WO2014132417A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2014132417A1
WO2014132417A1 PCT/JP2013/055557 JP2013055557W WO2014132417A1 WO 2014132417 A1 WO2014132417 A1 WO 2014132417A1 JP 2013055557 W JP2013055557 W JP 2013055557W WO 2014132417 A1 WO2014132417 A1 WO 2014132417A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
speed
torque command
battery
control unit
Prior art date
Application number
PCT/JP2013/055557
Other languages
English (en)
French (fr)
Inventor
裕司 菊山
由孝 小野寺
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2013/055557 priority Critical patent/WO2014132417A1/ja
Priority to CN201380001764.6A priority patent/CN104136269B/zh
Priority to US14/126,893 priority patent/US9637126B2/en
Priority to JP2013544043A priority patent/JP5592026B1/ja
Priority to DE112013000102.0T priority patent/DE112013000102T5/de
Publication of WO2014132417A1 publication Critical patent/WO2014132417A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a work vehicle that is driven by an electric motor.
  • Patent Document 1 describes a technique related to a travel control device for a battery-powered vehicle.
  • switchback when the work vehicle is a forklift, an operation called switchback may be performed during cargo handling work.
  • the switchback is an operation in which the actual traveling direction of the work vehicle is different from a command for defining the traveling direction.
  • the work vehicle may move forward and go down a slope because of a steep slope, etc. (and vice versa) .
  • a control for suppressing the work vehicle from sliding down the slope may be involved. For this reason, it is necessary to make compatible both the switchback operation and the control for suppressing the sliding down.
  • An object of the present invention is to suppress sudden acceleration / deceleration, etc., which occur in a work vehicle when a switchback operation and suppression of sliding down on a slope occur at the same time in a work vehicle that is driven by an electric motor.
  • the present invention is a work vehicle including at least an electric motor for traveling, and generates a speed command value for controlling the electric motor, and a torque command value that is a command value of torque to be generated by the electric motor and the work vehicle.
  • the first control unit that generates the first torque command value by giving the actual traveling speed of the work vehicle to the relationship with the traveling speed, the speed command value generated by the first control unit, and the actual traveling speed.
  • a second torque command value is generated, and when the work vehicle is moving forward, the smaller one of the first torque command value and the second torque command value is used to control the electric motor.
  • a second control unit that controls the electric motor using a larger one of the first torque command value and the second torque command value when the vehicle is moving backward, and the first control unit includes the work vehicle.
  • Actual progress If the direction and the traveling direction command value for defining the direction of travel of the work vehicle differs, determining the velocity command value based on the actual traveling speed at which this difference occurs.
  • the first control unit preferably sets the speed command value to a value larger than the absolute value of the actual traveling speed when the difference occurs.
  • the first control unit does not make the speed command value larger than a value generated when the difference occurs.
  • the first control unit preferably sets the absolute value of the speed command value to a value larger than 0 when the actual traveling speed changes from zero.
  • the relationship between the first torque command value and the traveling speed of the work vehicle varies depending on the accelerator opening of the work vehicle.
  • the first control unit decreases the speed command value as the actual traveling speed approaches zero.
  • the rotor preferably has a permanent magnet.
  • the present invention is a work vehicle including at least an electric motor for traveling, and generates a speed command value for controlling the electric motor, and a torque command value that is a command value of torque to be generated by the electric motor and the work vehicle.
  • the first control unit Based on the speed command value generated by the first control unit, the first control unit that generates the first torque command value by giving the actual traveling speed of the work vehicle to the first relationship with the traveling speed, A second torque command value is generated by giving the actual traveling speed to a second relationship between the torque command value and the traveling speed, and when the work vehicle is moving forward, the first torque command value and the second torque
  • the smaller one of the torque command values is used to control the electric motor, and when the work vehicle is moving backward, the larger one of the first torque command value and the second torque command value is used to control the electric motor.
  • the first control unit determines the speed command value based on an actual traveling direction of the work vehicle and a traveling direction command value that defines the traveling direction of the work vehicle, and the actual If the travel direction command that defines the travel direction of the work vehicle is different, the speed command value is determined based on the speed when the difference occurs, and the actual travel speed is When the speed is changed, the speed command value is set to a value whose absolute value is larger than zero.
  • the present invention can suppress sudden acceleration / deceleration and the like that occur in the work vehicle when the switchback operation and the suppression of the sliding down on the slope occur simultaneously in the work vehicle that is driven by the electric motor.
  • FIG. 1 is a side view showing a state in which the work vehicle according to the present embodiment is viewed from the left side.
  • FIG. 2 is a perspective view showing a state in which the work vehicle according to the present embodiment is viewed obliquely from the upper left rear side.
  • FIG. 3 is a schematic diagram showing a control system for a traveling electric motor provided in the battery-type forklift according to the present embodiment.
  • FIG. 4 is a schematic diagram illustrating the first control unit and the second control unit.
  • FIG. 5 is a conceptual diagram showing an example of a control map used by the first control unit and the second control unit to control the electric motor for traveling.
  • FIG. 6 is a flowchart illustrating an example of a procedure when the first control unit and the second control unit control the traveling motor.
  • FIG. 7 is a flowchart showing a control example of the electric motor for traveling according to the present embodiment.
  • FIG. 8 is a diagram illustrating the relationship between the speed limit command and the actual traveling speed in the slope control and the switchback control.
  • FIG. 9 is a diagram showing a state where the battery-type forklift is on an uphill.
  • FIG. 10 is a diagram for explaining the operation of the third torque command value and the battery-type forklift in the slope control.
  • FIG. 11 is a diagram showing a state where the battery-type forklift is on an uphill and the accelerator is stepped on.
  • FIG. 12 is a diagram for explaining the operation of the third torque command value and the battery-type forklift in the state shown in FIG. FIG.
  • FIG. 13 is a diagram showing a state where the battery-type forklift is on a downhill.
  • FIG. 14 is a diagram for explaining the operation of the third torque command value and the battery-type forklift in the slope control.
  • FIG. 15 is a diagram illustrating an example of the switchback operation.
  • FIG. 16 is a diagram showing a state where the battery-type forklift is powering and moving forward.
  • FIG. 17 is a diagram for explaining a torque command value in a state where the battery-type forklift is powering and moving forward.
  • FIG. 18 is a diagram illustrating that the battery-type forklift is switched back.
  • FIG. 19 is a diagram for explaining a torque command value when the battery-type forklift is switched back.
  • FIG. 20 is a diagram illustrating the battery-type forklift during the switchback operation.
  • FIG. 21 is a diagram for explaining a torque command value during the switchback operation.
  • FIG. 22 is a diagram showing a battery-type forklift whose traveling direction is reversed by deceleration.
  • FIG. 23 is a diagram for explaining a torque command value when the traveling direction is reversed by deceleration.
  • FIG. 24 is a diagram showing a battery-type forklift that travels downhill after entering the switchback control.
  • FIG. 25 is a diagram for explaining a torque command value when traveling downhill after entering the switchback control.
  • FIG. 26 is a diagram illustrating a state in which the accelerator is opened and the vehicle moves backward when the battery-type forklift is on the downhill.
  • FIG. 27 is a diagram for explaining a torque command value in a state where the accelerator is opened and the vehicle moves backward when the battery-type forklift is on a downhill.
  • FIG. 28 is a diagram illustrating a state in which switchback control is executed when the battery-type forklift is on a downhill.
  • FIG. 29 is a diagram for explaining a torque command value in the switchback control when the battery-type forklift is on a downhill.
  • FIG. 30 is a control block diagram of a speed command value generation unit provided in the first control unit.
  • FIG. 31 is a diagram for explaining the shift amount of the speed limit command determined by the shift amount determination unit.
  • FIG. 32 is a diagram illustrating an example when the speed limit command is changed based on the shift amount.
  • FIG. 33 is a diagram for explaining an example of a method in which the speed command value generation unit of the first control unit determines the control state of the second control unit.
  • FIG. 34 is a diagram for explaining an example of a method in which the speed command value generation unit of the first control unit determines the control state of the second control unit.
  • FIG. 35 is a diagram for explaining an example of a method in which the speed command value generation unit of the first control unit determines the control state of the second control unit.
  • FIG. 36 is a diagram illustrating a change example of the speed limit command when the second control unit is controlling the electric motor for traveling according to the first torque command value.
  • FIG. 37 is a view showing a state where the accelerator pedal is opened when the battery-type forklift is on a downhill.
  • FIG. 38 is a diagram for explaining torque command values when the accelerator pedal is opened when the battery-type forklift is on a downhill.
  • FIG. 1 is a side view showing the work vehicle according to the present embodiment as viewed from the left side.
  • FIG. 2 is a perspective view showing a state in which the work vehicle according to the present embodiment is viewed obliquely from the upper left rear side.
  • a battery-type forklift 1 will be described as an example of a work vehicle that is driven by an electric motor, but the work vehicle is not limited to this.
  • the work vehicle may be a wheel loader, a hydraulic excavator or the like driven by electric power from a battery or electric power obtained from a generator driven by an engine or the like.
  • the side where the fork 13 is provided is the front F
  • the side where the counterweight 20 is provided is the rear B.
  • the side from the driver's seat 34 toward the handle 36 as the operating device is the front F
  • the side from the handle 36 toward the driver's seat 34 is the rear B.
  • the operation device includes a handle 36 used for steering the work vehicle and an operation lever for operating the work machine in a hydraulic excavator or a wheel loader.
  • left and right refer to the left and right with respect to the front F.
  • the left-right direction is the width direction of the vehicle body 10 as the main body of the work vehicle.
  • the upper U is a side that is orthogonal to a plane (a ground plane) that contacts at least three of the front wheels 11 and the rear wheels 12 and that faces the rotation center axis of the front wheels 11 and the rear wheels 12 from the ground plane.
  • a lower part D is a side from the rotation center axis of the front wheel 11 and the rear wheel 12 toward the ground plane.
  • a front-rear axis An axis that extends in the front-rear direction of the vehicle body 10 and passes through the center in the width direction of the vehicle body 10 is referred to as a front-rear axis, and an axis that is orthogonal to the front-rear axis and that extends in the left-right direction of the vehicle body 10 is referred to as a left-right axis.
  • An axis that extends in the vertical direction of the vehicle body 10 is referred to as a vertical axis.
  • the vertical axis is orthogonal to both the front-rear axis and the left-right axis.
  • the plan view means a state viewed from above U.
  • the battery-type forklift 1 includes front wheels 11 at the front corners of the vehicle body 10 and rear wheels 12 at the rear corners of the vehicle body 10.
  • the battery-type forklift 1 travels when the front wheels 11 are driven by a traveling motor (traveling motor) 50 provided behind the front wheels 11. More specifically, the output of the traveling motor 50 is transmitted to both the front wheels 11 and 11 via the power transmission device 51 having a deceleration function to drive them.
  • traveling motor traveling motor
  • a PM (Permanent Magnet) type that is, a motor whose rotor has a permanent magnet can be used as the traveling motor 50.
  • a PM type electric motor When a PM type electric motor is used as the traveling electric motor 50, it may be an SPM (Surface Permanent Magnet) type or an IPM (Interior Permanent Magnet) type.
  • a fork 13 for loading / unloading or moving luggage is provided in front F of the vehicle body 10.
  • the fork 13 is supported by a mast 14 provided along the vertical direction.
  • the fork 13 moves up and down along the mast 14 by driving a mast cylinder 15 provided between the fork 13 and the mast 14.
  • the mast 14 is attached to the vehicle body 10 so as to be rotatable about the left and right axis at the lower end portion thereof.
  • the mast 14 includes a tilt cylinder (not shown) between the mast 14 and the vehicle body 10.
  • the mast 14 can take a forward leaning posture or a backward leaning posture with respect to the vehicle body 10 by driving a tilt cylinder.
  • a counterweight 20 is provided at the rear end of the vehicle body 10.
  • the counterweight 20 is a weight for balancing when the fork 13 supports a load.
  • the counterweight 20 is made of metal, but is not limited thereto.
  • the counterweight 20 is disposed in a part extending from the part above the rear wheel 12 to the rear end in the vehicle body 10.
  • the counterweight 20 is formed so as to have a concave portion opened in the front-rear direction on the upper surface.
  • a pair of columnar members 22 project upward from both sides of the weight body 21 having a flat upper surface, whereby the counterweight 20 having a recess on the upper surface is formed.
  • the columnar member 22 protrudes from the portions facing each other on both sides of the weight body 21 toward the upper U and the front F of the vehicle body 10, and has a convex portion having guide surfaces parallel to each other along the front-rear direction of the vehicle body 10. It is formed integrally with the weight main body 21.
  • the rear surface of the counterweight 20 is covered with a resin weight cover 23.
  • a battery 30 serving as a power source is mounted at the center of the vehicle body 10.
  • the battery 30 is an open type battery in which a plurality of battery cells are accommodated in a battery case 31 having a rectangular parallelepiped shape whose upper surface is opened, and the battery cells are opened.
  • the battery 30 is not limited to such an open type.
  • the battery case 31 has a dimension along the width direction of the vehicle body 10 that is slightly smaller than the distance between the pair of columnar members 22. With such a structure, the battery case 31 can pass between the pair of columnar members 22. As shown in FIG.
  • the battery 30 is mounted on a battery mounting surface 24 that is set to the front F of the weight body 21 and the lower side D of the upper surface 21 a of the weight body 21 in the vehicle body 10. .
  • the position of the battery mounting surface 24 is set so that the rear upper portion of the battery 30 is interposed between the columnar members 22 and overlaps the counterweight 20. It is.
  • a battery hood 33 is disposed above the battery 30 mounted on the battery mounting surface 24, and a driver seat 34 is disposed on the upper surface of the battery hood 33.
  • the battery hood 33 has a size sufficient to cover the upper surface of the battery case 31, and a front end edge of the battery hood 33 is attached to the support bracket 35 of the vehicle body 10 via the support shaft 33 a along the left-right direction of the vehicle body 10. It is supported.
  • the support bracket 35 that supports the battery hood 33 is erected upward U from a portion located at the front end of the battery placement surface 24.
  • the battery hood 33 is rotated about the axis of the support shaft 33a so that the horizontal position covering the upper U of the battery 30 and the forward tilt position where the rear end edge jumps up to the upper U to open the upper U of the battery 30. It is possible to move to.
  • the battery hood 33 is moved to a state where the upper portion U of the battery 30 is opened and the forward tilt position is set. In this state, the battery 30 is lifted above the upper portion U of the vehicle body 10 and pulled out backward B to be taken out. The charged battery 30 is moved from the rear B of the vehicle body 10 to the upper portion U of the battery placement surface 24 in a suspended state, and is mounted on the battery placement surface 24.
  • a top plate 40 is provided above the vehicle body 10.
  • the top plate 40 is configured by arranging a plurality of crosspieces 42 on a substantially rectangular frame 41 having a size covering the upper portion U of the driver's seat 34, and extends along the width direction of the vehicle body 10. The dimensions are smaller than the vehicle body 10.
  • the top plate 40 is attached to the vehicle body 10 via a pair of front stays 43 and a pair of rear stays 44.
  • the front stay 43 extends from the front end corner portion of the top plate 40 so as to incline forward F toward the lower side D, and the respective lower end portions are fixed to the front end portion of the vehicle body 10. is there.
  • the distance between the front stays 43 is substantially the same over the entire length.
  • the rear stay 44 includes a widened portion 44a that protrudes linearly toward the side so as to gradually move away from the rear end corner of the top plate 40 in the downward direction D, and substantially downward from the lower end of the widened portion 44a.
  • the stay main body 44b extends toward the rear and is fixed to the rear end of the vehicle body 10 at each lower end.
  • the mutual interval between the stay main body portions 44b arranged in parallel with each other in the rear stay 44 is substantially the same as the mutual interval between the columnar members 22, and the battery case 31 and the battery hood 33 can be passed therethrough.
  • the position where the stay main body portion 44b and the expanding portion 44a intersect does not interfere with the rear stay 44 even when the battery hood 33 in the horizontal position is moved to the forward tilt position, and the battery 30 is disposed at the battery transfer position. In such a case, the position is set as high as possible so as not to interfere with the battery case 31.
  • the battery-type forklift 1 includes an accelerator pedal 37, a brake pedal 38, and a traveling direction switching lever 39.
  • the accelerator pedal 37 is an operation member that controls the output and rotation direction of the electric motor 50 for traveling.
  • the brake pedal 38 is an operation member for stopping the battery-type forklift 1.
  • the traveling direction switching lever 39 is an operation member for switching the traveling direction of the battery-type forklift 1 to either the front F or the rear B.
  • the battery-type forklift 1 includes an operation panel 52 in the front F of the handle 36.
  • the operation panel 52 has an input unit for making various settings for the battery-type forklift 1 and a display unit for displaying information on the state of the battery-type forklift 1.
  • the operator of the battery-type forklift 1 makes various settings for the battery-type forklift 1 via the operation panel 52.
  • the information on the state of the battery-type forklift 1 displayed on the display unit of the operation panel 52 is, for example, the state of the battery 30 or the hydraulic pressure of hydraulic oil supplied to the mast cylinder 15 or the like. Supplied from a hydraulic pump driven by the cargo handling electric motor 55.
  • FIG. 3 is a schematic diagram showing a control system for a traveling electric motor provided in the battery-type forklift according to the present embodiment.
  • the control system 2 of the traveling motor 50 includes a first control unit 101 and a second control unit 102 provided in the inverter 54.
  • the first control unit 101 and the second control unit 102 may be incorporated in the same control device, for example.
  • the inverter 54 and the second control unit 102 may be separate.
  • the first control unit 101, the second control unit 102, and the inverter 54 are supplied with power from the battery 30 via the DC / DC converter 53.
  • the DC / DC converter 53 converts the voltage of the battery 30 into voltages required by the first control unit 101, the second control unit 102, and the inverter 54, and applies them to these.
  • the first control unit 101 and the second control unit 102 are computers including a CPU (Central Processing Unit) and a memory.
  • the inverter 54 supplies a drive current to the cargo handling motor 55 that drives the traveling motor 50 and the hydraulic pump 56 based on a command from the second control unit 102.
  • the first control unit 101 and the second control unit 102 are connected via a communication line 110.
  • the communication line 110 may be an in-vehicle communication line.
  • the first control unit 101 and the second control unit 102 transmit / receive signals or information to / from each other via the communication line 110.
  • the first control unit 101 transmits, for example, a first torque command value Tcf as a command value of torque to be generated in the traveling motor 50 and a speed limit command Vlim as a speed command value to the second control unit 102.
  • the second control unit 102 transmits, for example, the rotation speed (the number of rotations per unit time, hereinafter also referred to as the motor rotation number) N of the traveling motor 50 acquired from the traveling motor 50 to the first control unit 101. To do.
  • the first control unit 101 is connected with an accelerator opening sensor 37C, a traveling direction switching lever 39, and an operation panel 52.
  • the accelerator opening sensor 37C detects the opening of the accelerator pedal 37, converts the detected opening into an electrical signal, and outputs it.
  • the traveling direction switching lever 39 outputs a command value corresponding to, for example, forward, neutral and reverse positions. For example, when the setting of the battery-type forklift 1 is changed, the operation panel 52 outputs a new set value after the change.
  • FIG. 4 is a schematic diagram illustrating the first control unit and the second control unit.
  • the first control unit 101 includes a first torque command value generation unit 103 and a speed command value generation unit 104.
  • the second control unit 102 includes a second torque command value generation unit 105 and a torque command value generation unit 106.
  • the second torque command value generation unit 105 includes a subtraction unit 107 and a multiplication unit 108.
  • the first torque command value generation unit 103 of the first control unit 101 receives the accelerator opening ACo, the traveling direction command value DR, the set value UST, and the motor rotation speed N. Based on these inputs, the first torque command value generation unit 103 generates a first torque command value Tcf.
  • the speed command value generation unit 104 receives the accelerator opening ACo, the set value UST, the motor rotation speed N, and the first torque command value Tcf. Based on these inputs, the speed command value generation unit 104 generates a speed limit command Vlim as a speed command value.
  • the accelerator opening ACo is a signal output from the accelerator opening sensor 37C shown in FIG. 3 and has a value corresponding to the opening of the accelerator pedal 37.
  • the traveling direction command value DR is a signal output from the traveling direction switching lever 39 and is a signal that defines the traveling direction of the battery-type forklift 1.
  • the set value UST is a signal output from the operation panel 52 and corresponds to various set values of the battery-type forklift 1.
  • the motor rotation speed N is a signal output from a rotation speed detection sensor 50R attached to the traveling motor 50, and has a value corresponding to the rotation speed of the traveling motor 50. For example, a resolver or the like is used as the rotation speed detection sensor 50R.
  • the motor rotation speed N can be converted into an actual speed (actual traveling speed) Vr at which the battery-type forklift 1 travels. That is, the motor rotation speed N is calculated by using the reduction ratio of the power transmission device 51 shown in FIG. 1 and the radius of the front wheel 11 (more specifically, the radius from the rotation center of the front wheel 11 to the ground contact surface). Converted to speed.
  • the subtraction unit 107 included in the second torque command value generation unit 105 of the second control unit 102 includes the speed limit command Vlim generated by the speed command value generation unit 104 and the motor rotation detected and output by the rotation speed detection sensor 50R.
  • the number N is entered.
  • the subtractor 107 calculates and outputs a difference ⁇ V between the speed limit command Vlim and the motor rotation speed N.
  • the second control unit 102 converts the motor rotation speed N into an actual traveling speed Vr and inputs the actual traveling speed Vr to the subtraction unit 107.
  • the multiplication unit 108 multiplies the difference ⁇ V by the coefficient ⁇ , and outputs the result ⁇ ⁇ ⁇ V to the torque command value generation unit 106 as the second torque command value Tcs.
  • the torque command value generation unit 106 receives the first torque command value Tcf generated by the first torque command value generation unit 103 and the second torque command value Tcs generated by the second torque command value generation unit 105.
  • the torque command value generation unit 106 uses either the input first torque command value Tcf or the second torque command value Tcs as a torque command value (actual torque command value) to be generated by the traveling motor 50. Output to.
  • the torque command value output by the torque command value generation unit 106 is appropriately referred to as a third torque command value Tci.
  • the third torque command value Tci generated by the torque command value generation unit 106 of the second control unit 102 is input to the inverter 54.
  • the inverter 54 supplies the current required for the traveling motor 50 to generate torque corresponding to the third torque command value Tci to the traveling motor 50 as the driving current Im to drive it.
  • FIG. 5 is a conceptual diagram showing an example of a control map used by the first control unit and the second control unit to control the electric motor for traveling.
  • FIG. 6 is a flowchart illustrating an example of a procedure when the first control unit and the second control unit control the traveling motor.
  • the first control unit 101 generates a first torque command value Tcf according to the control map MP (step S11).
  • the second control unit 102 generates a second torque command value Tcs based on the speed limit command Vlim and the actual travel speed Vr (step S12), and either the first torque command value Tcf or the second torque command value Tcs.
  • the control map MP is described in an orthogonal coordinate system with the torque command value Tc as the vertical axis and the traveling speed V as the horizontal axis.
  • the first torque command value Tcf is generated by the first control unit 101
  • the second torque command value Tcs is generated by the second control unit 102.
  • the control map MP shown in FIG. 5 is stored in the storage unit of the first control unit 101, for example.
  • the relationship between the traveling speed V and the torque command value Tc when the battery-type forklift 1 moves forward and powers is described.
  • the relationship between the traveling speed V and the torque command value Tc when the battery-type forklift 1 reverses and regenerates is described.
  • the third quadrant S3 the relationship between the traveling speed V and the torque command value Tc when the battery-type forklift 1 moves backward and powers is described.
  • the fourth quadrant S4 describes the relationship between the traveling speed V and the torque command value Tc when the battery-type forklift 1 moves forward and regenerates.
  • the first torque command value generation unit 103 of the first control unit 101 shown in FIG. 4 is a relationship between a torque command value Tc that is a command value of torque generated by the traveling motor 50 and the traveling speed V of the battery-type forklift 1 (
  • the actual traveling speed (hereinafter referred to as actual traveling speed) Vr of the battery-type forklift 1 is given to Ct as appropriate (referred to as a torque command curve) to generate a first torque command value Tcf (step S11).
  • the torque command curve Ct is a relationship between the traveling speed V of the battery-type forklift 1 and the torque command value Tc, and the torque command value Tc is uniquely determined with respect to the traveling speed V.
  • the torque command curve Ct is set, for example, as a traction force curve or a braking force curve of the traveling motor 50.
  • a plurality of torque command curves Ct are set corresponding to the magnitude of the accelerator opening ACo.
  • the torque command curve Ct has a larger absolute value of the torque command value Tc for the same travel speed V.
  • the accelerator opening ACo is set to be large. In the first quadrant S1, the accelerator opening ACo is larger in the torque command curve Ct2 than in the torque command curve Ct1.
  • the first torque command value Tcf is a control map when the first torque command value generation unit 103 gives the actual travel speed Vr to the torque command curve Ct (for example, the torque command curve Ct1) corresponding to the accelerator opening ACo. It is the value (torque command value Tc) on the vertical axis of MP. Thus, the torque command curve Ct changes with the accelerator opening ACo.
  • the speed command value generation unit 104 of the first control unit 101 shown in FIG. 4 generates a speed limit command Vlim.
  • the speed limit command Vlim is used to control the traveling electric motor 50.
  • the speed limit command Vlim varies depending on the traveling state of the battery-type forklift 1. Details of the speed limit command Vlim will be described later.
  • the second torque command value generation unit 105 of the second control unit 102 generates the second torque command value Tcs based on the speed limit command Vlim and the actual travel speed Vr (step S12). Specifically, as described above, the second torque command value generation unit 105 multiplies the difference ⁇ V between the speed limit command Vlim and the actual travel speed Vr by the coefficient ⁇ to obtain the second torque command value Tcs as ⁇ . X ⁇ V is generated. As shown in FIG. 5, the coefficient ⁇ is the slope of a straight line (speed limit line) Lv passing through the speed limit command Vlim.
  • the second torque command value generation unit 105 may have a plurality of coefficients ⁇ and change the coefficients ⁇ according to the traveling conditions or settings of the battery-type forklift 1.
  • the coefficient ⁇ is constant, the second torque command value Tcs changes along the speed limit line Lv due to changes in the actual travel speed Vr and the speed limit command Vlim.
  • the speed limit command Vlim and the speed limit line Lv are also described in the control map MP of FIG. 5, but these are related to the generation of the second torque command value Tcs, so that they are actually described in the control map MP. Not.
  • the torque command value generation unit 106 of the second control unit 102 shown in FIG. 4 selects one of the first torque command value Tcf and the second torque command value Tcs according to the traveling state of the battery-type forklift 1, Output as the third torque command value Tci.
  • the torque command value generation unit 106 selects the smaller one of the first torque command value Tcf and the second torque command value Tcs.
  • the traveling motor 50 is controlled using the 3 torque command value Tci (step S14).
  • the torque command value generation unit 106 determines the larger one of the first torque command value Tcf and the second torque command value Tcs as the third torque command value Tci. Is used to control the electric motor 50 for traveling (step S15).
  • the dotted straight line passing through the torque command value Tcu or -Tcu of the control map MP and parallel to the horizontal axis is the switchback regenerative force (braking force) UStt set by the operator of the battery-type forklift 1.
  • the switchback regenerative force (braking force) USSt is set, the first torque command value Tcf has the upper limit of the switchback regenerative force (braking force) UStt.
  • the first torque command value Tcf has the upper limit of the switchback regenerative force (braking force) USSt regardless of the torque command curve Ct.
  • the electric motor 50 for traveling uses the torque command value Tcu corresponding to the switchback regenerative force (braking force) USSt.
  • the actual traveling speed Vr of the battery-type forklift 1 is limited to the speed at which the traveling motor 50 outputs a torque corresponding to the torque command value Tcu.
  • FIG. 7 is a flowchart showing a control example of the electric motor for traveling according to the present embodiment.
  • the first control unit 101 switches the hill control, the switchback control, and the power running control according to the traveling state (including the stop) of the battery-type forklift 1 to control the traveling motor 50.
  • the first control unit 101 determines the speed limit command Vlim based on the actual traveling direction of the battery-type forklift 1 and the traveling direction command value DR that defines the traveling direction of the battery-type forklift 1. Control and switchback control are executed.
  • the slope control is performed when the actual traveling direction of the battery-type forklift 1 is different from the traveling direction command value DR, and when the actual traveling speed Vr increases in the direction opposite to the traveling direction command, the actual traveling speed Vr This control suppresses a rapid increase. It is mainly executed when the battery-type forklift 1 stops on a slope.
  • the switchback control is control when the battery-type forklift 1 performs a switchback operation.
  • the switchback operation is the operation of the battery-type forklift 1 when the actual direction of travel of the battery-type forklift 1 is different from the direction of travel defined by the travel-direction command value DR. For example, when the accelerator pedal 37 shown in FIGS.
  • the power running control is a control executed when the battery-type forklift 1 is running, that is, when the drive current Im is supplied to the traveling motor 50.
  • step S101 When the first control unit 101 and the second control unit 102 control the operation of the electric motor 50 for traveling, in step S101, the actual traveling direction of the battery-type forklift 1 and the traveling direction command value DR (instructions of the traveling direction switching lever 39) ) (Step S101, Yes), the first control unit 101 and the second control unit 102 execute slope control or switchback control in step S102.
  • step S103 when the actual traveling direction of the battery-type forklift 1 and the traveling direction command value DR are the same, the first control unit 101 and the second control unit 102 execute power running control in step S103. Next, details of each control will be described.
  • FIG. 8 is a diagram illustrating the relationship between the speed limit command and the actual traveling speed in the slope control and the switchback control.
  • FIG. 9 is a diagram showing a state where the battery-type forklift is on an uphill.
  • FIG. 10 is a diagram for explaining the operation of the third torque command value and the battery-type forklift in the slope control.
  • the speed limit command Vlim is a constant value ⁇ or ⁇ regardless of the actual traveling speed Vr (solid line Lsl in FIG. 8).
  • the case where the speed limit command Vlim becomes ⁇ is when the battery-type forklift 1 is on the uphill SLu as shown in FIG.
  • the case where the speed limit command Vlim is ⁇ is when the battery-type forklift 1 is on the downhill SLd as shown in FIG. ⁇ may be 0 as long as it is a constant value, but in the present embodiment, it is, for example, about 0.5 km / h.
  • the first control unit 101 shown in FIG. And the 2nd control part 102 performs slope control. Slope control is started mainly when the actual traveling direction of the battery-type forklift 1 is switched.
  • the speed command value generation unit 104 of the first control unit 101 sets the speed limit command Vlim to a value other than 0, specifically, ⁇ as shown in FIG.
  • the second torque command value generating unit 105 of the second control unit 102 is set to the second torque command value Tcs1.
  • the first control unit 101 and the second control unit 102 generate a third torque command value Tci from the first torque command value Tcf, the speed limit command Vlim, and the actual travel speed Vr2.
  • the third torque command value Tci Tcs2> 0. Since the third torque command value Tci> 0 in the second quadrant S2 corresponding to the regeneration of the traveling motor 50, the traveling motor 50 regenerates electric power. Based on the third torque command value Tci, the traveling electric motor 50 generates torque in the direction of climbing the uphill SLu by regeneration of electric power, so that the speed at which the battery-type forklift 1 moves backward on the uphill SLu is reduced.
  • FIG. 11 is a diagram showing a state in which the battery-type forklift is on the uphill and the accelerator is stepped on.
  • FIG. 12 is a diagram for explaining the operation of the third torque command value and the battery-type forklift in the state shown in FIG.
  • the running electric motor 50 generates a torque Tw.
  • the first control unit 101 generates the first torque command value Tcf2 from the actual travel speed Vr2 and the torque command curve Ct2 in the second quadrant S1.
  • the second control unit 102 generates a second torque command value Tcs2 from the speed limit command Vlim and the actual travel speed Vr2.
  • the third torque command value Tci Tcs2> Tcf2> 0.
  • the first control unit 101 When the accelerator opening ACo increases, the first control unit 101 generates the first torque command value Tcf3 from the actual travel speed Vr2 and the torque command curve Ct3 in the second quadrant S1.
  • the torque command curve Ct3 is larger than the torque command value Ct2 when the actual travel speed Vr is the same. Therefore, the first torque command value Tcf3 generated from the torque command curve Ct3 is larger than the first torque command value Tcf2 generated from the torque command curve Ct2.
  • the first torque command value Tcf3 generated from the torque command curve Ct3 is larger than the second torque command value Tcs2 generated by the second control unit 102 from the speed limit command Vlim and the actual travel speed Vr2. Yes. In this case, as shown in FIG.
  • the third torque command value Tci Tcf3> Tcs2> 0.
  • the battery-type forklift 1 decelerates. After decelerating, it shifts to power running control, which will be described later, by reversing the direction of the actual traveling speed Vr, and the battery-type forklift 1 climbs uphill SLu. Next, the case where the battery-type forklift 1 is on the downhill will be described.
  • FIG. 13 is a diagram showing a state where the battery-type forklift is on the downhill.
  • FIG. 14 is a diagram for explaining the operation of the third torque command value and the battery-type forklift in the slope control.
  • the speed command value generation unit 104 of the first control unit 101 sets the speed limit command Vlim to a value other than 0, specifically ⁇ as shown in FIG. As shown in FIG.
  • the second torque command value generation of the second control unit 102 is performed.
  • the unit 105 obtains a second torque command value Tcs3.
  • the first control unit 101 and the second control unit 102 generate a third torque command value Tci from the first torque command value Tcf, the speed limit command Vlim, and the actual travel speed Vr4.
  • the third torque command value Tci Tcs4 ⁇ 0. Since the third torque command value Tci ⁇ 0 in the fourth quadrant S4 corresponding to the regeneration of the travel motor 50, the travel motor 50 regenerates electric power. Based on the third torque command value Tci, the traveling electric motor 50 generates torque in the direction of going up the downhill SLd by regeneration, so that the speed at which the battery-type forklift 1 moves forward on the downhill SLd becomes small.
  • the first control unit 101 determines the speed limit command Vlim based on the accelerator opening ACo and the actual travel speed Vr.
  • the second control unit 102 uses the smaller one of the first torque command value Tcf and the second torque command value Tcs when the battery-type forklift 1 moves forward. And the motor is controlled using the larger one of the first torque command value Tcf and the second torque command value Tcs during reverse travel.
  • the first control unit 101 determines the speed limit command Vlim based on the actual traveling direction of the battery-type forklift 1 and the traveling direction command value DR that defines the traveling direction of the battery-type forklift 1, thereby performing the slope control. Execute.
  • the first control unit 101 sets the speed limit command Vlim to + ⁇ or ⁇ (
  • the battery-type forklift 1 can gradually go down the slope by the processing as described above. For this reason, the operator of the battery-type forklift 1 can be surely recognized that the battery-type forklift 1 is on the slope.
  • a PM-type motor is used as the travel motor 50
  • the permanent magnet attached to the rotor may generate heat and cause a decrease in holding power.
  • the slope control according to the present embodiment since the battery-type forklift 1 is gradually moved on the slope, it is possible to continue the rotating state when the traveling motor 50 is excited. As a result, it is possible to suppress the heat generation of the permanent magnet attached to the rotor and the decrease in holding force.
  • the speed limit command Vlim is set to 0, when the actual travel speed Vr is close to 0, the first torque command value Tcf and the second torque command value Tcs are close to each other, so that hunting is likely to occur. There is sex. For this reason, in the slope control according to the present embodiment, when the actual traveling speed Vr changes from 0, the speed limit command Vlim is a value other than 0, that is, a value whose absolute value is larger than 0 (in this embodiment,
  • FIG. 15 is a diagram illustrating an example of the switchback operation.
  • the operator moves the traveling direction switching lever 39 from forward to backward (traveling direction command value).
  • DR Bk).
  • the fork 13 is inserted under the luggage PK, and the battery-type forklift 1 starts to reverse at the timing when the luggage PK is placed on the fork 13.
  • Such an operation is an example of a switchback operation.
  • FIG. 16 is a diagram showing a state where the battery-type forklift is powering and moving forward.
  • FIG. 17 is a diagram for explaining a torque command value in a state where the battery-type forklift is powering and moving forward.
  • the battery-type forklift 1 powers at an actual travel speed Vr and moves forward as shown in FIG.
  • the front wheels 11 as drive wheels generate torque Tw by the traveling motor 50 driven based on the third torque command value Tci.
  • the accelerator opening ACo is larger than 0, and the traveling direction command value DR is Fw indicating forward movement.
  • the first torque command value Tcf is generated by the first controller 101 from the torque command curve Ct in the first quadrant S1 and the actual travel speed Vr.
  • the speed limit command Vlim at this time is determined by power running control described later.
  • the second torque command value Tcs is generated by the second control unit 102 from the speed limit command Vlim and the actual travel speed Vr. Since the battery-type forklift 1 is moving forward, the second control unit 102 uses the smaller one of the first torque command value Tcf and the second torque command value Tcs, in this example, the first torque command value Tcf as the third torque.
  • the command value is Tci.
  • the traveling motor 50 is driven by the inverter 54 shown in FIG. 4 so as to generate the first torque command value Tcf. Next, switchback control will be described.
  • FIG. 18 is a diagram showing that the battery-type forklift is switched back.
  • FIG. 19 is a diagram for explaining a torque command value when the battery-type forklift is switched back.
  • the switchback control is executed when the actual traveling direction of the battery-type forklift 1 is different from the traveling direction command value DR.
  • the switchback control is executed mainly when the traveling direction command value DR changes.
  • the traveling direction command value DR changes, for example, when the operator of the battery-type forklift 1 operates the traveling direction switching lever 39.
  • the switchback control is executed by the first control unit 101 and the second control unit 102 shown in FIG.
  • the advancing direction switching lever 39 is switched from forward to reverse when the accelerator pedal 37 is depressed (opened) (ACo> 0).
  • the actual traveling direction is forward F
  • the traveling direction command value DR is Bk indicating reverse. That is, in the battery-type forklift 1, the actual traveling direction and the traveling direction command value DR are different.
  • the front wheels 11 as drive wheels generate a torque Tw by the traveling motor 50 driven based on the third torque command value Tci.
  • the torque Tw at this time is generated in a direction in which the battery-type forklift 1 is braked, and is opposite to the direction in which the battery-type forklift 1 is advanced.
  • the first control unit 101 and the second control unit 102 are switched Perform back control.
  • the first torque command value generation unit 103 of the first control unit 101 replaces the torque command curve Ct in the first quadrant S1 based on the tractive force curve used in the power running control with the first torque command value generation unit 103 based on the braking force curve.
  • a first torque command value Tcf is generated using the torque command curve Ct in the four quadrant S4. As is apparent from FIG. 19, the first torque command value Tcf is a negative value.
  • the speed limit command Vlim is set to a value larger than the absolute value of the actual traveling speed Vr at the time when the traveling direction of the battery-type forklift 1 is different.
  • the speed command value generation unit 104 of the first control unit 101 is the actual travel speed Vr (Vsb1) at the time when the traveling direction of the battery-type forklift 1 is different.
  • the second control unit 102 generates a second torque command value Tcs from the speed limit command Vlim (Vlim1) and the actual travel speed Vr (Vsb1).
  • the second control unit 102 uses the smaller one of the first torque command value Tcf and the second torque command value Tcs, in this example, the first torque command value Tcf as the third torque.
  • the command value is Tci.
  • the traveling motor 50 is driven by the inverter 54 shown in FIG. 4 so as to generate the first torque command value Tcf.
  • FIG. 20 is a diagram showing the battery-type forklift during the switchback operation.
  • FIG. 21 is a diagram for explaining a torque command value during the switchback operation.
  • the battery-type forklift 1 shown in FIG. 20 is gradually decelerated by the torque Tw generated by the front wheels 11, that is, the regenerative braking torque.
  • the regenerative braking torque is a torque that tries to advance the battery-type forklift 1 in the direction opposite to the current traveling direction.
  • the traveling direction command value DR is Bk representing backward traveling.
  • the first torque command value generation unit 103 of the first control unit 101 has a braking force curve.
  • a first torque command value Tcf is generated by using the torque command curve Ct in the fourth quadrant S4 based on it.
  • the speed command value generation unit 104 of the first control unit 101 has the actual traveling speed Vr (Vsb2) in the traveling direction of the battery-type forklift 1 as shown in FIGS.
  • the speed limit command Vlim When it becomes smaller than the actual travel speed Vr (Vsb1) at the time, the speed limit command Vlim is made smaller than the speed limit command Vlim1 at the time when a difference in the traveling direction occurs and becomes Vlim2. This means that the speed limit command Vlim is reduced as the actual travel speed Vr approaches zero.
  • the difference between the speed limit command Vlim2 and the actual travel speed Vsb2 is the speed v as shown in FIGS. That is, in the present embodiment, when the actual travel speed Vr decreases, the speed limit command Vlim follows the actual travel speed Vr with a value larger than the actual travel speed Vr by the speed v.
  • the speed v may be 0, but it is preferable to set v to a value whose absolute value is larger than 0, because the occurrence of hunting can be suppressed in the switchback control.
  • the first control unit 101 does not make the speed limit command Vlim larger than the value generated when a difference in the traveling direction occurs in the battery-type forklift 1. That is, in this embodiment, the speed limit command Vlim changes only in the direction of decreasing along the solid line Llv1 shown in FIG. By doing in this way, it can suppress that the battery-type forklift 1 decelerates once after decelerating.
  • the second control unit 102 generates a second torque command value Tcs from the speed limit command Vlim (Vlim2) and the actual travel speed Vr (Vsb2). Since the battery-type forklift 1 is moving forward, the second control unit 102 uses the smaller one of the first torque command value Tcf and the second torque command value Tcs, in this example, the first torque command value Tcf as the third torque.
  • the command value is Tci.
  • the traveling motor 50 is driven by the inverter 54 shown in FIG. 4 so as to generate the first torque command value Tcf.
  • FIG. 22 is a diagram showing a battery-type forklift whose traveling direction is reversed by deceleration.
  • FIG. 23 is a diagram for explaining a torque command value when the traveling direction is reversed by deceleration.
  • the battery-type forklift 1 shown in FIG. 22 is gradually decelerated by the torque Tw generated by the front wheels 11, that is, the regenerative braking torque, and the traveling direction is switched from forward to reverse. For this reason, the actual traveling direction of the battery-type forklift 1 and the traveling direction command value DR are the same.
  • the accelerator opening ACo> 0, and the traveling direction command value DR is Bk representing reverse.
  • the first control unit 101 and the second control unit 102 perform reverse power running.
  • the traveling electric motor 50 is controlled by the control.
  • the first torque command value generation unit 103 of the first control unit 101 replaces the torque command curve Ct of the fourth quadrant S4 based on the braking force curve used in the switchback control with the third quadrant S3 based on the traction force curve.
  • a first torque command value Tcf is generated using the torque command curve Ct. As is clear from FIG. 23, the first torque command value Tcf is a negative value.
  • the speed command value generation unit 104 of the first control unit 101 generates a speed limit command Vlim based on reverse power running control.
  • the second control unit 102 generates a second torque command value Tcs from the speed limit command Vlim and the actual travel speed Vr. Since the battery-type forklift 1 is moving backward, the second control unit 102 uses the larger one of the first torque command value Tcf and the second torque command value Tcs, in this example, the second torque command value Tcs as the third torque.
  • the command value is Tci.
  • the traveling motor 50 is driven by the inverter 54 shown in FIG. 4 so as to generate the second torque command value Tcs.
  • the case where the accelerator opening degree ACo> 0 is taken as an example.
  • the switchback control is performed regardless of the accelerator opening degree ACo and the actual traveling direction of the battery-type forklift 1 is similar to the slope control. This is executed when the traveling direction command value DR is different (the same applies hereinafter). Next, an example in which the battery-type forklift 1 travels downhill after entering the switchback control shown in FIGS. 24 and 25 will be described.
  • FIG. 24 is a diagram showing a battery-type forklift that travels downhill after entering the switchback control.
  • FIG. 25 is a diagram for explaining a torque command value when traveling downhill after entering the switchback control.
  • the speed command value generation unit 104 of the first control unit 101 does not change the speed limit command Vlim as shown by the straight line Llv2 in FIGS. That is, in the present embodiment, the speed command value generation unit 104 sets the speed limit command Vlim larger than the speed limit command Vlim1 generated when a difference in the traveling direction occurs in the battery-type forklift 1 and shifts to the switchback control. do not do. By doing in this way, the increase in the actual traveling speed Vr resulting from the lack of the third torque command value Tci can be suppressed.
  • the third torque command value Tci may be insufficient due to, for example, the accelerator opening ACo being insufficient, the slope is steep, or the switchback regenerative force (braking force) USSt shown in FIG. There is sex.
  • the first torque command value Tcf becomes the third torque command value Tci until the actual travel speed Vr exceeds at least the speed limit command Vlim, and therefore the torque generated by the travel motor 50 is generated.
  • the sudden change of is suppressed.
  • the straight line with the inclination ⁇ passing through the speed limit command Vlim intersects the torque command curve Ct in the fourth quadrant S4
  • the switching between the first torque command value Tcf and the second torque command value Tcs is also smooth. For this reason, a sudden change in the torque generated by the traveling motor 50 is suppressed. Since the generation of the first torque command value Tcf, the second torque command value Tcs, and the third torque command value Tci is as described above, the description thereof is omitted.
  • the speed command value generation unit 104 when the speed command value generation unit 104 is changed in a direction in which the speed limit command Vlim is reduced, the speed command value generation unit 104 becomes faster than the speed limit command Vlim after the change (Vlim2 in the example shown in FIG.
  • the limit command Vlim may not be increased. If it does in this way, it can control that battery-type forklift 1 re-accelerates after decelerating once.
  • FIG. 26 is a diagram showing a state in which the accelerator is opened and the vehicle moves backward when the battery-type forklift is on the downhill.
  • FIG. 27 is a diagram for explaining a torque command value in a state where the accelerator is opened and the vehicle moves backward when the battery-type forklift is on a downhill.
  • FIG. 13 a case is considered where the battery-type forklift 1 is performing the slope control as shown in FIG. In this state, the battery-type forklift 1 is in a state where it gradually moves down the downhill SLd.
  • the operator moves the traveling direction switching lever 39 backward, that is, switches to the opposite direction to the current traveling direction, and opens the accelerator pedal 37. Then, as shown in FIG.
  • the battery-type forklift 1 moves forward at the actual traveling speed Vr, but the traveling direction command value DR switches from Fw to Bk. In this case, since the traveling direction command value DR is switched, the actual traveling direction of the battery-type forklift 1 is different from the traveling direction command value DR, so that the switchback control is executed.
  • the first control unit 101 and the second control unit 102 execute switchback control.
  • the first torque command value generation unit 103 of the first control unit 101 generates the first torque command value Tcf using the torque command curve Ct of the fourth quadrant S4 based on the braking force curve.
  • the speed command value generation unit 104 of the first control unit 101 sets a value obtained by adding the speed v to the actual traveling speed Vr at the time when the traveling direction of the battery-type forklift 1 is different.
  • the command is Vlim.
  • the second control unit 102 generates a second torque command value Tcs from the speed limit command Vlim and the actual travel speed Vr.
  • the second control unit 102 uses the smaller one of the first torque command value Tcf and the second torque command value Tcs, in this example, the first torque command value Tcf as the third torque.
  • the command value is Tci.
  • the inverter 54 shown in FIG. 4 controls the traveling motor 50 to generate the first torque command value Tcf.
  • a value obtained by adding the speed v to the actual traveling speed Vr at the time when the traveling direction difference occurs in the battery-type forklift 1 is set as a speed limit command Vlim.
  • the first torque command value Tcf based on the braking force curve or the like becomes the third torque command value Tci, so that the traveling motor 50 responds to the operation of the accelerator pedal 37. A feeling of acceleration can be given to the operator.
  • FIG. 28 is a diagram showing a state in which switchback control is executed when the battery-type forklift is on a downhill.
  • FIG. 29 is a diagram for explaining a torque command value in the switchback control when the battery-type forklift is on a downhill.
  • the second control unit 102 determines the smaller one of the first torque command value Tcf and the second torque command value Tcs, in this example, the first The torque command value Tcf is set as the third torque command value Tci.
  • the inverter 54 shown in FIG. 4 controls the traveling motor 50 to generate the first torque command value Tcf.
  • the traveling direction command value DR is switched from Bk to Fw. Then, since the actual traveling direction of the battery-type forklift 1 is the same as the traveling direction command value DR, the first control unit 101 and the second control unit 102 control the traveling motor 50 by power running control.
  • the first control unit 101 determines the speed limit command Vlim based on the accelerator opening ACo, the actual traveling speed Vr, and the actual traveling direction of the battery-type forklift 1.
  • the switchback control according to the present embodiment has an absolute value that is greater than the actual traveling speed Vr at the moment when the traveling direction command value DR and the actual traveling direction (direction of the actual traveling speed Vr) of the battery-type forklift 1 are different.
  • the slope control can be quickly shifted to the switchback control.
  • sudden changes in acceleration at the time of transition can be suppressed.
  • the above-described slope control and switchback control are based on the condition that the actual traveling direction of the battery-type forklift 1 is different from the traveling direction defined by the traveling direction command value DR.
  • slope control is executed, and when the above-described difference occurs due to a change in the traveling direction command value DR.
  • Switchback control is executed.
  • the switchback control and the slope control can be clearly separated, so that both can be achieved.
  • the speed limit command Vlim is made to follow only when the absolute value of the actual traveling speed Vr becomes small, so that when the vehicle enters a slope during the switchback control. Even if it exists, the speed increase of the battery-type forklift 1 can be suppressed and both switchback control and slope control can be achieved. As a result, in the case where the battery-type forklift 1 unloads transported items that are easily spilled because of the low density of foamed polystyrene or the like, it is possible to suppress instability of the load.
  • the speed command value generation unit 104 of the first control unit 101 shown in FIG. 4 changes the speed limit command Vlim as time passes. By doing in this way, when the battery-type forklift 1 starts, a sudden change in the actual traveling speed Vr can be suppressed. After a certain amount of time has elapsed after the battery-type forklift 1 has started, it is determined based on the first torque command value Tcf generated by the first torque command value generation unit 103, that is, the traction force curve or the braking force curve. The battery-type forklift 1 is controlled by the first torque command value Tcf.
  • FIG. 30 is a control block diagram of a speed command value generation unit provided in the first control unit.
  • the speed command value generating unit 104 includes a travel speed limiting unit 104A, an acceleration limiting unit 104B, and a selection processing unit 104C.
  • the traveling speed limiting unit 104A has a function of limiting the upper limit of the actual traveling speed Vr of the battery-type forklift 1.
  • the traveling speed restriction unit 104A has, for example, a speed restriction setting value UST_B for restricting the actual traveling speed V of the battery-type forklift 1, and outputs this as a first speed limit command Va.
  • the set value UST is input to the traveling speed limiting unit 104A.
  • the traveling speed limiting unit 104A can output the first speed limit command Va having a different value.
  • the acceleration limiting unit 104B includes a shift amount determining unit 104Ba and a speed command value shift processing unit 104Bb.
  • the shift amount determination unit 104Ba receives the accelerator opening ACo.
  • the shift amount determination unit 104Ba determines a change amount corresponding to the passage of time of the speed limit command Vlim, that is, the shift amount ST, based on the input accelerator opening ACo.
  • the speed limit command Vlim generated and output by the speed command value generation unit 104 is generated and output by the speed command value shift processing unit 104Bb of the acceleration limitation unit 104B when there is no limitation by the traveling speed limitation unit 104A. It becomes equal to the limit command Vb.
  • the set value UST_A is input to the shift amount determination unit 104Ba. In accordance with the set value UST_A, a change characteristic according to the passage of time of the speed limit command Vlim is changed.
  • the speed command value shift processing unit 104Bb includes the actual travel speed Vr, the first torque command value Tcf generated by the first torque command value generation unit 103 of the first control unit 101, and the shift amount determined by the shift amount determination unit 104Ba. ST is input.
  • the actual travel speed Vr corresponds to the motor speed N of the travel motor 50.
  • the speed command value shift processing unit 104Bb generates and outputs a second speed limit command Vb based on the actual travel speed Vr, the first torque command value Tcf, and the shift amount ST.
  • the initial value of the second speed limit command Vb is ⁇ or ⁇ shown in FIG.
  • the selection processing unit 104C receives the first speed limit command Va and the second speed limit command Vb.
  • the selection processing unit 104C selects the smaller one of the first speed limit command Va and the second speed limit command Vb when the actual traveling speed Vr is positive, that is, when the battery-type forklift 1 is moving forward, to select the speed limit command. Output as Vlim.
  • the selection processing unit 104C selects the larger one of the first speed limit command Va and the second speed limit command Vb when the actual traveling speed Vr is negative, that is, when the battery-type forklift 1 is moving backward, and the speed limit command Output as Vlim.
  • the selection processing unit 104C selects the smaller one of the first speed limit command Va and the second speed limit command Vb.
  • FIG. 31 is a diagram for explaining the shift amount of the speed limit command determined by the shift amount determination unit.
  • FIG. 32 is a diagram illustrating an example when the speed limit command is changed based on the shift amount.
  • the shift amount ST of the speed limit command Vlim is a change amount of the speed limit command Vlim in a predetermined time, and the unit is, for example, km / h / msec. That is, it represents the magnitude of the speed limit command Vlim that changes per 1 msec.
  • the shift amount ST differs depending on the magnitude of the speed limit command Vlim.
  • the greater the speed limit command Vlim the smaller the shift amount ST.
  • the shift amount ST may increase as the speed limit command Vlim increases, or may change so as to have a maximum value or a minimum value at a value of a certain speed limit command Vlim.
  • the speed command value generation unit 104 can change the speed limit command Vlim as time passes by changing the speed limit command Vlim for each control cycle based on the shift amount ST.
  • the first control unit 101 and the second control unit 102 can regulate the acceleration limit when the battery-type forklift 1 travels.
  • FIG. 31 shows four types of shift characteristics SP1, SP2, SP3, and SP4.
  • the shift amount ST at the same speed limit command Vlim decreases in this order.
  • the shift characteristics SP1, SP2, SP3, SP4 are selected by the accelerator opening ACo.
  • the shift characteristics change in the order of SP4, SP3, SP2, and SP1 as the accelerator opening ACo increases.
  • the speed command value generation unit 104 changes the speed limit command Vlim based on the shift characteristics SP1, SP2, etc., for example, as shown in FIG. 32, the speed limit command Vlim changes with respect to time t.
  • the absolute value of the speed limit command Vlim increases as time t elapses.
  • SP1 and SP2 indicated by solid lines in FIG. 32 are results obtained by changing the speed limit command Vlim based on the shift characteristics SP1 and SP2, respectively.
  • SP1 and SP2 indicated by solid lines indicate the shortest time required for the battery-type forklift 1 to reach a certain actual traveling speed Vr (corresponding to the speed limit command Vlim).
  • the speed command value generation unit 104 determines whether to change the speed limit command Vlim in the acceleration direction or the deceleration direction according to the control state of the second control unit 102.
  • the control state of the second control unit 102 is a control state for generating the third torque command value Tci. Specifically, the process of the second control unit 102 determines whether to generate the third torque command value Tci according to the first torque command value Tcf based on the traction force curve or the like or the second torque command value Tcs based on the speed limit command Vlim. It is a state.
  • FIGS. 33 to 35 are diagrams for explaining an example of a method in which the speed command value generation unit of the first control unit determines the control state of the second control unit.
  • FIG. 36 is a diagram illustrating a change example of the speed limit command when the second control unit is controlling the electric motor for traveling according to the first torque command value.
  • the speed command value generation unit 104 of the first control unit 101 more specifically, the speed command value shift processing unit 104Bb is based on the first torque command value Tcf and the actual travel speed Vr (determination speed (determination). Speed) Vj is obtained.
  • the determination speed Vj can be expressed as in Expression (1) using the coefficient ⁇ , the first torque command value Tcf, and the actual travel speed Vr from FIG.
  • the coefficient ⁇ is used when generating the second torque command value Tcs based on the speed limit command Vlim.
  • Vj Tcf / ⁇ + Vr (1)
  • the speed command value shift processing unit 104Bb compares the determination speed Vj with the speed limit command Vlim in the current control cycle. As shown in FIG. 34, when the determination speed Vj ⁇ speed limit command Vlim, the second control unit 102 travels using the first torque command value Tcf generated by the first control unit 101 as the third torque command value Tci. It is determined that the motor 50 is being controlled. As shown in FIG. 35, when the determination speed Vj> the speed limit command Vlim, the second control unit 102 sets the second torque command value Tcs generated based on the speed limit command Vlim as the third torque command value Tci. It is determined that the traveling motor 50 is controlled. Note that the speed command value shift processing unit 104Bb may directly acquire the control state of the second control unit 102 via the communication line 110 illustrated in FIG.
  • the speed command value shift processing unit 104Bb is the shift amount ST determined by the shift amount determination unit 104Ba
  • the second speed limit command Vb (speed limit command Vlim) is changed in the direction in which the absolute value increases.
  • the second control unit 102 controls the traveling motor 50 according to the first torque command value Tcf
  • the difference (Vlim ⁇ Vr) between the speed limit command Vlim and the current actual traveling speed Vr increases.
  • the operator of the battery-type forklift 1 recognizes that the expected acceleration cannot be obtained and increases the depression of the accelerator pedal 37. As a result, the battery-type forklift 1 may be accelerated rapidly.
  • (Vlim ⁇ Vr) may increase.
  • the speed command value shift processing unit 104Bb controls as follows. As shown in FIG. 36, when the difference (Vlim ⁇ Vr) between the speed limit command Vlim and the current actual travel speed Vr becomes equal to or greater than a predetermined threshold (for example, speed vc), the speed command value shift processing unit 104Bb The absolute value of the speed limit command Vlim is reduced. In this way, the difference between the speed limit command Vlim and the current actual travel speed Vr is reduced.
  • a predetermined threshold for example, speed vc
  • the traveling motor 50 is controlled based on the smaller one of the first torque command value Tcf and the second torque command value Tcs.
  • the second torque command value Tcs based on the speed limit command Vlim and the actual travel speed Vr also becomes smaller. Therefore, for example, when the operator increases the depression of the accelerator pedal 37, the first torque command value Tcf based on the traction force curve or the like increases rapidly, but the second torque command value Tcs based on the speed limit command Vlim increases. The latter is more likely to be selected.
  • FIG. 37 is a view showing a state where the accelerator pedal is opened when the battery-type forklift is on the downhill.
  • FIG. 38 is a diagram for explaining torque command values when the accelerator pedal is opened when the battery-type forklift is on a downhill.
  • the first control unit 101 and the second control unit 102 have a speed limit command Vlim that is greater than the speed limit command Vlim as shown in FIG. Is controlled so that the absolute value of the speed limit command Vlim increases with time.
  • Vlim speed limit command
  • the traveling motor 50 and the front wheels 11 that have generated negative torque (torque in the backward direction of the downhill SLd) in the slope control are generated.
  • a positive torque Tw is generated.
  • the power running control according to the present embodiment can suppress sudden acceleration when the battery-type forklift 1 moves forward on the downhill SLd.
  • the speed limit command Vlim is changed with the passage of time, and more specifically, the absolute value is increased with the passage of time. To do.
  • the torque of the traveling motor 50 is controlled by the second torque command value Tcs based on the speed limit command Vlim, so that a sudden increase in torque is suppressed.
  • the battery-type forklift 1 unloads transported items that are easily spilled because of the low density of foamed polystyrene or the like, it is possible to suppress instability of the load.
  • the speed limit command Vlim increases with the passage of time, when a certain amount of time has elapsed after the start of the battery-type forklift 1, the torque of the traveling motor 50 is determined by the first torque command value Tcf based on the traction force curve or the like. Is controlled. As a result, the response to the operation of the accelerator pedal 37 is improved, so that drivability is improved.
  • the second control unit 102 When the second control unit 102 generates the second torque command value Tcs based on the speed limit command Vlim, if the coefficient ⁇ is increased, the second torque command value Tcs rises rapidly even if the change in the actual travel speed Vr is small. Therefore, the responsiveness is improved and the set traveling speed is easily realized.
  • the first control unit 101 and the second control unit 102 are connected by the communication line 110, and the second torque command value Tcs is generated in the second control unit 102.
  • the first control unit 101 When the first control unit 101 generates the first torque command Tcf based on the speed limit command Vlim, a communication delay occurs until the traveling motor 50 is output based on the command from the first control unit 101.
  • the coefficient ⁇ when the coefficient ⁇ is increased, if the change in the actual traveling speed Vr is large, the difference between the torque output generated from the traveling motor 50 based on the command of the first control unit 101 and the torque that is actually desired to be output is different. May occur and cause hunting. Therefore, the first torque command Tcf from the first control unit 101 needs to reduce the coefficient ⁇ in order to suppress hunting due to communication delay. On the other hand, in this embodiment, since the second torque command value Tcs is generated in the second control unit 102, it is not necessary to consider the communication delay described above. As a result, the coefficient ⁇ can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

 作業車両は、少なくとも走行用の電動機を備え、前記電動機を制御するための速度指令値を生成し、かつ前記電動機に発生させるトルクの指令値であるトルク指令値と前記作業車両の走行速度との関係に前記作業車両の実走行速度を与えて第1トルク指令値を生成する第1制御部(101)と、第1制御部(101)が生成した前記速度指令値と前記実走行速度とに基づいて第2トルク指令値を生成し、前記作業車両が前進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち小さい方を用いて前記電動機を制御し、前記作業車両が後進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち大きい方を用いて前記電動機を制御する第2制御部(102)と、を含み、第1制御部(101)は、前記走行速度を調整するアクセルの開度と、前記実走行速度と、前記作業車両の実際の進行方向とに基づいて前記速度指令値を決定する。

Description

作業車両
 本発明は、電動機によって走行する作業車両に関する。
 走行用の電動機を搭載し、この電動機にバッテリから電力の供給をして走行させる作業車両がある。このような作業車両として、例えば、特許文献1には、バッテリ式車両の走行制御装置に関する技術が記載されている。
特開平8-9508号公報
 例えば、作業車両がフォークリフトである場合、荷役作業時にスイッチバックと呼ばれる動作を行うことがある。スイッチバックは、作業車両の実際の進行方向と、進行方向を規定するための指令とが異なる動作である。また、例えば、作業車両が下り坂にいる場合、勾配が急である等の理由から作業車両が後進しようとしているにも関わらず前進して坂道を下ってしまうことがある(その反対も同様)。この場合、作業車両が坂道をずり下がることを抑制する制御が介入することがある。このため、これらのスイッチバックの動作とずり下がりを抑制する制御とを両立させる必要がある。
 下り坂にいる作業車両の進行しようとする方向と実際の進行方向とが相違する状態は、作業車両の実際の進行方向と、進行方向を規定するための指令とが相違するので、スイッチバック動作と同様の状況が生じることになる。作業車両が坂道をずり下ることを抑制する制御中にスイッチバック動作が発生した場合又はその反対の場合には、二種類の制御を切り替えたり、別個の制御に移行したりする必要があるので、制御の切り替え又は移行の条件が複雑になったり、制御の切り替え時に発生する可能性がある作業車両の急な加減速等を抑制したりする必要がある。特許文献1に記載された技術は、アクセルオフ回生(後退)から前進のスイッチバック回生に切り替えるとき、現トルク量を0にするため、急激なトルクの変動が発生する可能性がある。その結果、特許文献1に記載の技術は、作業車両に急な加減速等が発生する可能性がある。
 本発明は、電動機によって走行する作業車両において、スイッチバック動作と坂道におけるずり下がりの抑制とが同時に発生した場合に、作業車両に発生する急な加減速等を抑制することを目的とする。
 本発明は、少なくとも走行用の電動機を備える作業車両であり、前記電動機を制御するための速度指令値を生成し、かつ前記電動機に発生させるトルクの指令値であるトルク指令値と前記作業車両の走行速度との関係に前記作業車両の実走行速度を与えて第1トルク指令値を生成する第1制御部と、前記第1制御部が生成した前記速度指令値と前記実走行速度とに基づいて第2トルク指令値を生成し、前記作業車両が前進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち小さい方を用いて前記電動機を制御し、前記作業車両が後進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち大きい方を用いて前記電動機を制御する第2制御部と、を含み、前記第1制御部は、前記作業車両の実際の進行方向と、前記作業車両の進行方向を規定する進行方向指令値とが相違する場合、この相違が発生したときの前記実走行速度に基づいて前記速度指令値を決定する。
 前記第1制御部は、前記速度指令値を、前記相違が発生したときの前記実走行速度の絶対値よりも大きい値とすることが好ましい。
 前記第1制御部は、前記速度指令値を、前記相違が発生したときに生成した値よりも大きくしないことが好ましい。
 前記第1制御部は、前記実走行速度が0から変化した場合に、前記速度指令値の絶対値を0より大きい値とすることが好ましい。
 前記第1トルク指令値と前記作業車両の走行速度との関係は、前記作業車両のアクセルの開度によって変化することが好ましい。
 前記第1制御部は、前記実走行速度が0に近づくにしたがって、前記速度指令値を小さくすることが好ましい。
 前記電動機は、ローターが永久磁石を有することが好ましい。
 本発明は、少なくとも走行用の電動機を備える作業車両であり、前記電動機を制御するための速度指令値を生成し、かつ前記電動機に発生させるトルクの指令値であるトルク指令値と前記作業車両の走行速度との第1の関係に前記作業車両の実走行速度を与えて第1トルク指令値を生成する第1制御部と、前記第1制御部が生成した前記速度指令値に基づいた、前記トルク指令値と前記走行速度との第2の関係に、前記実走行速度を与えて第2トルク指令値を生成し、前記作業車両が前進しているときには前記第1トルク指令値と前記第2トルク指令値のうち小さい方を用いて前記電動機を制御し、前記作業車両が後進しているときには前記第1トルク指令値と前記第2トルク指令値のうち大きい方を用いて前記電動機を制御する第2制御部と、を含み、前記第1制御部は、前記作業車両の実際の進行方向と、前記作業車両の進行方向を規定する進行方向指令値とに基づいて前記速度指令値を決定し、かつ前記実際の進行方向と前記作業車両の進行方向を規定する進行方向指令とが相違する場合、この相違が発生したときの速度に基づいて前記速度指令値を決定し、さらに、前記実走行速度が0から変化した場合に、前記速度指令値を、その絶対値が0よりも大きい値とする。
 本発明は、電動機によって走行する作業車両において、スイッチバック動作と坂道におけるずり下がりの抑制とが同時に発生した場合に、作業車両に発生する急な加減速等を抑制することができる。
図1は、本実施形態に係る作業車両を左側から見た状態を示した側面図である。 図2は、本実施形態に係る作業車両を左後方斜め上側から見た状態を示した斜視図である。 図3は、本実施形態に係るバッテリ式フォークリフトが備える走行用電動機の制御システムを示す模式図である。 図4は、第1制御部及び第2制御部を示す模式図である。 図5は、第1制御部及び第2制御部が走行用電動機の制御に用いる制御マップの一例を示す概念図である。 図6は、第1制御部及び第2制御部が走行用電動機を制御する際の手順の一例を示すフローチャートである。 図7は、本実施形態に係る走行用電動機の制御例を示すフローチャートである。 図8は、坂道制御及びスイッチバック制御における速度リミット指令と実走行速度との関係を示す図である。 図9は、バッテリ式フォークリフトが上り坂にいる状態を示す図である。 図10は、坂道制御における第3トルク指令値及びバッテリ式フォークリフトの動作を説明するための図である。 図11は、バッテリ式フォークリフトが上り坂にいて、アクセルが踏まれている状態を示す図である。 図12は、図11に示す状態での第3トルク指令値及びバッテリ式フォークリフトの動作を説明するための図である。 図13は、バッテリ式フォークリフトが下り坂にいる状態を示す図である。 図14は、坂道制御における第3トルク指令値及びバッテリ式フォークリフトの動作を説明するための図である。 図15は、スイッチバック動作の一例を示す図である。 図16は、バッテリ式フォークリフトが力行かつ前進している状態を示す図である。 図17は、バッテリ式フォークリフトが力行かつ前進している状態のトルク指令値を説明するための図である。 図18は、バッテリ式フォークリフトがスイッチバック動作になったことを示す図である。 図19は、バッテリ式フォークリフトがスイッチバック動作になったときのトルク指令値を説明するための図である。 図20は、スイッチバック動作中のバッテリ式フォークリフトを示す図である。 図21は、スイッチバック動作中のトルク指令値を説明するための図である。 図22は、減速によって進行方向が反転したバッテリ式フォークリフトを示す図である。 図23は、減速によって進行方向が反転した場合におけるトルク指令値を説明するための図である。 図24は、スイッチバック制御に入った後に下り坂を走行するバッテリ式フォークリフトを示す図である。 図25は、スイッチバック制御に入った後、下り坂を走行する場合におけるトルク指令値を説明するための図である。 図26は、バッテリ式フォークリフトが下り坂にいるときにアクセルを開き後進する状態を示す図である。 図27は、バッテリ式フォークリフトが下り坂にいるときにアクセルを開き後進する状態におけるトルク指令値を説明するための図である。 図28は、バッテリ式フォークリフトが下り坂にいるときにスイッチバック制御が実行されている状態を示す図である。 図29は、バッテリ式フォークリフトが下り坂にいるときのスイッチバック制御におけるトルク指令値を説明するための図である。 図30は、第1制御部が備える速度指令値生成部の制御ブロック図である。 図31は、シフト量決定部が決定する速度リミット指令のシフト量を説明するための図である。 図32は、シフト量に基づいて速度リミット指令を変化させた場合の一例を示す図である。 図33は、第1制御部の速度指令値生成部が第2制御部の制御状態を判定する手法の一例を説明するための図である。 図34は、第1制御部の速度指令値生成部が第2制御部の制御状態を判定する手法の一例を説明するための図である。 図35は、第1制御部の速度指令値生成部が第2制御部の制御状態を判定する手法の一例を説明するための図である。 図36は、第2制御部が第1トルク指令値に従って走行用電動機を制御しているときにおける速度リミット指令の変更例を示す図である。 図37は、バッテリ式フォークリフトが下り坂にいるときにアクセルペダルを開いた状態を示す図である。 図38は、バッテリ式フォークリフトが下り坂にいるときにアクセルペダルを開いた場合のおけるトルク指令値を説明するための図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。
 図1は、本実施形態に係る作業車両を左側から見た状態を示した側面図である。図2は、本実施形態に係る作業車両を左後方斜め上側から見た状態を示した斜視図である。本実施形態においては、電動機によって走行する作業車両として、バッテリ式フォークリフト1を例として説明するが、作業車両はこれに限定されない。例えば、作業車両は、バッテリからの電力又はエンジン等によって駆動される発電機から得られた電力で駆動されるホイールローダ、油圧ショベル等であってもよい。
 以下において、バッテリ式フォークリフト1は、フォーク13が設けられている側が前方Fであり、カウンタウエイト20が設けられている側が後方Bである。作業車両がバッテリ式フォークリフトでない場合、運転席34から操作装置としてのハンドル36に向かう側が前方Fであり、ハンドル36から運転席34に向かう側が後方Bである。操作装置としては、作業車両の操舵に用いるハンドル36の他、油圧ショベル又はホイールローダ等においては作業機を操作するための操作レバーも含まれる。
 本実施形態においては、左右とは前方Fに対する左右をいうものとする。左右方向は、作業車両の本体としての車体10の幅方向である。上方Uは、前輪11及び後輪12のうち少なくとも3個と接触する平面(接地平面)に直交し、かつ接地平面から前輪11及び後輪12の回転中心軸に向かう側である。下方Dは、前輪11及び後輪12の回転中心軸から接地平面に向かう側である。車体10の前後方向に向かい、かつ車体10の幅方向中心を通る軸を前後軸といい、前後軸に直交し、かつ車体10の左右方向に向かう軸を左右軸という。車体10の上下方向に向かう軸を上下軸という。上下軸は、前後軸と左右軸との両方に直交する。以下において、平面視とは、上方Uから見た状態をいうものとする。
<バッテリ式フォークリフト1の全体構成>
 バッテリ式フォークリフト1は、車体10の前方の隅部にそれぞれ前輪11を備え、車体10の後方の隅部にそれぞれ後輪12を備える。バッテリ式フォークリフト1は、前輪11の後方に設けられた走行用の電動機(走行用電動機)50によって前輪11が駆動されることにより走行する。より具体的には、走行用電動機50の出力は、減速機能を有する動力伝達装置51を介して両方の前輪11、11に伝達されて、これらを駆動する。
 本実施形態において、走行用電動機50には、例えば、PM(Permanent Magnet)型、すなわちローターが永久磁石を有する形式の電動機を用いることができる。PM型の電動機が走行用電動機50として用いられる場合、SPM(Surface Permanent Magnet)型であってもよいし、IPM(Interior Permanent Magnet)型であってもよい。
 車体10の前方Fには、荷物の積み降ろし又は移動を行うためのフォーク13が設けられている。フォーク13は、上下方向に沿って設けられたマスト14に支持されている。フォーク13は、マスト14との間に設けたマストシリンダ15の駆動により、マスト14に沿って昇降する。図には明示していないが、マスト14は、その下端部において左右軸回りに回転可能に車体10に取り付けられている。さらに、マスト14は、車体10との間に、図示しないチルトシリンダを備えている。マスト14は、チルトシリンダの駆動により、車体10に対して前傾姿勢又は後傾姿勢をとることが可能である。
 車体10の後端部には、カウンタウエイト20が設けられている。このように、バッテリ式フォークリフト1は、カウンタバランス型のフォークリフトであるが、これに限定されるものではない。カウンタウエイト20は、フォーク13が荷物を支持した場合に釣り合いをとるためのウエイトである。カウンタウエイト20は、例えば、金属が用いられるがこれに限定されるものではない。カウンタウエイト20は、車体10において後輪12の上方となる部位から後端にわたる部位に配設してある。
 図2に示すように、カウンタウエイト20は、上面に前後方向に開放した凹部を有するように形成してある。具体的には、上面が平坦となるウエイト本体21の両側に上方に向けて一対の柱状部材22が突設されることにより、上面に凹部を有したカウンタウエイト20が形成される。柱状部材22は、ウエイト本体21の両側において互いに対向する部位から上方U及び車体10の前方Fに向けて突出し、車体10の前後方向に沿って相互に平行となるガイド面を有した凸状部分であり、ウエイト本体21と一体に成形してある。なお、カウンタウエイト20の後面は、樹脂製のウエイトカバー23によって覆われている。
 図1に示すように、車体10の中央部には、電源となるバッテリ30が搭載してある。バッテリ30は、上面が開口した直方体状を成すバッテリケース31の内部に複数のバッテリセルを収容し、バッテリセルが開放された開放式のものである。バッテリ30は、このような開放式のものに限定されない。バッテリケース31は、車体10の幅方向に沿った寸法が、一対の柱状部材22の相互間距離よりもわずかに小さくなっている。このような構造により、バッテリケース31は、一対の柱状部材22の相互間を通過することが可能である。バッテリ30は、図1に示すように、車体10においてウエイト本体21の前面21Fよりも前方F、かつウエイト本体21の上面21aよりも下方Dに設定されたバッテリ載置面24に搭載してある。バッテリ載置面24は、バッテリ30が搭載された場合、バッテリ30の後端上方部が相互の柱状部材22の間に介在し、カウンタウエイト20と重なった状態となるようにその位置が設定してある。
 バッテリ載置面24に搭載されたバッテリ30の上方Uには、バッテリフード33が配設してあり、さらにバッテリフード33の上面に運転席34が配設してある。バッテリフード33は、バッテリケース31の上面を覆うために十分な大きさを有したもので、その前端縁部が車体10の左右方向に沿った支持軸33aを介して車体10の支持ブラケット35に支持させてある。バッテリフード33を支持する支持ブラケット35は、バッテリ載置面24の前端に位置する部位から上方Uに立設したものである。バッテリフード33は、支持軸33aの軸心回りに回転させることで、バッテリ30の上方Uを覆う水平位置と、後端縁を上方Uに跳ね上げてバッテリ30の上方Uを開放した前傾位置とに移動させることが可能である。
 バッテリ30を交換する場合、バッテリフード33を移動させ、バッテリ30の上方Uを開放した前傾位置とした状態とする。この状態で、バッテリ30は車体10の上方Uに吊り上げられ、かつ後方Bに引き出されて取り出される。充電されたバッテリ30は、吊り下げられた状態で車体10の後方Bからバッテリ載置面24の上方Uまで移動されて、バッテリ載置面24に搭載される。
 車体10の上方Uには、図1に示すように、天板40が設けてある。天板40は、図2に示すように、運転席34の上方Uを覆う大きさを有した略矩形の枠体41に複数の桟42を配置したもので、車体10の幅方向に沿った寸法が車体10よりも小さくなっている。この天板40は、一対のフロントステー43及び一対のリヤステー44を介して車体10に取り付けられる。
 フロントステー43は、図1に示すように、天板40の前端隅部から下方Dに向けて前方Fに傾斜するように延在し、個々の下端部が車体10の前端部に固定してある。フロントステー43の相互間隔は、全長にわたってほぼ同一である。リヤステー44は、天板40の後端隅部から下方Dに向けて漸次互いに離れるように側方に向けて直線状に突出した拡開部44aと、拡開部44aの下端部からほぼ下方に向けて延在し、個々の下端部が車体10の後端部に固定されたステー本体部44bとを有している。
 リヤステー44において互いに平行に配設されるステー本体部44bの相互間隔は、柱状部材22の相互間隔とほぼ同一であり、バッテリケース31及びバッテリフード33を通過させることが可能である。ステー本体部44bと拡開部44aとが交わる位置は、水平位置にあるバッテリフード33を前傾位置に移動させた場合にもリヤステー44と干渉せず、かつバッテリ30をバッテリ移載位置に配置した場合にもバッテリケース31と干渉しないように、できるだけ高い位置に設定してある。
 バッテリ式フォークリフト1は、アクセルペダル37、ブレーキペダル38、進行方向切替レバー39を備えている。アクセルペダル37は、走行用電動機50の出力及び回転方向を制御する操作用の部材である。ブレーキペダル38は、バッテリ式フォークリフト1を停止させるための操作用の部材である。進行方向切替レバー39は、バッテリ式フォークリフト1の進行方向を前方F又は後方Bのいずれか一方に切り替えるための操作用の部材である。
 図2に示すように、バッテリ式フォークリフト1は、ハンドル36の前方Fに、操作パネル52を備えている。操作パネル52は、バッテリ式フォークリフト1に対して様々な設定をするための入力部と、バッテリ式フォークリフト1の状態等に関する情報を表示する表示部とを有している。バッテリ式フォークリフト1のオペレータは、操作パネル52を介して、バッテリ式フォークリフト1に対して様々な設定をする。操作パネル52の表示部に表示されるバッテリ式フォークリフト1の状態等に関する情報としては、例えば、バッテリ30の状態又はマストシリンダ15等に供給される作動油の油圧等であり、作動油は後述する荷役用電動機55により駆動される油圧ポンプから供給される。
<走行用電動機の制御システム>
 図3は、本実施形態に係るバッテリ式フォークリフトが備える走行用電動機の制御システムを示す模式図である。走行用電動機50の制御システム2は、第1制御部101と、インバータ54に備えられた第2制御部102とを有している。第1制御部101と第2制御部102とは、例えば、同一の制御装置に組み込まれていてもよい。インバータ54と第2制御部102とは別体であってもよい。第1制御部101、第2制御部102及びインバータ54は、DC/DCコンバータ53を介してバッテリ30から電力が供給される。DC/DCコンバータ53は、バッテリ30の電圧を、第1制御部101と、第2制御部102と、インバータ54とがそれぞれ必要とする電圧に変換してこれらに印加する。
 第1制御部101及び第2制御部102は、CPU(Central Processing Unit)及びメモリを備えるコンピュータである。インバータ54は、第2制御部102からの指令に基づき、走行用電動機50及び油圧ポンプ56を駆動する荷役用電動機55に駆動電流を供給する。第1制御部101と第2制御部102とは、通信線110を介して接続されている。通信線110は、車内通信回線であってもよい。
 第1制御部101と第2制御部102とは、通信線110を介して互いに信号又は情報を送受信する。第1制御部101は、例えば、第2制御部102に対して走行用電動機50に発生させるトルクの指令値としての第1トルク指令値Tcf及び速度指令値としての速度リミット指令等Vlimを送信する。第2制御部102は、例えば、走行用電動機50から取得した走行用電動機50の回転速度(単位時間当たりの回転数、以下、電動機回転数ともいう)Nを第1制御部101に対して送信する。
 第1制御部101には、アクセル開度センサ37C、進行方向切替レバー39及び操作パネル52が接続されている。アクセル開度センサ37Cは、アクセルペダル37の開度を検出し、検出した開度を電気信号に変換して出力する。進行方向切替レバー39は、例えば、前進、中立、後進のポジションに応じた指令値を出力する。操作パネル52は、例えば、バッテリ式フォークリフト1の設定を変更する際に、変更後の新たな設定値を出力する。
<第1制御部101及び第2制御部102>
 図4は、第1制御部及び第2制御部を示す模式図である。第1制御部101は、第1トルク指令値生成部103と、速度指令値生成部104とを有している。第2制御部102は、第2トルク指令値生成部105と、トルク指令値生成部106とを有している。第2トルク指令値生成部105は、減算部107と、乗算部108とを有している。
 本実施形態において、第1制御部101の第1トルク指令値生成部103は、アクセル開度ACoと、進行方向指令値DRと、設定値USTと、電動機回転数Nとが入力される。これらの入力に基づき、第1トルク指令値生成部103は、第1トルク指令値Tcfを生成する。速度指令値生成部104は、アクセル開度ACoと、設定値USTと、電動機回転数Nと、第1トルク指令値Tcfとが入力される。これらの入力に基づき、速度指令値生成部104は、速度指令値としての速度リミット指令Vlimを生成する。
 アクセル開度ACoは、図3に示すアクセル開度センサ37Cが出力した信号であり、アクセルペダル37の開度に対応した値となる。進行方向指令値DRは、進行方向切替レバー39が出力した信号であり、バッテリ式フォークリフト1の進行方向を規定する信号である。設定値USTは、操作パネル52が出力した信号であり、バッテリ式フォークリフト1の様々な設定値に対応している。電動機回転数Nは、走行用電動機50に取り付けられた回転速度検出用センサ50Rが出力した信号であり、走行用電動機50の回転速度に対応した値となる。回転速度検出用センサ50Rは、例えば、レゾルバ等が用いられる。電動機回転数Nは、バッテリ式フォークリフト1が走行する実際の速度(実走行速度)Vrに変換できる。すなわち、電動機回転数Nは、図1に示す動力伝達装置51の減速比と、前輪11の半径(より具体的には、前輪11の回転中心から接地面までの半径)とを用いて、走行速度に変換される。
 第2制御部102の第2トルク指令値生成部105が有する減算部107は、速度指令値生成部104が生成した速度リミット指令Vlimと、回転速度検出用センサ50Rが検出して出力した電動機回転数Nとが入力される。減算部107は、速度リミット指令Vlimと電動機回転数Nとの差分ΔVを演算して出力する。このとき、第2制御部102は、電動機回転数Nを実走行速度Vrに変換して減算部107に入力する。乗算部108は、差分ΔVに係数αを乗算し、その結果であるα×ΔVを第2トルク指令値Tcsとして、トルク指令値生成部106に出力する。
 トルク指令値生成部106は、第1トルク指令値生成部103が生成した第1トルク指令値Tcfと、第2トルク指令値生成部105が生成した第2トルク指令値Tcsとが入力される。トルク指令値生成部106は、入力された第1トルク指令値Tcf又は第2トルク指令値Tcsのいずれか一方を、走行用電動機50に発生させるトルクの指令値(実トルク指令値)としてインバータ54に出力する。トルク指令値生成部106が出力するトルク指令値を、適宜第3トルク指令値Tciという。
 第2制御部102のトルク指令値生成部106が生成した第3トルク指令値Tciは、インバータ54に入力される。インバータ54は、走行用電動機50が第3トルク指令値Tciに対応したトルクを発生するために必要な電流を、駆動電流Imとして走行用電動機50に供給してこれを駆動する。
<第1制御部101及び第2制御部102による走行用電動機50の制御>
 図5は、第1制御部及び第2制御部が走行用電動機の制御に用いる制御マップの一例を示す概念図である。図6は、第1制御部及び第2制御部が走行用電動機を制御する際の手順の一例を示すフローチャートである。本実施形態において、第1制御部101は、制御マップMPに従って第1トルク指令値Tcfを生成する(ステップS11)。第2制御部102は、速度リミット指令Vlimと実走行速度Vrとに基づき第2トルク指令値Tcsを生成し(ステップS12)、かつ第1トルク指令値Tcf又は第2トルク指令値Tcsのいずれか一方を第3トルク指令値Tciとしてインバータ54に出力する。制御マップMPは、トルク指令値Tcを縦軸、走行速度Vを横軸とした直交座標系に記述されている。前述したように、第1トルク指令値Tcfは第1制御部101によって生成され、第2トルク指令値Tcsは、第2制御部102によって生成される。図5に示す制御マップMPは、例えば、第1制御部101の記憶部に記憶されている。
 制御マップMPの第1象限S1には、バッテリ式フォークリフト1が前進かつ力行するときの走行速度Vとトルク指令値Tcとの関係が記述されている。第2象限S2には、バッテリ式フォークリフト1が後進かつ回生するときの走行速度Vとトルク指令値Tcとの関係が記述されている。第3象限S3には、バッテリ式フォークリフト1が後進かつ力行するときの走行速度Vとトルク指令値Tcとの関係が記述されている。第4象限S4には、バッテリ式フォークリフト1が前進かつ回生するときの走行速度Vとトルク指令値Tcとの関係が記述されている。
 図4に示す第1制御部101の第1トルク指令値生成部103は、走行用電動機50に発生させるトルクの指令値であるトルク指令値Tcとバッテリ式フォークリフト1の走行速度Vとの関係(以下、適宜トルク指令曲線という)Ctに、バッテリ式フォークリフト1の実際の走行速度(以下、適宜実走行速度という)Vrを与えて第1トルク指令値Tcfを生成する(ステップS11)。トルク指令曲線Ctは、バッテリ式フォークリフト1の走行速度Vとトルク指令値Tcとの関係であり、走行速度Vに対してトルク指令値Tcが一義的に決定される。本実施形態において、トルク指令曲線Ctは、例えば、走行用電動機50の牽引力曲線又は制動力曲線として設定されている。トルク指令曲線Ctは、アクセル開度ACoの大きさに対応して複数設定されている。例えば、制御マップMPの第1象限S1及び第3象限S3、すなわち力行時において、複数のトルク指令曲線Ctは、同一の走行速度Vに対してトルク指令値Tcの絶対値がより大きくなる方が、アクセル開度ACoは大きくなるように設定されている。第1象限S1において、トルク指令曲線Ct1よりもトルク指令曲線Ct2の方がアクセル開度ACoは大きい。第1トルク指令値Tcfは、第1トルク指令値生成部103が、アクセル開度ACoに応じたトルク指令曲線Ct(例えば、トルク指令曲線Ct1)に実走行速度Vrを与えたときにおける、制御マップMPの縦軸の値(トルク指令値Tc)である。このように、トルク指令曲線Ctは、アクセル開度ACoによって変化する。
 図4に示す第1制御部101の速度指令値生成部104は、速度リミット指令Vlimを生成する。速度リミット指令Vlimは、走行用電動機50を制御するために用いられる。速度リミット指令Vlimは、バッテリ式フォークリフト1の走行状態によって変化する。速度リミット指令Vlimの詳細は後述する。
 本実施形態において、第2制御部102の第2トルク指令値生成部105は、速度リミット指令Vlimと実走行速度Vrとに基づいて、第2トルク指令値Tcsを生成する(ステップS12)。具体的には、前述したように、第2トルク指令値生成部105は、速度リミット指令Vlimと実走行速度Vrとの差分ΔVに係数αを乗算して、第2トルク指令値Tcsであるα×ΔVを生成する。図5に示すように、係数αは、速度リミット指令Vlimを通る直線(速度リミット線)Lvの傾きである。第2トルク指令値生成部105は、係数αを複数有して、バッテリ式フォークリフト1の走行条件又は設定等に応じて係数αを変更してもよい。係数αが一定である場合、第2トルク指令値Tcsは、実走行速度Vr及び速度リミット指令Vlimが変化することによって、速度リミット線Lvに沿って変化する。図5の制御マップMPには、説明の便宜上、速度リミット指令Vlim及び速度リミット線Lvも記述したが、これらは第2トルク指令値Tcsの生成に関するものなので、実際には制御マップMPに記述されていない。
 図4に示す第2制御部102のトルク指令値生成部106は、バッテリ式フォークリフト1の走行状態に応じて、第1トルク指令値Tcfと第2トルク指令値Tcsとの一方を選択して、第3トルク指令値Tciとして出力する。本実施形態において、トルク指令値生成部106は、バッテリ式フォークリフト1が前進しているときには(ステップS13、Yes)、第1トルク指令値Tcfと第2トルク指令値Tcsとのうち小さい方を第3トルク指令値Tciとして用いて走行用電動機50を制御する(ステップS14)。バッテリ式フォークリフト1が後進しているときには(ステップS13、No)、トルク指令値生成部106は、第1トルク指令値Tcfと第2トルク指令値Tcsとのうち大きい方を第3トルク指令値Tciとして用いて走行用電動機50を制御する(ステップS15)。
 制御マップMPのトルク指令値Tcu又は-Tcuを通り、かつ横軸に平行な点線の直線は、バッテリ式フォークリフト1のオペレータによって設定される、スイッチバック回生力(制動力)USTtである。スイッチバック回生力(制動力)USTtが設定されると、第1トルク指令値Tcfは、スイッチバック回生力(制動力)USTtが上限となる。例えば、第1トルク指令値Tcfは、トルク指令曲線Ctに関わらず、スイッチバック回生力(制動力)USTtが上限とされる。このため、スイッチバック回生力(制動力)USTtに基づいて第3トルク指令値Tciが生成されると、走行用電動機50は、スイッチバック回生力(制動力)USTtに対応するトルク指令値Tcuよりも大きなトルクは出力しない。その結果、バッテリ式フォークリフト1の実走行速度Vrは、走行用電動機50がトルク指令値Tcuに対応するトルクを出力したときの速度に制限される。
 図7は、本実施形態に係る走行用電動機の制御例を示すフローチャートである。本実施形態において、第1制御部101は、バッテリ式フォークリフト1の走行状態(停止も含む)に応じて、坂道制御とスイッチバック制御と力行制御とを切り替えて、走行用電動機50を制御する。例えば、第1制御部101は、バッテリ式フォークリフト1の実際の進行方向と、バッテリ式フォークリフト1の進行方向を規定する進行方向指令値DRとに基づいて速度リミット指令Vlimを決定することにより、坂道制御及びスイッチバック制御を実行する。坂道制御は、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが異なった場合であって、実走行速度Vrが進行方向指令と逆向きに増加した場合に、実走行速度Vrの急激な増加を抑制する制御である。主に、バッテリ式フォークリフト1が坂道で停止したときに実行される。スイッチバック制御は、バッテリ式フォークリフト1がスイッチバック動作をするときの制御である。スイッチバック動作とは、バッテリ式フォークリフト1の実際の進行方向と、進行方向指令値DRが規定する進行方向とが相違する場合におけるバッテリ式フォークリフト1の動作である。例えば、図1、図2に示すアクセルペダル37を踏み、かつ進行方向切替レバー39を前進としてバッテリ式フォークリフト1を前進させている状態で、進行方向切替レバー39を後進に切り替えたとき等の動作がスイッチバック動作である。力行制御は、バッテリ式フォークリフト1が力行しているとき、すなわち、走行用電動機50に駆動電流Imが供給されているときに実行される制御である。
 第1制御部101及び第2制御部102が走行用電動機50の動作を制御するにあたり、ステップS101において、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DR(進行方向切替レバー39の指示)とが相違する場合(ステップS101、Yes)、第1制御部101及び第2制御部102は、ステップS102で坂道制御又はスイッチバック制御を実行する。ステップS103において、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが同一である場合、第1制御部101及び第2制御部102は、ステップS103で力行制御を実行する。次に、それぞれの制御の詳細を説明する。
<坂道制御>
 図8は、坂道制御及びスイッチバック制御における速度リミット指令と実走行速度との関係を示す図である。図9は、バッテリ式フォークリフトが上り坂にいる状態を示す図である。図10は、坂道制御における第3トルク指令値及びバッテリ式フォークリフトの動作を説明するための図である。
 坂道制御においては、図8に示すように、速度リミット指令Vlimは、実走行速度Vrに関わらず一定値β又は-βである(図8の実線Lsl)。速度リミット指令Vlimが-βとなる場合は、図9に示すようにバッテリ式フォークリフト1が上り坂SLuにいるときである。速度リミット指令Vlimがβとなる場合は、図13に示すようにバッテリ式フォークリフト1が下り坂SLdにいるときである。βは一定値であれば0であってもよいが、本実施形態においては、例えば、0.5km/h程度としている。
 図9に示すように、バッテリ式フォークリフト1が上り坂SLuにいる場合において、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが相違する場合、図4に示す第1制御部101及び第2制御部102は坂道制御を実行する。坂道制御は、主として、バッテリ式フォークリフト1の実際の進行方向が切り替わることにより開始される。この場合、第1制御部101の第1トルク指令値生成部103は、アクセル開度ACo=0であることから、図10に示すように、第1トルク指令値Tcf=0とする。第1制御部101の速度指令値生成部104は、速度リミット指令Vlimを0以外の値、具体的には図8に示すように-βとする。実走行速度がVr1である場合、すなわち、上り坂SLuでバッテリ式フォークリフト1がVr1で後進している場合、第2制御部102の第2トルク指令値生成部105は、第2トルク指令値Tcs1を求める。第2トルク指令値Tcs1は、上述した通り、α×ΔV=α×(Vlim-Vr1)である。
 この例は、バッテリ式フォークリフト1が実走行速度Vr1で後進しているので、第2制御部102のトルク指令値生成部106は、第1トルク指令値Tcfと第2トルク指令値Tcs1との大きい方を第3トルク指令値Tciとする。具体的には、図10に示すように、第3トルク指令値Tci=Tcf=0となる。このため、バッテリ式フォークリフト1は、徐々に増速しながら後進する。
 アクセル開度ACo=0の状態で、バッテリ式フォークリフト1が増速しながら上り坂SLuを後進し、実走行速度Vrが速度リミット指令Vlimを超えてVr2になったとする。第1制御部101及び第2制御部102は、第1トルク指令値Tcf、速度リミット指令Vlim及び実走行速度Vr2から、第3トルク指令値Tciを生成する。この場合、図10に示すように、第3トルク指令値Tci=Tcs2>0となる。走行用電動機50の回生に対応する第2象限S2において第3トルク指令値Tci>0なので、走行用電動機50は電力を回生している。第3トルク指令値Tciに基づき走行用電動機50は、電力の回生によって上り坂SLuを上る方向のトルクを発生するので、バッテリ式フォークリフト1が上り坂SLuを後進する速度は小さくなる。
 図11は、バッテリ式フォークリフトが上り坂にいて、アクセルが踏まれている状態を示す図である。図12は、図11に示す状態での第3トルク指令値及びバッテリ式フォークリフトの動作を説明するための図である。図11に示すように、実走行速度がVr2の状態で、アクセルが踏まれることにより、アクセル開度ACo>0となると、駆動輪としての前輪11は、第3トルク指令値Tciに基づいて駆動される走行用電動機50によって、トルクTwを発生している。このとき、第1制御部101は、実走行速度Vr2及び第2象限S1のトルク指令曲線Ct2から第1トルク指令値Tcf2を生成する。第2制御部102は、速度リミット指令Vlim及び実走行速度Vr2から、第2トルク指令値Tcs2を生成する。この場合、図12に示すように、第3トルク指令値Tci=Tcs2>Tcf2>0となる。
 アクセル開度ACoが大きくなると、第1制御部101は、実走行速度Vr2及び第2象限S1のトルク指令曲線Ct3から第1トルク指令値Tcf3を生成する。トルク指令曲線Ct3は、実走行速度Vrが同一である場合、トルク指令値Ct2よりも大きくなる。したがって、トルク指令曲線Ct3から生成された第1トルク指令値Tcf3は、トルク指令曲線Ct2から生成された第1トルク指令値Tcf2よりも大きくなる。本例では、トルク指令曲線Ct3から生成された第1トルク指令値Tcf3は、速度リミット指令Vlim及び実走行速度Vr2から第2制御部102によって生成された第2トルク指令値Tcs2よりも大きくなっている。この場合、図12に示すように、第3トルク指令値Tci=Tcf3>Tcs2>0となる。第3トルク指令値Tciが、上り坂SLuをバッテリ式フォークリフト1が後進するときの走行抵抗に打ち勝った場合、バッテリ式フォークリフト1は減速する。減速後、実走行速度Vrの方向反転により後述する力行制御へと移行し、バッテリ式フォークリフト1は、上り坂SLuを上る。次に、バッテリ式フォークリフト1が下り坂にいる場合を説明する。
 図13は、バッテリ式フォークリフトが下り坂にいる状態を示す図である。図14は、坂道制御における第3トルク指令値及びバッテリ式フォークリフトの動作を説明するための図である。図13に示すように、バッテリ式フォークリフト1が下り坂SLdを実走行速度Vr3で前進している場合、第1制御部101の第1トルク指令値生成部103は、アクセル開度ACo=0であることから、第1トルク指令値Tcf=0とする。第1制御部101の速度指令値生成部104は、速度リミット指令Vlimを0以外の値、具体的には図8に示すようにβとする。図14に示すように、実走行速度がVr3である場合、すなわち、下り坂SLdでバッテリ式フォークリフト1が実走行速度Vr3で前進している場合、第2制御部102の第2トルク指令値生成部105は、第2トルク指令値Tcs3を求める。第2トルク指令値Tcs3は、上述した通り、α×ΔV=α×(Vlim-Vr3)である。
 この例は、バッテリ式フォークリフト1が実走行速度Vr3で前進しているので、第2制御部102のトルク指令値生成部106は、第1トルク指令値Tcfと第2トルク指令値Tcs3との小さい方を第3トルク指令値Tciとする。具体的には、図14に示すように、第3トルク指令値Tci=Tcf=0となる。このため、バッテリ式フォークリフト1は、徐々に増速しながら前進する。
 アクセル開度ACo=0の状態で、バッテリ式フォークリフト1が増速しながら下り坂SLdを前進し、実走行速度が速度リミット指令Vlimを超えてVr4になったとする。第1制御部101及び第2制御部102は、第1トルク指令値Tcf、速度リミット指令Vlim及び実走行速度Vr4から、第3トルク指令値Tciを生成する。この場合、図14に示すように、第3トルク指令値Tci=Tcs4<0となる。走行用電動機50の回生に対応する第4象限S4において第3トルク指令値Tci<0なので、走行用電動機50は電力を回生している。第3トルク指令値Tciに基づき走行用電動機50は、回生によって下り坂SLdを上る方向のトルクを発生するので、バッテリ式フォークリフト1が下り坂SLdを前進する速度は小さくなる。
 本実施形態に係る坂道制御は、第1制御部101が、アクセル開度ACoと、実走行速度Vrとに基づいて速度リミット指令Vlimを決定する。そして、本実施形態に係る坂道制御は、第2制御部102が、バッテリ式フォークリフト1の前進時には第1トルク指令値Tcfと第2トルク指令値Tcsとのうち小さい方を用いて走行用電動機50を制御し、後進時には第1トルク指令値Tcfと第2トルク指令値Tcsとのうち大きい方を用いて電動機を制御する。第1制御部101は、バッテリ式フォークリフト1の実際の進行方向と、バッテリ式フォークリフト1の進行方向を規定する進行方向指令値DRとに基づいて速度リミット指令Vlimを決定することにより、坂道制御を実行する。すなわち、第1制御部101は、坂道制御において、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが相違することを条件として、速度リミット指令Vlimを+β又は-β(|β|)に決定する。このようにすることで、バッテリ式フォークリフト1が坂道を下る方向に進む速度の増加を抑制することができる。
 本実施形態に係る坂道制御は、前述のような処理によって、バッテリ式フォークリフト1が坂道を徐々に下るようにすることができる。このため、バッテリ式フォークリフト1のオペレータに、バッテリ式フォークリフト1が坂道にいることを確実に認識させることができる。走行用電動機50にPM型の電動機を用いる場合、走行用電動機50が励磁された状態で停止すると、ローターに取り付けられた永久磁石は発熱して保持力の低下を招く可能性がある。本実施形態に係る坂道制御は、坂道においてバッテリ式フォークリフト1を徐々に移動させるので、走行用電動機50が励磁されているときに回転している状態を継続することができる。その結果、ローターに取り付けられた永久磁石の発熱及び保持力の低下を抑制できる。
 速度リミット指令Vlimを0とすると、実走行速度Vrが0近傍である場合には、第1トルク指令値Tcfと第2トルク指令値Tcsとの大きさが近接するので、ハンチングを起こしやすくなる可能性がある。このため、本実施形態に係る坂道制御は、実走行速度Vrが0から変化した場合、速度リミット指令Vlimを0以外の値、すなわち絶対値が0よりも大きい値(本実施形態では|β|)とすることが好ましい。このようにすることで、坂道制御を実行しているときのハンチングを抑制することができる。なお、本実施形態に係る坂道制御は、進行方向切替レバー39のポジション、すなわち、進行方向指令値DRと、バッテリ式フォークリフト1の実際の進行方向とが相違する場合には、アクセル開度ACoに関係なく実行される。次に、スイッチバック制御について説明する。
 図15は、スイッチバック動作の一例を示す図である。例えば、バッテリ式フォークリフト1が荷物PKに向かって前進(進行方向指令値DR=Fw)して接近しているときのあるタイミングで、オペレータが進行方向切替レバー39を前進から後進(進行方向指令値DR=Bk)に切り替える。すると、フォーク13が荷物PKの下に差し込まれ、フォーク13に荷物PKが載置されたタイミングでバッテリ式フォークリフト1は後進を開始する。このような動作がスイッチバック動作の一例である。
 図16は、バッテリ式フォークリフトが力行かつ前進している状態を示す図である。図17は、バッテリ式フォークリフトが力行かつ前進している状態のトルク指令値を説明するための図である。バッテリ式フォークリフト1は、スイッチバック動作に入る前に、例えば、図16に示すように、実走行速度Vrで力行し、前進している。このとき、駆動輪としての前輪11は、第3トルク指令値Tciに基づいて駆動される走行用電動機50によって、トルクTwを発生している。アクセル開度ACoは0より大きく、進行方向指令値DRは前進を示すFwである。
 バッテリ式フォークリフト1が力行かつ前進しているので、第1トルク指令値Tcfは、第1象限S1のトルク指令曲線Ctと実走行速度Vrとから、第1制御部101によって生成される。このときの速度リミット指令Vlimは、後述する力行制御によって決定されている。第2トルク指令値Tcsは、速度リミット指令Vlimと実走行速度Vrとから、第2制御部102によって生成される。バッテリ式フォークリフト1が前進しているので、第2制御部102は、第1トルク指令値Tcfと第2トルク指令値Tcsとの小さい方、この例では、第1トルク指令値Tcfを第3トルク指令値Tciとする。走行用電動機50は、第1トルク指令値Tcfを発生するように、図4に示すインバータ54によって駆動される。次に、スイッチバック制御について説明する。
 図18は、バッテリ式フォークリフトがスイッチバック動作になったことを示す図である。図19は、バッテリ式フォークリフトがスイッチバック動作になったときのトルク指令値を説明するための図である。スイッチバック制御は、坂道制御と同様に、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが相違する場合に実行される。スイッチバック制御は、主として、進行方向指令値DRが変化した場合に実行される。進行方向指令値DRは、例えば、バッテリ式フォークリフト1のオペレータが進行方向切替レバー39を操作することにより変化する。スイッチバック制御は、図4に示す第1制御部101及び第2制御部102が実行する。
 図18に示すバッテリ式フォークリフト1は、アクセルペダル37が踏まれた(開かれた)状態(ACo>0)で、進行方向切替レバー39が前進から後進に切り替えられている。このため、バッテリ式フォークリフト1は、実際の進行方向が前方Fであるが、進行方向指令値DRは後進を示すBkになっている。すなわち、バッテリ式フォークリフト1は、実際の進行方向と進行方向指令値DRとが異なっている。駆動輪としての前輪11は、第3トルク指令値Tciに基づいて駆動される走行用電動機50によって、トルクTwを発生している。このときのトルクTwは、バッテリ式フォークリフト1を制動する方向に発生しており、バッテリ式フォークリフト1を前進させる方向とは反対方向である。
 進行方向切替レバー39が前進から後進に切り替えられた直後は、バッテリ式フォークリフト1は実走行速度Vrで前進している。バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとに相違(以下、適宜、進行方向の相違という)が発生しているため、第1制御部101及び第2制御部102は、スイッチバック制御を実行する。スイッチバック制御において、第1制御部101の第1トルク指令値生成部103は、力行制御で用いた、牽引力曲線に基づく第1象限S1のトルク指令曲線Ctに代えて、制動力曲線に基づく第4象限S4のトルク指令曲線Ctを用いて第1トルク指令値Tcfを生成する。図19から明らかなように、第1トルク指令値Tcfは負の値である。
 スイッチバック制御において、速度リミット指令Vlimを、バッテリ式フォークリフト1に進行方向の相違が発生した時点における実走行速度Vr絶対値よりも大きい値とする。本実施形態において、第1制御部101の速度指令値生成部104は、図19、図8に示すように、バッテリ式フォークリフト1に進行方向の相違が発生した時点の実走行速度Vr(Vsb1)に、任意の速度vを加算した値を、速度リミット指令Vlim(Vlim1)とする。第2制御部102は、速度リミット指令Vlim(Vlim1)と実走行速度Vr(Vsb1)とから、第2トルク指令値Tcsを生成する。バッテリ式フォークリフト1が前進しているので、第2制御部102は、第1トルク指令値Tcfと第2トルク指令値Tcsとの小さい方、この例では、第1トルク指令値Tcfを第3トルク指令値Tciとする。走行用電動機50は、第1トルク指令値Tcfを発生するように、図4に示すインバータ54によって駆動される。
 図20は、スイッチバック動作中のバッテリ式フォークリフトを示す図である。図21は、スイッチバック動作中のトルク指令値を説明するための図である。図20に示すバッテリ式フォークリフト1は、前輪11が発生するトルクTw、すなわち回生制動トルクによって、徐々に減速する。回生制動トルクは、バッテリ式フォークリフト1を、現在の進行方向とは反対方向に進ませようとするトルクである。前進方向の実走行速度Vrが減少している場合、アクセル開度ACo>0、進行方向指令値DRは後進を表すBkになっている。
 進行方向切替レバー39が後進、かつアクセル開度ACo>0の状態でバッテリ式フォークリフト1が減速しているときも、第1制御部101の第1トルク指令値生成部103は、制動力曲線に基づく第4象限S4のトルク指令曲線Ctを用いて第1トルク指令値Tcfを生成する。本実施形態において、第1制御部101の速度指令値生成部104は、図21、図8に示すように、実走行速度Vr(Vsb2)が、バッテリ式フォークリフト1に進行方向の相違が発生した時点の実走行速度Vr(Vsb1)よりも小さくなった場合、速度リミット指令Vlimを、進行方向の相違が発生した時点の速度リミット指令Vlim1よりも小さくし、Vlim2とする。これは、実走行速度Vrが0に近づくにしたがって、速度リミット指令Vlimを小さくすることを意味する。この場合、速度リミット指令Vlim2と実走行速度Vsb2との差は、図21、図8に示すように速度vである。すなわち、本実施形態において、実走行速度Vrが減少する場合、速度リミット指令Vlimは、実走行速度Vrよりも速度vだけ大きい値で実走行速度Vrに追従する。速度vは0であってもよいが、vを絶対値が0よりも大きい値とすることで、スイッチバック制御においてハンチングの発生を抑制できるので好ましい。
 このように、本実施形態において、第1制御部101は、速度リミット指令Vlimを、バッテリ式フォークリフト1に進行方向の相違が発生したときに生成した値よりも大きくしない。すなわち、速度リミット指令Vlimは、本実施形態においては、図8に示す実線Llv1に沿って減少する方向にのみ変化する。このようにすることで、バッテリ式フォークリフト1が一旦減速した後に再加速することを抑制することができる。
 第2制御部102は、速度リミット指令Vlim(Vlim2)と実走行速度Vr(Vsb2)とから、第2トルク指令値Tcsを生成する。バッテリ式フォークリフト1が前進しているので、第2制御部102は、第1トルク指令値Tcfと第2トルク指令値Tcsとの小さい方、この例では、第1トルク指令値Tcfを第3トルク指令値Tciとする。走行用電動機50は、第1トルク指令値Tcfを発生するように、図4に示すインバータ54によって駆動される。
 図22は、減速によって進行方向が反転したバッテリ式フォークリフトを示す図である。図23は、減速によって進行方向が反転した場合におけるトルク指令値を説明するための図である。図22に示すバッテリ式フォークリフト1は、前輪11が発生するトルクTw、すなわち回生制動トルクによって徐々に減速し、進行方向が前進から後進に切り替わっている。このため、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが同一になっている。アクセル開度ACo>0、進行方向指令値DRは後進を表すBkになっている。
 進行方向切替レバー39が後進、かつアクセル開度ACo>0の状態でバッテリ式フォークリフト1が実走行速度Vrで後進しているとき、第1制御部101及び第2制御部102は、後進の力行制御によって走行用電動機50を制御する。第1制御部101の第1トルク指令値生成部103は、スイッチバック制御で用いた、制動力曲線に基づく第4象限S4のトルク指令曲線Ctに代えて、牽引力曲線に基づく第3象限S3のトルク指令曲線Ctを用いて第1トルク指令値Tcfを生成する。図23から明らかなように、第1トルク指令値Tcfは負の値である。
 第1制御部101の速度指令値生成部104は、後進の力行制御に基づいて速度リミット指令Vlimを生成する。第2制御部102は、速度リミット指令Vlimと実走行速度Vrとから、第2トルク指令値Tcsを生成する。バッテリ式フォークリフト1が後進しているので、第2制御部102は、第1トルク指令値Tcfと第2トルク指令値Tcsとの大きい方、この例では、第2トルク指令値Tcsを第3トルク指令値Tciとする。走行用電動機50は、第2トルク指令値Tcsを発生するように、図4に示すインバータ54によって駆動される。前述した説明においては、アクセル開度ACo>0である場合を例としたが、スイッチバック制御は、アクセル開度ACoに関わらず、坂道制御と同様に、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが相違する場合に実行される(以下同様)。次に、図24、図25に示すスイッチバック制御に入った後、バッテリ式フォークリフト1が下り坂を走行する例を説明する。
 図24は、スイッチバック制御に入った後に下り坂を走行するバッテリ式フォークリフトを示す図である。図25は、スイッチバック制御に入った後、下り坂を走行する場合におけるトルク指令値を説明するための図である。図24に示すバッテリ式フォークリフト1は、アクセルペダル37が踏まれた状態(ACo>0)で、進行方向切替レバー39が前進から後進に切り替えられている(DR=Bk)。このため、第1制御部101及び第2制御部102は、スイッチバック制御を実行している。バッテリ式フォークリフト1は、下り坂を走行するため、実走行速度Vrが増加することになる。
 実走行速度Vrが増加した場合、図25及び図8の直線Llv2に示すように、第1制御部101の速度指令値生成部104は、速度リミット指令Vlimは変更しない。すなわち、本実施形態において、速度指令値生成部104は、バッテリ式フォークリフト1に進行方向の相違が発生してスイッチバック制御に移行した時点に生成した速度リミット指令Vlim1よりも速度リミット指令Vlimを大きくしない。このようにすることで、第3トルク指令値Tciが不足することに起因する実走行速度Vrの増加を抑制することができる。第3トルク指令値Tciは、例えば、アクセル開度ACoが不足している、坂が急傾斜である又は図5に示すスイッチバック回生力(制動力)USTtがユーザー毎に異なる等によって不足する可能性がある。
 本実施形態に係るスイッチバック制御は、実走行速度Vrが少なくとも速度リミット指令Vlimを超えるまでは、第1トルク指令値Tcfが第3トルク指令値Tciとなるため、走行用電動機50が発生するトルクの急変は抑制される。さらに、速度リミット指令Vlimを通る傾きがαの直線は、第4象限S4のトルク指令曲線Ctと交差するので、第1トルク指令値Tcfと第2トルク指令値Tcsとの切り替わりも滑らかになる。このため、走行用電動機50が発生するトルクの急変は抑制される。第1トルク指令値Tcf、第2トルク指令値Tcs及び第3トルク指令値Tciの生成は、上述した通りなので説明を省略する。
 図8の点線Llv3に示すように、速度指令値生成部104は、速度リミット指令Vlimが少なくなる方向に変更されたら、変更後の速度リミット指令Vlim(図8に示す例ではVlim2)よりも速度リミット指令Vlimを大きくしないようにしてもよい。このようにすると、バッテリ式フォークリフト1が一旦減速した後に再加速することを抑制することができる。次に、前述した坂道制御中にスイッチバック制御へ移行する例を説明する。
 図26は、バッテリ式フォークリフトが下り坂にいるときにアクセルを開き後進する状態を示す図である。図27は、バッテリ式フォークリフトが下り坂にいるときにアクセルを開き後進する状態におけるトルク指令値を説明するための図である。前述した図13に示すように、バッテリ式フォークリフト1が進行方向切替レバー39を前進として、下り坂SLdにいるときに図14に示すような坂道制御が実行されている場合を考える。この状態では、バッテリ式フォークリフト1は、下り坂SLdを徐々に前進して下っている状態である。このとき、オペレータが、進行方向切替レバー39を後進、すなわち現在の進行方向とは反対に切り替え、かつアクセルペダル37を開いたとする。すると、図26に示すように、バッテリ式フォークリフト1は実走行速度Vrで前進しているが、進行方向指令値DRはFwからBkに切り替わる。この場合は、進行方向指令値DRが切り替わることにより、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとが相違するので、スイッチバック制御が実行される。
 バッテリ式フォークリフト1に進行方向の相違が発生するので、第1制御部101及び第2制御部102は、スイッチバック制御を実行する。スイッチバック制御を実行するにあたり、第1制御部101の第1トルク指令値生成部103は、制動力曲線に基づく第4象限S4のトルク指令曲線Ctを用いて第1トルク指令値Tcfを生成する。第1制御部101の速度指令値生成部104は、図27に示すように、バッテリ式フォークリフト1に進行方向の相違が発生した時点の実走行速度Vrに速度vを加算した値を、速度リミット指令Vlimとする。第2制御部102は、速度リミット指令Vlimと実走行速度Vrとから、第2トルク指令値Tcsを生成する。バッテリ式フォークリフト1が前進しているので、第2制御部102は、第1トルク指令値Tcfと第2トルク指令値Tcsとの小さい方、この例では、第1トルク指令値Tcfを第3トルク指令値Tciとする。図4に示すインバータ54は、走行用電動機50が第1トルク指令値Tcfを発生するように制御する。
 本実施形態に係るスイッチバック制御は、バッテリ式フォークリフト1に進行方向の相違が発生した時点の実走行速度Vrに速度vを加算した値を、速度リミット指令Vlimとする。このようにすることで、図27に示すように、制動力曲線等に基づく第1トルク指令値Tcfが第3トルク指令値Tciとなるので、走行用電動機50は、アクセルペダル37の操作に応じた加速感をオペレータに与えることができる。
 図28は、バッテリ式フォークリフトが下り坂にいるときにスイッチバック制御が実行されている状態を示す図である。図29は、バッテリ式フォークリフトが下り坂にいるときのスイッチバック制御におけるトルク指令値を説明するための図である。坂道制御からスイッチバック制御に切り替わると、バッテリ式フォークリフト1が前進する実走行速度Vrは徐々に小さくなる。実走行速度Vrが小さくなった場合、第1制御部101の速度指令値生成部104は、前述したように、速度リミット指令Vlimを前回値よりも小さくする。実走行速度Vrが正、すなわちバッテリ式フォークリフト1が前進しているので、第2制御部102は、第1トルク指令値Tcfと第2トルク指令値Tcsとの小さい方、この例では、第1トルク指令値Tcfを第3トルク指令値Tciとする。図4に示すインバータ54は、走行用電動機50が第1トルク指令値Tcfを発生するように制御する。バッテリ式フォークリフト1の実走行速度Vrが0になり、進行方向が反転すると、進行方向指令値DRはBkからFwに切り替わる。すると、バッテリ式フォークリフト1の実際の進行方向と進行方向指令値DRとは同一になるので、第1制御部101及び第2制御部102は、力行制御によって走行用電動機50を制御する。
 本実施形態において、第1制御部101は、アクセル開度ACoと、実走行速度Vrと、バッテリ式フォークリフト1の実際の進行方向とに基づいて速度リミット指令Vlimを決定する。例えば、本実施形態に係るスイッチバック制御は、進行方向指令値DRと、バッテリ式フォークリフト1の実際の進行方向(実走行速度Vrの方向)とが異なった瞬間の実走行速度Vrよりも絶対値が大きい速度又はこの実走行速度Vrを速度リミット指令Vlimとすることで、坂道制御から速やかにスイッチバック制御へ移行することができる。また、移行時における加速度の急変も抑制することができる。
 本実施形態において、前述した坂道制御とスイッチバック制御とは、バッテリ式フォークリフト1の実際の進行方向と、進行方向指令値DRが規定する進行方向とが相違することを条件としている。そして、バッテリ式フォークリフト1の実際の進行方向が変化することにより前述した相違が発生した場合には坂道制御が実行され、進行方向指令値DRが変化することにより前述した相違が発生した場合にはスイッチバック制御が実行される。本実施形態は、このような制御のロジックとすることで、スイッチバック制御と坂道制御とを明確に切り分けることができるので、両者の両立を図ることができる。また、本実施形態に係るスイッチバック制御の実行中は、速度リミット指令Vlimを実走行速度Vrの絶対値が小さくなる場合に限って追従させることで、スイッチバック制御中に坂道に入った場合であってもバッテリ式フォークリフト1の増速を抑制して、スイッチバック制御と坂道制御との両立を図ることができる。その結果、バッテリ式フォークリフト1が、発泡スチロール等の密度が低いために荷こぼれし易い搬送物を荷役する場合において、荷物を不安定にすることを抑制できる。
<力行制御>
 力行制御において、図4に示す第1制御部101の速度指令値生成部104は、時間の経過に応じて速度リミット指令Vlimを変更する。このようにすることで、バッテリ式フォークリフト1が発進する際において、実走行速度Vrの急激な変化を抑制することができる。バッテリ式フォークリフト1が発進した後、ある程度の時間が経過した後は、第1トルク指令値生成部103が生成した第1トルク指令値Tcf、すなわち、牽引力曲線又は制動力曲線に基づいて決定される第1トルク指令値Tcfによってバッテリ式フォークリフト1が制御される。
 図30は、第1制御部が備える速度指令値生成部の制御ブロック図である。速度指令値生成部104は、走行速度制限部104Aと、加速制限部104Bと、選択処理部104Cとを有する。走行速度制限部104Aは、バッテリ式フォークリフト1の実走行速度Vrの上限を制限する機能を有している。走行速度制限部104Aは、例えば、バッテリ式フォークリフト1の実走行速度Vを制限するための速度制限設定値UST_Bを有しており、これを第1速度リミット指令Vaとして出力する。走行速度制限部104Aには、設定値USTが入力される。設定値USTの入力により、走行速度制限部104Aの内容、例えば、速度制限設定値UST_Bの値が書き換えられる。その結果、走行速度制限部104Aは、異なる値の第1速度リミット指令Vaを出力することができる。
 加速制限部104Bは、シフト量決定部104Baと、速度指令値シフト処理部104Bbとを有する。シフト量決定部104Baは、アクセル開度ACoが入力される。シフト量決定部104Baは、入力されたアクセル開度ACoに基づいて、速度リミット指令Vlimの時間の経過に応じた変化量、すなわちシフト量STを決定する。速度指令値生成部104が生成して出力する速度リミット指令Vlimは、走行速度制限部104Aによる制限がない場合、加速制限部104Bの速度指令値シフト処理部104Bbが生成して出力する第2速度リミット指令Vbと等しくなる。シフト量決定部104Baは、設定値UST_Aが入力される。設定値UST_Aに応じて、速度リミット指令Vlimの時間の経過に応じた変化の特性が変更される。
 速度指令値シフト処理部104Bbは、実走行速度Vrと、第1制御部101の第1トルク指令値生成部103が生成した第1トルク指令値Tcfと、シフト量決定部104Baが決定したシフト量STとが入力される。実走行速度Vrは、走行用電動機50の電動機回転数Nに相当する。速度指令値シフト処理部104Bbは、実走行速度Vrと第1トルク指令値Tcfとシフト量STとに基づいて、第2速度リミット指令Vbを生成し、出力する。本実施形態において、第2速度リミット指令Vbの初期値は、図8に示したβ又は-βである。実走行速度Vrが入力されたとき、その方向が正(前進)であれば、第2速度リミット指令Vbの初期値はβとなり、その方向が負(後進)であれば、第2速度リミット指令Vbの初期値は-βとなる。
 選択処理部104Cは、第1速度リミット指令Vaと第2速度リミット指令Vbとが入力される。選択処理部104Cは、実走行速度Vrが正の場合、すなわちバッテリ式フォークリフト1が前進しているときには第1速度リミット指令Vaと第2速度リミット指令Vbとの小さい方を選択して速度リミット指令Vlimとして出力する。選択処理部104Cは、実走行速度Vrが負の場合、すなわちバッテリ式フォークリフト1が後進しているときには第1速度リミット指令Vaと第2速度リミット指令Vbとの大きい方を選択して速度リミット指令Vlimとして出力する。選択処理部104Cは、第1速度リミット指令Vaと第2速度リミット指令Vbとのうち、絶対値の小さい方を選択する。
 図31は、シフト量決定部が決定する速度リミット指令のシフト量を説明するための図である。図32は、シフト量に基づいて速度リミット指令を変化させた場合の一例を示す図である。速度リミット指令Vlimのシフト量STは、所定時間における速度リミット指令Vlimの変化量であり、単位は、例えば、km/h/msecである。すなわち、1msecあたりに変化する速度リミット指令Vlimの大きさを表している。
 図31に示すように、本実施形態において、シフト量STは、速度リミット指令Vlimの大きさによって異なっている。本実施形態では、速度リミット指令Vlimが大きいほど、シフト量STは小さくなっている。これに限定されず、シフト量STは、速度リミット指令Vlimが大きいほど大きくなってもよいし、ある速度リミット指令Vlimの値で極大値又は極小値を持つように変化してもよい。速度指令値生成部104は、シフト量STに基づき、制御サイクル毎に速度リミット指令Vlimを変更することにより、速度リミット指令Vlimを時間の経過に従って変化させることができる。その結果、第1制御部101及び第2制御部102は、バッテリ式フォークリフト1が走行する際の加速度の制限を規定することができる。
 また、図31には、4種類のシフト特性SP1、SP2、SP3、SP4が記載してある。シフト特性SP1、SP2、SP3、SP4は、この順に、同じ速度リミット指令Vlimにおけるシフト量STが小さくなっている。シフト特性SP1、SP2、SP3、SP4は、アクセル開度ACoによって選択される。本実施形態では、アクセル開度ACoが大きくなるにしたがって、シフト特性は、SP4、SP3、SP2、SP1の順に変化する。シフト量STを速度リミット指令Vlimに基づいて変化させることにより、外乱の影響等により、実走行速度Vrが速度リミット指令Vlimを超えた場合に、バッテリ式フォークリフト1の実際の加速度が、規定した加速度を超えてしまうことを回避できる。
 速度指令値生成部104が、シフト特性SP1、SP2等に基づいて速度リミット指令Vlimを変化させると、例えば、図32に示すように、時間tに対して速度リミット指令Vlimが変化する。本実施形態では、時間tの経過に応じて速度リミット指令Vlimの絶対値が大きくなっている。図32の実線で示すSP1、SP2は、それぞれシフト特性SP1、SP2に基づいて速度リミット指令Vlimを変化させた結果である。実線で示すSP1、SP2は、バッテリ式フォークリフト1がある実走行速度Vr(速度リミット指令Vlimに対応)に到達するまでに要する最短の時間を示している。
 本実施形態において、速度指令値生成部104は、第2制御部102の制御状態に応じて、速度リミット指令Vlimを増速方向に変化させるか、減速方向に変化させるかを決定する。第2制御部102の制御状態とは、第3トルク指令値Tciを生成するための制御の状態である。具体的には、牽引力曲線等に基づく第1トルク指令値Tcf又は速度リミット指令Vlimに基づく第2トルク指令値Tcsのいずれに従って第3トルク指令値Tciを生成するかという第2制御部102の処理の状態である。
 図33~図35は、第1制御部の速度指令値生成部が第2制御部の制御状態を判定する手法の一例を説明するための図である。図36は、第2制御部が第1トルク指令値に従って走行用電動機を制御しているときにおける速度リミット指令の変更例を示す図である。第1制御部101の速度指令値生成部104、より具体的には、速度指令値シフト処理部104Bbは、第1トルク指令値Tcfと実走行速度Vrとに基づいて、判定用の速度(判定速度)Vjを求める。判定速度Vjは、図33から、係数αと、第1トルク指令値Tcfと、実走行速度Vrとを用いて式(1)のように表すことができる。係数αは、速度リミット指令Vlimに基づいて第2トルク指令値Tcsを生成する際に使用したものである。
 Vj=Tcf/α+Vr・・・(1)
 速度指令値シフト処理部104Bbは、判定速度Vjを求めたら、判定速度Vjと現在の制御サイクルにおける速度リミット指令Vlimとを比較する。図34に示すように、判定速度Vj<速度リミット指令Vlimである場合、第2制御部102は、第1制御部101が生成した第1トルク指令値Tcfを第3トルク指令値Tciとして、走行用電動機50を制御していると判定する。図35に示すように、判定速度Vj>速度リミット指令Vlimである場合、第2制御部102は、速度リミット指令Vlimに基づいて生成した第2トルク指令値Tcsを第3トルク指令値Tciとして、走行用電動機50を制御していると判定する。なお、速度指令値シフト処理部104Bbは、図3に示す通信線110を介して第2制御部102の制御状態を直接取得してもよい。
 判定の結果、第2制御部102が第2トルク指令値Tcsに従って走行用電動機50を制御している場合、速度指令値シフト処理部104Bbは、シフト量決定部104Baが決定したシフト量ST分、第2速度リミット指令Vb(速度リミット指令Vlim)を、絶対値が増加する方向に変化させる。このようにすることで、第1制御部101及び第2制御部102は、シフト量STのシフト特性SP1、SP2等によって規定される加速度で、バッテリ式フォークリフト1を加速させることができる。
 判定の結果、第2制御部102が第1トルク指令値Tcfに従って走行用電動機50を制御している場合、速度リミット指令Vlimと現在の実走行速度Vrとの差(Vlim-Vr)が大きくなると、バッテリ式フォークリフト1のオペレータは、期待している加速が得られないと認識して、アクセルペダル37の踏み込みを増加させることがある。その結果、バッテリ式フォークリフト1の急加速を招く可能性がある。バッテリ式フォークリフト1の走行抵抗が大きい場合、十分な加速度が得られず、(Vlim-Vr)が大きくなることがある。
 このような場合、速度指令値シフト処理部104Bbは、次のように制御する。図36に示すように、速度リミット指令Vlimと現在の実走行速度Vrとの差(Vlim-Vr)が所定の閾値(例えば、速度vc)以上になった場合、速度指令値シフト処理部104Bbは、速度リミット指令Vlimの絶対値を小さくする。このようにすると、速度リミット指令Vlimと現在の実走行速度Vrとの差が小さくなる。
 バッテリ式フォークリフト1が前進している場合、第1トルク指令値Tcfと第2トルク指令値Tcsとのうち小さい方に基づいて走行用電動機50が制御される。速度リミット指令Vlimと現在の実走行速度Vrとの差が小さくなると、速度リミット指令Vlimと実走行速度Vrとに基づく第2トルク指令値Tcsも小さくなる。このため、例えば、オペレータがアクセルペダル37の踏み込みを増加させた場合、牽引力曲線等に基づく第1トルク指令値Tcfは急激に増加するが、速度リミット指令Vlimに基づく第2トルク指令値Tcsの増加は抑えられるので、後者が選択される傾向が高くなる。その結果、速度リミット指令Vlimに基づく第2トルク指令値Tcsによる力行制御が実行され、かつ第2トルク指令値Tcsも急激には増加しないので、バッテリ式フォークリフト1の急加速が抑制される。
 図37は、バッテリ式フォークリフトが下り坂にいるときにアクセルペダルを開いた状態を示す図である。図38は、バッテリ式フォークリフトが下り坂にいるときにアクセルペダルを開いた場合のおけるトルク指令値を説明するための図である。前述した坂道制御の実行中(図13、図14参照)、アクセルペダル37を踏み込んで開くことにより(ACo>0)、力行制御によって走行用電動機50が制御される。
 第1制御部101及び第2制御部102は、本実施形態に係る力行制御を実行するにあたり、図37に示すような、速度リミット指令Vlimよりも実走行速度Vrが大きい場合、速度リミット指令Vlimに基づいて走行用電動機50を制御し、かつ時間の経過とともに速度リミット指令Vlimの絶対値が大きくなるようにする。このようにすることで、バッテリ式フォークリフト1に下り坂SLdを前進させるため、坂道制御において負のトルク(下り坂SLdを後進する方向のトルク)を発生していた走行用電動機50及び前輪11に正のトルクTwを発生させる。このとき、時間の経過とともに速度リミット指令Vlimの絶対値が大きくなるようにするので、走行用電動機50及び前輪11が発生するトルクの急激な反転が抑制される。その結果、本実施形態に係る力行制御は、バッテリ式フォークリフト1が下り坂SLdを力行して前進する場合の急加速を抑制することができる。
 本実施形態に係る力行制御は、アクセル開度ACoが0よりも大きいときには、時間の経過に応じて速度リミット指令Vlimを変更、より具体的には、時間の経過とともに絶対値が大きくなるようにする。このようにすることで、バッテリ式フォークリフト1の発進直後は、速度リミット指令Vlimに基づく第2トルク指令値Tcsによって走行用電動機50のトルクが制御されるので、急なトルクの上昇が抑制される。その結果、バッテリ式フォークリフト1が、発泡スチロール等の密度が低いために荷こぼれし易い搬送物を荷役する場合において、荷物を不安定にすることを抑制できる。また、時間の経過に応じて速度リミット指令Vlimが大きくなるので、バッテリ式フォークリフト1の発進後、ある程度時間が経過すれば、牽引力曲線等に基づく第1トルク指令値Tcfにより走行用電動機50のトルクが制御される。その結果、アクセルペダル37の操作に対する反応が向上するので、ドライバビリティが向上する。
 第2制御部102が速度リミット指令Vlimに基づいて第2トルク指令値Tcsを生成する場合、係数αを大きくすると、実走行速度Vrの変化が小さくても第2トルク指令値Tcsが急激に立ち上がるので、応答性が向上し、かつ設定された走行速度を実現しやすくなる。また、本実施形態は、通信線110で第1制御部101と第2制御部102とを接続し、第2制御部102内で第2トルク指令値Tcsを生成している。第1制御部101が速度リミット指令Vlimに基づいて第1トルク指令Tcfを生成する場合、第1制御部101からの指令に基づき走行用電動機50が出力されるまでには通信遅れが発生する。この場合、係数αを大きくすると、実走行速度Vrの変化が大きい場合には、第1制御部101の指令に基づき走行用電動機50から発生するトルク出力と、実際に出力したいトルクとの乖離が発生し、ハンチングを発生する可能性がある。このため、第1制御部101からの第1トルク指令Tcfは、通信の遅れによるハンチングを抑制するため、係数αを小さくする必要がある。これに対し、本実施形態は、第2制御部102内で第2トルク指令値Tcsを生成しているため、前述した通信の遅れを考慮する必要がない。その結果、係数αを大きくすることができる。
 以上、本実施形態を説明したが、上述した内容により本実施形態が限定されるものではない。また、上述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、上述した構成要素は適宜組み合わせることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
1 バッテリ式フォークリフト
2 制御システム
10 車体
11 前輪
12 後輪
13 フォーク
30 バッテリ
50 走行用電動機
50R 回転速度検出用センサ
51 動力伝達装置
52 操作パネル
53 DC/DCコンバータ
54 インバータ
101 第1制御部
102 第2制御部
103 第1トルク指令値生成部
104 速度指令値生成部
104A 走行速度制限部
104B 加速制限部
104Ba シフト量決定部
104Bb 速度指令値シフト処理部
104C 選択処理部
105 第2トルク指令値生成部
106 トルク指令値生成部
107 減算部
108 乗算部
110 通信線
ACo アクセル開度
Ct、Ct1、Ct2 トルク指令曲線
DR 進行方向指令値
Im 駆動電流
N 電動機回転数
ST シフト量
Tc トルク指令値
Vlim 速度リミット指令
Va 第1速度リミット指令
Vb 第2速度リミット指令
Vr、Vr1、Vr2、Vr3、Vr4 実走行速度
α 係数

Claims (8)

  1.  少なくとも走行用の電動機を備える作業車両であり、
     前記電動機を制御するための速度指令値を生成し、かつ前記電動機に発生させるトルクの指令値であるトルク指令値と前記作業車両の走行速度との関係に前記作業車両の実走行速度を与えて第1トルク指令値を生成する第1制御部と、
     前記第1制御部が生成した前記速度指令値と前記実走行速度とに基づいて第2トルク指令値を生成し、前記作業車両が前進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち小さい方を用いて前記電動機を制御し、前記作業車両が後進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち大きい方を用いて前記電動機を制御する第2制御部と、を含み、
     前記第1制御部は、前記作業車両の実際の進行方向と、前記作業車両の進行方向を規定する進行方向指令値とが相違する場合、この相違が発生したときの前記実走行速度に基づいて前記速度指令値を決定する、作業車両。
  2.  前記第1制御部は、
     前記速度指令値を、前記相違が発生したときの前記実走行速度の絶対値よりも大きい値とする、請求項1に記載の作業車両。
  3.  前記第1制御部は、
     前記速度指令値を、前記相違が発生したときに生成した値よりも大きくしない、請求項1又は2に記載の作業車両。
  4.  前記第1制御部は、前記実走行速度が0から変化した場合に、前記速度指令値の絶対値を0より大きい値とする、請求項1から3のいずれか1項に記載の作業車両。
  5.  前記第1トルク指令値と前記作業車両の走行速度との関係は、前記作業車両のアクセルの開度によって変化する、請求項1から4のいずれか1項に記載の作業車両。
  6.  前記第1制御部は、
     前記実走行速度が0に近づくにしたがって、前記速度指令値を小さくする、請求項1から5のいずれか1項に記載の作業車両。
  7.  前記電動機は、ローターが永久磁石を有する、請求項4から6のいずれか1項に記載の作業車両。
  8.  少なくとも走行用の電動機を備える作業車両であり、
     前記電動機を制御するための速度指令値を生成し、かつ前記電動機に発生させるトルクの指令値であるトルク指令値と前記作業車両の走行速度との関係に前記作業車両の実走行速度を与えて第1トルク指令値を生成する第1制御部と、
     前記第1制御部が生成した前記速度指令値と前記実走行速度とに基づいて第2トルク指令値を生成し、前記作業車両が前進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち小さい方を用いて前記電動機を制御し、前記作業車両が後進しているときには前記第1トルク指令値と前記第2トルク指令値とのうち大きい方を用いて前記電動機を制御する第2制御部と、を含み、
     前記第1制御部は、前記作業車両の実際の進行方向と、前記作業車両の進行方向を規定する進行方向指令値とに基づいて前記速度指令値を決定し、かつ前記実際の進行方向と前記作業車両の進行方向を規定する進行方向指令とが相違する場合、この相違が発生したときの速度に基づいて前記速度指令値を決定し、さらに、前記実走行速度が0から変化した場合に、前記速度指令値を、その絶対値が0よりも大きい値とする、作業車両。
PCT/JP2013/055557 2013-02-28 2013-02-28 作業車両 WO2014132417A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/055557 WO2014132417A1 (ja) 2013-02-28 2013-02-28 作業車両
CN201380001764.6A CN104136269B (zh) 2013-02-28 2013-02-28 工作车辆
US14/126,893 US9637126B2 (en) 2013-02-28 2013-02-28 Work vehicle
JP2013544043A JP5592026B1 (ja) 2013-02-28 2013-02-28 作業車両
DE112013000102.0T DE112013000102T5 (de) 2013-02-28 2013-02-28 Arbeitsfahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055557 WO2014132417A1 (ja) 2013-02-28 2013-02-28 作業車両

Publications (1)

Publication Number Publication Date
WO2014132417A1 true WO2014132417A1 (ja) 2014-09-04

Family

ID=51427718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055557 WO2014132417A1 (ja) 2013-02-28 2013-02-28 作業車両

Country Status (5)

Country Link
US (1) US9637126B2 (ja)
JP (1) JP5592026B1 (ja)
CN (1) CN104136269B (ja)
DE (1) DE112013000102T5 (ja)
WO (1) WO2014132417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7556023B2 (ja) 2019-09-26 2024-09-25 ルノー エス.ア.エス. 車両駆動列の目標状態を選択する方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5592026B1 (ja) * 2013-02-28 2014-09-17 株式会社小松製作所 作業車両
CN105259804B (zh) * 2015-10-15 2018-01-19 浙江吉利汽车研究院有限公司 防止tcu与esp产生干扰的方法
CN105711441B (zh) * 2016-01-20 2018-09-21 奇瑞汽车股份有限公司 车速控制方法及系统
KR20190032287A (ko) * 2017-08-31 2019-03-27 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 제어 시스템 및 작업 기계의 제어 방법
CN108910767B (zh) * 2018-06-25 2023-08-08 浙江工业大学 一种叉车用转矩信号获取装置
EP4034412A1 (en) * 2019-09-27 2022-08-03 Mitsubishi Logisnext Europe Oy Control of torque in electric lift trucks
CA3159403A1 (en) * 2019-12-03 2020-11-12 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
DE102020207422A1 (de) 2020-06-16 2021-12-16 Zf Friedrichshafen Ag Verfahren zum Betreiben eines elektrischen Antriebsstrangs einer Arbeitsmaschine, elektrischer Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284612A (ja) * 1992-03-31 1993-10-29 Aqueous Res:Kk 電気自動車
JP2001352612A (ja) * 2000-06-06 2001-12-21 Toyota Industries Corp 産業車両の走行制御装置
JP2003199214A (ja) * 2001-12-26 2003-07-11 Aisin Aw Co Ltd 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
JP2004215447A (ja) * 2003-01-07 2004-07-29 Toyota Industries Corp 車両の走行制御装置
JP2008199716A (ja) * 2007-02-09 2008-08-28 Hitachi Ltd 車両駆動装置及びそれに用いられる電子回路装置
JP2010037079A (ja) * 2008-08-07 2010-02-18 Nippon Yusoki Co Ltd リーチ型フォークリフトにおける駆動輪のトラクション制御方法およびそのシステム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1269440B (it) * 1994-01-19 1997-04-01 Fita Om Carrelli Elevatori S P Carrello elevatore a motorizzazione elettrica
JPH089508A (ja) 1994-06-21 1996-01-12 Toyota Autom Loom Works Ltd バッテリ式車両の走行制御装置
JP4404313B2 (ja) * 2004-12-07 2010-01-27 ヤンマー株式会社 作業車両の制御装置
JP4528238B2 (ja) * 2005-09-30 2010-08-18 株式会社クボタ 作業車の車速制御構造
US7386382B2 (en) * 2006-01-09 2008-06-10 Deere & Company Steering compensated speed override for vehicle drive system
JP2008141810A (ja) * 2006-11-30 2008-06-19 Toyota Motor Corp 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
US20120159916A1 (en) * 2007-01-15 2012-06-28 Kanzaki Kokyukoki Manufacturing Co., Ltd. Control sysytem for motor-driven lawnmower vehicle
EP1943894B1 (en) * 2007-01-15 2010-05-19 Kanzaki Kokyukoki Mfg. Co., Ltd. Riding lawn mower
US8103418B2 (en) * 2007-08-06 2012-01-24 Extendquip Llc Extendable frame work vehicle having lift member movable in a true vertical fashion
JP5401682B2 (ja) * 2008-04-18 2014-01-29 株式会社 神崎高級工機製作所 電動対地作業車両
JP4631936B2 (ja) * 2008-06-18 2011-02-16 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに車両
US9097342B2 (en) * 2010-01-05 2015-08-04 Cnh Industrial America Llc Method for estimating and controlling driveline torque in a continuously variable hydro-mechanical transmission
JP5237313B2 (ja) * 2010-02-16 2013-07-17 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5261419B2 (ja) * 2010-03-05 2013-08-14 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5205408B2 (ja) * 2010-03-24 2013-06-05 株式会社小松製作所 作業車両及び作業車両の制御方法
CN102844218B (zh) * 2010-05-17 2014-12-31 本田技研工业株式会社 电动车辆的控制装置以及控制方法
EP2577027A2 (en) * 2010-06-03 2013-04-10 Polaris Industries Inc. Electronic throttle control
JP5693152B2 (ja) * 2010-11-01 2015-04-01 ジヤトコ株式会社 車両の油圧制御装置
JP5592026B1 (ja) * 2013-02-28 2014-09-17 株式会社小松製作所 作業車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284612A (ja) * 1992-03-31 1993-10-29 Aqueous Res:Kk 電気自動車
JP2001352612A (ja) * 2000-06-06 2001-12-21 Toyota Industries Corp 産業車両の走行制御装置
JP2003199214A (ja) * 2001-12-26 2003-07-11 Aisin Aw Co Ltd 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
JP2004215447A (ja) * 2003-01-07 2004-07-29 Toyota Industries Corp 車両の走行制御装置
JP2008199716A (ja) * 2007-02-09 2008-08-28 Hitachi Ltd 車両駆動装置及びそれに用いられる電子回路装置
JP2010037079A (ja) * 2008-08-07 2010-02-18 Nippon Yusoki Co Ltd リーチ型フォークリフトにおける駆動輪のトラクション制御方法およびそのシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7556023B2 (ja) 2019-09-26 2024-09-25 ルノー エス.ア.エス. 車両駆動列の目標状態を選択する方法

Also Published As

Publication number Publication date
US20140350799A1 (en) 2014-11-27
US9637126B2 (en) 2017-05-02
JP5592026B1 (ja) 2014-09-17
DE112013000102T5 (de) 2015-02-19
JPWO2014132417A1 (ja) 2017-02-02
CN104136269A (zh) 2014-11-05
CN104136269B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5592026B1 (ja) 作業車両
JP5719035B2 (ja) 作業車両
RU2666072C2 (ru) Устройство управления для электромоторного транспортного средства и способ управления для электромоторного транспортного средства
RU2723661C1 (ru) Способ и устройство для управления электромотором электрического транспортного средства
US9845022B2 (en) Control device for electric motor vehicle and control method for electric motor vehicle
JP5563062B2 (ja) アクセルペダル装置
US9902272B2 (en) Control device for electric motor vehicle and control method for electric motor vehicle
RU2670563C1 (ru) Устройство управления для электромоторного транспортного средства и способ управления для электромоторного транспортного средства
RU2729837C1 (ru) Способ и устройство управления электромотором для транспортного средства с электроприводом
WO2013122101A1 (ja) 電動駆動式作業車両
JP7449109B2 (ja) 車両の制御装置
EP2505423A1 (en) Electric vehicle
RU2720227C1 (ru) Способ управления электромотором электротранспортного средства и устройство управления электромотором электротранспортного средства
JP5319860B1 (ja) 電動車両
WO2017017816A1 (ja) 電動車両の制御装置、および、電動車両の制御方法
JP6237789B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP2013255366A (ja) 電動式走行車両
EP4052951A1 (en) Control method for electric motor vehicle and control device for electric motor vehicle
JP7056219B2 (ja) 電動車両の制御方法および電動車両の制御装置
JP2013215063A (ja) 電気自動車のクリープ制御装置
JP6291671B2 (ja) 車両の制御装置
JP2010241166A (ja) 車両の四輪駆動制御装置及び四輪駆動制御方法
JP2010150898A (ja) 旋回駆動制御装置及びこれを含む建設機械
JP2021093874A (ja) 車両の制御装置
JP7316205B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013000102

Country of ref document: DE

Ref document number: 1120130001020

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14126893

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876389

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13876389

Country of ref document: EP

Kind code of ref document: A1