WO2014132562A1 - 燃料電池装置およびその製造方法 - Google Patents

燃料電池装置およびその製造方法 Download PDF

Info

Publication number
WO2014132562A1
WO2014132562A1 PCT/JP2014/000492 JP2014000492W WO2014132562A1 WO 2014132562 A1 WO2014132562 A1 WO 2014132562A1 JP 2014000492 W JP2014000492 W JP 2014000492W WO 2014132562 A1 WO2014132562 A1 WO 2014132562A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
intervening layer
cell device
surface cover
small piece
Prior art date
Application number
PCT/JP2014/000492
Other languages
English (en)
French (fr)
Inventor
竹内 弘明
順朗 野々山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201480010352.3A priority Critical patent/CN105074988A/zh
Priority to KR1020157022506A priority patent/KR20150108406A/ko
Priority to EP14757123.6A priority patent/EP2963724A4/en
Priority to US14/769,184 priority patent/US20150380762A1/en
Priority to JP2015502736A priority patent/JPWO2014132562A1/ja
Publication of WO2014132562A1 publication Critical patent/WO2014132562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell device.
  • the fuel cell device As a fuel cell device, in order to improve the vibration resistance and impact resistance of the fuel cell stack, the fuel cell device is extended along the stacking direction of the fuel cell (fuel cell stack) and the fuel cell (fuel cell) in the fuel cell.
  • a fuel cell device in which an elastic material such as silicon or urethane rubber is filled between the tension plate and the tension plate has been proposed (Patent Document 1).
  • Such a problem is not limited to a configuration in which an elastic material is filled between the tension plate and the fuel cell, but a fuel cell such as a configuration in which the elastic material is filled between the fuel cell case and the fuel cell.
  • a fuel cell such as a configuration in which the elastic material is filled between the fuel cell case and the fuel cell.
  • This is a common problem in any configuration in which an elastic material is filled between the outer cover and the outer cover that covers it.
  • improvement of the production efficiency of the fuel cell device, cost reduction, power saving, easy production, etc. have been desired.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms.
  • a fuel cell device includes a fuel cell having a structure in which a plurality of fuel cells are stacked, an outer cover that covers at least a part of a side surface along the stacking direction of the fuel cells, the outer cover, and the outer cover.
  • An intermediate layer disposed between the side surface to be covered, the outer surface cover and the intermediate layer having a spring constant of the intermediate layer as K1, a spring constant of the outer surface cover as K2, and the fuel cell.
  • the intervening layer and the outer surface cover satisfy X0> Fg / (K1 + K2). Therefore, even if the inertial force Fg is applied to the fuel cell, the intervening layer and the outer surface cover are not deformed.
  • the allowable deviation amount X0 or less even when the positional deviation of the fuel cell constituting the fuel cell occurs due to the deformation of the intervening layer and the outer surface cover, the positional deviation can be reduced to an allowable deviation amount X0 or less, and the reaction gas or cooling The leakage of the medium can be suppressed.
  • the intervening layer has a Young's modulus of the intervening layer as E, a thickness of the intervening layer as D, and is at least between the outer surface cover and the side surface covered by the outer surface cover.
  • E Young's modulus
  • D thickness of the intervening layer
  • K1 ⁇ * E * (1 / D) and D> D0 may be satisfied.
  • the thickness D of the intervening layer can be increased by increasing the Young's modulus E of the intervening layer while keeping the spring constant K1 of the intervening layer at the same value.
  • the fuel cell when the fuel cell is covered with the outer surface cover, a large clearance between the outer surface cover and the fuel cell can be secured, so even if the positional deviation (tolerance) between the fuel cells constituting the fuel cell in the initial state is large.
  • the fuel cell can be reliably covered with the outer cover.
  • the intervening layer may be formed of a plurality of small pieces.
  • the intermediate layer can be formed by supplying the small piece between the fuel cell and the outer surface cover after the fuel cell is covered with the outer surface cover.
  • a binding force by the intervening layer with respect to a fuel cell located at an end of the plurality of fuel cells is smaller than an allowable load along the stacking direction with respect to the fuel cell. May be.
  • a force that causes a dimensional change along the stacking direction is applied to the fuel cell due to aging or the like, the fuel cell located at the end is not in contact with another fuel cell, so that Compared with the battery cell, the restraining force by the intervening layer with respect to the force that can cause a dimensional change is relatively large.
  • the restraining force by the intervening layer on the fuel cell located at the end is smaller than the allowable load, and therefore, the fuel cell located at the end and the adjacent fuel cell.
  • the occurrence of leakage of reaction gas or cooling medium from can be suppressed.
  • the outer shape of the small piece is a spherical shape, and the average diameter of the small piece is a minimum necessary clearance between the outer surface cover and the side surface covered by the outer surface cover. It may be 1/2 or less.
  • the spring coefficient of the intervening layer can be increased. Therefore, the spring coefficient of the outer surface cover can be reduced, and the outer surface cover can be formed of a light material with low rigidity.
  • the outer surface cover covers all side surfaces along the stacking direction of the fuel cells and covers a vertical upper surface of the fuel cell in a state where the fuel cell is placed.
  • the supply unit for supplying the small piece body includes a storage unit and the small piece body stored in the storage unit, using the weight of the small piece body, A small piece may be supplied between the outer cover and the fuel cell.
  • the fuel cell device of this aspect as the fuel cell device is used, the filling density of the small pieces between the outer surface cover and the fuel cell increases, and a gap may be generated between the outer surface cover and the fuel cell. Even if it becomes a state, since the small piece body accommodated in the accommodating part is automatically supplied using its own weight, generation
  • the intervening layer may be formed of a flexible bag body in which a large number of small pieces are enclosed. According to the fuel cell device of this aspect, since the small piece is enclosed in the bag, scattering of the small piece during manufacture of the fuel cell device can be suppressed, and handling of the small piece can be facilitated.
  • the small piece may include at least one of sand, resin beads, and glass beads.
  • the intervening layer can be formed at a relatively low cost by using sand or glass beads as the small piece. Further, by using resin beads as the small pieces, the intervening layer can be reduced in weight.
  • a reaction gas and a cooling medium are supplied to the fuel cell, and the allowable deviation amount is a deviation amount of the position of the fuel cell in a direction perpendicular to the stacking direction. In the fuel cell, an upper limit deviation amount that does not cause leakage of the reaction gas or the cooling medium may be used.
  • the present invention can be realized in various modes, and can be realized in the form of a fuel cell device manufacturing method, a fuel cell system, a vehicle equipped with the fuel cell device, and the like. .
  • FIG. 1 is a perspective view showing a schematic configuration of a fuel cell device as a first embodiment of the present invention. It is sectional drawing of the fuel cell apparatus of 1st Embodiment. It is explanatory drawing which shows the inertial force which the fuel cell 200 receives when the fuel cell apparatus 100 is mounted in the vehicle. It is explanatory drawing which shows the determination method of the variable D0 typically.
  • 3 is a flowchart showing a procedure of a method for manufacturing the fuel cell device 100 according to the first embodiment. It is explanatory drawing which shows the process of step S110 typically. It is explanatory drawing which shows typically the fuel cell case 300 and the fuel cell 200 after aged deterioration. It is sectional drawing of the fuel cell apparatus of 2nd Embodiment.
  • FIG. 1 is a perspective view showing a schematic configuration of a fuel cell device as a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the fuel cell device according to the first embodiment.
  • FIG. 2 shows an AA cross section shown in FIG.
  • the fuel cell device 100 includes a fuel cell 200, a fuel cell case 300, and an intervening layer 121.
  • the fuel cell device 100 is mounted on, for example, an electric vehicle and supplies power to a drive source such as a motor.
  • the fuel cell 200 has a structure in which a plurality of fuel cell cells (also referred to as “single cells”) 7 which are solid polymer fuel cells are stacked.
  • the fuel cell 200 is also called a cell stack, and has a substantially cubic external shape.
  • a fuel gas and an oxidant gas are supplied to the fuel cell 200, and each fuel cell 7 generates power using the fuel gas and the oxidant gas.
  • hydrogen gas can be used as the fuel gas
  • air can be used as the oxidant gas.
  • the fuel battery cell 7 includes a membrane electrode assembly 4 and two separators 5 and 6.
  • the membrane electrode assembly 4 includes an electrolyte membrane 1 and two electrodes 2 and 3 arranged on both surfaces of the electrolyte membrane 1.
  • the electrolyte membrane 1 is a solid polymer membrane that exhibits good proton conductivity in a wet state.
  • the two separators 5 and 6 sandwich the membrane electrode assembly 4 to form a flow path for a reaction gas (fuel gas and oxidant gas) and a cooling medium, and each function as a current collector plate.
  • Each fuel cell 7 is formed with a manifold (not shown) that forms a flow path for a reaction gas and a cooling medium.
  • a seal member (not shown) is disposed between the membrane electrode assembly 4 and the separator 5 and between the membrane electrode assembly 4 and the separator 6 in each fuel cell 7 so as to surround the manifold. Further, a seal member (not shown) is disposed between two adjacent fuel cells 7 so as to surround a manifold (not shown). These sealing members are used for suppressing leakage of the reaction gas and the cooling medium from the fuel cell 200.
  • the fuel cell case 300 includes an upper cover 113, an end surface cover 111, and a bottom surface cover 114. As shown in FIGS. 1 and 2, the upper cover 113 covers the upper surface of the fuel cell 200, both side surfaces of the fuel cell 200, and one end surface of the fuel cell 200. One end surface means one of the two surfaces located at both ends of the fuel cell 200 in the stacking direction.
  • the upper cover 113 includes a small piece supply unit 112.
  • the small piece supply unit 112 protrudes from the upper surface of the upper cover 113 and includes a cylindrical part 112a and a lid part 112b.
  • the cylindrical portion 112a has a chimney-like appearance with a hollow inside.
  • a through-hole in the thickness direction is formed at a portion where the tubular portion 112 a is connected, and the inside of the tubular portion 112 a is a gap between the upper cover 113 and the upper surface of the fuel cell 200. Communicated with.
  • the cylindrical part 112a is corresponded in the accommodating part in a claim. A method of using the small piece supply unit 112 will be described later.
  • the upper cover 113 is in contact with one end face of the fuel cell 200 and is fixed to the end face with bolts, nuts, and the like.
  • the end surface cover 111 is in contact with the end surface of the fuel cell 200 that is not covered by the upper cover 113 and covers the end surface.
  • the end surface cover 111 is fixed to the end surface of the fuel cell 200 with bolts and nuts.
  • the end cover 111 has six through holes 10 penetrating in the thickness direction. These six through holes 10 are used to dispose the fuel gas supply path and discharge path, the oxidant gas supply path and discharge path, and the cooling medium supply path and discharge path, respectively, through the end face cover 111. It is done.
  • the bottom cover 114 is in contact with the bottom surface of the fuel cell 200 and covers the bottom surface.
  • the bottom cover 114 is fixed to the top cover 113 and the fuel cell 200 with bolts and nuts.
  • the intervening layer 121 is formed between the fuel cell 200 and the fuel cell case 300. More specifically, a gap between the surface of the fuel cell 200 other than the two end surfaces and the bottom surface (that is, the upper surface and the two side surfaces) and the inner surface of the fuel cell case 300 is filled. ing.
  • the intervening layer 121 is formed of small pieces having a small average diameter.
  • an insulating material such as sand, resin beads, or glass beads can be used.
  • the intervening layer 121 of this embodiment satisfies the following formula (1).
  • the variable X0 means the allowable deviation amount of the fuel cell 7 in the fuel cell 200.
  • the allowable deviation amount of the fuel cell 7 is the positional deviation amount of the fuel cell 7 in the direction perpendicular to the stacking direction, and means an upper limit deviation amount that does not cause leakage of the reaction gas or the cooling medium. For example, since the amount of displacement of the fuel cells 7 is large, if the seal member disposed between the adjacent fuel cells 7 deviates from the original position (position surrounding the manifold), the reaction gas or the cooling is generated from the portion. The medium leaks out. Such an allowable deviation amount can be specified by experiment.
  • the load on the fuel cell 200 is increased, and the maximum load that does not cause a reaction gas leakage is specified, and the adjacent fuel cell at this time
  • the maximum value of the positional deviation amount in the direction perpendicular to the stacking direction between 7 is specified.
  • the maximum value can be specified as X0.
  • variable Fg means the inertial force applied to the fuel cell 200.
  • the inertial force applied to the fuel cell 200 means an inertial force estimated to be received by the fuel cell 200 when the fuel cell device 100 is mounted on a vehicle, for example.
  • FIG. 3 is an explanatory diagram showing the inertial force that the fuel cell 200 receives when the fuel cell device 100 is mounted on a vehicle.
  • the end surface cover 111 and the upper cover 113 are fixed to a side member 500 included in the vehicle.
  • the inertial force Fg in the traveling direction is applied to the fuel cell 200 that is not directly connected to the side member 500.
  • Such inertial force Fg can be obtained in advance by performing a test.
  • the fuel cell device 100 is mounted on the vehicle, and an acceleration sensor is attached to the fuel cell 200 or the fuel cell case 300.
  • a collision test is performed in accordance with the legal conditions and safety evaluation conditions.
  • U.S. Pat. S. Collision tests defined by NCAP (The United States, New, Car, Assessment, Program), LINCAP (Lateral, Impact, New, Car, Assessment, Program), IIHS (Insurance, Institute, for Highway, Safety), etc. can be adopted.
  • NCAP The United States, New, Car, Assessment, Program
  • LINCAP Local, Impact, New, Car, Assessment, Program
  • IIHS Insurance, Institute, for Highway, Safety
  • variable K1 means the spring constant of the intervening layer 121.
  • the spring constant K1 of the intervening layer 121 can be measured by forming a small piece layer having the same thickness as the intervening layer 121 and performing a compression test on the layer.
  • variable K2 means the spring constant of the fuel cell case 300.
  • the spring constant K2 can be measured by performing a compression test on the fuel cell case 300.
  • the intervening layer 121 is formed so that the spring constant (K1 + K2) of the layer (hereinafter referred to as “synthetic layer”) including the intervening layer 121 and the fuel cell case 300 is large. Even if the assumed inertial force Fg is applied to the composite layer via the fuel cell 200, the deformation of the composite layer is smaller than the allowable deviation amount X0. For this reason, even when a positional deviation of each fuel cell 7 constituting the fuel cell 200 occurs due to the deformation of the composite layer, the positional deviation can be made smaller than the allowable deviation amount X0, and the positional deviation of the fuel battery cell 7 can be achieved. It is possible to suppress the leakage of the reaction gas or the cooling medium accompanying the above.
  • an inertial force Fg as shown in FIG. 3 is transmitted from the fuel cell 200 to the composite layer (the intervening layer 121 and the fuel cell case 300).
  • the composite layer transmits the stress FB to the fuel cell 200 while suppressing deformation. For this reason, generation
  • the intervening layer 121 in the first embodiment satisfies the following formulas (2) and (3) in addition to the above formula (1).
  • the constant ⁇ is a proportionality constant.
  • the variable E means the Young's modulus of the intervening layer 121.
  • the Young's modulus E of the intervening layer 121 can be obtained by performing a bending test.
  • the variable D means the thickness (average value) of the intervening layer 121.
  • the thickness D of the intervening layer 121 can be calculated from the measured value obtained by measuring the thickness of the intervening layer 121 at a position corresponding to each fuel cell 7 with calipers or the like.
  • the variable D0 means a length that defines the size of the fuel cell case 300, which is the minimum necessary to accommodate the fuel cell 200 in the fuel cell case 300.
  • the variable D0 is the difference between the length of the fuel cell 7 and the length of the fuel cell case 300 in the direction perpendicular to the stacking direction, which is the minimum necessary for housing the fuel cell 200 in the fuel cell case 300. Of 1/2 of this.
  • FIG. 4 is an explanatory diagram schematically showing a method for determining the variable D0.
  • the positions of the fuel cells 7 constituting the fuel cell 200 in the X-axis direction are slightly shifted from each other. Such misalignment of each fuel cell 7 may be caused by, for example, an assembly error when manufacturing the fuel cell 200.
  • the fuel cell 200 includes a displacement of each fuel cell 7, the length L 0 of the fuel cell 200 in the X-axis direction is larger than the length L 1 of the fuel cell 7 in the X-axis direction. That is, a difference of 2 * D0 is generated as a difference between the length L0 of the fuel cell 200 and the length L1 of the fuel cell 7 along the X-axis direction.
  • the fuel cell 200 can be accommodated. . Therefore, as shown in the above formula (3), the thickness (average value) of the intervening layer 121 disposed between each fuel cell 7 and the inner surface of the fuel cell case 300 is larger than the length D0. It is necessary to satisfy the condition. Although illustration is omitted, since the positional deviation of each fuel cell 7 occurs in the Z-axis direction as in the above-described X-axis direction, the Z-axis direction of the inner surface of the fuel cell case 300 is not shown. If the length is greater than 2 * D0 compared to the length of the fuel cell 7 in the Z-axis direction, the fuel cell 200 can be accommodated.
  • the above-described proportionality constant ⁇ is derived by obtaining the spring constant K1, the Young's modulus E of the intervening layer 121, and the average thickness D of the intervening layer 121, and substituting these into the above equation (2). Can do.
  • the Young's modulus E of the intervening layer 121 is proportional to the thickness D of the intervening layer 121. For this reason, in order to realize the same spring constant K1, by increasing the Young's modulus E, the thickness D of the intervening layer 121 can be increased, and the formula (3) can be satisfied.
  • the Young's modulus E of the intervening layer 121 can be increased, the rigidity of the intervening layer 121 can be increased and the occurrence of strain can be suppressed.
  • the thickness D of the intervening layer 121 can be increased, the distance between the fuel cell 200 and the fuel cell case 300 can be increased. For this reason, even when the assembly error (tolerance) of the fuel cell 7 when forming the fuel cell 200 is relatively large, the fuel cell 200 can be reliably accommodated in the fuel cell case 300.
  • the intervening layer 121 is formed so that the spring constant of the composite layer is increased, and in particular, the intervening layer 121 is set so that the Young's modulus of the intervening layer 121 is increased. Is forming.
  • such an intervening layer 121 uses a small piece made of a base material (such as sand or glass) having a relatively high Young's modulus to manufacture a fuel cell device by the following method. It is realized by.
  • FIG. 5 is a flowchart showing the procedure of the method for manufacturing the fuel cell device 100 according to the first embodiment.
  • a member of the fuel cell case 300, the fuel cell 200, and a small piece are prepared (step S105).
  • the members of the fuel cell case 300 mean the end surface cover 111, the upper cover 113, and the bottom surface cover 114.
  • the diameter of the small piece of the first embodiment is 1/2 or less of the variable D0 described above.
  • the fuel cell case 300 is assembled using the case member so as to accommodate the fuel cell 200 (step S110).
  • FIG. 6 is an explanatory diagram schematically showing the process of step S110.
  • an end face cover 111, an upper cover 113, and a bottom cover 114 are arranged so as to cover each surface of the fuel cell 200, and these covers are assembled together to complete the fuel cell case 300.
  • Each cover and the fuel cell 200 are connected by bolts, nuts, or the like.
  • the intervening layer 121 shown in FIG. 2 is not formed, and a portion where the intervening layer 121 is to be formed is a gap.
  • step S110 when step S110 is completed, a small piece is supplied into the fuel cell case 300 while the fuel cell case 300 and the fuel cell 200 are vibrated to form the intervening layer 121 (step S115).
  • the vibration of the fuel cell case 300 and the fuel cell 200 can be realized, for example, by vibrating the fuel cell case 300 in which the fuel cell 200 is accommodated using a vibration generator.
  • Supplying the small piece into the fuel cell case 300 can be realized by opening the cover 112b of the small piece supply part 112 and supplying the small piece to the cylindrical part 112a.
  • the small piece supply unit 112 is disposed at a position in the uppermost vertical position in the fuel cell case 300 in a state where the fuel cell case 300 is placed.
  • the small piece supplied from the small piece supply unit 112 is supplied to the gap between the surface of the fuel cell 200 and the inner side surface of the fuel cell case 300 by its own weight.
  • the small piece supplied into the fuel cell case 300 has a gap between the surface of the fuel cell 200 and the inner surface of the fuel cell case 300. In other words, it is densely packed.
  • the diameter of the small piece is less than 1/2 of the variable D0 and is relatively small, the small piece is restrained from being caught by the unevenness of the gap between the surface of the fuel cell 200 and the inner side surface of the fuel cell case 300.
  • the gap between the small pieces can be made relatively small. Therefore, the small piece is densely filled in the gap between the surface of the fuel cell 200 and the inner surface of the fuel cell case 300.
  • the Young's modulus as the intervening layer 121 can be increased.
  • step S115 described above after forming the intervening layer 121 in the fuel cell case 300, as shown in FIG. 2, the filling of the small pieces is continued until the inside of the cylindrical portion 112a is filled with the small pieces.
  • the small piece is automatically supplied to the gap. be able to.
  • the fuel cell device 100 is mounted on a vehicle, and a small piece inside the fuel cell case 300 is caused by the vibration of the vehicle. It is assumed that the filling density increases and a gap is generated in the fuel cell case 300.
  • the filling density of the small pieces is adjusted so as to suppress such leakage.
  • the force that causes a dimensional change along the stacking direction will be described with reference to FIG.
  • FIG. 7 is an explanatory diagram schematically showing the fuel cell case 300 and the fuel cell 200 after aging.
  • the dimensional change in the stacking direction of the fuel cell 200 is caused by thermal deformation of the entire fuel cell 7 or swelling or shrinkage of the electrolyte membrane 1 constituting the fuel cell 7.
  • Forces that can cause For example, as shown in FIG. 7, a stress F ⁇ b> 1 toward the center of the fuel cell 200 can occur in the fuel cell 7 e located at the end as a force that can cause a dimensional change.
  • the fuel cell 7e located at the end of the fuel cell 200 is not in contact with the other fuel cell 7 on one side, the fuel cell 7e is interposed with respect to a force that can cause a dimensional change compared to the other fuel cell 7.
  • the restraining force F2 by the layer 121 becomes relatively large. For this reason, only the center part of the fuel cell 7e moves toward the center of the fuel cell 200 while the end of the end fuel cell 7e near the intervening layer 121 is restrained to the original position. As a result, as shown in FIG. 7, the end portion of the fuel cell 7e is bent, the seal by the seal portion provided in the vicinity of the end portion is broken, and the reaction gas or the cooling medium may leak. Therefore, in the first embodiment, the intervening layer 121 is formed so that the restraining force F2 is smaller than an allowable load (allowable stress) that does not cause seal breakage in the fuel cell 7e at the end.
  • the allowable load is obtained by, for example, performing a bending test in which a load is applied along the stacking direction while supplying a test gas to the fuel cell 200 and specifying the maximum load that does not cause gas leakage. Can do.
  • the binding force of the intervening layer 121 can be obtained by inserting the fuel cell 7 into the intervening layer 121, applying a load to the fuel cell 7 and specifying a load that moves by a predetermined distance within a predetermined period. .
  • the adjustment of the restraining force F2 can be realized by adjusting the packing density of the small pieces.
  • the restraining force F2 can be increased, and by reducing the filling density of the small pieces, the restraining force F2 can be reduced.
  • Adjustment of the packing density of the small pieces can be realized by adjusting the average diameter of the small pieces. That is, the packing density can be increased by reducing the average diameter of the small pieces, and the packing density can be decreased by increasing the average diameter of the small pieces.
  • the restraining force F2 of the intervening layer 121 is adjusted to be equal to or less than the allowable load, and the reaction gas or the cooling medium from the fuel cell 200 is adjusted. The occurrence of leakage is suppressed.
  • the intervening layer 121 is formed between the fuel cell 200 and the fuel cell case 300, and the intervening layer 121 and the fuel cell case 300 satisfy the above formula (1). Therefore, even if the inertial force Fg assumed for the fuel cell 200 is applied and the inertial force Fg is applied to the intervening layer 121 and the fuel cell case 300, the deformation amount of the intervening layer 121 and the fuel cell case 300 is It is smaller than the variable X0. For this reason, even when the displacement of each fuel cell 7 constituting the fuel cell 200 occurs due to the deformation of the intervening layer 121 and the fuel cell case 300, the displacement can be made smaller than the allowable displacement X0. . Therefore, leakage of the reaction gas or the cooling medium from the fuel cell 200 can be suppressed.
  • the intervening layer 121 satisfies the above formulas (2) and (3), the Young's modulus of the intervening layer 121 can be increased and the rigidity of the intervening layer 121 can be increased. For this reason, the spring constant K2 of the fuel cell case 300 is lowered while the spring constant (K1 + K2) of the composite layer (the layer between the intervening layer 121 and the fuel cell case 300) is kept the same, and the rigidity of the fuel cell case 300 is increased. Can be lowered. Therefore, a relatively light base material (for example, resin) can be used as the base material of the fuel cell case 300.
  • a relatively light base material for example, resin
  • the intervening layer 121 is formed of a small piece, the intervening layer 121 can be formed by supplying the small piece into the fuel cell case 300 after the fuel cell 200 is accommodated in the fuel cell case 300. .
  • the small piece since a material having a diameter of 1/2 or less of the variable D0 is used as the small piece, the small piece is densely filled in the gap between the surface of the fuel cell 200 and the inner surface of the fuel cell case 300. can do. For this reason, since the Young's modulus of the intervening layer 121 can be increased and the spring constant K1 of the intervening layer 121 can be increased, the spring coefficient K2 of the fuel cell case 300 can be reduced. Therefore, the fuel cell case 300 can be formed of a lightweight material with low rigidity.
  • the intervening layer 121 is configured such that the restraining force F2 of the intervening layer 121 is smaller than an allowable load that does not cause the leakage of the reaction gas or the cooling medium, the stacking of the fuel cells 200 accompanies aging. Even when the dimensional change in the direction occurs, the occurrence of leakage of the reaction gas or the cooling medium from the fuel cell 200 can be suppressed.
  • the small piece body is filled in the small piece supply portion 112 (cylindrical portion 112a) in advance, a void is generated in the fuel cell case 300 as the fuel cell device 100 is used. Even in such a case, it is possible to automatically fill the gap using the small piece inside the small piece supply unit 112.
  • FIG. 8 is a cross-sectional view of the fuel cell device according to the second embodiment.
  • the fuel cell device 100a shown in FIG. 2 includes a point that the upper cover 113a of the fuel cell case 300a does not include the small piece supply unit 112, a point that includes the intervening layer 121a instead of the intervening layer 121, and an intervening layer.
  • 121a is also formed between the fuel cell 200 and the bottom cover 114 and the manufacturing procedure of the fuel cell device. This is the same as the fuel cell device 100 of the first embodiment.
  • the intervening layer 121a of the second embodiment is formed by a large number of bags 115.
  • the bag body 115 has a structure in which a small piece body is filled in a flexible bag member.
  • a flexible bag member for example, a resin bag such as polyethylene or a rubber bag can be employed.
  • an external shape of a bag member it can be set as arbitrary shapes, such as a spherical shape and a cylindrical shape, for example.
  • the small piece of the second embodiment is the same as the small piece used as the base material of the intervening layer 121 in the first embodiment. In FIG. 8, a gap is shown between the bag body 115 and the bag body 115, but the bag body 115 can also be spread so that such a gap does not occur.
  • Such a fuel cell device 100a can be manufactured as follows, for example. First, a large number of bags 115, a case member of the fuel cell case 300, and the fuel cell 200 are prepared. Next, the bag body 115 is placed on the bottom cover 114, and the fuel cell 200 is placed thereon. Next, the bag body 115 is placed on the upper surface of the fuel cell 200, and the upper cover 113 a and the end surface cover 111 are assembled to the fuel cell 200. Further, for example, the following manufacturing method may be adopted. First, a large number of bags 115, a case member of the fuel cell case 300, and the fuel cell 200 are prepared.
  • the bag body 115 is placed on the bottom cover 114, and the bag body 115 is mounted on the inner surface of the upper cover 113 a that covers the upper surface of the fuel cell 200.
  • the upper cover 113a, the end surface cover 111, and the bottom surface cover 114 are assembled to each other so as to cover the fuel cell 200 and also assembled to the fuel cell 200.
  • the fuel cell device 100a of the second embodiment having the above configuration has the same effects as the fuel cell device 100 of the first embodiment.
  • the intervening layer 121a is formed by the bag body 115 in the second embodiment 100a, scattering of the small pieces at the time of manufacturing the fuel cell device 100a can be suppressed, and handling of the small pieces can be facilitated.
  • the intervening layer 121a can be formed between the bottom surface of the fuel cell 200 and the bottom surface cover 114, even when an inertial force directed vertically downward is applied to the fuel cell 200, the fuel cell. Occurrence of misalignment of the fuel battery cells 7 constituting 200 can be suppressed.
  • Modification 1 In each embodiment, although the small piece was used as a base material which forms the intervening layers 121 and 121a, you may use other base materials other than a small piece. Specifically, for example, a member obtained by compressing and curing a resin plate member such as urethane in the thickness direction may be used as a base material for forming the intervening layers 121 and 121a. Further, for example, a rod-shaped member made of glass or the like may be used as a base material for forming the intervening layers 121 and 121a. Such a configuration also has the same effects as those of the above-described embodiments.
  • the fuel cell cases 300 and 300a are configured by a total of three members including the end surface cover 111, the upper covers 113 and 113a, and the bottom surface cover 114, but the present invention is not limited to this. is not.
  • the fuel cell cases 300 and 300a may be configured by a total of six plate-like members that configure each surface that covers the fuel cell 200.
  • the fuel cell cases 300 and 300a may be configured by a total of two members, a container-like member in which the other five surfaces except the upper surface are joined in advance and a lid-like member constituting the upper surface. Such a configuration also has the same effects as those of the above-described embodiments.
  • the intervening layers 121 and 121a satisfy the above formulas (2) and (3), but a configuration that does not satisfy the above (2) and (3) may be adopted.
  • the Young's modulus of the intervening layers 121 and 121a is low, and the spring coefficient as the intervening layers 121 and 121a is small.
  • the spring coefficient (K1 + K2) as the composite layer is large and satisfies the above formula (1). Therefore, even when the inertial force Fg is applied to the fuel cell 200, leakage of the reaction gas or the cooling medium in the fuel cell 200 occurs. Can be suppressed.
  • the restraining force F2 can be set to an allowable load or more. In this configuration, there is a possibility that the leakage of the reaction gas or the cooling medium accompanying the dimensional change in the stacking direction cannot be suppressed. However, when the inertial force Fg is applied to the fuel cell 200, the leakage of the reaction gas or the cooling medium occurs. Can be suppressed.
  • Modification 4 In the first embodiment, among the surfaces of the fuel cell 200, the other surfaces except the both end surfaces and the bottom surface of the fuel cell 200 are covered with the intervening layer 121 and the fuel cell case 300. In the second embodiment, among the surfaces of the fuel cell 200, the other surfaces except the both end surfaces of the fuel cell 200 are covered with the intervening layer 121 a and the fuel cell case 300.
  • the present invention is not limited to these configurations. For example, a configuration in which at least one side surface along the stacking direction among the respective surfaces of the fuel cell 200 may be covered with the intervening layers 121 and 121a and the fuel cell case 300 may be adopted.
  • At least one side surface along the stacking direction means at least one of the six surfaces of the fuel cell 200 other than both end surfaces (upper surface, two end surfaces, and the bottom surface). means.
  • at least one entire side surface along the stacking direction is covered with the intervening layers 121 and 121a and the fuel cell case 300
  • at least a part of at least one side surface along the stacking direction is an intervening layer.
  • the structure covered with 121, 121a can be employed. That is, generally, an outer surface cover that covers at least a part of the side surface along the stacking direction of the fuel cell 200 and an intervening layer disposed between the outer surface cover and the side surface covered by the outer surface cover are employed in the present invention. be able to.
  • the fuel cell devices 100 and 100a are mounted on an electric vehicle.
  • the fuel cell devices 100 and 100a can be applied to various vehicles such as a hybrid vehicle, a ship, and a robot instead of the electric vehicle.
  • the fuel cell devices 100 and 100a can also be used as stationary power sources.
  • the present invention is not limited to the above-described embodiments, embodiments, and modifications, and can be realized with various configurations without departing from the spirit thereof.
  • the technical features in the embodiments and the modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池装置は、複数の燃料電池セルが積層された構造を有する燃料電池と、燃料電池の積層方向に沿った側面の少なくとも一部を覆う外面カバーと、外面カバーと外面カバーにより覆われる側面との間に配置された介在層と、を備える。外面カバーおよび介在層は、介在層のばね定数をK1とし、外面カバーのばね定数をK2とし、燃料電池に加えられる慣性力をFgとし、燃料電池における燃料電池セルの許容ずれ量をX0としたとき、X0>Fg/(K1+K2)を満たす。このような燃料電池装置によって、燃料電池の位置ずれが抑制される。

Description

燃料電池装置およびその製造方法 関連出願の相互参照
 本願は、2013年2月26日に出願された出願番号2013-35296の日本特許出願に基づく優先権を主張し、その開示の全てが参照によって本願に組み込まれる。
 本発明は、燃料電池装置に関する。
 燃料電池装置として、燃料電池スタックの耐振動性や耐衝撃性を向上させるため、燃料電池(燃料電池スタック)と、燃料電池における燃料電池セル(燃料電池セル)の積層方向に沿って延設されたテンションプレートとの間に、シリコンやウレタンゴム等の弾性材料が充填された燃料電池装置が提案されている(特許文献1)。
特開2003-203670号公報
 しかしながら、特許文献1に記載の燃料電池装置では、弾性材料の剛性は低いので、外部からの衝撃などにより燃料電池に慣性力が加わり、燃料電池が弾性材料に押し付けられた際に、弾性材料は変形し易い。このため、燃料電池を構成する燃料電池セルの損傷は抑えられる一方、燃料電池セルの位置ずれが起こり易い。燃料電池セルの位置ずれが発生すると、かかる位置ずれに起因して、隣り合う燃料電池セルとの間のシールが破れて反応ガスや冷却媒体等が漏れるという問題があった。
 このような問題は、テンションプレートと燃料電池との間に弾性材料が充填された構成に限らず、燃料電池を収容するケースと燃料電池との間に弾性材料が充填された構成など、燃料電池とそれを覆う外面カバーとの間に弾性材料が充填された任意の構成において共通する問題であった。そのほか、従来の燃料電池装置では、燃料電池装置の製造効率の向上、低コスト化、省電力化、製造の容易化等が望まれていた。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、燃料電池装置が提供される。この燃料電池装置は、複数の燃料電池セルが積層された構造を有する燃料電池と、前記燃料電池の積層方向に沿った側面の少なくとも一部を覆う外面カバーと、前記外面カバーと前記外面カバーにより覆われる前記側面との間に配置された介在層と、を備え、前記外面カバーおよび前記介在層は、前記介在層のばね定数をK1とし、前記外面カバーのばね定数をK2とし、前記燃料電池に加えられる慣性力をFgとし、前記燃料電池における前記燃料電池セルの許容ずれ量をX0としたとき、X0>Fg/(K1+K2)を満たす。この形態の燃料電池装置によれば、介在層および外面カバーは、X0>Fg/(K1+K2)を満たすので、燃料電池に対して慣性力Fgが加えられても、介在層および外面カバーの変形は、許容ずれ量X0以下となる。このため、介在層および外面カバーの変形に伴って、燃料電池を構成する燃料電池セルの位置ずれが生じた場合でも、かかる位置ずれを許容ずれ量X0以下とすることができ、反応ガスまたは冷却媒体の漏れを抑制できる。
(2)上記燃料電池装置において、前記介在層は、前記介在層のヤング率をEとし、前記介在層の厚みをDとし、前記外面カバーと前記外面カバーにより覆われる前記側面との間に最低限必要なクリアランスをD0とし、比例定数をαとしたとき、K1=α*E*(1/D)、およびD>D0を満たしてもよい。この形態の燃料電池装置によれば、介在層のばね定数K1を同じ値にしたまま、介在層のヤング率Eを大きくすることで、介在層の厚みDを大きくすることができる。したがって、外面カバーにより燃料電池を覆う際に、外面カバーと燃料電池との間のクリアランスを大きく確保できるため、初期状態における燃料電池を構成する燃料電池セル同士の位置ずれ(公差)が大きくても、外面カバーにより燃料電池を確実に覆うことができる。
(3)上記燃料電池装置において、前記介在層は、複数の小片体により形成されていてもよい。この形態の燃料電池装置によれば、燃料電池を外面カバーで覆った後に、燃料電池と外面カバーとの間に小片体を供給することにより、介在層を形成することができる。
(4)上記燃料電池装置において、前記複数の燃料電池セルのうち、端に位置する燃料電池セルに対する前記介在層による拘束力は、該燃料電池セルに対する前記積層方向に沿った許容荷重よりも小さくてもよい。経年劣化等により、積層方向に沿った寸法変化を生じさせる力が燃料電池に加わった場合に、端に位置する燃料電池セルは、片側が他の燃料電池セルと接していないため、他の燃料電池セルに比べて、寸法変化を生じ得る力に対する介在層による拘束力が相対的に大きくなる。しかしながら、本形態の燃料電池装置によれば、端に位置する燃料電池セルに対する介在層による拘束力は、許容荷重よりも小さいので、端に位置する燃料電池セルと隣接する燃料電池セルとの間からの反応ガスまたは冷却媒体の漏れの発生を抑制できる。
(5)上記燃料電池装置において、前記小片体の外観形状は、球形であり、前記小片体の平均直径は、前記外面カバーと前記外面カバーにより覆われる前記側面との間に最低限必要なクリアランスの1/2以下であってもよい。この形態の燃料電池装置によれば、外面カバーと、外面カバーにより覆われる側面との間に、小片体を密に充填することができるため、介在層のばね係数を大きくすることができる。それゆえ、外面カバーのばね係数を小さくでき、外面カバーを剛性が低くて軽量な材料で形成できる。
(6)上記燃料電池装置において、前記外面カバーは、前記燃料電池の積層方向に沿ったすべての側面を覆うと共に、前記燃料電池が載置された状態において、前記燃料電池の鉛直上面を覆う面に、前記小片体を供給する供給部を有し、前記供給部は、収容部と、前記収容部に収容された前記小片体と、を有し、前記小片体の重みを利用して、前記外面カバーと前記燃料電池との間に小片体を供給してもよい。この形態の燃料電池装置によれば、燃料電池装置の使用に伴って、外面カバーと燃料電池との間における小片体の充填密度が増加して外面カバーと燃料電池との間に空隙が生じ得る状態となっても、収容部に収容された小片体が自重を利用して自動的に供給されるので、かかる空隙の発生を抑制できる。
(7)上記燃料電池装置において、前記介在層は、多数の小片体が封入された可撓性を有する袋体により形成されていてもよい。この形態の燃料電池装置によれば、小片体は袋体に封入されているので、燃料電池装置の製造時における小片体の飛散を抑制でき、小片体の取り扱いを容易にできる。
(8)上記燃料電池装置において、前記小片体は、砂と、樹脂製ビーズと、ガラスビーズとのうち、少なくとも1つを含んでもよい。この形態の燃料電池装置によれば、小片体として砂またはガラスビーズを用いることで、介在層を比較的安価に形成できる。また、小片体として樹脂製ビーズを用いることで、介在層を軽量化できる。
(9)上記燃料電池装置において、前記燃料電池には、反応ガスおよび冷却媒体が供給され、前記許容ずれ量は、前記積層方向に対して垂直な方向の前記燃料電池セルの位置のずれ量であって、前記燃料電池において前記反応ガスまたは前記冷却媒体の漏れが生じない上限のずれ量であってもよい。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、燃料電池装置の製造方法や、燃料電池システムや、燃料電池装置が搭載された車両等の形態で実現することができる。
本発明の第1実施形態としての燃料電池装置の概略構成を示す斜視図である。 第1実施形態の燃料電池装置の断面図である。 燃料電池装置100が車両に搭載されている場合に燃料電池200が受ける慣性力を示す説明図である。 変数D0の決定方法を模式的に示す説明図である。 第1実施形態における燃料電池装置100の製造方法の手順を示すフローチャートである。 ステップS110の処理を模式的に示す説明図である。 燃料電池ケース300と経年劣化後の燃料電池200とを模式的に示す説明図である。 第2実施形態の燃料電池装置の断面図である。
A.実施形態:
A1.装置構成:
 図1は、本発明の第1実施形態としての燃料電池装置の概略構成を示す斜視図である。図2は、第1実施形態の燃料電池装置の断面図である。図2では、図1に示すA-A断面を示す。燃料電池装置100は、燃料電池200と、燃料電池ケース300と、介在層121とを備えている。燃料電池装置100は、例えば、電気自動車に搭載され、モーター等の駆動源に対して、電力を供給する。
 図2に示すように、燃料電池200は、固体高分子型燃料電池である燃料電池セル(「単セル」ともいう)7が複数積層された構造を有する。燃料電池200は、セルスタックとも呼ばれ、略立方体の外観形状を有する。燃料電池200には、燃料ガスおよび酸化剤ガスが供給され、各燃料電池セル7では、燃料ガスおよび酸化剤ガスを利用して発電が行われる。燃料ガスとして、例えば水素ガスを採用し、酸化剤ガスとして、例えば空気を採用することができる。
 燃料電池セル7は、膜電極接合体4と、2つのセパレータ5および6とを備えている。膜電極接合体4は、電解質膜1と、電解質膜1の両面に配置された2つの電極2および3とから構成されている。電解質膜1は、湿潤状態において良好なプロトン伝導性を示す固体高分子膜である。2つのセパレータ5および6は、膜電極接合体4を挟持して反応ガス(燃料ガスおよび酸化剤ガス)や冷却媒体の流路を形成すると共に、それぞれ集電板として機能する。各燃料電池セル7には、反応ガスや冷却媒体の流路を形成する図示しないマニホールドが形成されている。各燃料電池セル7における、膜電極接合体4とセパレータ5との間、および膜電極接合体4とセパレータ6との間には、マニホールドを囲むように図示しないシール部材が配置されている。また、隣接する2つの燃料電池セル7の間において、図示しないマニホールドを囲むように図示しないシール部材が配置されている。これらのシール部材は、燃料電池200からの反応ガスおよび冷却媒体の漏洩を抑制するために用いられている。
 燃料電池ケース300は、上部カバー113と、端面カバー111と、底面カバー114とを備えている。図1および図2に示すように、上部カバー113は、燃料電池200の上面と、燃料電池200の両側面と、燃料電池200の一方の端面とを覆う。一方の端面とは、燃料電池200の積層方向の両端に位置する2つの面のうちの一方の面を意味する。
 上部カバー113は、小片体供給部112を備えている。小片体供給部112は、上部カバー113の上表面から突出しており、筒状部112aと、蓋部112bとを備えている。筒状部112aは、内部が空洞の煙突状の外観を有している。上部カバー113において、筒状部112aが接続された部分には厚さ方向の貫通孔が形成されており、筒状部112aの内部は、上部カバー113と燃料電池200の上面との間の空隙と連通している。なお、筒状部112aは、請求項における収容部に相当する。小片体供給部112の利用方法については、後述する。図2に示すように、上部カバー113は、燃料電池200の一方の端面と接しており、ボルトおよびナット等によりかかる端面に固定されている。
 端面カバー111は、燃料電池200の両端面のうち、上部カバー113により覆われていない側の端面に接し、かかる端面を覆う。端面カバー111は、ボルトおよびナット等により、燃料電池200の端面に固定されている。図1に示すように、端面カバー111には、厚さ方向に貫通する6つの貫通孔10が形成されている。これら6つの貫通孔10は、燃料ガスの供給路および排出路、酸化剤ガスの供給路および排出路、冷却媒体の供給路および排出路を、それぞれ端面カバー111を貫通して配置するために用いられる。
 底面カバー114は、燃料電池200の底面に接し、かかる底面を覆う。底面カバー114は、ボルトおよびナット等により、上部カバー113および燃料電池200に固定されている。
 介在層121は、燃料電池200と燃料電池ケース300との間に形成されている。より具体的には、燃料電池200の表面のうち、2つの端面と底面とを除く他の面(すなわち、上面および2つの側面)と、燃料電池ケース300の内側面との間の空隙を埋めている。
 第1実施形態において、介在層121は、平均径の小さな小片体により形成される。小片体としては、例えば、砂や、樹脂ビーズや、ガラスビーズなど、絶縁性を有する材料を用いることができる。本実施形態の介在層121は、下記式(1)を満たす。
 X0≧Fg/(K1+K2)・・・(1)
 上記式(1)において、変数X0は、燃料電池200における燃料電池セル7の許容ずれ量を意味する。燃料電池セル7の許容ずれ量とは、積層方向に対して垂直な方向の燃料電池セル7の位置ずれ量であって、反応ガスまたは冷却媒体の漏れが生じない上限のずれ量を意味する。例えば、燃料電池セル7の位置ずれ量が大きいために、隣接する燃料電池セル7の間に配置されたシール部材が本来の位置(マニホールドを囲む位置)からずれると、かかる部分から反応ガスまたは冷却媒体が漏れ出る。かかる許容ずれ量は、実験により特定できる。具体的には、燃料電池200に反応ガスを供給しながら、燃料電池200に対する荷重を増加させていき、反応ガスの漏れが発生しない最大の荷重を特定すると共に、このときの隣接する燃料電池セル7間における積層方向と垂直な方向の位置ずれ量の最大値を特定する。そして、かかる最大値をX0として特定することができる。
 上記式(1)において、変数Fgは、燃料電池200に加えられる慣性力を意味する。燃料電池200に加えられる慣性力とは、例えば、燃料電池装置100が車両に搭載されている場合に、燃料電池200が受けると推測される慣性力を意味する。
 図3は、燃料電池装置100が車両に搭載されている場合に燃料電池200が受ける慣性力を示す説明図である。図3に示すように、端面カバー111および上部カバー113は、車両が有するサイドメンバ500に固定されている。この状態で、例えば、車両が正面衝突すると、サイドメンバ500に直接接続されていない燃料電池200には、進行方向に向かう慣性力Fgが加わる。
 このような慣性力Fgは、試験を行うことにより予め求めることができる。具体的には、車両に燃料電池装置100を搭載すると共に、燃料電池200または燃料電池ケース300に加速度センサを取り付ける。かかる車両を用いて、法規条件や安全評価条件に従った衝突試験を行う。そして、このような試験としては、例えば、U.S.NCAP(The United States New Car Assessment Program)、LINCAP(Lateral Impact New Car Assessment Program)、IIHS(Insurance Institute for Highway Safety)等において規定された衝突試験を採用することができる。加速度センサで測定された加速度のうち、試験実施中の最大値を特定し、かかる加速度の最大値に燃料電池200の重量を掛け合わせることによって変数Fgを求めることができる。
 上記式(1)において、変数K1は、介在層121のばね定数を意味する。介在層121のばね定数K1は、介在層121と同じ厚さを有する小片体の層を形成し、かかる層を対象として圧縮試験を行って測定することができる。上記式(1)において、変数K2は、燃料電池ケース300のばね定数を意味する。このばね定数K2も同様に、燃料電池ケース300を対象として圧縮試験を行って測定することができる。
 第1実施形態では、介在層121と燃料電池ケース300とを合わせた層(以下、「合成層」と呼ぶ)のばね定数(K1+K2)が大きくなるように、介在層121が形成されているため、想定される慣性力Fgが燃料電池200を介して合成層に加えられたとしても、合成層の変形は許容ずれ量X0よりも小さい。このため、合成層の変形に伴って燃料電池200を構成する各燃料電池セル7の位置ずれが生じた場合でも、かかる位置ずれを許容ずれ量X0よりも小さくでき、燃料電池セル7の位置ずれに伴う反応ガスまたは冷却媒体の漏れを抑制できる。換言すると、合成層が高い剛性を有するように介在層121を形成することで、図3に示すような慣性力Fgが燃料電池200から合成層(介在層121および燃料電池ケース300)に伝えられた場合に、合成層は変形を抑えつつ応力FBを燃料電池200に伝える。このため、燃料電池200における各燃料電池セル7の位置ずれの発生を抑えることができる。
 ここで、第1実施形態における介在層121は、上記式(1)に加えて、下記式(2)および(3)を満たす。
 K1=α*E*(1/D)・・・(2)
 D>D0・・・(3)
 上記式(2)において、定数αは比例定数である。上記式(2)において、変数Eは、介在層121のヤング率を意味する。介在層121のヤング率Eは、曲げ試験を行って求めることができる。上記式(2)において、変数Dは、介在層121の厚さ(平均値)を意味する。介在層121の厚さDは、例えば、各燃料電池セル7に対応する位置の介在層121の厚さをノギス等により測定し、得られた測定値から算出できる。変数D0は、燃料電池200を燃料電池ケース300に収容するために最低限必要な、燃料電池ケース300の大きさを規定する長さを意味する。具体的には、変数D0は、燃料電池200を燃料電池ケース300に収容するために最低限必要な、積層方向と垂直な方向における燃料電池セル7の長さと燃料電池ケース300の長さとの差分の1/2を意味する。
 図4は、変数D0の決定方法を模式的に示す説明図である。図4に示すように、燃料電池200を構成する各燃料電池セル7のX軸方向の位置は、互いに若干ずれている。このような各燃料電池セル7の位置ずれは、例えば、燃料電池200を製造する際の組み付け誤差等により生じ得る。燃料電池200には各燃料電池セル7の位置ずれが含まれているため、燃料電池200のX軸方向の長さL0は、燃料電池セル7のX軸方向の長さL1よりも大きい。すなわち、X軸方向に沿って、燃料電池200の長さL0と燃料電池セル7の長さL1との差分として、2*D0だけ生じている。したがって、燃料電池ケース300の内側面のX軸方向の長さが、燃料電池セル7のX軸方向の長さL1に比べて2*D0よりも大きければ、燃料電池200を収容することができる。よって、上記式(3)に示すように、各燃料電池セル7と燃料電池ケース300の内側面との間に配置される介在層121の厚さ(平均値)は、長さD0よりも大きいとの条件を満たす必要がある。なお、図示は省略しているが、Z軸方向においても、上述したX軸方向と同様に各燃料電池セル7の位置ずれは生じているため、燃料電池ケース300の内側面のZ軸方向の長さが、燃料電池セル7のZ軸方向の長さに比べて2*D0よりも大きければ、燃料電池200を収容することができる。
 なお、上述した比例定数αは、ばね定数K1と、介在層121のヤング率Eと、介在層121の平均の厚さDとを求め、これらを上記式(2)に代入して導出することができる。
 上記式(2)に示すように、第1実施形態では、介在層121のヤング率Eは、介在層121の厚さDと比例する。このため、同じばね定数K1を実現するために、ヤング率Eを大きくすることにより、介在層121の厚さDを大きくすることができ、式(3)を満たすことができる。このように、第1実施形態では、介在層121のヤング率Eを大きくできるので、介在層121の剛性を高めてひずみの発生を抑制できる。加えて、介在層121の厚さDを大きくすることができるので、燃料電池200と燃料電池ケース300との間の距離を大きくすることができる。このため、燃料電池200を形成する際の燃料電池セル7の組み付け誤差(公差)が比較的大きくても、燃料電池200を燃料電池ケース300に確実に収容することができる。
 上述したように、第1実施形態の燃料電池装置100では、合成層のばね定数が大きくなるように介在層121が形成され、特に、介在層121のヤング率を大きくなるように、介在層121を形成している。第1実施形態では、このような介在層121は、比較的ヤング率の高い基材(砂やガラス等)からなる小片体を用いて、以下のような方法により、燃料電池装置を製造することにより実現される。
A2.燃料電池の製造方法:
 図5は、第1実施形態における燃料電池装置100の製造方法の手順を示すフローチャートである。まず、燃料電池ケース300の部材、燃料電池200および小片体を用意する(ステップS105)。燃料電池ケース300の部材とは、端面カバー111と、上部カバー113と、底面カバー114とを意味する。ここで、第1実施形態の小片体の直径は、上述した変数D0の1/2以下である。次に、ケース部材を用いて、燃料電池200を収容するように燃料電池ケース300を組み立てる(ステップS110)。
 図6は、ステップS110の処理を模式的に示す説明図である。図6に示すように、燃料電池200の各面を覆うように、端面カバー111と、上部カバー113と、底面カバー114とを配置し、これらカバー同士を組み付けて燃料電池ケース300を完成させると共に、各カバーと燃料電池200とをボルトおよびナット等により接続する。なお、このステップS110では、図2に示す介在層121は形成されておらず、介在層121が形成されるべき箇所は空隙になっている。
 図5に示すように、ステップS110が完了すると、燃料電池ケース300および燃料電池200を振動させながら、燃料電池ケース300内部に小片体を供給して介在層121を形成する(ステップS115)。燃料電池ケース300および燃料電池200の振動は、例えば、燃料電池200を収容した燃料電池ケース300を、振動発生装置を利用して振動させることにより実現できる。燃料電池ケース300内部への小片体の供給は、小片体供給部112の蓋部112bを開け、筒状部112aに小片体を供給することにより実現できる。小片体供給部112は、燃料電池ケース300が載置された状態において、燃料電池ケース300において最も鉛直上方の位置に配置されている。したがって、小片体供給部112から供給された小片体は、自重により燃料電池200の表面と燃料電池ケース300の内側面との間の空隙に供給される。加えて、燃料電池ケース300および燃料電池200が振動していることから、燃料電池ケース300内部に供給された小片体は、燃料電池200の表面と燃料電池ケース300の内側面との間の空隙に、密に充填されることになる。また、小片体の直径は変数D0の1/2以下であり比較的小さいため、燃料電池200の表面と燃料電池ケース300の内側面との間の空隙の凹凸に小片体が引っかかることが抑制されると共に、小片体と小片体との間の空隙を比較的小さくできる。それゆえ、小片体は、燃料電池200の表面と燃料電池ケース300の内側面との間の空隙に、密に充填されることになる。このように、小片体を密に充填できるので、介在層121としてのヤング率を高めることができる。
 上述したステップS115では、燃料電池ケース300内に介在層121を形成した後に、図2に示すように、筒状部112a内部が小片体で満たされるまで小片体の充填を継続する。予め筒状部112a内部に小片体を充填しておくことにより、燃料電池装置100の使用に伴って燃料電池ケース300内部に空隙が生じた場合に、かかる空隙に小片体を自動的に供給することができる。燃料電池装置100の使用に伴って燃料電池ケース300内部に空隙が生じる場合としては、例えば、燃料電池装置100が車両に搭載され、かかる車両の振動に伴って燃料電池ケース300内部における小片体の充填密度が上昇して、燃料電池ケース300に空隙が生じる場合などが想定される。
 ここで、小片体が密に充填され過ぎると、経年劣化に伴い、積層方向に沿った寸法変化を生じさせ得る力が燃料電池200に加わった場合に、反応ガスまたは冷却媒体の漏れが生じ得る。そこで、第1実施形態では、かかる漏れを抑制する程度に小片体の充填密度を調整する。以下、図7を用いて、積層方向に沿った寸法変化を生じさせる力について説明する。
 図7は、燃料電池ケース300と、経年劣化後の燃料電池200とを模式的に示す説明図である。燃料電池装置100の使用開始から長期間が経ると、燃料電池セル7全体の熱変形や、燃料電池セル7を構成する電解質膜1の膨潤や収縮等により、燃料電池200の積層方向の寸法変化を生じさせ得る力が生じ得る。例えば、図7に示すように、端に位置する燃料電池セル7eには、寸法変化を生じさせ得る力として、燃料電池200の中央に向かう応力F1が生じ得る。ここで、燃料電池200の端に位置する燃料電池セル7eは、片側が他の燃料電池セル7と接していないため、他の燃料電池セル7に比べて、寸法変化を生じさせ得る力に対する介在層121による拘束力F2は相対的に大きくなる。このため、端の燃料電池セル7eの介在層121寄りの端部は、元の位置に拘束されたまま、燃料電池セル7eの中央部のみが燃料電池200の中央に向かって移動する。その結果、図7に示すように、燃料電池セル7eの端部が折れ曲がり、かかる端部付近に設けられたシール部によるシールが破られ、反応ガスまたは冷却媒体は漏れ出るおそれがある。そこで、第1実施形態では、拘束力F2が、端の燃料電池セル7eにおいてシール破れを生じない程度の許容荷重(許容応力)よりも小さくなるように、介在層121を形成している。
 許容荷重は、例えば、燃料電池200に対して、試験用のガスを供給しつつ、積層方向に沿って荷重を加える曲げ試験を行い、ガス漏れが生じない最大の荷重を特定することにより求めることができる。介在層121の拘束力は、介在層121に燃料電池セル7を挿入し、燃料電池セル7に荷重を加えて、所定期間内に所定距離だけ移動する荷重を特定することにより、求めることができる。拘束力F2の調整は、小片体の充填密度を調整することにより実現することができる。すなわち、小片体の充填密度を上昇させることにより、拘束力F2を増加させ、小片体の充填密度を減少させることにより、拘束力F2を低減させることができる。小片体の充填密度の調整は、小片体の平均直径を調整することにより実現できる。すなわち、小片体の平均直径を小さくすることにより、充填密度を増加させ、小片体の平均直径を大きくすることにより、充填密度を減少させることができる。このように、第1実施形態では、小片体の平均直径を調整することにより、介在層121の拘束力F2が許容荷重以下となるように調整し、燃料電池200からの反応ガスまたは冷却媒体の漏れの発生を抑制している。
 以上説明した第1実施形態の燃料電池装置100では、燃料電池200と燃料電池ケース300との間に介在層121を形成し、かかる介在層121および燃料電池ケース300が上記式(1)を満たすので、燃料電池200に対して想定される慣性力Fgが加えられ、その慣性力Fgが介在層121および燃料電池ケース300に加えられても、介在層121および燃料電池ケース300の変形量は、変数X0よりも小さい。このため、介在層121および燃料電池ケース300の変形に伴って、燃料電池200を構成する各燃料電池セル7の位置ずれが生じた場合でも、かかる位置ずれを許容位置ずれ量X0よりも小さくできる。したがって、燃料電池200からの反応ガスまたは冷却媒体の漏れを抑制できる。
 また、介在層121は、上記式(2)および(3)を満たすので、介在層121のヤング率を大きくして介在層121の剛性を高めることができる。このため、合成層(介在層121と燃料電池ケース300との層)のばね定数(K1+K2)を同じ値としたまま、燃料電池ケース300のばね定数K2を低くし、燃料電池ケース300の剛性を低くすることができる。したがって、燃料電池ケース300の基材として比較的軽い基材(例えば、樹脂)を用いることが可能となる。
 また、介在層121は小片体により形成されるので、燃料電池200を燃料電池ケース300に収容した後に、燃料電池ケース300内に小片体を供給することにより、介在層121を形成することができる。加えて、小片体として、変数D0の1/2以下の直径を有する材料を利用するので、燃料電池200の表面と燃料電池ケース300の内側面との間の空隙に、小片体を密に充填することができる。このため、介在層121のヤング率を高めて、介在層121のばね定数K1を大きくすることができるので、燃料電池ケース300のばね係数K2を小さくできる。したがって、燃料電池ケース300を、剛性が低くて軽量な材料で形成できる。
 また、介在層121の拘束力F2が、反応ガスまたは冷却媒体の漏れが発生しない許容荷重よりも小さくなるように、介在層121を構成しているので、経年変化に伴って燃料電池200の積層方向の寸法変化が生じた場合でも、燃料電池200からの反応ガスまたは冷却媒体の漏れの発生を抑制できる。
 また、燃料電池装置100では、予め小片体供給部112(筒状部112a)の内部に小片体を充填しておくので、燃料電池装置100の使用に伴って燃料電池ケース300内部に空隙が生じた場合でも、小片体供給部112内部の小片体を利用して、かかる空隙を自動的に埋めることができる。
B.第2実施形態:
 図8は、第2実施形態の燃料電池装置の断面図である。図2に示す燃料電池装置100aは、燃料電池ケース300aの上部カバー113aが小片体供給部112を備えていない点と、介在層121に代えて、介在層121aを備えている点と、介在層121aが燃料電池200と底面カバー114との間にも形成されている点と、燃料電池装置の製造手順とにおいて、図2に示す第1実施形態の燃料電池装置100と異なり、他の構成は第1実施形態の燃料電池装置100と同じである。
 第2実施形態の介在層121aは、多数の袋体115により形成されている。袋体115は、可撓性を有する袋部材に小片体が充填された構造を有する。可撓性を有する袋部材としては、例えば、ポリエチレン等の樹脂製の袋や、ゴム製の袋を採用できる。また、袋部材の外観形状としては、例えば、球形や円筒形など、任意の形状とすることができる。第2実施形態の小片体は、第1実施形態において介在層121の基材として用いた小片体と同じである。図8では、袋体115と袋体115との間に空隙が表されているが、かかる空隙が生じないように、袋体115を敷き詰めることもできる。
 このような燃料電池装置100aは、例えば、以下のようにして製造することができる。まず、多数の袋体115と、燃料電池ケース300のケース部材と、燃料電池200とを用意する。次に、底面カバー114に袋体115を載置し、その上に燃料電池200を載置する。次に、燃料電池200の上面に袋体115を載置し、上部カバー113aおよび端面カバー111を燃料電池200に組み付ける。また、例えば、以下のような製造方法を採用してもよい。まず、多数の袋体115と、燃料電池ケース300のケース部材と、燃料電池200とを用意する。次に、底面カバー114に袋体115を載置すると共に、上部カバー113aの内側面のうち、燃料電池200の上面を覆う面に、袋体115を装着する。上部カバー113aと端面カバー111と底面カバー114とを、燃料電池200を覆うように互いに組み付けると共に燃料電池200に組み付ける。
 以上の構成を有する第2実施形態の燃料電池装置100aは、第1実施形態の燃料電池装置100と同様の効果を有する。加えて、第2実施形態の100aでは、介在層121aは、袋体115により形成されるので、燃料電池装置100aの製造時における小片体の飛散を抑制でき、小片体の取り扱いを容易にできる。また、燃料電池200の底面と底面カバー114との間にも介在層121aを形成することができるので、燃料電池200に対して、鉛直下方に向かう慣性力が加えられた場合にも、燃料電池200を構成する燃料電池セル7の位置ずれの発生を抑制できる。
C.変形例:
C1.変形例1:
 各実施形態では、介在層121および121aを形成する基材として、小片体を用いていたが、小片体以外の他の基材を用いてもよい。具体的には、例えば、ウレタン等の樹脂製の板状部材を厚み方向に圧縮して硬化させた部材を、介在層121および121aを形成する基材として用いてもよい。また、例えば、ガラス等からなる棒状部材を、介在層121および121aを形成する基材として用いてもよい。このような構成においても、上述した各実施形態の効果と同様な効果を有する。
C2.変形例2:
 各実施形態では、燃料電池ケース300および300aは、端面カバー111と、上部カバー113,113aと、底面カバー114との合計3つの部材で構成されていたが、本発明はこれに限定されるものではない。例えば、燃料電池200を覆う各面を構成する合計6つの板状部材により、燃料電池ケース300および300aを構成してもよい。また、上面を除く他の5つの面が予め接合された容器状部材と、上面を構成する蓋状部材との合計2つの部材により、燃料電池ケース300および300aを構成してもよい。このような構成においても、上述した各実施形態の効果と同様な効果を有する。
C3.変形例3:
 各実施形態では、介在層121および121aは、上記式(2)および(3)を満たしていたが、上記(2)および(3)を満たさない構成を採用してもよい。かかる構成では、介在層121および121aのヤング率は低く、介在層121および121aとしてのばね係数は小さい。しかしながら、合成層としてのばね係数(K1+K2)は大きく、上記式(1)を満たすので、燃料電池200に慣性力Fgが加えられた場合でも、燃料電池200における反応ガスまたは冷却媒体の漏れの発生を抑制できる。また、介在層121および121aにおいて、拘束力F2を許容荷重以上とすることもできる。この構成では、積層方向の寸法変化に伴う反応ガスまたは冷却媒体の漏れは抑制できない可能性はあるが、燃料電池200に慣性力Fgが加えられた場合に、反応ガスまたは冷却媒体の漏れの発生を抑制できる。
C4.変形例4:
 第1実施形態では、燃料電池200の各面のうち、燃料電池200の両端面および底面を除く他の面が、介在層121および燃料電池ケース300により覆われていた。また、第2実施形態では、燃料電池200の各面のうち、燃料電池200の両端面を除く他の面が介在層121aおよび燃料電池ケース300により覆われていた。しかしながら、本発明はこれらの構成に限定されるものではない。例えば、燃料電池200の各面のうち、積層方向に沿った少なくとも1つの側面が、介在層121、121aおよび燃料電池ケース300により覆われる構成を採用してもよい。なお、「積層方向に沿った少なくとも1つの側面」とは、燃料電池200の6つの面のうち、両端面を除く他の4つの面(上面、2つの端面および底面)の少なくとも1つの面を意味する。また、積層方向に沿った少なくとも1つの側面全体が、介在層121、121aおよび燃料電池ケース300により覆われる構成に代えて、積層方向に沿った少なくとも1つの側面のうち、少なくとも一部が介在層121、121aにより覆われる構成を採用することができる。すなわち、一般には、燃料電池200の積層方向に沿った側面の少なくとも一部を覆う外面カバー、および外面カバーと外面カバーにより覆われる側面との間に配置された介在層を、本発明において採用することができる。
C5.変形例5:
 各実施形態では、燃料電池装置100および100aは、電気自動車に搭載されていたが、電気自動車に代えて、ハイブリッド自動車や、船舶や、ロボットなどの各種移動体に適用することもできる。また、燃料電池装置100および100aを定置型電源として用いることもできる。
 本発明は、上述の実施形態や実施形態、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
  1…電解質膜
  2、3…電極
  4…膜電極接合体
  5、6…セパレータ
  7、7e…燃料電池セル
  10…貫通孔
  100、100a…燃料電池装置
  111…端面カバー
  112…小片体供給部
  112a…筒状部
  112b…蓋部
  113、113a…上部カバー
  114…底面カバー
  115…袋体
  121、121a…介在層
  200…燃料電池
  300、300a…燃料電池ケース
  500…サイドメンバ
  F1…応力
  F2…拘束力
  FB…応力
  Fg…慣性力

Claims (10)

  1.  燃料電池装置であって、
     複数の燃料電池セルが積層された構造を有する燃料電池と、
     前記燃料電池の積層方向に沿った側面の少なくとも一部を覆う外面カバーと、
     前記外面カバーと前記外面カバーにより覆われる前記側面との間に配置された介在層と、
     を備え、
     前記外面カバーおよび前記介在層は、前記介在層のばね定数をK1とし、前記外面カバーのばね定数をK2とし、前記燃料電池に加えられる慣性力をFgとし、前記燃料電池における前記燃料電池セルの許容ずれ量をX0としたとき、X0>Fg/(K1+K2)を満たす、燃料電池装置。
  2.  請求項1に記載の燃料電池装置において、
     前記介在層は、前記介在層のヤング率をEとし、前記介在層の厚みをDとし、前記外面カバーと前記外面カバーにより覆われる前記側面との間に最低限必要なクリアランスをD0とし、比例定数をαとしたとき、K1=α*E*(1/D)、およびD>D0を満たす、燃料電池装置。
  3.  請求項1または請求項2に記載の燃料電池装置において、
     前記介在層は、複数の小片体により形成されている、燃料電池装置。
  4.  請求項3に記載の燃料電池装置において、
     前記複数の燃料電池セルのうち、端に位置する燃料電池セルに対する前記介在層による拘束力は、該燃料電池セルに対する前記積層方向に沿った許容荷重よりも小さい、燃料電池装置。
  5.  請求項3または請求項4に記載の燃料電池装置において、
     前記小片体の外観形状は、球形であり、
     前記小片体の平均直径は、前記外面カバーと前記外面カバーにより覆われる前記側面との間に最低限必要なクリアランスの1/2以下である、燃料電池装置。
  6.  請求項3から請求項5までのいずれか一項に記載の燃料電池装置において、
     前記外面カバーは、前記燃料電池の積層方向に沿ったすべての側面を覆うと共に、前記燃料電池が載置された状態において、前記燃料電池の鉛直上面を覆う面に、前記小片体を供給する供給部を有し、
     前記供給部は、収容部と、前記収容部に収容された前記小片体と、を有し、前記小片体の重みを利用して、前記外面カバーと前記燃料電池との間に小片体を供給する、燃料電池装置。
  7.  請求項1または請求項2に記載の燃料電池装置において、
     前記介在層は、多数の小片体が封入された可撓性を有する袋体により形成されている、燃料電池装置。
  8.  請求項3から請求項7のいずれか一項に記載の燃料電池装置において、
     前記小片体は、砂と、樹脂製ビーズと、ガラスビーズとのうち、少なくとも1つを含む、燃料電池装置。
  9.  請求項1から請求項8のいずれか一項に記載の燃料電池装置において、
     前記燃料電池には、反応ガスおよび冷却媒体が供給され、
     前記許容ずれ量は、前記積層方向に対して垂直な方向の前記燃料電池セルの位置のずれ量であって、前記燃料電池において前記反応ガスまたは前記冷却媒体の漏れが生じない上限のずれ量である、燃料電池装置。
  10.  燃料電池装置の製造方法であって、
     (a)複数の燃料電池セルが積層された構造を有する燃料電池を用意する工程と、
     (b)前記燃料電池の積層方向に沿ったすべての側面を覆うように、外面カバーにより前記燃料電池を覆う工程と、
     (c)前記外面カバーと前記燃料電池とに振動を与えながら、前記外面カバーと前記燃料電池との間に小片体を供給して、前記外面カバーと前記側面との間に、前記小片体により形成された介在層を形成する工程と、
     を備え、
     前記工程(c)は、
     (c1)前記介在層のばね定数をK1とし、前記外面カバーのばね定数をK2とし、前記燃料電池に加えられる慣性力をFgとし、前記燃料電池における前記燃料電池セルの許容ずれ量をX0としたとき、X0>Fg/(K1+K2)を満たす層を、前記介在層として形成する工程を含む、燃料電池装置の製造方法。
PCT/JP2014/000492 2013-02-26 2014-01-30 燃料電池装置およびその製造方法 WO2014132562A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480010352.3A CN105074988A (zh) 2013-02-26 2014-01-30 燃料电池装置及其制造方法
KR1020157022506A KR20150108406A (ko) 2013-02-26 2014-01-30 연료 전지 장치 및 그 제조 방법
EP14757123.6A EP2963724A4 (en) 2013-02-26 2014-01-30 FUEL CELL DEVICE AND METHOD OF MANUFACTURING THE SAME
US14/769,184 US20150380762A1 (en) 2013-02-26 2014-01-30 Fuel cell apparatus and manufacturing method of the same
JP2015502736A JPWO2014132562A1 (ja) 2013-02-26 2014-01-30 燃料電池装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-035296 2013-02-26
JP2013035296 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132562A1 true WO2014132562A1 (ja) 2014-09-04

Family

ID=51427842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000492 WO2014132562A1 (ja) 2013-02-26 2014-01-30 燃料電池装置およびその製造方法

Country Status (6)

Country Link
US (1) US20150380762A1 (ja)
EP (1) EP2963724A4 (ja)
JP (1) JPWO2014132562A1 (ja)
KR (1) KR20150108406A (ja)
CN (1) CN105074988A (ja)
WO (1) WO2014132562A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062713A (ja) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2016076309A (ja) * 2014-10-02 2016-05-12 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2016091831A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2016122552A (ja) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 燃料電池ホットモジュール
JP2016164856A (ja) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 燃料電池スタック製造装置及び燃料電池スタックの製造方法
JP2016195017A (ja) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 燃料電池スタック
US9520612B2 (en) 2013-10-22 2016-12-13 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2017091641A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 燃料電池の製造方法
JP2018037156A (ja) * 2016-08-29 2018-03-08 トヨタ自動車株式会社 燃料電池の製造方法
JPWO2018079751A1 (ja) * 2016-10-31 2019-09-19 京セラ株式会社 燃料電池モジュールおよび燃料電池装置
DE102019126358A1 (de) 2018-10-31 2020-05-14 Toyota Jidosha Kabushiki Kaisha Stapelgehäuse und äußeres Rückhalteelement für eine Brennstoffzelle
JP2020170632A (ja) * 2019-04-03 2020-10-15 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765588B1 (ko) * 2015-09-25 2017-08-07 현대자동차 주식회사 연료전지 스택 조립 장치 및 그의 제어방법
DE102020211578A1 (de) 2020-09-16 2022-03-17 Robert Bosch Gesellschaft mit beschränkter Haftung Eingehauster Brennstoffzellenstapel, Brennstoffzellensystem mit Brennstoffzellenstapel sowie Verfahren zur Herstellung eines eingehausten Brennstoffzellenstapels

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352956U (ja) * 1989-09-29 1991-05-22
JPH0456076A (ja) * 1990-06-22 1992-02-24 Toshiba Corp 燃料電池
JPH0670164U (ja) * 1993-03-15 1994-09-30 三菱重工業株式会社 平板型固体電解質燃料電池
JP2003203670A (ja) 2001-06-08 2003-07-18 Toyota Motor Corp 燃料電池
JP2005071869A (ja) * 2003-08-26 2005-03-17 Honda Motor Co Ltd 燃料電池スタック
JP2005285405A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 燃料電池スタック

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834059B2 (ja) * 2013-10-22 2015-12-16 トヨタ自動車株式会社 燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352956U (ja) * 1989-09-29 1991-05-22
JPH0456076A (ja) * 1990-06-22 1992-02-24 Toshiba Corp 燃料電池
JPH0670164U (ja) * 1993-03-15 1994-09-30 三菱重工業株式会社 平板型固体電解質燃料電池
JP2003203670A (ja) 2001-06-08 2003-07-18 Toyota Motor Corp 燃料電池
JP2005071869A (ja) * 2003-08-26 2005-03-17 Honda Motor Co Ltd 燃料電池スタック
JP2005285405A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2963724A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520612B2 (en) 2013-10-22 2016-12-13 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2016062713A (ja) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2016076309A (ja) * 2014-10-02 2016-05-12 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2016091831A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2016122552A (ja) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 燃料電池ホットモジュール
JP2016164856A (ja) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 燃料電池スタック製造装置及び燃料電池スタックの製造方法
JP2016195017A (ja) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 燃料電池スタック
JP2017091641A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 燃料電池の製造方法
JP2018037156A (ja) * 2016-08-29 2018-03-08 トヨタ自動車株式会社 燃料電池の製造方法
JPWO2018079751A1 (ja) * 2016-10-31 2019-09-19 京セラ株式会社 燃料電池モジュールおよび燃料電池装置
DE102019126358A1 (de) 2018-10-31 2020-05-14 Toyota Jidosha Kabushiki Kaisha Stapelgehäuse und äußeres Rückhalteelement für eine Brennstoffzelle
US11101486B2 (en) 2018-10-31 2021-08-24 Toyota Jidosha Kabushiki Kaisha Stack case and outer restraining member for fuel cell
JP2020170632A (ja) * 2019-04-03 2020-10-15 森村Sofcテクノロジー株式会社 電気化学反応セルスタック
JP7103988B2 (ja) 2019-04-03 2022-07-20 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Also Published As

Publication number Publication date
CN105074988A (zh) 2015-11-18
EP2963724A1 (en) 2016-01-06
JPWO2014132562A1 (ja) 2017-02-02
KR20150108406A (ko) 2015-09-25
US20150380762A1 (en) 2015-12-31
EP2963724A4 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2014132562A1 (ja) 燃料電池装置およびその製造方法
US11101494B2 (en) Battery assembly manufacturing method
JP5711852B2 (ja) 構造的信頼性に優れる電池パック
KR102018301B1 (ko) 배터리 모듈 및 그 제조 방법
JP4501080B2 (ja) 組電池およびその製造方法
JP5690924B2 (ja) 組電池および単電池
JP5834059B2 (ja) 燃料電池
JP6990642B2 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
US8785033B2 (en) Assembled battery
US20160268573A1 (en) Battery pack spacer
US9748598B2 (en) Battery pack
JP2017195018A (ja) 電池パック
KR20140016955A (ko) 전기 에너지를 저장하기 위한 전기화학 전지
US20220045397A1 (en) Battery pack
JP3575476B2 (ja) 組電池
KR102148497B1 (ko) 배터리 팩
JP7356497B2 (ja) 隣接する電池セルを絶縁するためのセパレータおよび電源装置
JP2014216086A (ja) 電池
CN106374058B (zh) 张紧电池组外壳
JP5573812B2 (ja) 電池の製造方法
JP2020061210A (ja) 電池モジュール
JP6211757B2 (ja) 蓄電装置
KR20160050843A (ko) 스웰링 대응구조를 구비하는 엔드플레이트 및 이를 포함하는 배터리모듈
JP6948564B2 (ja) 電池モジュール
JP2020177747A (ja) 電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010352.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502736

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014757123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014757123

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157022506

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769184

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE