WO2014129776A1 - Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same - Google Patents

Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same Download PDF

Info

Publication number
WO2014129776A1
WO2014129776A1 PCT/KR2014/001280 KR2014001280W WO2014129776A1 WO 2014129776 A1 WO2014129776 A1 WO 2014129776A1 KR 2014001280 W KR2014001280 W KR 2014001280W WO 2014129776 A1 WO2014129776 A1 WO 2014129776A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
thermal conductivity
resin
composite film
multilayer composite
Prior art date
Application number
PCT/KR2014/001280
Other languages
French (fr)
Korean (ko)
Inventor
이경섭
최현석
강민성
이동현
Original Assignee
동현전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동현전자 주식회사 filed Critical 동현전자 주식회사
Publication of WO2014129776A1 publication Critical patent/WO2014129776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • B32B37/206Laminating a continuous layer between two continuous plastic layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0245Flakes, flat particles or lamellar particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a composite film using a copper thin film layer, a method for producing the same, and utilization thereof.
  • the present invention relates to a multilayer composite film having anisotropic thermal conductivity using a copper thin film layer including a conductive adhesive layer so as to rapidly release heat generated from a heat source such as an electronic substrate of an electronic device.
  • a heat sink or a heat radiating fan is used as a means for effectively dissipating heat generated from an electronic device.
  • the heat dissipation means that can be employed in the field where the thickness should be thin is preferably provided in the form of a sheet to reduce the volume.
  • the heat dissipation means provided in the form of a sheet is mainly used is expanded graphite or expanded resin, such as copper or aluminum, or expanded natural graphite.
  • metal has a large specific gravity, which limits the weight of the product, and due to its structure, heat generated from a heat source is rapidly accepted in the vertical direction, but a hot spot is spread because the distance to spread the heat in the horizontal direction is short. There is a problem that occurs.
  • This hot spot is a local high temperature phenomenon of the substrate, causing a poor resolution of the display or degradation of the product performance.
  • Graphite sheet which is typically used as a material for thin and short reduction and effective thermal diffusion, can compensate for the shortcomings of metal sheets.
  • graphite sheets require surface coating such as a protective film due to lack of electrical insulation. There is a problem.
  • the sheet made of resin Due to the characteristics of the material, the sheet made of resin has a low heat conductivity, and thus has a small heat dissipation effect, a problem of excessive flexibility, and difficulty in handling.
  • Patent Document 1 Korean Patent No. 10-1143524 relates to a heat diffusion sheet, and more specifically, one side of a copper sheet or an aluminum sheet is coated with carbon nanotubes to form a coating, or an adhesive is formed on a copper sheet or an aluminum sheet. Carbon nanotubes are formed on both sides of the stacked sheets, or clad sheets formed by rolling aluminum sheets between copper sheets are formed, carbon nanotubes are formed on both surfaces of the clad sheets, or a plurality of aluminum sheets are rolled.
  • the present invention relates to a heat diffusion sheet having improved conductivity.
  • a high-performance thermal diffusion material which is excellent in durability and reliability of the thermal diffusion material itself and also replaces the graphite sheet.
  • Graphite sheets using representative graphite-based thermal diffusion materials lack electrical insulation and must be accompanied by a surface coating such as attaching a protective film, have a limitation in rework, and cut graphite having graphite characteristics.
  • a surface coating such as attaching a protective film
  • cut graphite having graphite characteristics When the cutting surface is not clean, defects occur, and the interlayer bonding of the powder is weak due to the graphite structure in the cutting process, the graphite powder is easily peeled off and dust is generated, which threatens worker's health.
  • Overcoming problems such as electrical trouble of the final electronic device, film itself brittle and difficult to handle, and in particular, the composite thermal conductivity in the vertical to horizontal direction can replace the graphite-based thermal diffusion material The purpose is to produce a film.
  • the above problem is solved by a multilayer composite film having anisotropic thermal conductivity using a copper thin film layer including an insulating layer and a conductive adhesive layer.
  • a thermally conductive material having an excellent thermal conductivity of about 395 W / mK or a material has the same vertical and horizontal thermal conductivity, and thus a short heat transfer distance in the horizontal direction is not suitable for use as a thermal diffusion material.
  • a ceramic powder of Flake and a metal powder of Flake coated with silver (Ag) were used in combination with a copper thin film.
  • a multilayer composite film having anisotropic thermal conductivity having a structure of a copper thin film layer, a ceramic insulating layer over the copper thin film layer, and a conductive adhesive layer under the copper thin film layer is proposed.
  • the present invention it is possible to manufacture a composite sheet using a multilayer composite film in which the ceramic insulating layer and the conductive adhesive layer are combined with the copper thin film layer to increase the thermal conductivity in the horizontal direction compared to the vertical thermal conductivity, thereby increasing the anisotropy of the thermal conductivity.
  • the multilayer composite film produced by the present invention and the composite sheet using the same have an effect of 50 times or more in the horizontal thermal conductivity ratio in the vertical direction.
  • FIG. 1 shows a method for producing a multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an electronic substrate including a multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
  • Figure 4 shows the thermal conductivity in the horizontal direction relative to the vertical direction of the multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
  • FIGS. 2 and 3 show a schematic view of a multilayer composite film having anisotropic thermal conductivity and an electronic substrate including the same as a thermally conductive material according to an embodiment of the present invention.
  • the multilayer composite film having anisotropic thermal conductivity includes a copper thin film layer, a ceramic insulating layer over the copper thin film layer, and a conductive adhesive layer under the copper thin film layer.
  • the ceramic insulating layer is at least any one of an acrylic resin, an epoxy resin, an epoxy propylene diene monomer (EPDM) resin, a chlorinated polyethylene (CPE) resin, a silicone, a polyurethane, a urea resin, a melamine resin, a phenol resin, and an unsaturated ester resin. It would be desirable to be dispersed on a polymer resin containing one.
  • the ceramic powder is boron nitride (BN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), magnesium oxide (MgO), aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide in the form (Flake) At least one selected from (Mg (OH) 2 ) may be selected, but is not limited thereto.
  • BN Flake boron nitride
  • EPDM ethylene propylene diene monomer
  • the conductive adhesive layer is a metal powder of a flake (Flake) containing at least one of copper (Cu), silver (Ag), silver coated copper (Ag coated Cu), silver coated nickel (Ag coated Ni) on the polymer resin It will be desirable to be dispersed.
  • the polymer resin may include at least one of acrylic resin, epoxy resin, EPDM (Ethylene Propylene Diene Monomer) resin, CPE (Chlorinated Polyethylene) resin, silicone, polyurethane, urea resin, melamine resin, phenol resin, and unsaturated ester resin. It would be desirable to have the Flake metal powder dispersed on the resin.
  • the copper thin film layer is formed on the upper and lower surfaces of nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni), iron-nickel-cobalt (Fe-Ni-Co), and iron.
  • Nickel-tungsten Fe-Ni-W
  • iron-nickel-molybdenum Fe-Ni-Mo
  • iron-nickel-copper Fe-Ni-Cu
  • iron-nickel-manganese Fe-Ni-Mn
  • Tin-nickel-titanium Sn-Ni-Ti
  • copper-nickel-tin Cu-Ni-Sn
  • nickel-cobalt-copper Ni-Co-Cu
  • nickel-cobalt-zinc Ni-Co- Zn
  • nickel-cobalt-tungsten Ni-Co-W
  • the copper thin film layer may form a coating layer including nickel (Ni) on the upper and lower surfaces thereof.
  • the thickness of the ceramic insulating layer and the conductive adhesive layer may be 5 to 20 ⁇ m, and may be about 10 ⁇ m.
  • the copper thin film layer may have a thickness of 15 to 45 ⁇ m, more preferably about 30 ⁇ m.
  • the thickness of the coating layer on the upper and lower surfaces of the copper thin film layer may be manufactured to 0.1 to 1.5 ⁇ m, more preferably 0.1 to 1.0 ⁇ m.
  • This coating layer has the effect of preventing corrosion of the copper thin film, improving durability, and increasing anisotropy of thermal conductivity.
  • the multilayer composite film having anisotropic thermal conductivity having a structure of a copper thin film layer, a ceramic insulating layer over the copper thin film layer, and a conductive adhesive layer under the copper thin film layer according to the present invention, each layer is composed of a plurality, It would be possible to form a multilayer structure beyond the layer structure.
  • the multilayer composite film having anisotropic thermal conductivity according to the present invention is characterized in that the ratio of the thermal conductivity in the horizontal direction to 50 times or more. More preferably, it is possible that the ratio of the thermal conductivity in the horizontal direction to the vertical direction is 100 times or more.
  • the conductive adhesive layer of the multilayer composite film having a vertical thermal conductivity of 1 W / mK or more and a horizontal thermal conductivity of 5 W / mK or more and having the anisotropic thermal conductivity has a vertical thermal conductivity of 1 W / mK or more and a horizontal direction It will be possible to be prepared to have an anisotropic thermal conductivity, characterized in that the thermal conductivity is 5 W / mK or more.
  • the method for producing a multilayer composite film having anisotropic thermal conductivity of the present invention comprises the steps of (i) dispersing and complexing ceramic powder in a polymer resin to prepare a slurry, (ii) (i) Preparing the ceramic insulation layer using at least one of a tape casting process, a spray coating process, a screen printing process, and a dipping process; and (iii) copper (Cu), silver (Ag), and silver coating.
  • Ni nickel-chromium
  • Ni-Cr nickel-chromium
  • Fe-Cr-Ni iron-chromium-nickel
  • Fe-nickel-cobalt Fe-Ni-Co
  • Fe-Ni-W Iron-nickel-molybdenum
  • Fe-Ni-Mo iron-nickel-copper
  • Fe-Ni-Cu iron-nickel-manganese
  • Sn-Ni Ti copper-nickel-tin
  • Cu-Ni-Sn nickel-cobalt-copper
  • Ni-Co-Zn nickel-cobalt-tungsten
  • Ni Coating by using at least one of -Co-W (vi) nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni)
  • the content of the ceramic powder in the slurry of step (i) is 30 to 70% by weight. More preferably it will be possible for the content of ceramic powder to be from 20 to 60% by weight.
  • the content of the metal powder in the slurry of step (iii) is 30 to 70% by weight. More preferably it will be possible for the content of ceramic powder to be from 20 to 60% by weight.
  • step (v) may be coated using at least one of a tape casting process, a spray coating process, a screen printing process, and a dipping process.
  • boron nitride (BN) powder with an acrylic resin or EPDM (Ethylene Propylene Diene Monomer) resin to prepare a slurry (boron nitride (BN) content of 40 to 60 wt %) Boron nitride (BN) composite film is produced through a tape casting process.
  • EPDM Ethylene Propylene Diene Monomer
  • Copper (Cu) powder coated with silver of Ag is uniformly dispersed and compounded in an acrylic or epoxy resin to make a uniform slurry (Cu coated with silver (Ag) Content of 40 to 60 wt%)) to produce a conductive composite film through tape casting.
  • the thickness of the nickel (Ni) layer coated on the copper thin film is 0.1 to 1.0 ⁇ m.
  • the composite sheet (rolled copper thin film) including the multilayer composite film having anisotropic thermal conductivity prepared by Example 1 was confirmed that the ratio of the thermal conductivity in the horizontal direction to the vertical direction is 100 times or more as shown in Table 1 below.
  • the present invention has a performance equal to or higher than that of existing graphite-based thermal diffusion sheets.
  • the present invention it is possible to manufacture a composite sheet using a multilayer composite film in which the ceramic insulating layer and the conductive adhesive layer are combined with the copper thin film layer to increase the thermal conductivity in the horizontal direction compared to the vertical thermal conductivity, thereby increasing the anisotropy of the thermal conductivity.
  • Graphite sheets using representative graphite-based thermal diffusion materials lack electrical insulation and must be accompanied by a surface coating such as attaching a protective film, have a limitation in rework, and cut graphite having graphite characteristics.
  • a surface coating such as attaching a protective film
  • cut graphite having graphite characteristics When the cutting surface is not clean, defects occur, and the interlayer bonding of the powder is weak due to the graphite structure in the cutting process, the graphite powder is easily peeled off and dust is generated, which threatens worker's health.
  • Overcoming problems such as electrical trouble of the final electronic device, film itself brittle and difficult to handle, and in particular, the composite thermal conductivity in the vertical to horizontal direction can replace the graphite-based thermal diffusion material The purpose is to produce a film.
  • the present invention has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention makes it possible to fabricate a composite sheet using a multiply layered composite film with a higher anisotropy of heat conductivity obtained by compositely laying a ceramic insulation layer and an electrical conduction layer on a copper thin film so as to increase the horizontal heat conductivity compared to the vertical heat conductivity. Particularly, it is possible to fabricate a composite film with higher horizontal heat conductivity than the vertical heat conductivity that can replace a graphitic heat-diffusion material. To this end is provided a multiply layered composite film with an anisotropic heat conductivity using a copper thin film including an insulation layer and an electrical conduction layer. The present invention proposes a multi-layered composite sheet with a higher anisotropy of heat conductivity obtained by compositely laying a ceramic insulation layer and an electrical conduction layer on a copper thin film so as to increase the horizontal heat conductivity compared to the vertical heat conductivity.

Description

절연층과 도전성 접착층을 포함하는 구리 박막층을 이용한 복합 필름과 그 제조방법.Composite film using the copper thin film layer containing an insulating layer and an electroconductive adhesive layer, and its manufacturing method.
본원 발명은 구리 박막층을 이용한 복합 필름과 그 제조 방법 및 활용에 관한 것이다. The present invention relates to a composite film using a copper thin film layer, a method for producing the same, and utilization thereof.
더욱 자세하게는 전자 기기의 전자 기판 등의 열원으로부터 발생되는 열을 신속하게 방출 가능하도록 도전성 접착층을 포함하는 구리 박막층을 이용한 이방성 열전도도를 갖는 다층 복합 필름에 관한 내용이다. More specifically, the present invention relates to a multilayer composite film having anisotropic thermal conductivity using a copper thin film layer including a conductive adhesive layer so as to rapidly release heat generated from a heat source such as an electronic substrate of an electronic device.
일반적으로 컴퓨터, 휴대용 개인단말기, 통신기 등의 전자제품은 시스템 내부에서 발생한 과도한 열 에너지를 외부로 방출시켜 주어야 하며, 열 확산이 제대로 이루어지지 못할 경우, 안전성에 문제가 발생할 가능성이 높아지고, 이러한 열 에너지는 제품의 수명을 단축시킬 수 있고 제품의 고장, 오작동을 유발하여 제품의 신뢰성을 떨어뜨릴 수 있다. In general, electronic products such as computers, portable personal terminals and communication devices should release excessive heat energy generated inside the system to the outside, and if heat diffusion is not properly performed, safety problems are more likely to occur, and such heat energy This can shorten the life of the product and cause product failure or malfunction, which can reduce the reliability of the product.
또한, 근래에는 전자기기 반도체 칩 및 칩간의 고밀도 집적화 설계, 전자기기 경박단소화의 추세에 따라 좁은 공간에 많은 수의 전자부품을 설치해야 하므로 단위체적당 발생하는 열량이 크게 증대되었다. In addition, in recent years, a large number of electronic components have to be installed in a narrow space according to the trend of high-density integration design between electronic device semiconductor chips and chips, and light and small electronic devices, which greatly increases the amount of heat generated per unit volume.
따라서, 이로 인한 전자기기의 열화를 방지하기 위하여 열원에서 발생한 열을 효과적으로 방출하기 위한 방열수단의 필요성이 더욱 대두 되고 있다.Therefore, the need for heat dissipation means for effectively dissipating the heat generated from the heat source in order to prevent the deterioration of the electronic device is emerging.
이러한 필요성에 의해 전자기기에서 발생한 열을 효과적으로 방출하기 위한 수단으로 히트 싱크(Heat Sink) 또는 방열 팬(Fan) 등이 사용되고 있다. Due to this necessity, a heat sink or a heat radiating fan is used as a means for effectively dissipating heat generated from an electronic device.
그러나, 이러한 방열 수단들은 방열 효과가 크기는 하지만 그 부피가 크기 때문에 두께가 얇아야 하는 분야에는 채용하기가 어렵고 재질 자체의 밀도가 크기 때문에 제품 전체의 중량을 증가시키는 단점을 갖는다.However, these heat dissipation means has a disadvantage in that the heat dissipation effect is large, but the volume is large, so that it is difficult to employ in the field where the thickness is thin, and the weight of the whole product is increased because of the high density of the material itself.
따라서, 두께가 얇아야 하는 분야에서 채용가능한 방열수단은 그 부피를 줄이기 위하여 시트형태로 구비되는 것이 바람직하다. Therefore, the heat dissipation means that can be employed in the field where the thickness should be thin is preferably provided in the form of a sheet to reduce the volume.
이와 같이 시트형태로 구비되는 방열수단은 구리나 알루미늄 같은 금속 또는 천연흑연을 팽창시킨 팽창흑연 또는 실리콘이나 아크릴 같은 수지 등이 주로 사용되고 있다.Thus, the heat dissipation means provided in the form of a sheet is mainly used is expanded graphite or expanded resin, such as copper or aluminum, or expanded natural graphite.
일반적으로 금속의 경우 비중이 커서 제품을 경량화시키는 데 한계가 있고, 구조 상 열 발생원으로부터 발생하는 열을 수직방향으로 빠르게 받아들이나, 수평방향으로 열을 확산시키는 거리가 짧기 때문에 오히려 열점(Hot Spot)이 발생하는 문제점이 있다. In general, metal has a large specific gravity, which limits the weight of the product, and due to its structure, heat generated from a heat source is rapidly accepted in the vertical direction, but a hot spot is spread because the distance to spread the heat in the horizontal direction is short. There is a problem that occurs.
이러한 열점(Hot Spot)은 기판의 국부적인 고온현상으로 디스플레이의 해상도 불량을 일으키거나 제품의 성능을 저하시키게 된다. This hot spot is a local high temperature phenomenon of the substrate, causing a poor resolution of the display or degradation of the product performance.
이와 같은 경박단소화 및 효과적인 열확산을 위한 소재로서 대표적으로 사용되는 흑연시트는 금속 시트의 단점을 보완할 수 있지만, 흑연시트의 경우 전기절연성 부족으로 인해 반드시 보호필름을 부착하는 등의 표면 코팅이 필요한 문제점이 있다. Graphite sheet, which is typically used as a material for thin and short reduction and effective thermal diffusion, can compensate for the shortcomings of metal sheets. However, graphite sheets require surface coating such as a protective film due to lack of electrical insulation. There is a problem.
또한, 흑연구조 상 분말 층간 결합이 약해 흑연 분말이 쉽게 박리되는 단점도 있다. In addition, there is a disadvantage in that the graphite powder is easily peeled off due to weak bonding between powder layers on the graphite structure.
수지로 된 시트는 소재의 특성상 열전도도가 낮기 때문에 방열효과가 작고, 유연성이 지나쳐 취급이 어려운 문제점이 또한 있다Due to the characteristics of the material, the sheet made of resin has a low heat conductivity, and thus has a small heat dissipation effect, a problem of excessive flexibility, and difficulty in handling.
이러한 문제점들을 보완하기 위한 방법으로 고분자 바인더 내에 분말 상의 흑연분말을 복합화하여 단점을 극복화하기 위한 방법들이 나오고 있으나, 바인더 내에 흑연분말을 균일하고 충진율을 높이는데 한계가 있기 때문에 제품의 열 해소를 위한 적합한 수직방향 대비 수평방향 열전도도를 구현하는데 제한이 있으며, 최종 제품의 유연성 또한 현저하게 떨어지는 단점이 있다. As a method for compensating for these problems, there are methods for overcoming the shortcomings by compounding graphite powder in a polymer binder. However, since there is a limit to uniformity and filling rate of the graphite powder in the binder, There is a limitation in implementing suitable vertical to horizontal thermal conductivity, and the flexibility of the final product is also significantly reduced.
따라서, 열확산 소재 자체 내구성 및 신뢰성이 우수하고 열전도도 또한 흑연시트를 대체 가능한 고성능의 열확산 소재 개발이 필요하다.Therefore, it is necessary to develop a high-performance thermal diffusion material that is excellent in durability and reliability of the thermal diffusion material itself and also replaces the graphite sheet.
(특허문헌 1) 등록특허 제 10-1143524 호는 열 확산 시트에 관한 것으로, 보다 상세히는 구리시트 또는 알루미늄시트 일측에는 탄소나노튜브가 코팅 형성되어 적층 되거나, 구리시트 또는 알루미늄시트에 접착제가 형성되어 각각 적층되고, 적층된 시트 양면에 탄소나노튜브가 형성되거나, 구리시트 사이에 알루미늄시트가 압연된 클래드 시트가 형성되고, 상기 클래드 시트 양면에 탄소나노튜브가 형성되거나, 복수 개의 알루미늄시트가 압연되어 적층된 형태의 시트로 형성되고, 상기 적층된 시트 양면에 탄소나노튜브가 형성되며, 상기 적층된 시트들의 최상부에는 PET 필름이 형성되고, 최하부에는 아크릴 양면점착테이프가 형성되어 두께방향으로 열전도성이 높은 구리시트 또는 알루미늄시트에 수평으로 열전도가 우수한 탄소나노튜브를 코팅하여 열 전도를 향상시킨 열 확산 시트에 관한 것이다. 그러나, 열확산 소재 자체 내구성 및 신뢰성이 우수하고 열전도도 또한 흑연시트를 대체 가능한 고성능의 열확산 소재 개발에 대한 필요성은 여전히 남아 있다. (Patent Document 1) Korean Patent No. 10-1143524 relates to a heat diffusion sheet, and more specifically, one side of a copper sheet or an aluminum sheet is coated with carbon nanotubes to form a coating, or an adhesive is formed on a copper sheet or an aluminum sheet. Carbon nanotubes are formed on both sides of the stacked sheets, or clad sheets formed by rolling aluminum sheets between copper sheets are formed, carbon nanotubes are formed on both surfaces of the clad sheets, or a plurality of aluminum sheets are rolled. It is formed of a laminated sheet, carbon nanotubes are formed on both sides of the laminated sheet, a PET film is formed on the uppermost of the laminated sheets, and an acrylic double-sided adhesive tape is formed on the lowermost, so that thermal conductivity in the thickness direction is achieved. Thermally coated carbon nanotubes with high thermal conductivity on high copper sheets or aluminum sheets The present invention relates to a heat diffusion sheet having improved conductivity. However, there is still a need for developing a high-performance thermal diffusion material which is excellent in durability and reliability of the thermal diffusion material itself and also replaces the graphite sheet.
대표적인 흑연계 열확산 소재를 사용한 흑연시트는 전기적 절연성이 부족하여 보호필름을 부착 등의 표면 코팅이 반드시 수반되어야 한다는 점, 재작업성 (Rework)에 한계가 있다는 점, 흑연 특성을 가지고 있는 그라파이트를 절단 시 절단면이 깨끗하지 못하여 불량이 생기는 점, 절단 공정에서 흑연구조 상 분말 층간 결합이 약해 흑연 분말이 쉽게 박리되어 분진이 발생하여 작업자의 건강을 위협하는 등 환경문제점뿐만 아니라 타발 시 분말의 탈락으로 인한 최종 전자기기의 전기적인 트러블을 야기할 수 있다는 점, 필름 자체가 브리틀하여 취급이 어려운 점 등의 문제점을 극복하고 특히, 수직방향 대비 수평방향 열전도도가 흑연계 열확산 소재를 대체할 수 있는 복합필름을 제조하는데 목적이 있다. Graphite sheets using representative graphite-based thermal diffusion materials lack electrical insulation and must be accompanied by a surface coating such as attaching a protective film, have a limitation in rework, and cut graphite having graphite characteristics. When the cutting surface is not clean, defects occur, and the interlayer bonding of the powder is weak due to the graphite structure in the cutting process, the graphite powder is easily peeled off and dust is generated, which threatens worker's health. Overcoming problems such as electrical trouble of the final electronic device, film itself brittle and difficult to handle, and in particular, the composite thermal conductivity in the vertical to horizontal direction can replace the graphite-based thermal diffusion material The purpose is to produce a film.
상기 문제점을 해결하기 위한 방법으로 절연층과 도전성 접착층을 포함하는 구리 박막층을 이용한 이방성 열전도도를 갖는 다층 복합 필름으로 상기 문제점을 해결하려고 한다. As a method for solving the above problems, the above problem is solved by a multilayer composite film having anisotropic thermal conductivity using a copper thin film layer including an insulating layer and a conductive adhesive layer.
일반적으로 구리 박막의 경우, 열전도도가 395 W/mK 정도로 우수한 열전도성 재료이나 재료 특성상 수직과 수평의 열전도도가 동일하여 수평방향으로 열전달 거리가 짧아 열확산 소재로서의 사용으로는 부적합하다. In general, in the case of a copper thin film, a thermally conductive material having an excellent thermal conductivity of about 395 W / mK or a material has the same vertical and horizontal thermal conductivity, and thus a short heat transfer distance in the horizontal direction is not suitable for use as a thermal diffusion material.
이를 해결하기 위한 수단으로 편상(Flake)의 세라믹 분말 및 은(Ag)이 등이 코팅된 편상(Flake)의 금속 분말을 구리 박막과 복합하여 사용하였다. As a means to solve this problem, a ceramic powder of Flake and a metal powder of Flake coated with silver (Ag) were used in combination with a copper thin film.
즉, 구리 박막층, 상기 구리 박막층 상부의 세라믹 절연층, 상기 구리 박막층 하부의 도전성 접착층의 구조를 갖는 이방성 열전도도를 갖는 다층 복합 필름을 제안한다.That is, a multilayer composite film having anisotropic thermal conductivity having a structure of a copper thin film layer, a ceramic insulating layer over the copper thin film layer, and a conductive adhesive layer under the copper thin film layer is proposed.
본원 발명에서는 구리 박막층에 세라믹 절연층 및 도전성 접착층을 복합화하여 수직방향 열전도도 대비 수평방향의 열전도도를 증가시켜 열전도도의 이방성을 높인 다층 복합 필름을 이용하여 복합 시트를 제조하는 것이 가능하다.In the present invention, it is possible to manufacture a composite sheet using a multilayer composite film in which the ceramic insulating layer and the conductive adhesive layer are combined with the copper thin film layer to increase the thermal conductivity in the horizontal direction compared to the vertical thermal conductivity, thereby increasing the anisotropy of the thermal conductivity.
전기적 절연성이 부족하여 보호필름을 부착 등의 표면 코팅이 반드시 수반되어야 한다는 점, 재작업성(Rework)에 한계가 있다는 점, 흑연 특성을 가지고 있는 그라파이트를 절단 시 절단면이 깨끗하지 못하여 불량이 생기는 점, 절단 공정에서 흑연구조 상 분말 층간 결합이 약해 흑연 분말이 쉽게 박리되어 분진이 발생하여 작업자의 건강을 위협하는 등 환경문제점뿐만 아니라 타발 시 분말의 탈락으로 인한 최종 전자기기의 전기적인 트러블을 야기할 수 있다는 점, 필름 자체가 브리틀하여 취급이 어려운 점 등의 흑연 시트의 단점을 극복하고 특히, 수직방향 대비 수평방향 열전도도가 흑연계 열확산 소재를 대체할 수 있는 복합필름을 제조하는 것이 가능하다. Insufficient electrical insulation must be accompanied by a surface coating such as attaching a protective film, a limitation in reworking, and a defect due to unclear cutting edges when cutting graphite having graphite properties. In the cutting process, due to the weak bonding between powder layers due to the graphite structure, graphite powder is easily peeled off and dust is generated, which threatens worker's health. It is possible to overcome the disadvantages of the graphite sheet, such as the fact that it can be difficult to handle due to brittleness of the film itself, and in particular, it is possible to manufacture a composite film in which the thermal conductivity in the vertical direction and the horizontal direction can replace the graphite-based thermal diffusion material. .
본원 발명에 의해 제조된 다층 복합 필름 및 이를 이용한 복합 시트는 수직방향 대비 수평방향 열전도도 비율이 50배 이상의 효과를 갖는다.The multilayer composite film produced by the present invention and the composite sheet using the same have an effect of 50 times or more in the horizontal thermal conductivity ratio in the vertical direction.
도 1은 본원 발명의 실시예에 의한 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법을 나타낸다.1 shows a method for producing a multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
도 2는 본원 발명의 실시예에 의한 이방성 열전도도를 갖는 다층 복합 필름을 포함하는 전자 기판의 모식도를 나타낸다. 2 is a schematic view of an electronic substrate including a multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
도 3은 본원 발명의 실시예에 의한 이방성 열전도도를 갖는 다층 복합 필름의 단면도를 나타낸다. 3 is a cross-sectional view of a multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
도 4는 본원 발명의 실시예에 의한 이방성 열전도도를 갖는 다층 복합 필름의 수직방향 대비 수평방향 열전도도를 나타낸다. Figure 4 shows the thermal conductivity in the horizontal direction relative to the vertical direction of the multilayer composite film having anisotropic thermal conductivity according to an embodiment of the present invention.
<부호의 설명><Description of the code>
100: 본원 발명에 의한 이방성 열전도도를 갖는 다층 복합 필름 100: multilayer composite film having anisotropic thermal conductivity according to the present invention
110: 세라믹 절연층 111: 세라믹 분말110: ceramic insulating layer 111: ceramic powder
112: 세라믹 절연층의 고분자 수지112: polymer resin of the ceramic insulating layer
120: 구리 박막층 121: 구리 박막층의 코팅층120: copper thin film layer 121: coating layer of the copper thin film layer
130: 도전성 접착층 131: 편상(Flake) 금속 분말130: conductive adhesive layer 131: Flake metal powder
132: 도전성 접착층의 고분자 수지132: polymer resin of the conductive adhesive layer
200: 전자 기판200: electronic substrate
도 2 및 도 3은 본원 발명의 실시예에 의한 이방성 열전도도를 갖는 다층 복합 필름과 이를 열전도 소재로 포함하는 전자 기판의 모식도를 나타낸다. 2 and 3 show a schematic view of a multilayer composite film having anisotropic thermal conductivity and an electronic substrate including the same as a thermally conductive material according to an embodiment of the present invention.
이방성 열전도도를 갖는 다층 복합 필름은 구리 박막층, 상기 구리 박막층 상부의 세라믹 절연층, 상기 구리 박막층 하부의 도전성 접착층을 포함하여 이루어진다. The multilayer composite film having anisotropic thermal conductivity includes a copper thin film layer, a ceramic insulating layer over the copper thin film layer, and a conductive adhesive layer under the copper thin film layer.
상기 세라믹 절연층은 세라믹 분말이 아크릴 수지, 에폭시 수지, EPDM(Ethylene Propylene Diene Monomer) 수지, CPE(Chlorinated Polyethylene) 수지, 실리콘, 폴리우레탄, 우레아 수지, 멜라민 수지, 페놀 수지, 불포화에스테르 수지 중 적어도 어느 하나를 포함하는 고분자 수지 상에 분산되어 있는 것이 바람직할 것이다.The ceramic insulating layer is at least any one of an acrylic resin, an epoxy resin, an epoxy propylene diene monomer (EPDM) resin, a chlorinated polyethylene (CPE) resin, a silicone, a polyurethane, a urea resin, a melamine resin, a phenol resin, and an unsaturated ester resin. It would be desirable to be dispersed on a polymer resin containing one.
또한, 상기 세라믹 분말은 편상(Flake)의 질화붕소(BN), 산화알미늄(Al2O3), 탄화규소 (SiC), 산화마그네슘(MgO), 수산화알미늄(Al(OH)3), 수산화마그네슘 (Mg(OH)2) 중 적어도 어느 하나를 포함하여 선택가능할 것이나 이에 한정되는 것은 아니다. In addition, the ceramic powder is boron nitride (BN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), magnesium oxide (MgO), aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide in the form (Flake) At least one selected from (Mg (OH) 2 ) may be selected, but is not limited thereto.
더욱 바람직하게는 편상(Flake)의 질화붕소(BN) 분말을 아크릴 수지 또는 EPDM(Ethylene Propylene Diene Monomer) 수지 상에 분산시키는 것이 가능할 것이다. More preferably, it will be possible to disperse the Flake boron nitride (BN) powder on an acrylic resin or an ethylene propylene diene monomer (EPDM) resin.
상기 도전성 접착층은 구리(Cu), 은(Ag), 은코팅 구리(Ag coated Cu), 은코팅 니켈(Ag coated Ni) 중 적어도 어느 하나를 포함하는 편상(Flake)의 금속 분말이 고분자 수지 상에 분산되어 이루어지는 것이 바람직할 것이다. The conductive adhesive layer is a metal powder of a flake (Flake) containing at least one of copper (Cu), silver (Ag), silver coated copper (Ag coated Cu), silver coated nickel (Ag coated Ni) on the polymer resin It will be desirable to be dispersed.
상기 고분자 수지는 아크릴 수지, 에폭시 수지, EPDM(Ethylene Propylene Diene Monomer) 수지, CPE(Chlorinated Polyethylene) 수지, 실리콘, 폴리우레탄, 우레아 수지, 멜라민 수지, 페놀 수지, 불포화에스테르 수지 중 적어도 어느 하나를 포함하여 상기 수지 상에 상기 편상(Flake)의 금속 분말이 분산되어 있는 것이 바람직할 것이다. The polymer resin may include at least one of acrylic resin, epoxy resin, EPDM (Ethylene Propylene Diene Monomer) resin, CPE (Chlorinated Polyethylene) resin, silicone, polyurethane, urea resin, melamine resin, phenol resin, and unsaturated ester resin. It would be desirable to have the Flake metal powder dispersed on the resin.
더욱 바람직하게는 은(Ag)으로 코팅된 편상(Flake)의 구리(Cu) 분말을 아크릴 수지 또는 에폭시 수지 상에 분산시키는 것이 가능할 것이다.More preferably it will be possible to disperse the Flake copper powder coated with silver (Ag) on an acrylic resin or an epoxy resin.
상기 구리 박막층은 상, 하부 표면에 니켈(Ni), 니켈-크롬(Ni-Cr), 철-크롬-니켈(Fe-Cr-Ni), 철-니켈-코발트(Fe-Ni-Co), 철-니켈-텅스텐(Fe-Ni-W), 철-니켈-몰리브덴(Fe-Ni-Mo), 철-니켈-구리(Fe-Ni-Cu), 철-니켈-망간(Fe-Ni-Mn), 주석-니켈-티타늄(Sn-Ni-Ti), 구리-니켈-주석(Cu-Ni-Sn), 니켈-코발트-구리(Ni-Co-Cu), 니켈-코발트-아연(Ni-Co-Zn), 니켈-코발트-텅스텐(Ni-Co-W) 중 적어도 어느 하나를 포함하는 물질을 이용한 코팅층이 더 포함될 수 있다. The copper thin film layer is formed on the upper and lower surfaces of nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni), iron-nickel-cobalt (Fe-Ni-Co), and iron. Nickel-tungsten (Fe-Ni-W), iron-nickel-molybdenum (Fe-Ni-Mo), iron-nickel-copper (Fe-Ni-Cu), iron-nickel-manganese (Fe-Ni-Mn) , Tin-nickel-titanium (Sn-Ni-Ti), copper-nickel-tin (Cu-Ni-Sn), nickel-cobalt-copper (Ni-Co-Cu), nickel-cobalt-zinc (Ni-Co- Zn), nickel-cobalt-tungsten (Ni-Co-W) may further include a coating layer using a material containing at least one.
더욱 바람직하게는 상기 구리 박막층은 상, 하부 표면에 니켈(Ni)을 포함하는 코팅층을 형성하는 것이 가능할 것이다. More preferably, the copper thin film layer may form a coating layer including nickel (Ni) on the upper and lower surfaces thereof.
상기 세라믹 절연층과 상기 도전성 접착층의 두께는 5 내지 20 ㎛인 가능할 것이고, 10 ㎛ 내외인 것이 가능할 것이다. The thickness of the ceramic insulating layer and the conductive adhesive layer may be 5 to 20 μm, and may be about 10 μm.
상기 구리 박막층의 두께는 15 내지 45 ㎛으로 제조하는 것이 가능할 것이며 더욱 바람직하게는 30 ㎛ 내외인 것이 더욱 바람직할 것이다. The copper thin film layer may have a thickness of 15 to 45 μm, more preferably about 30 μm.
상기 구리 박막층의 상, 하부 표면의 상기 코팅층의 두께는 0.1 내지 1.5 ㎛로 제조하는 것이 가능할 것이며, 0.1 내지 1.0 ㎛인 것이 더욱 바람직할 것이다. The thickness of the coating layer on the upper and lower surfaces of the copper thin film layer may be manufactured to 0.1 to 1.5 ㎛, more preferably 0.1 to 1.0 ㎛.
이러한 코팅층은 구리 박막의 부식을 방지하며 내구성을 향상시키고, 열전도도의 이방성을 증대시키는 효과를 갖는다.This coating layer has the effect of preventing corrosion of the copper thin film, improving durability, and increasing anisotropy of thermal conductivity.
또한, 본원 발명에 의한 구리 박막층, 상기 구리 박막층 상부의 세라믹 절연층, 상기 구리 박막층 하부의 도전성 접착층의 구조를 갖는 이방성 열전도도를 갖는 다층 복합 필름은 각각의 층이 복수로 구성되어, 앞서 설명한 3층 구조 이상의 다층 구조를 형성하는 것도 가능할 것이다. In addition, the multilayer composite film having anisotropic thermal conductivity having a structure of a copper thin film layer, a ceramic insulating layer over the copper thin film layer, and a conductive adhesive layer under the copper thin film layer according to the present invention, each layer is composed of a plurality, It would be possible to form a multilayer structure beyond the layer structure.
도 4에서 확인할 수 있는 바와 같이, 본원 발명에 의한 이방성 열전도도를 갖는 다층 복합 필름은 수직방향 대비 수평방향 열전도도 비율이 50배 이상인 것을 특징으로 한다. 더욱 바람직하게는 수직방향 대비 수평방향 열전도도 비율이 100 배 이상인 것이 가능할 것이다.As can be seen in Figure 4, the multilayer composite film having anisotropic thermal conductivity according to the present invention is characterized in that the ratio of the thermal conductivity in the horizontal direction to 50 times or more. More preferably, it is possible that the ratio of the thermal conductivity in the horizontal direction to the vertical direction is 100 times or more.
또한, 상기 이방성 열전도도를 갖는 다층 복합 필름의 상기 세라믹 절연층은In addition, the ceramic insulating layer of the multilayer composite film having the anisotropic thermal conductivity
수직방향 열전도도가 1 W/mK 이상, 수평방향 열전도도가 5 W/mK 이상이고, 상기 이방성 열전도도를 갖는 다층 복합 필름의 상기 도전성 접착층은 수직방향 열전도도가 1 W/mK 이상, 수평방향 열전도도가 5 W/mK 이상인 것을 특징으로 하는 이방성 열전도도를 갖도록 제조되는 것이 가능할 것이다.The conductive adhesive layer of the multilayer composite film having a vertical thermal conductivity of 1 W / mK or more and a horizontal thermal conductivity of 5 W / mK or more and having the anisotropic thermal conductivity has a vertical thermal conductivity of 1 W / mK or more and a horizontal direction It will be possible to be prepared to have an anisotropic thermal conductivity, characterized in that the thermal conductivity is 5 W / mK or more.
도 1에서 확인할 수 있는 바와 같이, 본원 발명의 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법은 (i) 세라믹 분말을 고분자 수지 내에 분산 및 복합화하여 슬러리를 제조하는 단계, (ii) 상기 (i) 단계의 슬러리를 테이프 캐스팅 공정, 스프레이 코팅 공정, 스크린 인쇄 공정, 디핑 공정 중 적어도 어느 하나의 방법을 이용하여 세라믹 절연층을 제조하는 단계, (iii) 구리(Cu), 은(Ag), 은코팅 구리(Ag coated Cu), 은코팅 니켈(Ag coated Ni) 중 적어도 어느 하나를 포함하는 금속 분말을 고분자 수지 내에 분산 및 복합화하여 슬러리를 제조하는 단계, (iv) 상기 (iii) 단계의 슬러리를 테이프 캐스팅 공정, 스프레이 코팅 공정, 스크린 인쇄 공정, 디핑 공정 중 적어도 어느 하나의 방법을 이용하여 도전성 접착층을 제조하는 단계, (v) 구리 박막층의 상, 하부 표면을 니켈(Ni), 니켈-크롬(Ni-Cr), 철-크롬-니켈(Fe-Cr-Ni), 철-니켈-코발트(Fe-Ni-Co), 철-니켈-텅스텐(Fe-Ni-W), 철-니켈-몰리브덴(Fe-Ni-Mo), 철-니켈-구리(Fe-Ni-Cu), 철-니켈-망간(Fe-Ni-Mn), 주석-니켈-티타늄(Sn-Ni-Ti), 구리-니켈-주석(Cu-Ni-Sn), 니켈-코발트-구리(Ni-Co-Cu), 니켈-코발트-아연(Ni-Co-Zn), 니켈-코발트-텅스텐(Ni-Co-W) 중 적어도 어느 하나를 이용하여 코팅하는 단계, (vi) 상기 (v) 단계의 니켈(Ni), 니켈-크롬(Ni-Cr), 철-크롬-니켈(Fe-Cr-Ni), 철-니켈-코발트(Fe-Ni-Co), 철-니켈-텅스텐(Fe-Ni-W), 철-니켈-몰리브덴(Fe-Ni-Mo), 철-니켈-구리(Fe-Ni-Cu), 철-니켈-망간(Fe-Ni-Mn), 주석-니켈-티타늄(Sn-Ni-Ti), 구리-니켈-주석(Cu-Ni-Sn), 니켈-코발트-구리(Ni-Co-Cu), 니켈-코발트-아연(Ni-Co-Zn), 니켈-코발트-텅스텐(Ni-Co-W) 중 적어도 어느 하나를 이용하여 상, 하부 표면이 코팅된 구리 박막층 상부에 상기 (ii) 단계의 세라믹 절연층을 위치시키는 단계, (vii) 상기 (vi) 단계의 상기 세라믹 절연층을 상부에 위치시킨 구리 박막층 하부에 상기 (iv) 단계의 상기 도전성 접착층을 위치시키는 단계, (viii) 상기 (vii) 단계의 복수의 층으로 이루어진 필름을 프레스, 라미네이팅 공정, 오토클레이브 공정 중에 적어도 어느 하나의 방법을 이용하여 다층 복합 필름을 완성하는 단계를 포함하는 것이 가능할 것이다. As can be seen in Figure 1, the method for producing a multilayer composite film having anisotropic thermal conductivity of the present invention comprises the steps of (i) dispersing and complexing ceramic powder in a polymer resin to prepare a slurry, (ii) (i) Preparing the ceramic insulation layer using at least one of a tape casting process, a spray coating process, a screen printing process, and a dipping process; and (iii) copper (Cu), silver (Ag), and silver coating. Dispersing and compounding a metal powder comprising at least one of Ag coated Cu and Ag coated Ni in a polymer resin to prepare a slurry, (iv) tape the slurry of step (iii) Preparing a conductive adhesive layer using at least one of a casting process, a spray coating process, a screen printing process, and a dipping process, (v) forming a thin upper and lower surface of the copper thin film layer. (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni), iron-nickel-cobalt (Fe-Ni-Co), iron-nickel-tungsten (Fe-Ni-W ), Iron-nickel-molybdenum (Fe-Ni-Mo), iron-nickel-copper (Fe-Ni-Cu), iron-nickel-manganese (Fe-Ni-Mn), tin-nickel-titanium (Sn-Ni Ti), copper-nickel-tin (Cu-Ni-Sn), nickel-cobalt-copper (Ni-Co-Cu), nickel-cobalt-zinc (Ni-Co-Zn), nickel-cobalt-tungsten (Ni Coating by using at least one of -Co-W), (vi) nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni) ), Iron-nickel-cobalt (Fe-Ni-Co), iron-nickel-tungsten (Fe-Ni-W), iron-nickel-molybdenum (Fe-Ni-Mo), iron-nickel-copper (Fe-Ni -Cu), iron-nickel-manganese (Fe-Ni-Mn), tin-nickel-titanium (Sn-Ni-Ti), copper-nickel-tin (Cu-Ni-Sn), nickel-cobalt-copper (Ni -Co-Cu), nickel-cobalt-zinc (Ni-Co-Zn), nickel-cobalt-tungsten (Ni-Co-W) using at least one of the upper and lower surfaces of the copper thin film layer on the coating (ii) three steps Placing a mIC insulating layer, (vii) placing the conductive adhesive layer of step (iv) below a copper thin film layer on which the ceramic insulating layer of step (vi) is placed, (viii) (vii) It will be possible to include the step of completing the multilayer composite film using at least one of a method of pressing, laminating, and autoclaving a film composed of a plurality of layers in the step).
상기 (i) 단계의 슬러리의 상기 세라믹 분말의 함량이 30 내지 70 중량% 인 것이 바람직할 것이다. 더욱 바람직하게는 세라믹 분말의 함량이 20 내지 60 중량% 인 것이 가능할 것이다. It will be preferable that the content of the ceramic powder in the slurry of step (i) is 30 to 70% by weight. More preferably it will be possible for the content of ceramic powder to be from 20 to 60% by weight.
상기 (iii) 단계의 슬러리의 상기 금속 분말의 함량이 30 내지 70 중량% 인 것이 바람직할 것이다. 더욱 바람직하게는 세라믹 분말의 함량이 20 내지 60 중량% 인 것이 가능할 것이다. It will be preferable that the content of the metal powder in the slurry of step (iii) is 30 to 70% by weight. More preferably it will be possible for the content of ceramic powder to be from 20 to 60% by weight.
또한, (v)의 단계는 테이프 캐스팅 공정, 스프레이 코팅 공정, 스크린 인쇄 공정, 디핑 공정 중 적어도 어느 하나의 방법을 이용하여 코팅하는 것이 가능할 것이다. In addition, the step (v) may be coated using at least one of a tape casting process, a spray coating process, a screen printing process, and a dipping process.
1) 편상(Flake)의 질화붕소(BN) 분말을 아크릴 수지 또는 EPDM(Ethylene Propylene Diene Monomer) 수지와 균일하게 분산 및 복합화하여 슬러리상으로 제조한 후 (질화붕소(BN) 함량이 40 내지 60 wt%) 테이프 캐스팅 공정을 통해 질화붕소(BN) 복합 필름을 제조한다.1) Uniformly dispersing and complexing boron nitride (BN) powder with an acrylic resin or EPDM (Ethylene Propylene Diene Monomer) resin to prepare a slurry (boron nitride (BN) content of 40 to 60 wt %) Boron nitride (BN) composite film is produced through a tape casting process.
2) 편상(Flake)의 은(Ag)으로 코팅된 구리(Cu) 분말을 아크릴 또는 에폭시 수지 내에 균일하게 분산 및 복합화하여 균일한 슬러리상으로 제조한 후 (은(Ag)으로 코팅된 구리(Cu)의 함량이 40 내지 60 wt%) 테이프 캐스팅을 통해 도전성 복합 필름을 제조한다.2) Copper (Cu) powder coated with silver of Ag is uniformly dispersed and compounded in an acrylic or epoxy resin to make a uniform slurry (Cu coated with silver (Ag) Content of 40 to 60 wt%)) to produce a conductive composite film through tape casting.
3) 상기 각각 제조된 필름 중 질화붕소(BN)은 니켈(Ni)이 코팅된 구리 박막 (압연 구리 박막 또는 전해 구리 박막) 상층에, 도전성 필름은 니켈(Ni)이 코팅된 구리 박막 하층에 위치하며 총 3층의 구조의 필름을 프레스 또는 라미네이팅 공정을 통해 최종 필름을 완성한다.3) Boron nitride (BN) in each of the above prepared films is located on the upper layer of nickel (Ni) coated copper thin film (rolled copper thin film or electrolytic copper thin film), and the conductive film is located on the lower layer of nickel (Ni) coated copper thin film The final film is completed by pressing or laminating the film having a total of three layers.
4) 구리 박막에 코팅된 니켈(Ni) 층의 두께는 0.1 내지 1.0 ㎛ 이다. 4) The thickness of the nickel (Ni) layer coated on the copper thin film is 0.1 to 1.0 μm.
실시예 1에 의해 제조된 이방성 열전도도를 갖는 다층 복합 필름을 포함한 복합 쉬트(압연 구리 박막)는 아래의 표 1에서 보는 바와 같이 수직방향 대비 수평방향 열전도도 비율이 100 배 이상인 것을 확인하였다. The composite sheet (rolled copper thin film) including the multilayer composite film having anisotropic thermal conductivity prepared by Example 1 was confirmed that the ratio of the thermal conductivity in the horizontal direction to the vertical direction is 100 times or more as shown in Table 1 below.
이는 본원 발명이 기존 흑연계 열확산 시트보다 동등 이상의 성능을 갖는 것이다. This is because the present invention has a performance equal to or higher than that of existing graphite-based thermal diffusion sheets.
표 1
구분 수직열전도도 수평열전도도 수평열전도도/수직열전도도(이방성지수)
압연 구리 박막 (W/mK) 395 395 1
흑연쉬트 (W/mK) 4.5 300 66.7
복합쉬트(압연 구리 박막) (W/mK) 2.3 234 101.7
Table 1
division Vertical thermal conductivity Horizontal thermal conductivity Horizontal Thermal Conductivity / Vertical Thermal Conductivity (Anisotropy)
Rolled Copper Thin Film (W / mK) 395 395 One
Graphite Sheet (W / mK) 4.5 300 66.7
Composite Sheet (Rolled Copper Thin Film) (W / mK) 2.3 234 101.7
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시 예에 불과하며, 당 업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시 예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.Although the present invention has been described with reference to the accompanying drawings, it is merely one embodiment of various embodiments including the gist of the present invention, which can be easily implemented by those skilled in the art. It is clear that the present invention is not limited to the above-described embodiment only. Therefore, the protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent to the change, substitution, substitution, etc. within the scope not departing from the gist of the present invention shall be the right of the present invention. It will be included in the scope. In addition, some of the components of the drawings are intended to more clearly describe the configuration, and it is clear that the exaggerated or reduced size is provided.
본원 발명에서는 구리 박막층에 세라믹 절연층 및 도전성 접착층을 복합화하여 수직방향 열전도도 대비 수평방향의 열전도도를 증가시켜 열전도도의 이방성을 높인 다층 복합 필름을 이용하여 복합 시트를 제조하는 것이 가능하다.In the present invention, it is possible to manufacture a composite sheet using a multilayer composite film in which the ceramic insulating layer and the conductive adhesive layer are combined with the copper thin film layer to increase the thermal conductivity in the horizontal direction compared to the vertical thermal conductivity, thereby increasing the anisotropy of the thermal conductivity.
대표적인 흑연계 열확산 소재를 사용한 흑연시트는 전기적 절연성이 부족하여 보호필름을 부착 등의 표면 코팅이 반드시 수반되어야 한다는 점, 재작업성 (Rework)에 한계가 있다는 점, 흑연 특성을 가지고 있는 그라파이트를 절단 시 절단면이 깨끗하지 못하여 불량이 생기는 점, 절단 공정에서 흑연구조 상 분말 층간 결합이 약해 흑연 분말이 쉽게 박리되어 분진이 발생하여 작업자의 건강을 위협하는 등 환경문제점뿐만 아니라 타발 시 분말의 탈락으로 인한 최종 전자기기의 전기적인 트러블을 야기할 수 있다는 점, 필름 자체가 브리틀하여 취급이 어려운 점 등의 문제점을 극복하고 특히, 수직방향 대비 수평방향 열전도도가 흑연계 열확산 소재를 대체할 수 있는 복합필름을 제조하는데 목적이 있다.Graphite sheets using representative graphite-based thermal diffusion materials lack electrical insulation and must be accompanied by a surface coating such as attaching a protective film, have a limitation in rework, and cut graphite having graphite characteristics. When the cutting surface is not clean, defects occur, and the interlayer bonding of the powder is weak due to the graphite structure in the cutting process, the graphite powder is easily peeled off and dust is generated, which threatens worker's health. Overcoming problems such as electrical trouble of the final electronic device, film itself brittle and difficult to handle, and in particular, the composite thermal conductivity in the vertical to horizontal direction can replace the graphite-based thermal diffusion material The purpose is to produce a film.
특히, 수직방향 대비 수평방향 열전도도가 흑연계 열확산 소재를 대체할 수 있는 복합필름을 제조할 수 있어 본원 발명은 산업상 이용가능성이 높다.In particular, it is possible to manufacture a composite film that can replace the graphite-based heat diffusion material in the horizontal thermal conductivity relative to the vertical direction, the present invention has high industrial applicability.

Claims (21)

  1. 이방성 열전도도를 갖는 다층 복합 필름에 있어서, In the multilayer composite film having anisotropic thermal conductivity,
    구리 박막층, Copper thin film layer,
    상기 구리 박막층 상부의 세라믹 절연층,A ceramic insulating layer on the copper thin film layer,
    상기 구리 박막층 하부의 도전성 접착층을 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.A multilayer composite film having anisotropic thermal conductivity, characterized in that it comprises a conductive adhesive layer under the copper thin film layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 세라믹 절연층은 세라믹 분말이 고분자 수지 상에 분산되어 있는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The ceramic insulating layer is a multilayer composite film having anisotropic thermal conductivity, characterized in that the ceramic powder is dispersed on the polymer resin.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 세라믹 분말은 편상(Flake)의 질화붕소(BN), 산화알미늄(Al2O3), 탄화규소(SiC), 산화마그네슘(MgO), 수산화알미늄(Al(OH)3), 수산화마그네슘(Mg(OH)2) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The ceramic powder is a flake boron nitride (BN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), magnesium oxide (MgO), aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg At least any one of (OH) 2 ), the multilayer composite film having anisotropic thermal conductivity.
  4. 청구항 2항에 있어서, The method according to claim 2,
    상기 고분자 수지는 아크릴 수지, 에폭시 수지, EPDM(Ethylene Propylene Diene Monomer) 수지, CPE(Chlorinated Polyethylene) 수지, 실리콘, 폴리우레탄, 우레아 수지, 멜라민 수지, 페놀 수지, 불포화에스테르 수지 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The polymer resin includes at least one of acrylic resin, epoxy resin, EPDM (Ethylene Propylene Diene Monomer) resin, CPE (Chlorinated Polyethylene) resin, silicone, polyurethane, urea resin, melamine resin, phenol resin, unsaturated ester resin Multilayer composite film having anisotropic thermal conductivity, characterized in that.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 도전성 접착층은 편상(Flake)의 금속 분말이 고분자 수지 상에 분산되어 있는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The conductive adhesive layer is a multilayer composite film having anisotropic thermal conductivity, characterized in that the metal powder in the form of (Flake) is dispersed on the polymer resin.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 금속 분말은 구리(Cu), 은(Ag), 은코팅 구리(Ag coated Cu), 은코팅 니켈(Ag coated Ni) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The metal powder is a multilayer composite film having anisotropic thermal conductivity, characterized in that it comprises at least one of copper (Cu), silver (Ag), silver coated copper (Ag coated Cu), silver coated nickel (Ag coated Ni) .
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 고분자 수지는 아크릴 수지, 에폭시 수지, EPDM(Ethylene Propylene Diene Monomer) 수지, CPE(Chlorinated Polyethylene) 수지, 실리콘, 폴리우레탄, 우레아 수지, 멜라민 수지, 페놀 수지, 불포화에스테르 수지 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The polymer resin includes at least one of acrylic resin, epoxy resin, EPDM (Ethylene Propylene Diene Monomer) resin, CPE (Chlorinated Polyethylene) resin, silicone, polyurethane, urea resin, melamine resin, phenol resin, unsaturated ester resin Multilayer composite film having anisotropic thermal conductivity, characterized in that.
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 구리 박막층의 상, 하부 표면에 니켈(Ni), 니켈-크롬(Ni-Cr), 철-크롬-니켈(Fe-Cr-Ni), 철-니켈-코발트(Fe-Ni-Co), 철-니켈-텅스텐(Fe-Ni-W), 철-니켈-몰리브덴(Fe-Ni-Mo), 철-니켈-구리(Fe-Ni-Cu), 철-니켈-망간(Fe-Ni-Mn), 주석-니켈-티타늄(Sn-Ni-Ti), 구리-니켈-주석(Cu-Ni-Sn), 니켈-코발트-구리(Ni-Co-Cu), 니켈-코발트-아연(Ni-Co-Zn), 니켈-코발트-텅스텐(Ni-Co-W) 중 적어도 어느 하나를 포함하는 코팅층이 형성되는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.Nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni), iron-nickel-cobalt (Fe-Ni-Co), iron on the upper and lower surfaces of the copper thin film layer Nickel-tungsten (Fe-Ni-W), iron-nickel-molybdenum (Fe-Ni-Mo), iron-nickel-copper (Fe-Ni-Cu), iron-nickel-manganese (Fe-Ni-Mn) , Tin-nickel-titanium (Sn-Ni-Ti), copper-nickel-tin (Cu-Ni-Sn), nickel-cobalt-copper (Ni-Co-Cu), nickel-cobalt-zinc (Ni-Co- Zn), a nickel-cobalt-tungsten (Ni-Co-W) is a multi-layered composite film having anisotropic thermal conductivity, characterized in that the coating layer is formed.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 세라믹 절연층의 두께는 5 내지 20 ㎛인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The thickness of the ceramic insulating layer is a multilayer composite film having anisotropic thermal conductivity, characterized in that 5 to 20 ㎛.
  10. 청구항 1에 있어서, The method according to claim 1,
    상기 도전성 접착층의 두께는 5 내지 20 ㎛인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The thickness of the conductive adhesive layer is a multilayer composite film having anisotropic thermal conductivity, characterized in that 5 to 20 ㎛.
  11. 청구항 1에 있어서, The method according to claim 1,
    상기 구리 박막층의 두께는 15 내지 45 ㎛인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The copper thin film layer has a thickness of 15 to 45 ㎛ multilayer composite film having anisotropic thermal conductivity.
  12. 청구항 8에 있어서, The method according to claim 8,
    상기 구리 박막층의 상, 하부 표면의 상기 코팅층의 두께는 0.1 내지 1.5 ㎛인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름.The multilayer composite film having anisotropic thermal conductivity, characterized in that the thickness of the coating layer on the upper, lower surfaces of the copper thin film layer is 0.1 to 1.5 ㎛.
  13. 청구항 1에 있어서, The method according to claim 1,
    상기 이방성 열전도도를 갖는 다층 복합 필름은 The multilayer composite film having the anisotropic thermal conductivity
    수직방향 대비 수평방향 열전도도 비율이 50배 이상인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름. A multilayer composite film having anisotropic thermal conductivity, characterized in that the ratio of the thermal conductivity in the vertical direction to the horizontal direction is 50 times or more.
  14. 청구항 1에 있어서, The method according to claim 1,
    상기 이방성 열전도도를 갖는 다층 복합 필름의 상기 세라믹 절연층은The ceramic insulating layer of the multilayer composite film having the anisotropic thermal conductivity
    수직방향 열전도도가 1 W/mK 이상, 수평방향 열전도도가 5 W/mK 이상인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름. A multilayer composite film having anisotropic thermal conductivity, wherein the vertical thermal conductivity is 1 W / mK or more and the horizontal thermal conductivity is 5 W / mK or more.
  15. 청구항 1에 있어서, The method according to claim 1,
    상기 이방성 열전도도를 갖는 다층 복합 필름의 상기 도전성 접착층은The conductive adhesive layer of the multilayer composite film having the anisotropic thermal conductivity
    수직방향 열전도도가 1 W/mK 이상, 수평방향 열전도도가 5 W/mK 이상인 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름. A multilayer composite film having anisotropic thermal conductivity, wherein the vertical thermal conductivity is 1 W / mK or more and the horizontal thermal conductivity is 5 W / mK or more.
  16. 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법에 있어서, In the method for producing a multilayer composite film having anisotropic thermal conductivity,
    (i) 세라믹 분말을 고분자 수지 내에 분산 및 복합화하여 슬러리를 제조하는 단계;(i) dispersing and complexing the ceramic powder in the polymer resin to prepare a slurry;
    (ii) 상기 (i) 단계의 슬러리를 테이프 캐스팅 공정, 스프레이 코팅 공정, 스크린 인쇄 공정, 디핑 공정 중 적어도 어느 하나의 방법을 이용하여 세라믹 절연층을 제조하는 단계;(ii) preparing the ceramic insulation layer using the slurry of step (i) using at least one of a tape casting process, a spray coating process, a screen printing process, and a dipping process;
    (iii) 구리(Cu), 은(Ag), 은코팅 구리(Ag coated Cu), 은코팅 니켈(Ag coated Ni) 중 적어도 어느 하나를 포함하는 금속 분말을 고분자 수지 내에 분산 및 복합화하여 슬러리를 제조하는 단계;(iii) preparing a slurry by dispersing and compounding a metal powder containing at least one of copper (Cu), silver (Ag), silver coated copper (Ag coated Cu), and silver coated nickel (Ag coated Ni) in a polymer resin. Making;
    (iv) 상기 (iii) 단계의 슬러리를 테이프 캐스팅 공정, 스프레이 코팅 공정, 스크린 인쇄 공정, 디핑 공정 중 적어도 어느 하나의 방법을 이용하여 도전성 접착층을 제조하는 단계;(iv) preparing the conductive adhesive layer using the slurry of step (iii) using at least one of a tape casting process, a spray coating process, a screen printing process, and a dipping process;
    (v) 구리 박막층의 상, 하부 표면을 니켈(Ni), 니켈-크롬(Ni-Cr), 철-크롬-니켈(Fe-Cr-Ni), 철-니켈-코발트(Fe-Ni-Co), 철-니켈-텅스텐(Fe-Ni-W), 철-니켈-몰리브덴(Fe-Ni-Mo), 철-니켈-구리(Fe-Ni-Cu), 철-니켈-망간(Fe-Ni-Mn), 주석-니켈-티타늄(Sn-Ni-Ti), 구리-니켈-주석(Cu-Ni-Sn), 니켈-코발트-구리(Ni-Co-Cu), 니켈-코발트-아연(Ni-Co-Zn), 니켈-코발트-텅스텐(Ni-Co-W) 중 적어도 어느 하나를 이용하여 코팅하는 단계;(v) The upper and lower surfaces of the copper thin film layer are nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni), and iron-nickel-cobalt (Fe-Ni-Co). , Iron-nickel-tungsten (Fe-Ni-W), iron-nickel-molybdenum (Fe-Ni-Mo), iron-nickel-copper (Fe-Ni-Cu), iron-nickel-manganese (Fe-Ni-W) Mn), tin-nickel-titanium (Sn-Ni-Ti), copper-nickel-tin (Cu-Ni-Sn), nickel-cobalt-copper (Ni-Co-Cu), nickel-cobalt-zinc (Ni- Coating with at least one of Co—Zn) and nickel-cobalt-tungsten (Ni—Co—W);
    (vi) 상기 (v) 단계의 니켈(Ni), 니켈-크롬(Ni-Cr), 철-크롬-니켈(Fe-Cr-Ni), 철-니켈-코발트(Fe-Ni-Co), 철-니켈-텅스텐(Fe-Ni-W), 철-니켈-몰리브덴(Fe-Ni-Mo), 철-니켈-구리(Fe-Ni-Cu), 철-니켈-망간(Fe-Ni-Mn), 주석-니켈-티타늄(Sn-Ni-Ti), 구리-니켈-주석(Cu-Ni-Sn), 니켈-코발트-구리(Ni-Co-Cu), 니켈-코발트-아연(Ni-Co-Zn), 니켈-코발트-텅스텐(Ni-Co-W) 중 적어도 어느 하나를 이용하여 상, 하부 표면이 코팅된 구리 박막층 상부에 상기 (ii) 단계의 세라믹 절연층을 위치시키는 단계;(vi) the nickel (Ni), nickel-chromium (Ni-Cr), iron-chromium-nickel (Fe-Cr-Ni), iron-nickel-cobalt (Fe-Ni-Co), iron of step (v) Nickel-tungsten (Fe-Ni-W), iron-nickel-molybdenum (Fe-Ni-Mo), iron-nickel-copper (Fe-Ni-Cu), iron-nickel-manganese (Fe-Ni-Mn) , Tin-nickel-titanium (Sn-Ni-Ti), copper-nickel-tin (Cu-Ni-Sn), nickel-cobalt-copper (Ni-Co-Cu), nickel-cobalt-zinc (Ni-Co- Zn), by using at least one of nickel-cobalt-tungsten (Ni-Co-W) to place the ceramic insulating layer of the step (ii) above the copper thin film layer coated on the upper and lower surfaces;
    (vii) 상기 (vi) 단계의 상기 세라믹 절연층을 상부에 위치시킨 구리 박막층 하부에 상기 (iv) 단계의 상기 도전성 접착층을 위치시키는 단계;(vii) placing the conductive adhesive layer of step (iv) below the copper thin film layer on which the ceramic insulating layer of step (vi) is placed;
    (viii) 상기 (vii) 단계의 복수의 층으로 이루어진 필름을 프레스, 라미네이팅 공정, 오토클레이브 공정 중에 적어도 어느 하나의 방법을 이용하여 다층 복합 필름을 완성하는 단계;(viii) completing the multilayer composite film using at least one of a method of pressing, laminating, and autoclaving a film comprising a plurality of layers of step (vii);
    를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법.Method for producing a multilayer composite film having anisotropic thermal conductivity comprising a.
  17. 청구항 16에 있어서, The method according to claim 16,
    상기 (i) 단계의 세라믹 분말은 편상(Flake)의 질화붕소(BN), 산화알미늄(Al2O3), 탄화규소(SiC), 산화마그네슘(MgO), 수산화알미늄(Al(OH)3), 수산화마그네슘(Mg(OH)2) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법.The ceramic powder of step (i) is boron nitride (BN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), magnesium oxide (MgO), aluminum hydroxide (Al (OH) 3 ) of the phase (Flake) And magnesium hydroxide (Mg (OH) 2 ).
  18. 청구항 16에 있어서, The method according to claim 16,
    상기 (i) 단계의 고분자 수지는 아크릴 수지, 에폭시 수지, EPDM(Ethylene Propylene Diene Monomer) 수지, CPE(Chlorinated Polyethylene) 수지, 실리콘, 폴리우레탄, 우레아 수지, 멜라민 수지, 페놀 수지, 불포화에스테르 수지 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법.The polymer resin of step (i) is at least of acrylic resin, epoxy resin, EPDM (Ethylene Propylene Diene Monomer) resin, CPE (Chlorinated Polyethylene) resin, silicone, polyurethane, urea resin, melamine resin, phenol resin, unsaturated ester resin The manufacturing method of the multilayer composite film which has anisotropic thermal conductivity characterized by including any one.
  19. 청구항 16에 있어서, The method according to claim 16,
    상기 (iii) 단계의 금속 분말은 구리(Cu), 은(Ag), 은코팅 구리(Ag coated Cu), 은코팅 니켈(Ag coated Ni) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법.The metal powder of step (iii) is anisotropic thermal conductivity, characterized in that it comprises at least one of copper (Cu), silver (Ag), silver coated copper (Ag coated Cu), silver coated nickel (Ag coated Ni) Method for producing a multilayer composite film having a.
  20. 청구항 16에 있어서, The method according to claim 16,
    상기 (v)의 단계는 테이프 캐스팅 공정, 스프레이 코팅 공정, 스크린 인쇄 공정, 디핑 공정 중 적어도 어느 하나의 방법을 이용하여 코팅하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법.Step (v) is a method of manufacturing a multilayer composite film having anisotropic thermal conductivity, characterized in that the coating by using at least one of the tape casting process, spray coating process, screen printing process, dipping process.
  21. 청구항 16에 있어서, The method according to claim 16,
    상기 (iii) 단계의 고분자 수지는 아크릴 수지, 에폭시 수지, EPDM(Ethylene Propylene Diene Monomer) 수지, CPE(Chlorinated Polyethylene) 수지, 실리콘, 폴리우레탄, 우레아 수지, 멜라민 수지, 페놀 수지, 불포화에스테르 수지 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 이방성 열전도도를 갖는 다층 복합 필름의 제조 방법.The polymer resin of step (iii) is at least one of acrylic resin, epoxy resin, EPDM (Ethylene Propylene Diene Monomer) resin, CPE (Chlorinated Polyethylene) resin, silicone, polyurethane, urea resin, melamine resin, phenol resin, unsaturated ester resin The manufacturing method of the multilayer composite film which has anisotropic thermal conductivity characterized by including any one.
PCT/KR2014/001280 2013-02-19 2014-02-18 Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same WO2014129776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130017314A KR101458832B1 (en) 2013-02-19 2013-02-19 A composite film of copper layers with insulation layers and conductive adhesion layers and method of fabricating the same.
KR10-2013-0017314 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129776A1 true WO2014129776A1 (en) 2014-08-28

Family

ID=51391515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001280 WO2014129776A1 (en) 2013-02-19 2014-02-18 Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same

Country Status (2)

Country Link
KR (1) KR101458832B1 (en)
WO (1) WO2014129776A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352387A (en) * 2015-10-26 2018-07-31 京瓷株式会社 Filming apparatus, vehicle and shell
EP3239243A4 (en) * 2014-12-25 2018-10-10 Shengyi Technology Co. Ltd. Ceramized silicone resin composition and pre-preg and laminate that use the composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070243A (en) * 2014-12-09 2016-06-20 (주)엘지하우시스 Heat-discharging sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075993A (en) * 2007-02-14 2008-08-20 최훈석 Flexible heat sink and manufacturing method thereof
KR20090001232A (en) * 2007-06-29 2009-01-08 최훈석 Heat sink of high radiation manufacturing method therefor and metal pcb therewith
KR100928548B1 (en) * 2009-06-05 2009-11-24 두성산업 주식회사 Adhesive tape and producing method thereof
KR20120073792A (en) * 2010-12-27 2012-07-05 율촌화학 주식회사 Heat radiating sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075993A (en) * 2007-02-14 2008-08-20 최훈석 Flexible heat sink and manufacturing method thereof
KR20090001232A (en) * 2007-06-29 2009-01-08 최훈석 Heat sink of high radiation manufacturing method therefor and metal pcb therewith
KR100928548B1 (en) * 2009-06-05 2009-11-24 두성산업 주식회사 Adhesive tape and producing method thereof
KR20120073792A (en) * 2010-12-27 2012-07-05 율촌화학 주식회사 Heat radiating sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239243A4 (en) * 2014-12-25 2018-10-10 Shengyi Technology Co. Ltd. Ceramized silicone resin composition and pre-preg and laminate that use the composition
CN108352387A (en) * 2015-10-26 2018-07-31 京瓷株式会社 Filming apparatus, vehicle and shell
CN108352387B (en) * 2015-10-26 2022-05-31 京瓷株式会社 Imaging device, vehicle, and housing

Also Published As

Publication number Publication date
KR101458832B1 (en) 2014-11-10
KR20140104555A (en) 2014-08-29

Similar Documents

Publication Publication Date Title
KR101757229B1 (en) Composite multi-layer sheet with EMI shield and heat radiation and Manufacturing method thereof
WO2016093617A1 (en) Heat radiation sheet
WO2012091462A2 (en) Back sheet for solar cells and method for preparing the same
KR101544587B1 (en) A electromagnetic wave shielding film using conductive adhesion layers and method of fabricating the same.
US20160076829A1 (en) Heat dissipating sheet
WO2012148218A2 (en) Horizontal thermoelectric tape and method for manufacturing same
WO2014129776A1 (en) Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same
KR101808898B1 (en) Electro magnetic wave shielding sheet having heat relese fuction, and the preparation method for the same
KR101043346B1 (en) Organo-inorganic hybrid composition with excellent thermal radiation and thermal radiation sheet of thin layer type which uses this
CN102448251A (en) Multilayer single-face aluminum-based circuit board and manufacturing method thereof
WO2013142580A1 (en) Application of dielectric layer and circuit traces on heat sink
KR102001719B1 (en) Metal composite sheet
KR20160042299A (en) Heat radiation apparatus of display panel
KR20130117909A (en) Heat conduction tape having electric conductivity and fabricating method thereof
JP6125528B2 (en) Light emitting diode substrate and method for manufacturing light emitting diode substrate
CN200941382Y (en) High heat transferring metal-base copper coated board
KR101704793B1 (en) Printed circuit boards using the epoxy resin composition and its manufacturing method
KR101459223B1 (en) Enhanced thermal diffusion sheets and the use of electronic devices.
KR102536636B1 (en) Copper clad laminate manufacturing method using ceramized aluminum oxide powder and carbon nanotube
WO2021162368A1 (en) Multifunctional composite film having heat dissipation and electromagnetic wave shielding/ absorption capabilities, and production method therefor
KR101531630B1 (en) Thin-heat film and heat-radiation sheet comparing the same
KR20180055014A (en) Graphite sheet having excellent plane thermal conduction for heat radiation solution, Heat radiation solution containing the same and Manufacturing method thereof
KR20190095767A (en) Heatsink for LED and fabrication method thereof
KR102176129B1 (en) Heat radiation sheet and EMI shielding-Heat radiation composite sheet comprising the same
CN219919257U (en) Multilayer printed FCB circuit board capable of rapidly radiating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753625

Country of ref document: EP

Kind code of ref document: A1