact with the object to be polished, and is polished by sliding.
  • the object can be polished.
  • the polishing region 18 of the present embodiment is a surface that the bottom surface 18b mainly contacts with the object to be polished, that is, a polishing surface.
  • the processing tool 10 has a shape in which the width increases, that is, a tapered shape as the polishing surface 18 of the polishing region 18 is separated from the tip 18d, and a surface (a flat surface in this embodiment). As a result, the tip 18d becomes narrow, and a processing target having a flat surface shape can be processed appropriately. Moreover, since the processing tool 10 can be suitably processed using the polished surface, the tool life can be extended.
  • the machining tool 10 can vibrate the polishing region 18 in the extending direction by vibrating the tool body 12 in the extending direction by the vibration unit 13.
  • the processing tool 10 vibrates the polishing region 18 with respect to the object to be polished by vibrating the polishing region 18 in the extending direction by the vibration unit 13 while bringing the polishing region 18 into contact with the object to be polished. be able to. Thereby, polishing can be performed efficiently. Further, when the polishing area 13 is vibrated in the extending direction by the vibration unit 13, the polishing area 18 comes into contact with the side wall or the like of the object to be polished when the object to be polished becomes thinner toward the tip. This can be suppressed.
  • FIG. 3A is a top view illustrating a schematic configuration of a modified tool body.
  • FIG. 3B is a side view showing a schematic configuration of the tool main body shown in FIG. 3A.
  • the tool body 22 shown in FIGS. 3A and 3B has a support portion 24 and a tip portion 26.
  • a polishing region 28 is provided at the distal end portion 26.
  • the polishing region 28 shown in FIGS. 3A and 3B has a trapezoidal shape whose width becomes narrower as the upper surface 28a and the bottom surface 28b (polishing surface) move toward the tip.
  • the top surface 28a and the bottom surface 28b are isotropic trapezoids, and the angle formed by the hypotenuse is ⁇ 2.
  • ⁇ 2 is an angle smaller than ⁇ 1.
  • the processing tool 10 can set the angle of the tapered shape of the polishing surface to various angles. For example, when ⁇ 1 is set to 30 ° and ⁇ 2 is set to 15 °, the processing target can be suitably processed using any of the tool bodies 12 and 22.
  • FIG. 4 is a front view showing a schematic configuration of a modified tool body.
  • the polishing area 38 of the tool main body 32 shown in FIG. 4 has a top surface 38a, a side surface 38c, and a tip portion 38d that are flat surfaces.
  • the bottom surface 38b of the polishing region 38 has a curved surface in which a cross section orthogonal to the extending direction (a cross section orthogonal to the direction connecting the end portion supported by the support portion and the tip portion) protrudes inward.
  • the tool body 32 may have a bottom surface 38b, that is, a polished surface having a curved shape.
  • the process target in which the curved surface which protruded outside was formed can be grind
  • the tip end portion 16 has a quadrangular pyramid shape and one surface of the quadrangular pyramid has a curved surface.
  • the present invention is not limited to this.
  • the tip 16 (polishing region) 18 may be a polygonal pyramid, such as a triangular pyramid or a hexagonal pyramid, to form a polished surface.
  • the influence which it has on the side wall of a process target can be decreased by setting it as a quadrangular pyramid.
  • the machining tool 10 of the present embodiment can perform suitable machining as described above by vibrating the tool body 12 in the extending direction using the vibration unit 13, but is not limited thereto.
  • the processing tool 10 may vibrate the tool body 12 in a direction orthogonal to the extending direction or may rotate the tool body 12. Moreover, you may combine the vibration to a various direction.
  • the processing tool 10 may not include a drive source that vibrates the tool body 12. Specifically, the polishing region 18 may be manually slid with respect to the processing target.
  • the processing tool 10 can suitably process a through hole of a turbine blade, for example, a film cooling hole. More specifically, the processing tool 10 formed a protective film, for example, TBC (Thermal Barrier Coating, high-performance thermal barrier coating for gas turbine) on the surface of the turbine blade base during the production of the turbine blade having the through hole. Thereafter, the protective film can be suitably used for removing a protective film formed on a portion overlapping the through hole or a protective film formed inside the through hole.
  • TBC Thermal Barrier Coating, high-performance thermal barrier coating for gas turbine
  • FIG. 5 is a cross-sectional view showing a schematic configuration of an example of a turbine stationary blade.
  • 6A is a perspective view showing a schematic configuration of cooling holes of the turbine stationary blade shown in FIG. 6B is a front view showing a schematic configuration of the cooling hole shown in FIG. 6A.
  • 6C is a cross-sectional view showing a schematic configuration of the cooling hole shown in FIG. 6A.
  • the cooling holes provided in the turbine stationary blade will be described, but the same applies to the turbine rotor blade. That is, the turbine blade includes both a turbine stationary blade and a turbine blade.
  • the turbine stationary blade 43 has a blade body (blade structure portion) 44. Further, the blade body 44 has an outer shroud (end wall structure) fixed to one end (outer in the radial direction) in the longitudinal direction (radial direction of the rotor), and an inner shroud (end) in the other end (inward in the radial direction). Wall structure) is fixed.
  • the blade body 44 has a hollow shape, the upstream side in the flow direction of the combustion gas (left side in FIG. 5) has a curved cross-sectional shape, and the downstream side in the flow direction of the combustion gas (right side in FIG. 5). It has a tapered cross-sectional shape.
  • the wing body 44 is partitioned into three spaces by two partition walls 51.
  • the blade body 44 is formed with a plurality of cooling holes 52 penetrating inside and outside at predetermined positions.
  • the wing body 44 has partition plates 55a, 55b, and 55c fixed to the inside thereof.
  • the partition plates 55a, 55b, and 55c have a cylindrical shape, and end portions on the side of each shroud are expanded to be fixed to the shrouds.
  • the partition plates 55a, 55b, and 55c are fixed on the inner side, so that the cavity 62 is defined.
  • the partition plates 55a, 55b, and 55c have a large number of through holes 59 formed at almost equal intervals over the entire region.
  • the cooling air (cooling medium) from the cooling passage is supplied to the turbine stationary blade 43
  • the cooling air is first introduced into the blade body 44, that is, inside the partition plate 55.
  • the cooling air in the partition plate 55 is then injected into the cavity 58 through a large number of through holes 59 formed in the partition plate 55, where the inner wall surface of the blade body 44 is impingement cooled.
  • the cooling air in the cavity 58 is discharged to the outside (combustion gas passage) through the numerous cooling holes 52 and flows along the outer wall surfaces of the blade body 44, the back profile 45, and the ventral profile 46.
  • Film cooling of the wall surface film cooling.
  • the cooling hole 52 is formed in the blade body 44 as described above.
  • the wing body 44 has a protective film 72 formed on the surface of the base 70.
  • the protective film 72 is provided in a region on the surface of the blade body 44 where the cooling holes 52 are not formed.
  • the protective film 72 is a film having a function of protecting the surface of the base body 70, and is formed of TBC, for example. Since the blade main body 44 is provided with the protective film 72, the durability of the surface can be improved, and the durability of the turbine vane can be increased.
  • the cooling hole 52 has a cylindrical portion 62 that is inclined with respect to the surface (the surface on which the protective film is formed) from the inside of the blade body 44, and the end portion on the surface side of the cylindrical portion 62 becomes the opening 63. .
  • the cylindrical portion 62 is inclined with respect to the direction in which the central axis 62a is orthogonal to the surface.
  • the cooling hole 52 extends from the opening 63 at the downstream side of the cooling air flowing from the inside of the blade main body 44 to the surface, that is, at the end inclined to the perpendicular of the inclined cylindrical portion 62. 66 is formed.
  • the extended portion 66 is formed with a surface where the angle formed with the direction orthogonal to the surface is larger than that of the cylindrical portion 62, that is, the inclination is gentle.
  • the extended portion 66 has a flat surface. Further, the extended portion 66 has a shape in which the width increases as the opening portion moves away from the opening 63 as shown in FIG. 6B.
  • the turbine vane 43 has a shape in which the cooling hole 52 is formed by connecting the cylindrical portion 62 and the expansion portion 66, thereby allowing cooling air discharged from the inside of the blade body 44 to flow to the surface along the surface of the blade body 44. It can be made easier.
  • FIG. 7 is an explanatory diagram for explaining an example of a turbine blade machining method.
  • a base body 102 having a through hole 103 to be a cooling hole is formed, and as shown in step S14, a protective film 104 is formed on the surface of the base body 102.
  • the protective film 104 can be formed on the surface of the substrate 102 by thermal spraying, for example.
  • the protective film 104 is uniformly formed on the surface of the base 102, and thus the protective film 104 is also formed in a region overlapping with the through hole 103.
  • the processing method inserts the tip 16 of the processing tool 10 into the region where the through hole 103 is formed (insertion step).
  • the distal end portion 16 is inserted in such a direction that the bottom surface 18b (polishing surface) of the polishing region 18 of the distal end portion 16 faces the through hole 103 (the protective film 104 overlapping the through hole 103).
  • the distal end portion 16 is vibrated by the vibrating portion 13. At this time, it may be vibrated before insertion or after insertion.
  • step S18 the tip portion 16 is vibrated by the vibration portion 13 while the polishing region 18 of the tip portion 16 is in contact with the protective film 104 that overlaps the through hole 103.
  • the overlapping protective film 104 is polished and removed (removal step).
  • the processing method uses the processing tool 10 to remove the protective film 104 that overlaps the through-hole 103, and as shown in step S ⁇ b> 20, the protective film is located at a position that does not overlap the opening 63 and the extended part 66 of the cylindrical part 62.
  • a turbine vane in which 72 is formed can be created.
  • the cooling film 52 is efficiently covered with the protective film 72 by removing the protective film 104 that overlaps the through hole 103 by polishing using the processing tool 10. There can be no state.
  • the through hole 103 and the polishing surface can be made substantially parallel, and the polishing surface penetrates during processing.
  • the contact with the hole 103 and the cutting of the through hole 103 can be suppressed.
  • the range of the through holes 103 that can be processed simultaneously can be increased, the time required for removing the protective film 104 can be shortened.
  • the polishing surface can be moved along the inclination direction (tapered shape) of the through-hole 103. Thereby, it can suppress that a grinding
  • the processing tool 10 having the above-described shape, specifically, the polishing surface has a surface shape.
  • a tapered processing tool it is preferable to use a tapered processing tool, but the present invention is not limited to this.
  • the shape of the tool for polishing the protective film can be various.
  • a tool body having a cylindrical and conical tip portion may be used, or a tool body having a flat plate tip portion may be used.
  • step S12 the base 102 in which the through hole 103 serving as a cooling hole is formed is formed, and as shown in step S14, the protective film 104 is formed on the surface of the base 102. .
  • step S ⁇ b> 32 the tip end portion 92 of the processing tool 90 is inserted into the region where the through hole 103 is formed, and the polishing region of the tip end portion 92 overlaps the through hole 103.
  • the tip portion 92 is vibrated by the vibrating portion while being in contact with the protective film 104, thereby polishing the protective film 104 overlapping the through-hole 103 and removing a part thereof (pretreatment step).
  • tip part 92 becomes a cylindrical shape.
  • the processing tool 90 may rotate the distal end portion 92 with a rotating device such as a portable grinder without vibrating.
  • step S18 in the processing method, the tip end portion 16 is inserted so that the bottom surface 18b of the polishing region 18 of the tip end portion 16 of the processing tool 10 faces the through hole 103, and the polishing region 18 is passed through the through hole.
  • the top end portion 16 is vibrated by the vibrating portion 13 while being in contact with the protective film 104 that overlaps the 103, that is, the bottom surface 18b of the polishing region 18 is reciprocated along the insertion direction, thereby overlapping the through hole 103.
  • 104 is polished and removed (insertion step, removal step).
  • the tip portion 92a of the processing tool 90 is inserted into the region where the through hole 103 is formed, more specifically, the region where the cylindrical portion is formed. While the polishing region is in contact with the protective film 104 that overlaps the through-hole 103, the tip portion 92 is vibrated by the vibrating portion, whereby the protective film 104 that overlaps the through-hole 103 is polished and removed (post-processing step).
  • the tip portion 92a has a columnar shape in which the polishing region has a smaller diameter than the cylindrical portion.
  • the front end portion 92a is inserted into the cylindrical portion, and the protective film 104 overlapping the through hole 103 is polished and removed, so that the protective film 104 attached to the inside of the cylindrical portion can be more reliably removed. it can.
  • the processing method uses the processing tools 10 and 90 to remove the protective film 104 that overlaps the through-hole 103, so that the opening 63 and the expansion portion 66 of the cylindrical portion 62 are formed as shown in Step S ⁇ b> 20.
  • a turbine vane having a protective film 72 formed at a position where it does not overlap can be created.
  • the processing method shown in FIG. 8 uses a processing tool 90 to remove the protective film 104 that overlaps the through-hole 103 (rough processing), and uses the processing tool 10 to correspond to an extended portion whose surface is flat.
  • the protective film 104 that overlaps with the cylindrical portion is removed, and the protective film 104 attached to the cylindrical portion can be removed using the processing tool 90.
  • the protective film 104 can be efficiently removed from the cooling hole with high accuracy.
  • a tool suitable for processing each part can be used. Thereby, it is possible to perform processing while suppressing polishing of the through-hole 103.
  • the turbine blade manufactured by processing with the above-described processing tool and the turbine blade manufactured by processing with the above-described processing method have through holes such as cooling holes with higher accuracy,
  • the performance can be made higher.
  • the performance of the turbine blade can be increased.
  • the turbine blade is removed from the protective film 104 such as a sprayed film while suppressing adverse effects on the inside of the through hole 103.
  • the protective film 104 can be appropriately formed to increase durability, and the protective film 104 is removed with high accuracy while maintaining the shape of the through hole 103, so that the through hole 103 is cooled.
  • the cooling performance when used as a hole can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 タービン翼の表面から内部に貫通する貫通孔を効率よく加工することができるタービン翼の加工方法、加工工具及びタービン翼を提供することにある。基体の表面に保護膜が形成されたタービン翼の貫通孔を加工するタービン翼の加工方法であって、先端に研磨領域が設けられた加工工具を、研磨領域が貫通孔の表面と対面する向きで貫通孔に挿入する挿入工程と、貫通孔に挿入した加工工具の研磨領域で、貫通孔に積層された保護膜を研磨して、貫通孔に積層された保護膜を除去する除去工程と、を有する。

Description

タービン翼の加工方法、加工工具及びタービン翼
 本発明は、貫通孔が形成されたタービン翼の加工方法、加工工具及びタービン翼の加工方法または加工工具で加工されたタービン翼に関するものである。
 ガスタービンや蒸気タービン等は、流体(燃焼ガスや蒸気)が流通する経路にタービン静翼とタービン動翼とが配置されている。静翼は、車室等の固定側の部材に支持されており、タービン動翼は、回転軸等、回転側の部材に支持されている。
 タービン静翼とタービン動翼とを含むタービン翼は、表面に内部の空間まで繋がった貫通孔を設ける場合がある。この貫通孔は、例えば、内部から冷却用の空気を排出させることで、タービン翼をフィルム冷却するフィルム冷却孔である。
 このタービン翼に貫通孔を形成する方法(タービン翼の加工方法)としては、種々の方法が提案されている(特許文献1、2参照)。例えば特許文献1には、翼基材にボンドコートを施し、フィルム冷却孔を穿孔し、トップコートを形成し、冷却孔列を含む領域のトップコートをエアブラスト若しくはウォータージェットで除去する方法が記載されている。また、特許文献2には、調量孔と冷却孔出口とトラフ部とからなる冷却孔を有するガスタービンエンジンの金属部品に遮熱コーティングを施し、ウォータージェット若しくはレーザにより先ず調量孔に付着したコーティングを除去し、次に冷却孔出口に付着分を除去し、最後にトラフ部のコーティングを除去する方法が記載されている。
特開2012-82700号公報 特開2012-140952号公報
 特許文献1及び2に示すように、タービン翼は、貫通孔が形成された基体(基材)の表面に溶射等により保護膜(例えば耐熱機能を向上させる膜)を積層させて、保護膜により貫通孔が塞がらないように、保護膜のうち、貫通孔に積層されたり、貫通孔の内部に入ったりした部分を除去する。ここで、特許文献1及び2では、エアブラスト、ウォータージェット及びレーザにより、貫通孔に影響のある保護膜を除去している。
 しかしながら、エアブラストやウォータージェットを用いる場合は、貫通孔を加工できるように貫通孔のパターンを形成したマスク(遮蔽板)を使用する必要があったり、基体への影響を抑制するために加工条件を調整したりする必要がある。また、加工時の付与する力を小さくすると加工に時間がかかり、加工時の付与する力を大きくすると基体に影響を与えてしまう恐れが大きくなる。また、レーザを用いる場合、貫通孔の形状に沿った加工条件の制定が困難であり、加工の効率の向上に限界がある。
 本発明は上述した課題を解決するものであり、タービン翼の表面から内部に貫通する貫通孔を効率よく加工することができるタービン翼の加工方法、加工工具及びタービン翼を提供することを目的とする。
 上記の目的を達成するための本発明のタービン翼の加工方法は、基体の表面に保護膜が形成されたタービン翼の貫通孔を加工するタービン翼の加工方法であって、先端に研磨領域が設けられた加工工具を、前記研磨領域が前記貫通孔の表面と対面する向きで前記貫通孔に挿入する挿入工程と、前記貫通孔に挿入した加工工具の前記研磨領域で、前記貫通孔に積層された保護膜を研磨して、前記貫通孔に積層された保護膜を除去する除去工程と、を有することを特徴とする。
 従って、研磨領域を設けた加工工具を貫通孔に挿入し研磨して貫通孔に重なった保護膜を除去することで、貫通孔に重なった保護膜を選択的に除去することができる。また、加工工具を用いた研磨により保護膜を除去することで、保護膜の除去の状態を確認しながら作業が可能となるため、効率よく加工を行うことができる。これにより、タービン翼の表面から内部に貫通する貫通孔を効率よく加工することができる。
 本発明のタービン翼の加工方法では、前記加工工具は、前記研磨領域が、前記基体の表面から見た前記貫通孔の形状に沿った形状であることを特徴とする。
 従って、加工工具の研磨領域を貫通孔の形状に沿った形状とすることで、貫通孔の基体を保護しつつ、加工を行うことができる。また、貫通孔に重なった保護膜を効率よく除去することができる。
 本発明のタービン翼の加工方法では、前記加工工具は、前記研磨領域が、先端に向かうにしたがって、細くなる角錐形状の少なくとも1面に形成されていることを特徴とする。
 従って、研磨領域を先端に行くほど細くなり平坦な面とすることができ、研磨領域の一部が貫通孔の基体と接触して、溝等が形成されてしまうことを抑制することができる。これにより、貫通孔を保護しつつ、加工を行いやすくすることができる。
 本発明のタービン翼の加工方法では、前記除去工程は、加振部により前記加工工具を振動させることにより、前記研磨領域で前記保護膜を研磨することを特徴とする。
 従って、加振部により振動させることで、研磨処理を効率よく実行することができる。
 本発明のタービン翼の加工方法では、前記加振部は、前記研磨領域を、前記貫通孔への挿入方向に沿って往復移動させることを特徴とする。
 従って、前記貫通孔への挿入方向に沿って往復移動させることで、貫通孔の基体等を保護しつつ、加工を行うことができる。
 本発明のタービン翼の加工方法では、前記挿入工程の前に、先端に棒状の研磨領域が設けられた棒状加工工具を、前記研磨領域が前記貫通孔の表面と対面する向きで前記貫通孔に挿入し、前記貫通孔に挿入した加工工具の前記研磨領域を回転させつつ前記保護膜に接触させて前記保護膜を研磨して、前記貫通孔に積層された保護膜の一部を除去する前処理工程をさらに有することを特徴とする。
 従って、挿入工程前に、保護膜の一部を除去することで、効率よく保護膜を除去することができる。
 本発明のタービン翼の加工方法では、前記除去工程の後に、先端に棒状の研磨領域が設けられた棒状加工工具を、前記研磨領域が前記貫通孔の表面と対面する向きで前記貫通孔に挿入し、前記貫通孔に挿入した加工工具の前記研磨領域で、前記貫通孔に積層された保護膜を研磨して、前記貫通孔に積層された保護膜を除去する後処理工程をさらに有することを特徴とする。
 従って、後処理工程により、貫通孔に保護膜が残った場合も好適に除去を行うことができる。
 本発明のタービン翼の加工方法では、前記保護膜は、前記基体の表面に溶射で形成されていることを特徴とする。
 従って、溶射で形成された保護膜を好適に除去することができる。
 本発明のタービン翼の加工方法では、前記加工工具は、前記研磨領域にダイヤモンドの粒子が接合されていることを特徴とする。
 従って、保護膜を好適に除去することができる。
 上記の目的を達成するための本発明の加工工具は、ダイヤモンドの粒子が接合された研磨領域が形成された研磨面を少なくとも1面備える先端部と、前記先端部の一方の端部に連結された支持部と、を有し、前記研磨面は、前記支持部で支持されている端部とは反対側の端部である前記先端部に向かうにしたがって、幅が狭くなる面であることを特徴とする。
 従って、研磨面を貫通孔に好適に接触させることができ、研磨しやすくなる。これにより、タービン翼の表面から内部に貫通する貫通孔を効率よく加工することができる。
 本発明の加工工具では、前記研磨面は、前記支持部で支持されている端部と前記先端部とを結ぶ方向に直交する断面が直線となることを特徴とする。
 従って、研磨面を平坦な面とすることで、平坦な面が形成された貫通孔に積層された保護膜を好適に除去することができる。
 本発明の加工工具では、前記研磨面は、前記支持部で支持されている端部と前記先端部とを結ぶ方向に直交する断面が内側に凸となる曲線となることを特徴とする。
 従って、研磨面を内側に凸となる曲面とすることで、外側に盛り上がっている曲面が形成された貫通孔に積層された保護膜を好適に除去することができる。
 本発明の加工工具では、前記支持部に連結され、前記支持部を介して、前記先端部を、前記支持部で支持されている端部と前記先端部とを結ぶ方向に往復運動させる加振部をさらに有することを特徴とする。
 従って、支持部で支持されている端部と先端部とを結ぶ方向に往復移動させることで、加工対象の貫通孔の基体等を保護しつつ、加工を行うことができる。
 上記の目的を達成するための本発明のタービン翼は、上記のいずれかに記載のタービン翼の加工方法で貫通孔が加工されたことを特徴とする。
 従って、貫通孔をより高い精度の形状とすることができ、タービン翼の性能をより高くすることができる。
 上記の目的を達成するための本発明のタービン翼は、上記のいずれかに記載の加工工具で貫通孔が加工されたことを特徴とする。
 従って、貫通孔をより高い精度の形状とすることができ、タービン翼の性能をより高くすることができる。
 本発明のタービン翼の加工方法及び加工工具によれば、タービン翼の表面から内部に貫通する貫通孔を効率よく加工することができる。本発明のタービン翼によれば、貫通孔をより高い精度の形状とすることができ、タービン翼の性能をより高くすることができる。
図1は、本実施例に係る加工工具の概略構成を示す斜視図である。 図2Aは、工具本体の概略構成を示す上面図である。 図2Bは、図2Aに示す工具本体の概略構成を示す側面図である。 図2Cは、図2Aに示す工具本体の概略構成を示す正面図である。 図3Aは、変形例の工具本体の概略構成を示す上面図である。 図3Bは、図3Aに示す工具本体の概略構成を示す側面図である。 図4は、変形例の工具本体の概略構成を示す正面図である。 図5は、タービン静翼の一例の概略構成を示す横断面図である。 図6Aは、図5に示すタービン静翼の冷却孔の概略構成を示す斜視図である。 図6Bは、図6Aに示す冷却孔の概略構成を示す正面図である。 図6Cは、図6Aに示す冷却孔の概略構成を示す断面図である。 図7は、タービン翼の加工方法の一例を説明するための説明図である。 図8は、タービン翼の加工方法の他の例を説明するための説明図である。
 以下に添付図面を参照して、本発明に係るタービン翼の加工方法及び加工工具の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本実施例に係る加工工具の概略構成を示す斜視図である。図2Aは、工具本体の概略構成を示す上面図である。図2Bは、図2Aに示す工具本体の概略構成を示す側面図である。図2Cは、図2Aに示す工具本体の概略構成を示す正面図である。加工工具10は、工具本体12と加振部13とを有する。
 工具本体12は、図1及び図2A~図2Cに示すように、支持部14と支持部14の一方の端部に固定された先端部16とを有する。支持部14は、棒状の部材であり、先端部16が固定されていない側の端部が加振部13に装着されている。先端部16は、先端に向かうにつれて、つまり支持部14と連結している部分から、反対側の端部に向かうにつれて、断面が小さくなる形状である。
 先端部16は、先端側の一定範囲が研磨領域18となる。研磨領域18は、表面にダイヤモンドの粒子が接合されている。ダイヤモンドの粒子は、先端部16に電着等で接合させる。先端部16の研磨領域18は、四角錐形状となる。なお、本実施例の先端部16は、正確には、四角錐の先端が切り落とされた形状、つまり、先端が面となる形状である。したがって、研磨領域18も先端に向かうにつれて、つまり支持部14と連結している部分から、反対側の端部に向かうに従って、断面が小さくなる形状である。研磨領域18は、面積が最も広い一方の面を上面18aとし、上面18aとは反対側の面を底面18bとし、上面18aと底面18bとで挟まれて、支持部14の延在方向に延在する面を側面18cとし、先端の面を先端18dとする。本実施例の研磨領域18は、図2Aに示すように上面18a及び底面18bが、先端18dに向うにつれて幅が狭くなる台形形状である。上面18a及び底面18bは、等方台形であり、斜辺のなす角がθ1となる。上面18aは、支持部14の延在方向に平行な面であり、底面18bは、支持部14の延在方向に対して所定の角度傾斜している面である。これにより、上面18aと底面18bとは、先端18dから離れるにつれて間隔が広くなる。また、上面18aと底面18bとは、それぞれ、支持部14の延在方向に直交する断面が直線の平坦な面(平面)となる。
 加振部13は、工具本体12を延在方向(矢印Aの方向)に振動させる機器である。延在方向とは、支持部14が伸びている方向であり、先端部16の先端(支持部14と連結している端部と反対側の細くなっている部分)と支持部14と連結している端部とを結んだ方向である。加振部13としては、種々の駆動源を用いることができ、例えば電動研磨機(電動で加工工具を往復運動させる機械)、超音波研磨機の加振源、を用いることができる。
 加工工具10は、以上のような構成であり、工具本体12の先端部16の先端側に研磨領域18を形成し、研磨する対象に研磨領域18を接触させ、摺動させることで、研磨する対象を研磨することができる。ここで、本実施例の研磨領域18は、主として底面18bが研磨する対象に接触させる面つまり研磨面となる。
 また、加工工具10は、研磨領域18の研磨面である底面18bを先端18dから離れるにつれて、幅が大きくなる形状、つまり先細り形状であり、かつ、面(本実施例では平坦な面)とすることで、先端18dが細くなり、平坦な面の形状の加工対象を好適に加工することができる。また加工工具10は、研磨面を用いて好適に加工を行うことが出来るため、工具の寿命も長くすることができる。
 また、加工工具10は、加振部13で、工具本体12を延在方向に振動させることで、研磨領域18を延在方向に振動させることができる。加工工具10は、研磨領域18を研磨する対象に接触させつつ、加振部13で研磨領域18を延在方向に振動させることで、研磨する対象に対して、研磨領域18を好適に振動させることができる。これにより、研磨を効率よく実行することができる。また、加振部13で研磨領域18を延在方向に振動させることで、研磨する対象が先端に向かうほど細くなる形状である場合に、当該研磨する対象の側壁等に研磨領域18が接触することを抑制することができる。
 ここで、加工工具10の工具本体12の形状、より具体的には研磨領域18の研磨面の形状は、これに限定されない。研磨面は、先細り形状であり、かつ、面であればよい。図3Aは、変形例の工具本体の概略構成を示す上面図である。図3Bは、図3Aに示す工具本体の概略構成を示す側面図である。図3A及び図3Bに示す工具本体22は、支持部24と先端部26とを有する。先端部26には、研磨領域28が設けられている。図3A及び図3Bに示す研磨領域28は、上面28a及び底面28b(研磨面)が先端に向かうにつれて幅が狭くなる台形形状である。また、上面28a及び底面28bは、等方台形であり、斜辺のなす角がθ2となる。ここで、θ2は、θ1よりも小さい角度である。このように、加工工具10は、研磨面の先細り形状の角度を種々の角度とすることができる。例えば、θ1を30°とし、θ2を15°とした場合、工具本体12、22のいずれを用いても加工対象を好適に加工することができる。
 次に、図4は、変形例の工具本体の概略構成を示す正面図である。図4に示す工具本体32の研磨領域38は、上面38a、側面38c及び先端部38dが平坦な面で形成されている。また、研磨領域38の底面38bは、延在方向に直交する断面(支持部で支持されている端部と先端部とを結ぶ方向に直交する断面)が内側に凸となる曲線となる。このように、工具本体32は、底面38b、つまり研磨面を曲面形状としてもよい。このように内側に凸となる曲面形状とすることで、外側に盛り上がっている曲面が形成された加工対象を好適に研磨することができる。
 また、本実施例では、研磨面を面とするため、先端部16(研磨領域18)を四角錐形状、四角錐の一面が曲面となる形状としたが、これに限定されない。例えば、先端部16(研磨領域)18は、三角錐、六角形の角錐等、多角形の角錐とすることで、研磨面を形成することができる。なお、四角錐とすることで、加工対象の側壁に与える影響を少なくすることができる。
 また、本実施例の加工工具10は、加振部13を用いて工具本体12を延在方向に振動させることで、上述したように好適な加工を行うことができるがこれに限定されない。加工工具10は、工具本体12を延在方向に直交する方向に振動させてもよいし、回転させてもよい。また、種々の方向への振動を組み合わせてもよい。また、加工工具10は、工具本体12を振動させる駆動源を備えていなくてもよい。具体的には、手動で加工対象に対して研磨領域18を摺動させるようにしてもよい。
 また、加工工具10は、タービン翼の貫通孔、例えばフィルム冷却孔を好適に加工することができる。より具体的には、加工工具10は、貫通孔を備えるタービン翼の作成時に、タービン翼の基体の表面に保護膜、例えばTBC(Thermal Barrier Coating、ガスタービン用高性能遮熱コーティング)を形成した後、貫通孔に重なった部分に形成された保護膜や、貫通孔の内部に形成された保護膜を除去する処理に好適に用いることができる。
 次に、図5から図8を用いて、タービン翼の加工方法について説明する。
 まず、図5、図6Aから図6Cを用いて、加工対象となるタービン翼の貫通孔について説明する。図5は、タービン静翼の一例の概略構成を示す横断面図である。図6Aは、図5に示すタービン静翼の冷却孔の概略構成を示す斜視図である。図6Bは、図6Aに示す冷却孔の概略構成を示す正面図である。図6Cは、図6Aに示す冷却孔の概略構成を示す断面図である。なお、以下では、タービン静翼に設けた冷却孔について、説明するがタービン動翼の場合も同様である。つまり、タービン翼は、タービン静翼とタービン動翼の両方を含む。
 タービン静翼43は、翼本体(翼構造部)44を有する。また翼本体44は、長手方向(ロータの径方向)における一端部(径方向の外側)に外側シュラウド(端壁構造部)が固定され、他端部(径方向の内側)に内側シュラウド(端壁構造部)が固定されている。
 翼本体44は、中空形状をなし、燃焼ガスの流動方向の上流側(図5にて、左側)が湾曲断面形状をなし、燃焼ガスの流動方向の下流側(図5にて、右側)が先細断面形状をなしている。そして、翼本体44は、内部が2つの隔壁51により3つの空間部に区画されている。また、翼本体44は、所定の位置にそれぞれ内部と外部を貫通する冷却孔52が複数形成されている。
 翼本体44は、その内側に仕切板55a、55b、55cが固定されている。この仕切板55a、55b、55cは、筒形状をなし、各シュラウド側の端部が拡径してこの各シュラウドに固定されている。翼本体44は、内側にこの仕切板55a、55b、55cが固定されることで、キャビティ62が区画形成されている。仕切板55a、55b、55cは、その全域にわたってほぼ均等間隔で多数の貫通孔59が形成されている。
 タービン静翼43は、冷却通路からの冷却空気(冷却媒体)が供給されると、この冷却空気が、まず、翼本体44の内側、つまり、仕切板55の内側に導入される。そして、仕切板55内の冷却空気は、次に、この仕切板55に形成された多数の貫通孔59を通してキャビティ58に噴射され、ここで、翼本体44の内壁面をインピンジメント冷却する。その後、キャビティ58の冷却空気は、多数の冷却孔52を通して外部(燃焼ガス通路)へ排出され、翼本体44、背側プロファイル45、腹側プロファイル46の外壁面に沿って流れることで、この外壁面を膜冷却(フィルム冷却)する。
 次に、冷却孔(貫通孔)52について説明する。冷却孔52は、上述したように翼本体44に形成されている。ここで、翼本体44は、基体70の表面に保護膜72が形成されている。保護膜72は、翼本体44の表面の冷却孔52が形成されていない領域に設けられている。保護膜72は、基体70の表面を保護する機能を備える膜であり、例えば、TBCで形成されている。翼本体44は、保護膜72が配置されていることで、表面の耐久性を向上させることができ、タービン静翼としての耐久性を高くすることができる。
 冷却孔52は、翼本体44の内部から表面(保護膜が形成されている面)に対して、傾斜した円筒部62を有し、円筒部62の表面側の端部が開口部63となる。円筒部62は、中心軸62aが、表面に直交する方向に対して傾斜している。冷却孔52は、開口部63のうち、翼本体44の内部から表面に流れる冷却空気の下流側、つまり、傾斜している円筒部62の垂線に対して傾いている側の端部に拡張部66が形成されている。
 拡張部66は、図6A及び図6Bに示すように、表面に直交する方向とのなす角が、円筒部62よりも大きくなる、つまり傾斜が緩やかになる面が形成されている。拡張部66は、面が平面となっている。また、拡張部66は、開口部分が図6Bに示すように、開口部63から離れるにしたがって、幅が広くなる形状である。
 タービン静翼43は、冷却孔52を円筒部62と拡張部66とを繋げた形状とすることで、翼本体44の内部から表面に排出された冷却空気を翼本体44の表面に沿って流しやすくすることができる。
 次に、図7を用いて、タービン翼の加工方法、具体的には、タービン静翼の冷却孔を上述した冷却孔に加工する方法について説明する。図7は、タービン翼の加工方法の一例を説明するための説明図である。
 本実施例の加工方法は、ステップS12に示すように、冷却孔となる貫通孔103が形成された基体102を作成し、ステップS14に示すように、基体102の表面に保護膜104を形成する。ここで、保護膜104は、例えば溶射で基体102の表面に形成することができる。このとき、加工方法は、基体102の表面に一様に保護膜104を形成するため、貫通孔103と重なる領域にも保護膜104が形成される。
 次に、加工方法は、ステップS16に示すように、貫通孔103が形成されている領域に加工工具10の先端部16を挿入する(挿入工程)。このとき、先端部16の研磨領域18の底面18b(研磨面)が貫通孔103(貫通孔103と重なる保護膜104)と対面する向きで先端部16を挿入する。加工方法は、先端部16を挿入させる際に、加振部13により先端部16を振動させる。このとき、挿入前から振動させておいても、挿入後に振動させてもよい。加工方法は、ステップS18に示すように、先端部16の研磨領域18を貫通孔103と重なる保護膜104と接触させつつ、加振部13により先端部16を振動させることで、貫通孔103と重なる保護膜104を研磨し、除去する(除去工程)。
 加工方法は、加工工具10を用いて、貫通孔103に重なる保護膜104を除去することで、ステップS20に示すように、円筒部62の開口部63及び拡張部66に重ならない位置に保護膜72が形成されたタービン静翼を作成することができる。
 以上のように、本実施例の加工方法は、加工工具10を用いた研磨により、貫通孔103に重なる保護膜104を除去することで、効率よく、冷却孔52が保護膜72で覆われていない状態とすることができる。
 また、加工工具10の研磨面を、貫通孔103の形状に沿った、平坦かつ先細り形状とすることで、貫通孔103と研磨面とを略平行とすることができ、加工時に研磨面が貫通孔103と接触し、貫通孔103を削ることを抑制することができる。また、貫通孔103のうち同時に加工できる範囲をより広くすることができるため、保護膜104の除去にかかる時間を短くすることができる。
 また、上述したように、研磨面を延在方向に移動させることで、貫通孔103の傾斜方向(先細りになっている形状)に沿って研磨面を移動させることができる。これにより、貫通孔103の側壁等に研磨面が接触することを抑制することができる。
 加工方法は、本実施例のように、冷却孔52の基体102を保護しつつ、効率よく加工を行うことができるため、上述した形状の加工工具10、具体的には、研磨面が面形状でありかつ先細り形状の加工工具を用いることが好ましいが、これに限定されない。保護膜を研磨する工具の形状は種々の形状とすることができる。例えば、先端部が円柱、円錐形状の工具本体を用いてもよいし、先端部が平板形状の工具本体を用いてもよい。また、種々の形状の工具本体を組み合わせてもよい。
 次に、図8を用いて、加工方法の他の例について説明する。なお、図8に示す処理のうち、図7に示す処理と同様の工程については、詳細な説明を省略する。
 図8に示す加工方法は、ステップS12に示すように、冷却孔となる貫通孔103が形成された基体102を作成し、ステップS14に示すように、基体102の表面に保護膜104を形成する。
 次に、加工方法は、ステップS32に示すように、貫通孔103が形成されている領域に加工工具90の先端部92を挿入し、先端部92の研磨領域を貫通孔103と重なる保護膜104と接触させつつ、加振部により先端部92を振動させることで、貫通孔103と重なる保護膜104を研磨し、一部を除去する(前処理工程)。ここで、加工工具90は、先端部92の研磨領域が、円柱形状となる。また、加工工具90は、振動させずに、ポータブルグラインダ等の回転機器で先端部92を回転させてもよい。
 次に、加工方法は、ステップS18に示すように、加工工具10の先端部16の研磨領域18の底面18bが貫通孔103と対面する向きで先端部16を挿入し、研磨領域18を貫通孔103と重なる保護膜104と接触させつつ、加振部13により先端部16を振動させる、つまり、研磨領域18の底面18bを挿入方向に沿って往復運動させることで、貫通孔103と重なる保護膜104を研磨し、除去する(挿入工程、除去工程)。
 次に、ステップS33に示すように、貫通孔103が形成されている領域に、より具体的には円筒部が形成されている領域に加工工具90の先端部92aを挿入し、先端部92aの研磨領域を貫通孔103と重なる保護膜104と接触させつつ、加振部により先端部92を振動させることで、貫通孔103と重なる保護膜104を研磨し、除去する(後処理工程)。先端部92aは、研磨領域が、円筒部より径の小さい円柱形状である。加工方法は、先端部92aを円筒部に挿入して、貫通孔103と重なる保護膜104を研磨し、除去することで、円筒部の内部に付着した保護膜104をより確実に除去することができる。
 加工方法は、このように、加工工具10、90を用いて、貫通孔103に重なる保護膜104を除去することで、ステップS20に示すように、円筒部62の開口部63及び拡張部66に重ならない位置に保護膜72が形成されたタービン静翼を作成することができる。
 図8に示す加工方法は、加工工具90を用いて、貫通孔103に重なる保護膜104を除去し(荒加工し)、加工工具10を用いて、面が平坦になる拡張部に相当する領域に重なる保護膜104を除去し、加工工具90を用いて、円筒部に付着した保護膜104を除去することができる。これにより、効率よく、かつ、高い精度で冷却孔から保護膜104を除去することができる。また、保護膜104の除去を複数の工程に分けることで、各部の加工に適した工具を用いることができる。これにより、貫通孔103を研磨することを抑制しつつ、加工を行うことができる。
 また、上述した加工工具で加工を行い製造したタービン翼、また、上述した加工方法で加工を行い製造したタービン翼は、より高い精度で冷却孔等の貫通孔がされているため、貫通孔の性能をより高くすることができる。これによりタービン翼の性能を高くすることができる。具体的には、タービン翼は、貫通孔103の内部に悪影響を与えることを抑制しつつ溶射膜等の保護膜104を除去されている。これにより保護膜104が適切に形成されていることで耐久性を高くすることができ、貫通孔103の形状を維持しつつ保護膜104が高い精度で除去されているため、貫通孔103を冷却孔として用いた場合の冷却性能を高くすることができる。
 10 加工工具
 12、22 工具本体
 13 加振部
 14、24 支持部
 16、26 先端部
 18、28 研磨領域
 18a 上面
 18b 底面(研磨面)
 18c 側面
 18d 先端
 43 タービン静翼(タービン翼)
 44 翼本体
 52 冷却孔(貫通孔)
 70 基体
 72 保護膜
 102 基体
 103 貫通孔
 104 保護膜

Claims (15)

  1.  基体の表面に保護膜が形成されたタービン翼の貫通孔を加工するタービン翼の加工方法であって、
     先端に研磨領域が設けられた加工工具を、前記研磨領域が前記貫通孔の表面と対面する向きで前記貫通孔に挿入する挿入工程と、
     前記貫通孔に挿入した加工工具の前記研磨領域で、前記貫通孔に積層された保護膜を研磨して、前記貫通孔に積層された保護膜を除去する除去工程と、を有することを特徴とするタービン翼の加工方法。
  2.  前記加工工具は、前記研磨領域が、前記基体の表面から見た前記貫通孔の形状に沿った形状であることを特徴とする請求項1に記載のタービン翼の加工方法。
  3.  前記加工工具は、前記研磨領域が、先端に向かうにしたがって、細くなる角錐形状の少なくとも1面に形成されていることを特徴とする請求項2に記載のタービン翼の加工方法。
  4.  前記除去工程は、加振部により前記加工工具を振動させることにより、前記研磨領域で前記保護膜を研磨することを特徴とする請求項1から3のいずれか一項に記載のタービン翼の加工方法。
  5.  前記加振部は、前記研磨領域を、前記貫通孔への挿入方向に沿って往復移動させることを特徴とする請求項4に記載のタービン翼の加工方法。
  6.  前記挿入工程の前に、先端に研磨領域が設けられた棒状加工工具を、前記研磨領域が前記貫通孔の表面と対面する向きで前記貫通孔に挿入し、前記貫通孔に挿入した加工工具の前記研磨領域を回転させつつ前記保護膜に接触させて前記保護膜を研磨して、前記貫通孔に積層された保護膜の一部を除去する前処理工程をさらに有することを特徴とする請求項1から5のいずれか一項に記載のタービン翼の加工方法。
  7.  前記除去工程の後に、先端に研磨領域が設けられた棒状加工工具を、前記研磨領域が前記貫通孔の表面と対面する向きで前記貫通孔に挿入し、前記貫通孔に挿入した加工工具の前記研磨領域で、前記貫通孔に積層された保護膜を研磨して、前記貫通孔に積層された保護膜を除去する後処理工程をさらに有することを特徴とする請求項1から6のいずれか一項に記載のタービン翼の加工方法。
  8.  前記保護膜は、前記基体の表面に溶射で形成されていることを特徴とする請求項1から7のいずれか一項に記載のタービン翼の加工方法。
  9.  前記加工工具は、前記研磨領域にダイヤモンドの粒子が接合されていることを特徴とする請求項1から8のいずれか一項に記載のタービン翼の加工方法。
  10.  ダイヤモンドの粒子が接合された研磨領域が形成された研磨面を少なくとも1面備える先端部と、
     前記先端部の一方の端部に連結された支持部と、を有し、
     前記研磨面は、前記支持部で支持されている端部とは反対側の端部である先端に向かうにしたがって、幅が狭くなる面であることを特徴とする加工工具。
  11.  前記研磨面は、前記支持部で支持されている端部と前記先端とを結ぶ方向に直交する断面が直線となることを特徴とする請求項10に記載の加工工具。
  12.  前記研磨面は、前記支持部で支持されている端部と前記先端とを結ぶ方向に直交する断面が内側に凸となる曲線となることを特徴とする請求項10に記載の加工工具。
  13.  前記支持部に連結され、前記支持部を介して、前記先端部を、前記支持部で支持されている端部と前記先端とを結ぶ方向に往復運動させる加振部をさらに有することを特徴とする請求項10から12のいずれか一項に記載の加工工具。
  14.  請求項1から9のいずれか一項に記載のタービン翼の加工方法で貫通孔が加工されたことを特徴とするタービン翼。
  15.  請求項10から13のいずれか一項に記載の加工工具で貫通孔が加工されたことを特徴とするタービン翼。
PCT/JP2014/053196 2013-02-26 2014-02-12 タービン翼の加工方法、加工工具及びタービン翼 WO2014132797A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14756808.3A EP2952709B1 (en) 2013-02-26 2014-02-12 Turbine blade machining method
CN201480005848.1A CN104968916B (zh) 2013-02-26 2014-02-12 涡轮叶片的加工方法、加工工具以及涡轮叶片
KR1020157019965A KR101811112B1 (ko) 2013-02-26 2014-02-12 터빈 날개 가공 방법, 가공 공구 및 터빈 날개
US14/762,062 US9903208B2 (en) 2013-02-26 2014-02-12 Turbine blade machining method, machining tool, and turbine blade
US15/869,696 US20180156040A1 (en) 2013-02-26 2018-01-12 Turbine blade machining method, machining tool, and turbine blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-036458 2013-02-26
JP2013036458A JP5456192B1 (ja) 2013-02-26 2013-02-26 タービン翼の加工方法、加工工具及びタービン翼

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/762,062 A-371-Of-International US9903208B2 (en) 2013-02-26 2014-02-12 Turbine blade machining method, machining tool, and turbine blade
US15/869,696 Division US20180156040A1 (en) 2013-02-26 2018-01-12 Turbine blade machining method, machining tool, and turbine blade

Publications (1)

Publication Number Publication Date
WO2014132797A1 true WO2014132797A1 (ja) 2014-09-04

Family

ID=50614603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053196 WO2014132797A1 (ja) 2013-02-26 2014-02-12 タービン翼の加工方法、加工工具及びタービン翼

Country Status (6)

Country Link
US (2) US9903208B2 (ja)
EP (1) EP2952709B1 (ja)
JP (1) JP5456192B1 (ja)
KR (1) KR101811112B1 (ja)
CN (1) CN104968916B (ja)
WO (1) WO2014132797A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013001186A2 (pt) 2010-07-16 2016-05-31 Michael Arnouse sistema de computação e comunicação
JP2015196228A (ja) * 2014-04-02 2015-11-09 三菱日立パワーシステムズ株式会社 先端工具、切削機械、部品及び膜体の切削方法
CN107685220B (zh) * 2016-08-04 2019-06-07 中国科学院金属研究所 一种复杂薄壁高温合金热端部件裂纹的修复方法
CN108115481A (zh) * 2016-11-29 2018-06-05 沈阳黎明航空发动机(集团)有限责任公司 一种解决气冷涡轮叶片热障涂层堵孔的方法
US11365638B2 (en) 2017-08-14 2022-06-21 Siemens Energy Global GmbH & Co. KG Turbine blade and corresponding method of servicing
US10774656B2 (en) * 2018-04-09 2020-09-15 General Electric Company Turbine airfoil multilayer exterior wall
US10995621B2 (en) 2018-11-06 2021-05-04 General Electric Company Turbine airfoil with multiple walls and internal thermal barrier coating
US11603769B2 (en) 2021-08-13 2023-03-14 Raytheon Technologies Corporation Forming lined cooling aperture(s) in a turbine engine component
US20230193772A1 (en) * 2021-12-21 2023-06-22 Raytheon Technologies Corporation Fabrication of cooling holes using laser machining and ultrasonic machining

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144947U (ja) * 1985-03-01 1986-09-06
JPS63216676A (ja) * 1987-03-06 1988-09-08 Y K Trading Kk 加工用粒体
JPH03234451A (ja) * 1990-02-09 1991-10-18 Res Dev Corp Of Japan ねじり振動を利用した研摩法
JPH0430956A (ja) * 1990-05-25 1992-02-03 Nippon Electric Ind Co Ltd 超音波振動研磨装置
JP2002105666A (ja) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd 研磨層、燃焼エンジン、ガスタービン、及び、その製造方法
JP2002256808A (ja) * 2001-02-28 2002-09-11 Mitsubishi Heavy Ind Ltd 燃焼エンジン、ガスタービン及び研磨層
JP2009510302A (ja) * 2005-09-26 2009-03-12 シーメンス アクチエンゲゼルシヤフト 露出した開口部を備えるコーティングされるべきガスタービン構成部品を製造する方法、この方法を実施する装置、およびフィルム冷却開口部を備えるコーティング可能なタービン羽根
JP2012082700A (ja) 2010-10-07 2012-04-26 Hitachi Ltd タービン翼の冷却孔加工方法
JP2012140952A (ja) 2011-01-04 2012-07-26 General Electric Co <Ge> フィルム冷却製品を提供する方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452211A (en) * 1944-10-17 1948-10-26 Scophony Corp Of America Machine for mechanically working materials
JPS61144947A (ja) 1984-12-19 1986-07-02 Hitachi Ltd 通信制御装置
US4743462A (en) * 1986-07-14 1988-05-10 United Technologies Corporation Method for preventing closure of cooling holes in hollow, air cooled turbine engine components during application of a plasma spray coating
US5216808A (en) * 1990-11-13 1993-06-08 General Electric Company Method for making or repairing a gas turbine engine component
US5702288A (en) * 1995-08-30 1997-12-30 United Technologies Corporation Method of removing excess overlay coating from within cooling holes of aluminide coated gas turbine engine components
US5749770A (en) * 1996-07-08 1998-05-12 S-B Power Tool Company Method and apparatus for sanding a plurality of work-pieces having respective surfaces of varying contours
JP2810023B2 (ja) 1996-09-18 1998-10-15 株式会社東芝 高温部材冷却装置
US5902647A (en) * 1996-12-03 1999-05-11 General Electric Company Method for protecting passage holes in a metal-based substrate from becoming obstructed, and related compositions
US6544346B1 (en) * 1997-07-01 2003-04-08 General Electric Company Method for repairing a thermal barrier coating
US6042879A (en) * 1997-07-02 2000-03-28 United Technologies Corporation Method for preparing an apertured article to be recoated
GB9723762D0 (en) * 1997-11-12 1998-01-07 Rolls Royce Plc A method of coating a component
DE19859763A1 (de) * 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Verfahren zum Unschädlichmachen von beim Beschichten mit einer Schutzschicht entstehenden Verengungen in den Kühllöchern von gasgekühlten Teilen
EP1076107B1 (en) * 1999-08-09 2003-10-08 ALSTOM (Switzerland) Ltd Process of plugging cooling holes of a gas turbine component
US7204019B2 (en) * 2001-08-23 2007-04-17 United Technologies Corporation Method for repairing an apertured gas turbine component
US6663919B2 (en) * 2002-03-01 2003-12-16 General Electric Company Process of removing a coating deposit from a through-hole in a component and component processed thereby
EP1365039A1 (en) * 2002-05-24 2003-11-26 ALSTOM (Switzerland) Ltd Process of masking colling holes of a gas turbine component
DE60310168T2 (de) * 2002-08-02 2007-09-13 Alstom Technology Ltd. Verfahren zum Schutz von Teilflächen eines Werkstücks
DE10392994C5 (de) * 2002-08-02 2013-08-14 Mitsubishi Heavy Industries, Ltd. Wärmesperrschicht-Beschichtungsverfahren und dessen Verwendung
US7101263B2 (en) * 2002-11-06 2006-09-05 United Technologies Corporation Flank superabrasive machining
US7805822B2 (en) * 2003-12-15 2010-10-05 Turbocombustor Technology, Inc. Process for removing thermal barrier coatings
JP5039837B2 (ja) 2005-03-30 2012-10-03 三菱重工業株式会社 ガスタービン用高温部材
EP1868766A1 (de) * 2005-04-07 2007-12-26 Alstom Technology Ltd Verfahren zum reparieren oder erneuern von kühllöchern einer beschichteten komponente einer gasturbine
US20060264162A1 (en) * 2005-05-23 2006-11-23 Roger Yu Fine abrasive tool and method of making same
EP1772594A1 (de) * 2005-10-04 2007-04-11 Siemens Aktiengesellschaft Verfahren zum Schützen von Öffnungen eines Bauteils bei einem Bearbeitungsprozess gegen ein Eindringen von Material und Polysiloxan enthaltende keramische Zusammensetzung
GB0610578D0 (en) * 2006-05-27 2006-07-05 Rolls Royce Plc Method of removing deposits
US20090142548A1 (en) * 2007-10-18 2009-06-04 David Bruce Patterson Air cooled gas turbine components and methods of manufacturing and repairing the same
FR2949204B1 (fr) * 2009-08-21 2011-10-14 Snecma Machine d'usinage pour cmc par fraisage et abrasion par ultrasons
US9696035B2 (en) * 2010-10-29 2017-07-04 General Electric Company Method of forming a cooling hole by laser drilling
US20120167389A1 (en) * 2011-01-04 2012-07-05 General Electric Company Method for providing a film cooled article
US9598979B2 (en) * 2012-02-15 2017-03-21 United Technologies Corporation Manufacturing methods for multi-lobed cooling holes
US9523287B2 (en) * 2013-01-18 2016-12-20 General Electric Company Cooling hole cleaning method and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144947U (ja) * 1985-03-01 1986-09-06
JPS63216676A (ja) * 1987-03-06 1988-09-08 Y K Trading Kk 加工用粒体
JPH03234451A (ja) * 1990-02-09 1991-10-18 Res Dev Corp Of Japan ねじり振動を利用した研摩法
JPH0430956A (ja) * 1990-05-25 1992-02-03 Nippon Electric Ind Co Ltd 超音波振動研磨装置
JP2002105666A (ja) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd 研磨層、燃焼エンジン、ガスタービン、及び、その製造方法
JP2002256808A (ja) * 2001-02-28 2002-09-11 Mitsubishi Heavy Ind Ltd 燃焼エンジン、ガスタービン及び研磨層
JP2009510302A (ja) * 2005-09-26 2009-03-12 シーメンス アクチエンゲゼルシヤフト 露出した開口部を備えるコーティングされるべきガスタービン構成部品を製造する方法、この方法を実施する装置、およびフィルム冷却開口部を備えるコーティング可能なタービン羽根
JP2012082700A (ja) 2010-10-07 2012-04-26 Hitachi Ltd タービン翼の冷却孔加工方法
JP2012140952A (ja) 2011-01-04 2012-07-26 General Electric Co <Ge> フィルム冷却製品を提供する方法

Also Published As

Publication number Publication date
US20180156040A1 (en) 2018-06-07
JP5456192B1 (ja) 2014-03-26
US20150354371A1 (en) 2015-12-10
EP2952709A4 (en) 2016-03-02
JP2014163330A (ja) 2014-09-08
CN104968916A (zh) 2015-10-07
EP2952709A1 (en) 2015-12-09
CN104968916B (zh) 2016-11-16
KR101811112B1 (ko) 2017-12-20
US9903208B2 (en) 2018-02-27
KR20150100854A (ko) 2015-09-02
EP2952709B1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP5456192B1 (ja) タービン翼の加工方法、加工工具及びタービン翼
JP6405357B2 (ja) 複雑なフィルム穴を形成するための付加形成方法
US8286348B2 (en) Method of manufacturing and refinishing integrally bladed rotors
US9676046B2 (en) Electrical discharge machining method
US9511469B2 (en) Polishing assembly and method for polishing using a platform and barrier in a tumbling process
US8105133B2 (en) Airfoil mask, airfoil and mask system
Cao et al. Study on the material removal process in ultrasonic-assisted grinding of SiC ceramics using smooth particle hydrodynamic (SPH) method
RU2005112562A (ru) Способы и системы микрообработки
US20170361422A1 (en) Polishing method for turbine components
US20210060709A1 (en) Laser rough drill and full edm finish for shaped cooling holes
JP2009255288A (ja) ブリスクブレードの前縁を空力的に形成する方法
TW201448006A (zh) 晶圓的切削方法
JP5846742B2 (ja) ダイ本体からハニカム押出ダイを作製する方法
US20090113683A1 (en) Method and apparatus for machining the blade tips of rotor wheel drums of turbomachines
EP2099583A1 (en) Method and device for pin removal in a confined space
JP2015533973A (ja) レーザピーニングされる部品の後処理
US20160169013A1 (en) Gas Turbine Engine Component with Abrasive Surface Formed by Electrical Discharge Machining
JP6555145B2 (ja) 切削工具、切削工具を有する加工装置および切削工具を用いた加工方法
JP2014094433A (ja) 遠心回転機のインペラの製造方法
US20140323022A1 (en) Airfoil edge form transfer grinding tool
US11141800B2 (en) Device and method for re-contouring a gas turbine blade
JP6469443B2 (ja) フライス加工および表面加工の方法およびデバイス
JP7150392B2 (ja) スリットノズルの製造方法及びスリットノズル
JP6507925B2 (ja) ガラスの切断方法
JP2019119020A (ja) 切断用ブレード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762062

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157019965

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014756808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE