WO2014126055A1 - 半導体集積回路基板およびその製造方法 - Google Patents

半導体集積回路基板およびその製造方法 Download PDF

Info

Publication number
WO2014126055A1
WO2014126055A1 PCT/JP2014/053075 JP2014053075W WO2014126055A1 WO 2014126055 A1 WO2014126055 A1 WO 2014126055A1 JP 2014053075 W JP2014053075 W JP 2014053075W WO 2014126055 A1 WO2014126055 A1 WO 2014126055A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
opening
compound
semiconductor
integrated circuit
Prior art date
Application number
PCT/JP2014/053075
Other languages
English (en)
French (fr)
Inventor
義昭 中野
正和 杉山
昭男 肥後
悠 藤本
ジョン オュイン ケルマン
翔大 渡邉
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2014126055A1 publication Critical patent/WO2014126055A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Definitions

  • the present invention relates to a semiconductor integrated circuit board and a method for manufacturing the same, and is suitable for application to, for example, a semiconductor integrated circuit board provided with a III-V compound semiconductor layer.
  • an object of the present invention is to propose a semiconductor integrated circuit substrate that can improve the degree of freedom in designing an integrated circuit and a method for manufacturing the same.
  • a semiconductor integrated circuit substrate includes a semiconductor support substrate on which a III-V group compound can be epitaxially grown, and an opening formed on the semiconductor support substrate and exposing a part of the surface of the semiconductor support substrate.
  • An insulating layer having a selective growth mask layer protruding on the insulating layer so as to surround the opening, and the selective growth mask layer serving as a barrier in the recessed region surrounded by the selective growth mask layer And a group III-V compound semiconductor layer formed on the substrate.
  • a region forming step of forming a recessed region surrounded by the selective growth mask layer and exposing the insulating layer on the insulating layer laminated on the semiconductor supporting substrate An opening forming step of removing a part of the insulating layer in the recessed region and forming an opening in the insulating layer, wherein the surface of the semiconductor support substrate is exposed to the outside; and the opening is exposed in the opening.
  • a group III-V compound is epitaxially grown from the surface of the semiconductor support substrate to the insulating layer around the opening, and the selective growth mask layer serves as a barrier for epitaxial growth of the group III-V compound in the recessed region.
  • a compound semiconductor layer forming step of forming a group III-V compound semiconductor layer is
  • the selective growth mask layer becomes a barrier only by epitaxially growing the group III-V compound in the recessed region surrounded by the selective growth mask layer, and the group III-V compound semiconductor layer is formed only in the recessed region.
  • the degree of freedom in designing the integrated circuit can be improved.
  • FIG. 6 is a table showing raw material partial pressure conditions when generating a III-V compound semiconductor layer. It is a SEM photograph when a 1st compound semiconductor layer is formed in an opening part. It is a SEM photograph when a 2nd compound semiconductor layer is formed in a dent area
  • reference numeral 1 denotes a semiconductor integrated circuit substrate according to the present invention, which has, for example, a plate-like silicon (Si) support substrate 2 having a plane orientation of (111), An SiO 2 layer 3 having an opening 4 through which the surface of the substrate 2 is exposed is formed.
  • the semiconductor integrated circuit substrate 1 has a thickness of 0.5 [ ⁇ m] ⁇ 5 [%] on the surface of a Si support substrate 2 as a semiconductor support substrate having a thickness of 350 ⁇ 25 [ ⁇ m].
  • An SiO 2 layer 3 is formed as an insulating layer, and a circular opening 4 having a diameter of 1 [ ⁇ m] or less, preferably 0.5 [ ⁇ m] or less is formed in the SiO 2 layer 3.
  • a Si layer 5 having a predetermined film thickness (100) different from the surface orientation of the Si support substrate 2 is formed around the opening 4 so as to protrude.
  • An Si layer 5 is arranged so as to surround it.
  • the Si layer 5 as a semiconductor layer has an opening 5a, and the opening 4 of the SiO 2 layer 3 is disposed in the region of the opening 5a.
  • the surface of the Si layer 5 is covered with a selective growth mask layer 6 made of, for example, SiO 2 , and the selective growth mask layer 6 can be protruded on the SiO 2 layer 3.
  • the opening 4 of the SiO 2 layer 3 is disposed, and the III-V group compound is epitaxially grown from the opening 4 step by step.
  • the formed III-V compound semiconductor layer 7 is provided.
  • the selective growth mask layer 6 protruding from the SiO 2 layer 3 serves as a barrier, and the III-V compound compound Without overcoming the selective growth mask layer 6, it can be formed only in the recessed region ER1.
  • the group III-V compound semiconductor layer 7 includes a columnar first compound semiconductor layer 7a projecting from the opening 4 onto the SiO 2 layer 3, and a tip of the first compound semiconductor layer 7a projecting from the opening 4.
  • a layered second compound semiconductor layer 7b formed along the surface direction of the SiO 2 layer 3 and the first compound semiconductor layer 7a and the second compound semiconductor layer 7b are composed of III-V group compounds. It has a composition with a different composition.
  • the first compound semiconductor layer 7a is made of, for example, a III-V group compound such as InAs.
  • a III-V group compound such as InAs.
  • the Si support substrate exposed in the opening 4 at the time of manufacture is used.
  • III-V compounds can grow epitaxially in the vertical direction in the opening 4 from the surface of the substrate.
  • the second compound semiconductor layer 7b is formed of a III-V group compound such as InGaAs, which is different from the first compound semiconductor layer 7a.
  • the III-V group compound can grow epitaxially along the plane direction of the SiO 2 layer 3.
  • the III-V compound semiconductor layer 7 can form the second compound semiconductor layer 7b in contact with the side wall 6a of the selective growth mask layer 6 in the recessed region ER1, and the same SiO 2 layer on which the Si layer 5 is formed.
  • a second compound semiconductor layer 7b may be provided on 3 and disposed on the same plane as the Si layer 5.
  • a manufacturing method of the above-described semiconductor integrated circuit board 1 will be described below.
  • a SiO 2 layer hereinafter also referred to as a BOX (Buried Oxide) layer
  • a Si support substrate 2 having a plane orientation of (111) 3
  • a plate-like SOI (silicon on insulator) wafer 10 in which the (001) Si layer 5 having a plane orientation is sequentially laminated is prepared.
  • the Si layer 5 surface of the SOI wafer 10 for example, after forming the SiO 2 film 13 by the sputtering apparatus performs baking or the like by applying a resist on the surface of the SiO 2 film 13, the resist Layer 14 is formed.
  • a predetermined mask not shown
  • an opening 14a is formed in the resist layer 14 as shown in FIG. 2C, and the opening 14a is formed.
  • a recess formation region ER2 in which the SiO 2 film 13 is exposed is provided.
  • the recess formation region ER2 is also formed in the SiO 2 film 13 and the Si layer 5.
  • the SiO 2 film 13 exposed in the recess formation region ER2 is removed by dry etching and patterned, and the underlying Si layer 5 is exposed in the recess formation region ER2, and then ashing is performed, and the resist layer 14 is peeled off.
  • the Si layer 5 exposed in the recess formation region ER2 is removed by dry etching.
  • an opening 13a is formed in the SiO 2 film 13, and an opening 5a is also formed in the Si layer 5. From these openings 13a, 5a, an SiO 2 layer (BOX layer) is formed.
  • a recess formation region ER2 where 3 is exposed is provided.
  • FIG. 3B after the SiO 2 film 13 is removed from the Si layer 5 using a predetermined solution so that the SiO 2 layer 3 remains, as shown in FIG.
  • a selective growth mask layer 6 made of SiO 2 is formed on the surface of the layer 5, and a recessed region ER1 surrounded by the selective growth mask layer 6 and exposing the SiO 2 layer 3 to the outside is formed.
  • a resist layer is formed on the exposed surfaces of the SiO 2 layer 3 and the selective growth mask layer 6, and after irradiating the resist layer with an electron beam, for example, by electron beam lithography, development processing is performed, as shown in FIG. 4A.
  • an opening 18a is formed in the resist layer 18, and an opening formation region ER3 in which the SiO 2 layer 3 is exposed from the opening 18a is provided.
  • a III-V group compound is epitaxially grown in the recessed region ER1, and as shown in FIG.
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • a III-V group compound semiconductor layer 7 composed of the first compound semiconductor layer 7a and the second compound semiconductor layer 7b is formed in the recessed region ER1, where the first compound semiconductor layer 7a is formed of InAs,
  • the two-compound semiconductor layer 7b is formed of InGaAs will be described below.
  • Such a III-V group compound semiconductor layer 7 As a method for forming such a III-V group compound semiconductor layer 7, first, for example, ultrasonic cleaning, removal of organic substances by sulfuric acid / hydrogen peroxide, and removal of the surface oxide layer by hydrofluoric acid are performed. Next, the SOI pattern substrate 21 is introduced into the MOCVD apparatus, and the surface of the Si support substrate 2 in the opening 4 is cleaned and passivated by TBP (tertiary butylphosphine), and then the group V element As (arsenic) is used.
  • TBP tertiary butylphosphine
  • TBAs tertiary butyl arsenide
  • TMIn trimethylindium
  • group III element In indium
  • TMGa trimethylgallium
  • the first compound semiconductor InGaAs having a single crystal structure is epitaxially grown from the front end of the layer 7a along the surface direction of the SiO 2 layer 3 (second growth step).
  • the selective growth mask layer 6 arranged as the sidewall of the recessed region ER1 becomes a barrier for the epitaxial growth of InGaAs, and the InGaAs stays in the recessed region ER1 by the selective growth mask layer 6, and the single crystal
  • a layered second compound semiconductor layer 7b made of InGaAs having a structure can be formed in the recessed region ER1.
  • a III-V group compound semiconductor layer 7 can also be formed on the same SiO 2 layer 3 on which the Si layer 5 is formed, and the Si layer 5 and the III-V group compound semiconductor layer 7 Can be manufactured on the same plane.
  • the III-V compound semiconductor layer 7 can be formed only in the recessed region ER1.
  • the semiconductor integrated circuit substrate 1 provided with an opening 4 in which the surface of the Si support substrate 2 is exposed to the SiO 2 layer 3, SiO 2 layer so as to surround the opening 4
  • a selective growth mask layer 6 is provided on 3, and a group III-V compound semiconductor layer 7 is formed in a recessed region ER 1 surrounded by the selective growth mask layer 6.
  • the selective growth mask layer can be obtained by epitaxially growing a III-V group compound in the recessed region ER1 at a desired position surrounded by the selective growth mask layer 6 at the time of manufacture. 6 becomes a barrier, and the III-V compound semiconductor layer 7 can be formed only in the recessed region ER1, and thus the degree of freedom in designing the integrated circuit can be improved.
  • the III-V compound semiconductor layer 7 different from the Si layer 5 can be disposed on the same SiO 2 layer 3 as the Si layer 5, so that the III-V compound It is possible to supply a fusion platform in which circuits having different properties using the semiconductor layer 7 and the Si layer 5 are integrally formed.
  • the group III-V compound semiconductor layer 7 is formed on the SiO 2 layer 3 on which the Si layer 5 is previously formed.
  • Si layer 5 can be provided on the same SiO 2 layer 3, and Si layer 5 made of high-purity Si that is not doped with impurities can be provided.
  • the mechanical strength of the group III-V compound semiconductor layer is relatively weak.
  • the III-V compound semiconductor layer is easily damaged, and it is difficult to manufacture a circuit board of, for example, 6 inches or more.
  • this semiconductor integrated circuit substrate 1 since the group III-V compound is simply epitaxially grown in the recessed region ER1 while being placed, the conventional wafer bonding operation is performed.
  • the semiconductor integrated circuit substrate 1 having the III-V compound semiconductor layer 7 larger than 6 inches can be manufactured without any impact.
  • the semiconductor integrated circuit substrate 1 was actually manufactured according to the manufacturing method described above.
  • an SiO 2 layer 3 (BOX layer) with a thickness of 500 [nm] and a thickness of 500 [nm] with a surface orientation of (001) are formed on an N-type Si support substrate 2 with a surface orientation of (111).
  • the SOI wafer 10 in which the Si layer 5 was sequentially laminated was prepared (FIG. 2A).
  • E-200S ANELVA sputtering apparatus
  • the surface of the SiO 2 film 13 of the positive resist e.g. S1805: Shipley Far East Ltd.
  • thermal oxidation was performed at an oxygen flow rate of 1.0 [L / min] and an oxidation time of 60 [min] to form a selective growth mask layer 6 made of SiO 2 having a thickness of 100 [nm] on the surface of the Si layer 5 ( FIG. 3C).
  • a resist (OEBR CAP 117: trade name manufactured by Tokyo Ohka Kogyo Co., Ltd.) is spin-coated and a resist layer 18 is formed by baking, and then an electron beam drawing apparatus (trade name manufactured by Advantest Co., Ltd.) is used. Then, lithography is performed on the resist layer 18 with a dose of 7 [ ⁇ m / cm 2 ], and development is performed for 60 [sec] with a developer (ZTMA: trade name of Nippon Zeon Co., Ltd.). ⁇ m] opening formation region ER3 was formed (FIG. 4A).
  • FIG. 4B is an SEM photograph in which the recessed area ER1 in the SEM photograph of FIG. 5 is enlarged. As shown in FIG. 5 and FIG. 6, a circular recessed area ER1 that is clearly recessed is formed on the surface, and the SiO 2 layer 3 exposed in the recessed area ER1 has a further recessed circular shape. It was confirmed that the opening 4 was formed.
  • a III-V group compound semiconductor layer 7 was formed in the recessed region ER1.
  • the surface of the SOI pattern substrate was ultrasonically cleaned with acetone, excess organic substances were removed with sulfuric acid / hydrogen peroxide, and wet etching was performed with HF.
  • the SOI pattern substrate was introduced into the processing chamber of the MOCVD apparatus, and first, the surface of the Si support substrate 2 in the opening 4 was cleaned and passivated using TBP (tertiary butylphosphine).
  • FIG. 7 the treatment using TBP was performed at a treatment pressure of 4.8 [Pa] for 3 [min] and at a treatment pressure of 9.0 [Pa] for 5 [min].
  • a seed crystal generation step for generating a seed crystal made of InAs on the surface of the Si support substrate 2 in the opening 4 a first growth step for vertically growing InAs in the opening 4, and SiO around the opening 4
  • a second growth step of growing InGaAs in the plane direction on two layers and three surfaces was sequentially performed.
  • FIG. 8 is a table summarizing the types and supply times of the gas supplied to the processing chamber in each step.
  • the seed crystal generation step is indicated as “InAs-nucleation”
  • the first growth step is indicated as “InAs-layer”
  • the second growth step is indicated as “InGaAs”.
  • TBAs tertiary butyl arsenide
  • TMIn trimethylindium
  • the III-V compound semiconductor layer 7 can be generated from the inside of the opening 4 to the selective growth mask layer 6 on the SiO 2 layer 3.
  • Layer 7 and the other Si layer 5 could be placed on the same SiO 2 layer 3.
  • the processing temperature in each step was set to 610 [° C.].
  • the present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the SiO 2 film 13 or a selection can be made.
  • the growth mask layer 6 may be formed by thermal CVD, plasma CVD, ALD (atomic layer deposition) or the like, or the III-V compound semiconductor layer 7 may be formed by ALD (atomic layer deposition) or the like.
  • Various other formation methods may be used for the formation method of the region ER1, the formation method of the opening 4 of the SiO 2 layer 3, and the like.
  • the present invention is not limited to this.
  • only the selective growth mask layer 6 may be formed on the SiO 2 layer 3 without providing the Si layer 5.
  • the diameter of the opening 4 is formed as small as 1.0 [ ⁇ m] or less, and one seed crystal is generated on the surface of the Si support substrate 2 exposed in the opening 4,
  • the present invention is not limited to this, and the opening 4 is set to 1.0.
  • a plurality of seed crystals are formed on the surface of the Si support substrate 2 formed larger than [ ⁇ m] and exposed in the opening 4, and a III-V group compound having a polycrystalline structure is epitaxially grown from the plurality of seed crystals.
  • the first compound semiconductor layer 7a may be formed.
  • the Si support substrate 2 having a plane orientation of (111) is applied as the semiconductor support substrate has been described, but the present invention is not limited thereto, and the plane orientation is (100) or In addition to the Si support substrate such as (110), a semiconductor support substrate made of various other materials may be applied.
  • the Si layer 5 having a plane orientation of (001) is applied as the semiconductor layer having a plane orientation different from that of the semiconductor support substrate.
  • the present invention is not limited to this. If the plane orientation is different from that of the semiconductor support substrate, for example, a semiconductor layer made of various other materials may be applied in addition to the Si layer having a plane orientation of (100) or the like.
  • the selective growth mask layer 6 formed of amorphous SiO 2 is applied as the selective growth mask layer.
  • the present invention is not limited to this, and the III-V group is used.
  • the selective growth mask layer may be formed of various materials other than SiO 2 as long as it becomes a barrier for the epitaxial growth of the compound.
  • the first compound semiconductor layer 7a made of InAs is applied as the first compound semiconductor layer standing on the surface of the semiconductor support substrate in the opening.
  • the first compound semiconductor layer made of various other III-V group compounds such as GaAs and InP may be applied.
  • the second compound semiconductor layer 7b made of InGaAs is applied as the second compound semiconductor layer formed from the first compound semiconductor layer to the selective growth mask layer along the surface direction of the insulating layer.
  • the present invention is not limited to this, and the second compound semiconductor is made of a III-V group compound containing (Al, Ga, In) and (As, P) in any combination in any ratio. A layer may be applied.
  • Si support substrate Si support substrate (semiconductor support substrate) 3 SiO 2 layer (insulating layer) 4 Opening 5 Si layer (semiconductor layer) 6 selective growth mask layer 7 III-V compound semiconductor layer 7a first compound semiconductor layer 7b second compound semiconductor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 集積回路の設計の自由度を向上させ得る半導体集積回路基板およびその製造方法を提案する。この半導体集積回路基板(1)では、Si支持基板(2)の表面が露出した開口部(4)をSiO2層(3)に設けるとともに、この開口部(4)を囲むようにしてSiO2層(3)上に選択成長マスク層(6)を設け、この選択成長マスク層(6)で囲まれた凹み領域(ER1)内にIII-V族化合物半導体層(7)が形成されている。このような構成を有する半導体集積回路基板(1)では、製造時、選択成長マスク層(6)で囲まれた所望の位置の凹み領域(ER1)内にてIII-V族化合物をエピタキシャル成長させるだけで、選択成長マスク層(6)が障壁となり、当該凹み領域(ER1)にのみIII-V族化合物半導体層(7)を形成でき、かくして集積回路の設計の自由度を向上させ得る。

Description

半導体集積回路基板およびその製造方法
 本発明は半導体集積回路基板およびその製造方法に関し、例えばIII-V族化合物半導体層が設けられた半導体集積回路基板に適用して好適なものである。
 近年、シリコンLSI(Large Scale Integration)技術では、微細化による高速化も限界を迎えつつあり、InGaAsなどのキャリア移動度が高いIII-V族化合物からなるIII-V族化合物半導体層とのハイブリット集積回路の開発が期待されている。特に、LSIとの集積化が進んでいるシリコンフォトニクスの分野では、III-V族化合物半導体層を利用した半導体レーザ素子や、受光素子が考えられている(例えば、特許文献1参照)。
特開平11-284280号公報
 しかしながら、III-V族化合物半導体層を設けた半導体集積回路基板の製造手法としては、大きさの異なるウェハを貼り合わせるウェハボンディングに頼るところが大きく、III-V族化合物半導体層を用いた半導体レーザ素子や受光素子を、任意の場所に配置させることが困難であり、設計の自由度が低いという問題があった。
 そこで、本発明は以上の点を考慮してなされたもので、集積回路の設計の自由度を向上させ得る半導体集積回路基板およびその製造方法を提案することを目的とする。
 本発明に係る半導体集積回路基板は、表面にIII-V族化合物がエピタキシャル成長可能な半導体支持基板と、前記半導体支持基板上に形成され、前記半導体支持基板の表面の一部を露出させた開口部を有する絶縁層と、前記開口部を囲むように前記絶縁層上に突出形成された選択成長マスク層と、前記選択成長マスク層が障壁となって該選択成長マスク層で囲まれた凹み領域内に形成されたIII-V族化合物半導体層とを備えることを特徴とする。
 また、本発明に係る半導体集積回路基板の製造方法では、半導体支持基板に積層された絶縁層上に、選択成長マスク層で囲まれ、かつ該絶縁層が露出した凹み領域を形成する領域形成ステップと、前記凹み領域内にある前記絶縁層の一部を除去し、前記半導体支持基板の表面が外部に露出した開口部を前記絶縁層に形成する開口部形成ステップと、前記開口部内に露出した前記半導体支持基板の表面から前記開口部周辺の前記絶縁層上までIII-V族化合物をエピタキシャル成長させてゆき、前記選択成長マスク層が前記III-V族化合物のエピタキシャル成長の障壁となり前記凹み領域内にIII-V族化合物半導体層を形成する化合物半導体層形成ステップとを備えることを特徴とする。
 本発明によれば、選択成長マスク層で囲まれた凹み領域内にてIII-V族化合物をエピタキシャル成長させるだけで、選択成長マスク層が障壁となり、当該凹み領域にのみIII-V族化合物半導体層を形成でき、かくして集積回路の設計の自由度を向上させ得る。
本発明による半導体集積回路基板の構成を示す断面図である。 半導体集積回路基板の製造方法の説明(1)に供する断面図である。 半導体集積回路基板の製造方法の説明(2)に供する断面図である。 半導体集積回路基板の製造方法の説明(3)に供する断面図である。 実際に製造したSOIパターン基板の構成を示すSEM写真である。 実際に製造した開口部と凹み領域の詳細構成を示すSEM写真である。 III-V族化合物半導体層を生成する際のエピタキシャル成長シーケンスを示すグラフである。 III-V族化合物半導体層を生成する際の原料分圧条件を示す表である。 開口部内に第1化合物半導体層を形成したときのSEM写真である。 凹み領域内に第2化合物半導体層を形成したときのSEM写真である。
 以下図面に基づいて本発明の実施の形態を詳述する。
 (1)半導体集積回路基板の構成
 図1において、1は本発明による半導体集積回路基板を示し、例えば面方位が(111)でなる板状のシリコン(Si)支持基板2を有し、Si支持基板2の表面が露出する開口部4を備えたSiO2層3が形成されている。例えば、この実施の形態の場合、半導体集積回路基板1は、厚さ350±25[μm]の半導体支持基板としてのSi支持基板2の表面に、厚さ0.5[μm]±5[%]の絶縁層としてSiO2層3が形成され、当該SiO2層3に直径1[μm]以下、好ましくは0.5[μm]以下の円形状の開口部4が穿設されている。
 SiO2層3の表面には、開口部4の周辺にSi支持基板2の面方位とは異なる面方位(100)でなる所定膜厚のSi層5が突出形成されており、開口部4を囲むようにSi層5が配置されている。実際上、半導体層としてのSi層5は、開口部5aを有しており、当該開口部5aの領域内にSiO2層3の開口部4が配置されている。また、Si層5は、その表面が例えばSiO2でなる選択成長マスク層6で被覆されており、SiO2層3上に選択成長マスク層6を突出形成し得る。
 選択成長マスク層6により囲まれた凹み領域ER1には、SiO2層3の開口部4が配置されており、当該開口部4内から段階的にIII-V族化合物をエピタキシャル成長させてゆくことで形成されたIII-V族化合物半導体層7が設けられている。実際上、このIII-V族化合物半導体層7は、製造時、凹み領域ER1内でエピタキシャル成長した際、SiO2層3に突出形成された選択成長マスク層6が障壁となり、III-V族化合物が選択成長マスク層6を乗り越えることなく、凹み領域ER1内にのみ形成し得るようになされている。
 ここで、III-V族化合物半導体層7は、開口部4内からSiO2層3上に突出した柱状の第1化合物半導体層7aと、開口部4から突出した第1化合物半導体層7aの先端からSiO2層3の面方向に沿って形成された層状の第2化合物半導体層7bとで構成されており、第1化合物半導体層7aと第2化合物半導体層7bとでIII-V族化合物の組成が異なる構成を有する。
 第1化合物半導体層7aは、例えばInAsのようなIII-V族化合物で形成されており、このようなIII-V族化合物を用いることで、製造時、開口部4内に露出したSi支持基板の表面から開口部4内で垂直方向にIII-V族化合物がエピタキシャル成長し得る。一方、第2化合物半導体層7bは、第1化合物半導体層7aとは異なる例えばInGaAsのようなIII-V族化合物で形成されており、このようなIII-V族化合物を用いることで、製造時、SiO2層3の面方向に沿ってIII-V族化合物がエピタキシャル成長し得る。これによりIII-V族化合物半導体層7は、凹み領域ER1内に選択成長マスク層6の側壁6aに接した第2化合物半導体層7bを形成し得、Si層5が形成された同じSiO2層3上に第2化合物半導体層7bを設け、Si層5と同一面上に配置され得る。
 (2)半導体集積回路基板の製造方法
 次に上述した半導体集積回路基板1の製造方法について以下説明する。この場合、先ず始めに、図2Aに示すように、例えば面方位が(111)でなるSi支持基板2上に、SiO2層(以下、BOX(埋め込み酸化膜:Buried Oxide)層とも呼ぶ)3と、面方位が(001)のSi層5とを順に積層した板状のSOI(silicon on insulator)ウェハ10を用意する。
 次いで、図2Bに示すように、SOIウェハ10のSi層5表面に、例えばスパッタ装置によりSiO2膜13を形成した後、SiO2膜13の表面にレジストを塗布してベーキング等を行い、レジスト層14を形成する。次いで、所定のマスク(図示せず)を用いてレジスト層14に対して露光処理や現像処理を行うことで、図2Cに示すように、レジスト層14に開口部14aを形成し、開口部14aからSiO2膜13が露出した凹み形成領域ER2を設ける。
 次に、SiO2膜13およびSi層5にも凹み形成領域ER2を形成する。例えば、凹み形成領域ER2に露出したSiO2膜13をドライエッチングにより除去してパターニングし、下層のSi層5を凹み形成領域ER2内に露出させた後、アッシングを行い、レジスト層14を剥離し、続いて、このパターニングしたSiO2膜13をマスクとして用いて、凹み形成領域ER2に露出したSi層5をドライエッチングにより除去する。このようにして、図3Aに示すように、SiO2膜13に開口部13aを形成するとともに、Si層5にも開口部5aを形成し、これら開口部13a,5aからSiO2層(BOX層)3が露出した凹み形成領域ER2を設ける。
 次いで、図3Bに示すように、SiO2層3が残存するように所定の溶液を用いてSiO2膜13をSi層5上から除去した後、図3Cに示すように、例えば熱酸化によってSi層5の表面にSiO2からなる選択成長マスク層6を形成し、選択成長マスク層6で囲まれ、かつSiO2層3が外部に露出した凹み領域ER1を形成する。次いで、露出したSiO2層3および選択成長マスク層6の表面にレジスト層を形成し、例えば電子線リソグラフィにより電子線をレジスト層に照射した後、現像処理等を行い、図4Aに示すように、レジスト層18に開口部18aを形成し、当該開口部18aからSiO2層3が露出した開口部形成領域ER3を設ける。
 次いで、例えばバッファードフッ酸(BHF)を用いたウェットエッチングにより、開口部形成領域ER3に露出しているSiO2層3のみを除去してSiO2層3に開口部4を形成した後、レジスト層18を除去することで、図4Bに示すように、Si支持基板2の表面がSiO2層3の開口部4から露出し、かつSiO2層3上の選択成長マスク層6により開口部4を囲んだ凹み領域ER1を有するSOIパターン基板21を形成し得る。
 次いで、例えば有機金属気相成長法(以下、MOCVD(Metal Organic Chemical Vapor Deposition)法を利用して、この凹み領域ER1内でIII-V族化合物をエピタキシャル成長させてゆき、図1に示すように、第1化合物半導体層7aおよび第2化合物半導体層7bでなるIII-V族化合物半導体層7を凹み領域ER1内に形成する。なお、ここでは、第1化合物半導体層7aをInAsで形成し、第2化合物半導体層7bをInGaAsで形成する場合について以下説明する。
 このようなIII-V族化合物半導体層7の形成方法としては、先ず始めに、例えば超音波洗浄や、硫酸過水による有機物の除去後、フッ酸による表面酸化層除去を行う。次いで、MOCVD装置にSOIパターン基板21を導入し、TBP(ターシャリーブチルホスフィン)により、開口部4内のSi支持基板2の表面をクリーニングおよびパッシベーションした後、V族元素であるAs(砒素)の原料となるTBAs(ターシャリーブチルヒ素)と、III族元素であるIn(インジウム)の原料となるTMIn(トリメチルインジウム)とを供給し、開口部4内のSi支持基板2の表面にInAsでなる種結晶を生成する(種結晶生成ステップ)。
 次いで、TBAsとTMInの供給割合を調整することで、InAsでなる種結晶を核として単結晶構造のInAsを、開口部4内から垂直方向にエピタキシャル成長させてゆき、最終的に開口部4内から先端が突出した棒状の第1化合物半導体層7aを形成する(第1成長ステップ)。次いで、TBAsおよびTMInに加えて、III族元素であるGa(ガリウム)の原料となるTMGa(トリメチルガリウム)も供給し、これらTBAsとTMInとTMGaの供給割合を調整することで、第1化合物半導体層7aの先端からSiO2層3の面方向に沿って単結晶構造のInGaAsをエピタキシャル成長させてゆく(第2成長ステップ)。
 その後、InGaAsがエピタキシャル成長してゆくと、凹み領域ER1の側壁として配置された選択成長マスク層6が、InGaAsのエピタキシャル成長の障壁となり、選択成長マスク層6によって凹み領域ER1内にInGaAsが留まり、単結晶構造のInGaAsでなる層状の第2化合物半導体層7bを当該凹み領域ER1内に形成し得る。かくして、図1に示すように、Si層5が形成されている同じSiO2層3上にIII-V族化合物半導体層7も形成し得、Si層5とIII-V族化合物半導体層7とが同一面上に配置された半導体集積回路基板1を製造し得る。
 なお、この際、InGaAsが選択成長マスク層6を仮に乗り越え、凹み領域ER1外にIII-V族化合物半導体層7が形成されても、III-V族化合物半導体層7の表面をCMP等で除去することにより、凹み領域ER1内にだけIII-V族化合物半導体層7を形成し得る。
 (3)作用および効果
 以上の構成において、この半導体集積回路基板1では、Si支持基板2の表面が露出した開口部4をSiO2層3に設けるとともに、この開口部4を囲むようにしてSiO2層3上に選択成長マスク層6を設け、この選択成長マスク層6で囲まれた凹み領域ER1内にIII-V族化合物半導体層7が形成されている。このような構成を有する半導体集積回路基板1では、製造時、選択成長マスク層6で囲まれた所望の位置の凹み領域ER1内にてIII-V族化合物をエピタキシャル成長させるだけで、選択成長マスク層6が障壁となり、凹み領域ER1にのみIII-V族化合物半導体層7を形成でき、かくして集積回路の設計の自由度を向上させ得る。
 また、この半導体集積回路基板1では、製造時、凹み領域ER1内にてIII-V族化合物を単にエピタキシャル成長させればよいことから、従来のようなウェハ同士を貼り合わせてIII-V族化合物半導体層を積層させるウェハボンディングに比して、貼り合わせのための位置調整などが不要となり、その分、製造時の負担を軽減し得る。
 さらに、この半導体集積回路基板1では、Si層5とは異質のIII-V族化合物半導体層7を、Si層5と同じSiO2層3上に配置させることができるので、III-V族化合物半導体層7とSi層5とをそれぞれ用いた異なる性質の回路を一体的に形成した融合プラットフォームを供給し得る。
 ところで、SiO2層3上にIII-V族化合物半導体層7を作製した後、当該SiO2層3上にSiを再成長させてSi層を形成した場合には、当該III-V族化合物半導体層7に含まれるAsが不純物としてSi層にドーピングしてしまう虞がある。これに対して、本発明の半導体集積回路基板1では、Si層5を予め形成したSiO2層3上にIII-V族化合物半導体層7を形成することから、III-V族化合物半導体層7とSi層5とを同じSiO2層3上に配置させつつ、不純物がドープされていない純度の高いSiでなるSi層5を設けることができる。
 また、従来のようなウェハ同士を貼り合わせてIII-V族化合物半導体層を積層させるウェハボンディングでは、III-V族化合物半導体層の機械的強度が比較的弱いことから、貼り合わせ作業時に生じる衝撃によりIII-V族化合物半導体層が損傷し易く、例えば6インチ以上の回路基板を製造することが困難である。
 これに対して、この半導体集積回路基板1では、載置させた状態のまま単に凹み領域ER1内にIII-V族化合物をエピタキシャル成長させるだけであることから、従来のようなウェハの貼り合わせ作業時の衝撃もなく、例えば6インチよりも大きなIII-V族化合物半導体層7を備えた半導体集積回路基板1を製造できる。
 (4)実施例
 次に、上述した製造方法に従って実際に半導体集積回路基板1を作製した。ここでは、面方位が(111)のN型のSi支持基板2上に、厚さ500[nm]のSiO2層3(BOX層)と、面方位が(001)の厚さ500[nm]のSi層5とが順に積層されたSOIウェハ10を用意した(図2A)。そして、ANELVAスパッタ装置(E-200S)にて厚さ約250[nm]のSiO2膜13を形成した後、SiO2膜13の表面にポジ型のレジスト(例えばS1805:シプレイ・ファーイースト株式会社製商品名)を回転塗布してベーキングを行い、レジスト層14を形成した(図2B)。次いで、マスクアライナー(SUSS Micro Tec社製MJB3)を用いて光強度16[mW/cm2]の光を、所定のマスクを介してレジスト層14に3.3[sec]照射し、現像液(例えばNMD-3:東京応化工業株式会社製商品名)で露光部分のレジストを除去し、直径7[μm]で底部にSiO2膜13が露出した複数の凹み形成領域ER2(凹み形成領域ER2の中心間距離が10[μm])をレジスト層14に形成した(図2C)。
 次いで、ICP(Inductively Coupled Plasma)ドライエッチング装置(ANELVA社製L-201D-SLA)を用いて、処理圧力1.0[Pa]、Arガス流量5.0[sccm]、CHF3ガス流量5.0[sccm]、エッチング時間4[m]15[s]で、凹み形成領域ER2に露出したSiO2膜13をドライエッチングした後、アッシングを行い、直径7[μm]の凹み形成領域ER2をSiO2膜13にも形成した。
 次いで、ICPドライエッチング装置を用い、処理圧力2.0[Pa]、Cl2ガス流量8.0[sccm]、エッチング時間5[m]で、パターニングしたSiO2膜13をマスクとしてSi層5を除去した後、63BHF溶液によって、SiO2層3を残存させつつ、マスクとして用いたSiO2膜13を除去した(図3B)。なお、ここではSiO2膜13とSiO2層3の63BHF溶液に対するエッチングレート比を「SiO2膜13:SiO2層3=8:1」に選定した。次いで、酸素流量1.0[L/min]、酸化時間60[min]で熱酸化処理を行い、Si層5の表面に膜厚100[nm]のSiO2からなる選択成長マスク層6を形成した(図3C)。
 次いで、レジスト(OEBR CAP 117:東京応化工業株式会社製商品名)を回転塗布してベーキングを行うことによってレジスト層18を形成した後、電子線描画装置(F5112株式会社アドバンテスト製商品名)を用いて、ドーズ量7[μm/cm2]でレジスト層18にリソグラフィを行い、現像液(ZTMA:日本ゼオン社製商品名)にて60[sec]現像することでレジスト層18に直径約1.0[μm]の開口部形成領域ER3を形成した(図4A)。この開口部形成領域ER3に露出したSiO2層3を、63BHF溶液によって除去して開口部4を形成し、剥離液(剥離液106:東京応化工業株式会社製商品名)によりレジスト層18を除去した(図4B)。そして、このようにして形成したSOIパターン基板をSEM写真により観察したところ、図5に示すような写真が得られた。図6は図5のSEM写真中の凹み領域ER1部分を拡大したSEM写真である。これら図5および図6に示すように、表面には綺麗に窪んだ円形状の凹み領域ER1が形成されており、また凹み領域ER1内に露出したSiO2層3には、さらに窪んだ円形の開口部4が形成されていることが確認できた。
 次に、この凹み領域ER1内にIII-V族化合物半導体層7を形成した。具体的に、基板洗浄として、SOIパターン基板の表面をアセトンで超音波洗浄した後、硫酸過水にて余分な有機物を除去し、HFにてウェットエッチングを行った。次いで、MOCVD装置の処理室にSOIパターン基板を導入し、先ず始めにTBP(ターシャリーブチルホスフィン)を用いて開口部4内のSi支持基板2の表面をクリーニングおよびパッシベーションした。
 図7に示すように、TBPを用いた処理は、処理圧力4.8[Pa]で3[min]、処理圧力9.0[Pa]で5[min]行った。次いで、開口部4内のSi支持基板2の表面にInAsでなる種結晶を生成する種結晶生成ステップと、開口部4内でInAsを垂直成長させる第1成長ステップと、開口部4周辺のSiO2層3面上でInGaAsを面方向成長させる第2成長ステップとを順次行った。ここで、図8は、各ステップで処理室に供給したガスの種類と供給時間とをまとめた表である。なお、図8では、種結晶生成ステップを「InAs-nucleation」と示し、第1成長ステップを「InAs-layer」と示し、第2成長ステップを「InGaAs」と示している。図7および図8に示すように、種結晶生成ステップでは、2.76[Pa]のTBAs(ターシャリーブチルヒ素)と、0.068[Pa]のTMIn(トリメチルインジウム)とを、20[sec]供給してInAsでなる種結晶を、開口部4内に露出したSi支持基板2の表面に生成した。
 次いで、第1成長ステップとして、5.40[Pa]のTBAsと、0.043[Pa]のTMInとを、8[min]30[sec]供給した。その結果、図9に示すように、開口部4内から垂直方向に延びた第1化合物半導体層7aが生成できることが確認できた。次いで、第2成長ステップとして、5.40[Pa]のTBAsと、0.07[Pa]のTMInと、0.08[Pa]のTMGa(トリメチルガリウム)とを、80[min]供給した。その結果、図10に示すように、選択成長マスク層6が障壁となり、選択成長マスク層6で囲まれた所望の位置の凹み領域ER1にのみ第2化合物半導体層7bが形成できることが確認できた。かくして、このようにして製造された半導体集積回路基板では、開口部4内からSiO2層3上の選択成長マスク層6までIII-V族化合物半導体層7を生成でき、III-V族化合物半導体層7とそれ以外のSi層5を同じSiO2層3上に配置できた。なお、図7に示すように、各ステップでの処理温度は610[℃]とした。
 (5)他の実施の形態
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、例えば、SiO2膜13や選択成長マスク層6を熱CVDや、プラズマCVD、ALD(原子層堆積)等により形成したり、III-V族化合物半導体層7をALD(原子層堆積)等により形成してもよく、また、凹み領域ER1の形成方法や、SiO2層3の開口部4の形成方法等についても、その他種々の形成方法を用いてもよい。なお、上述した実施の形態においては、SiO2層3上にSi層5を形成し、当該Si層5上に選択成長マスク層6を形成した場合ついて述べたが、本発明はこれに限らず、Si層5を設けずに、選択成長マスク層6のみをSiO2層3上に突出形成してもよい。
 また、上述した実施の形態のおいては、開口部4の直径を1.0[μm]以下と小さく形成し、開口部4内に露出したSi支持基板2の表面に1つの種結晶を生成し、この1つの種結晶から単結晶構造のIII-V族化合物をエピタキシャル成長させて第1化合物半導体層7aを形成するようにした場合について述べたが、本発明はこれに限らず、開口部4を1.0[μm]よりも大きく形成し、開口部4内に露出したSi支持基板2の表面に複数の種結晶を生成し、これら複数の種結晶から多結晶構造のIII-V族化合物をエピタキシャル成長させて第1化合物半導体層7aを形成するようにしてもよい。
 さらに、上述した実施の形態においては、半導体支持基板として、面方位が(111)のSi支持基板2を適用した場合について述べたが、本発明はこれに限らず、面方位が(100)や(110)等のSi支持基板の他、他の種々の材質からなる半導体支持基板を適用してもよい。
 また、上述した実施の形態においては、半導体支持基板とは異なる面方位からなる半導体層として、面方位が(001)のSi層5を適用した場合について述べたが、本発明はこれに限らず、半導体支持基板と面方位が異なれば例えば(100)等の面方位のSi層の他、他の種々の材質からなる半導体層を適用してもよい。
 さらに、上述した実施の形態においては、選択成長マスク層として、アモルファスのSiO2で形成された選択成長マスク層6を適用した場合について述べたが、本発明はこれに限らず、III-V族化合物のエピタキシャル成長の障壁となればSiO2以外の他の種々の材質で選択成長マスク層を形成してもよい。
 さらに、上述した実施の形態においては、開口部内で半導体支持基板の表面に立設された第1化合物半導体層として、InAsでなる第1化合物半導体層7aを適用した場合について述べたが、本発明はこれに限らず、例えば、GaAs,InP等その他種々のIII-V族化合物でなる第1化合物半導体層を適用してもよい。
 さらに、上述した実施の形態においては、第1化合物半導体層から絶縁層の面方向に沿って選択成長マスク層まで形成された第2化合物半導体層として、InGaAsでなる第2化合物半導体層7bを適用した場合について述べたが、本発明はこれに限らず、(Al,Ga,In)および(As,P)を任意の組み合わせでそれぞれ任意の割合で含むIII-V族化合物でなる第2化合物半導体層を適用してもよい。
 1 半導体集積回路基板
 2 Si支持基板(半導体支持基板)
 3 SiO2層(絶縁層)
 4 開口部
 5 Si層(半導体層)
 6 選択成長マスク層
 7 III-V族化合物半導体層
 7a 第1化合物半導体層
 7b 第2化合物半導体層

Claims (10)

  1.  表面にIII-V族化合物がエピタキシャル成長可能な半導体支持基板と、
     前記半導体支持基板上に形成され、前記半導体支持基板の表面の一部を露出させた開口部を有する絶縁層と、
     前記開口部を囲むように前記絶縁層上に突出形成された選択成長マスク層と、
     前記選択成長マスク層が障壁となって該選択成長マスク層で囲まれた凹み領域内に形成されたIII-V族化合物半導体層と
     を備えることを特徴とする半導体集積回路基板。
  2.  前記III-V族化合物半導体層は、
     前記開口部内で前記半導体支持基板の表面に立設された第1化合物半導体層と、
     前記第1化合物半導体層の先端から前記絶縁層の面方向に沿って前記選択成長マスク層まで形成された第2化合物半導体層とから構成されている
     ことを特徴とする請求項1記載の半導体集積回路基板。
  3.  前記開口部周辺の前記絶縁層上に半導体層が形成されており、前記半導体層の表面が前記選択成長マスク層で被覆されている
     ことを特徴とする請求項1または2記載の半導体集積回路基板。
  4.  前記半導体支持基板はSi支持基板であり、
     前記半導体層は、前記Si支持基板とは異なる面方位からなるSi層である
     ことを特徴とする請求項3記載の半導体集積回路基板。
  5.  前記Si層は不純物がドープされていない純度の高いSiでなる
     ことを特徴とする請求項4記載の半導体集積回路基板。
  6.  前記III-V族化合物半導体層は単結晶構造でなる
     ことを特徴とする請求項1~5のうちいずれか1項記載の半導体集積回路基板。
  7.  前記開口部の直径が1[μm]以下である
     ことを特徴とする請求項6記載の半導体集積回路基板。
  8.  半導体支持基板に積層された絶縁層上に、選択成長マスク層で囲まれ、かつ該絶縁層が露出した凹み領域を形成する領域形成ステップと、
     前記凹み領域内にある前記絶縁層の一部を除去し、前記半導体支持基板の表面が外部に露出した開口部を前記絶縁層に形成する開口部形成ステップと、
     前記開口部内に露出した前記半導体支持基板の表面から前記開口部周辺の前記絶縁層上までIII-V族化合物をエピタキシャル成長させてゆき、前記選択成長マスク層が前記III-V族化合物のエピタキシャル成長の障壁となり前記凹み領域内にIII-V族化合物半導体層を形成する化合物半導体層形成ステップと
     を備えることを特徴とする半導体集積回路基板の製造方法。
  9.  前記領域形成ステップは、
     前記絶縁層上に前記開口部を囲うように半導体層を形成する半導体層形成ステップと、
     前記半導体層の表面に前記選択成長マスク層を形成し、該選択成長マスク層で囲まれた前記凹み領域を形成するマスク層形成ステップとを備えており、
     前記化合物半導体層形成ステップでは、前記凹み領域内に前記III-V族化合物半導体層を形成することで、前記半導体層と前記III-V族化合物半導体層とを同じ前記絶縁層上に配置させる
     ことを特徴とする請求項8記載の半導体集積回路基板の製造方法。
  10.  前記化合物半導体層形成ステップは、
     前記III-V族化合物を前記開口部内で垂直方向にエピタキシャル成長させ、該III-V族化合物の先端を前記開口部から突出させた後、III族原料ガスおよびV族原料ガスの混合率を変えることで前記III-V族化合物を前記絶縁層の面方向にエピタキシャル成長させてゆき前記選択成長マスク層まで到達させる
     ことを特徴とする請求項8または9記載の半導体集積回路基板の製造方法。
PCT/JP2014/053075 2013-02-15 2014-02-10 半導体集積回路基板およびその製造方法 WO2014126055A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027283 2013-02-15
JP2013-027283 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126055A1 true WO2014126055A1 (ja) 2014-08-21

Family

ID=51354056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053075 WO2014126055A1 (ja) 2013-02-15 2014-02-10 半導体集積回路基板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2014126055A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268069A (ja) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol 半導体装置
JPH03125458A (ja) * 1989-10-11 1991-05-28 Canon Inc 単結晶領域の形成方法及びそれを用いた結晶物品
JPH0484418A (ja) * 1990-07-27 1992-03-17 Nec Corp 異種基板上への3―v族化合物半導体のヘテロエピタキシャル成長法
JPH05175121A (ja) * 1991-12-26 1993-07-13 Rohm Co Ltd Soi基板の製法および半導体装置
JPH07321352A (ja) * 1994-05-23 1995-12-08 Hitachi Ltd 半導体積層構造とその製造方法およびそれを用いた半導体装置
JP2003511871A (ja) * 1999-10-14 2003-03-25 クリー インコーポレイテッド Iii族窒化物緩衝層を有するiii族窒化物エピタキシャル層の一段ペンデオエピタキシャルオーバーグロース及び一段横方向エピタキシャルオーバーグロース
JP2005136100A (ja) * 2003-10-29 2005-05-26 Fuji Electric Holdings Co Ltd ウエハの製造方法およびウエハ
JP2008546181A (ja) * 2005-05-17 2008-12-18 アンバーウェーブ システムズ コーポレイション 転位欠陥密度の低い格子不整合半導体構造およびこれに関連するデバイス製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268069A (ja) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol 半導体装置
JPH03125458A (ja) * 1989-10-11 1991-05-28 Canon Inc 単結晶領域の形成方法及びそれを用いた結晶物品
JPH0484418A (ja) * 1990-07-27 1992-03-17 Nec Corp 異種基板上への3―v族化合物半導体のヘテロエピタキシャル成長法
JPH05175121A (ja) * 1991-12-26 1993-07-13 Rohm Co Ltd Soi基板の製法および半導体装置
JPH07321352A (ja) * 1994-05-23 1995-12-08 Hitachi Ltd 半導体積層構造とその製造方法およびそれを用いた半導体装置
JP2003511871A (ja) * 1999-10-14 2003-03-25 クリー インコーポレイテッド Iii族窒化物緩衝層を有するiii族窒化物エピタキシャル層の一段ペンデオエピタキシャルオーバーグロース及び一段横方向エピタキシャルオーバーグロース
JP2005136100A (ja) * 2003-10-29 2005-05-26 Fuji Electric Holdings Co Ltd ウエハの製造方法およびウエハ
JP2008546181A (ja) * 2005-05-17 2008-12-18 アンバーウェーブ システムズ コーポレイション 転位欠陥密度の低い格子不整合半導体構造およびこれに関連するデバイス製造方法

Similar Documents

Publication Publication Date Title
US10026613B2 (en) Utilization of angled trench for effective aspect ratio trapping of defects in strain-relaxed heteroepitaxy of semiconductor films
JP6723227B2 (ja) 自己整合代替フィン形成
US8759169B2 (en) Method for producing silicon semiconductor wafers comprising a layer for integrating III-V semiconductor components
EP2629320B1 (en) Mask structure and method for defect-free heteroepitaxial deposition
US9379204B2 (en) Lattice matched aspect ratio trapping to reduce defects in III-V layer directly grown on silicon
US10411092B2 (en) Fabrication of semiconductor junctions
KR20140125376A (ko) 반도체 장치 및 그 제조 방법
JP2017508271A (ja) 半導体ナノワイヤの製造方法および半導体ナノワイヤを含む構造
US9748098B2 (en) Controlled confined lateral III-V epitaxy
JP6264675B2 (ja) シリコン・オン・インシュレータ(soi)基板製造方法及びsoi基板
US10014373B2 (en) Fabrication of semiconductor junctions
JP6271020B2 (ja) 誘電体ウィンドウ内へのiii−v族成長中の不均一性の成長及びオートドーピングを抑制する方法
WO2012094856A1 (zh) 半导体结构及其制作方法
JP2007329200A (ja) 半導体装置の製造方法
TWI230418B (en) A method of forming an element of a microelectronic circuit
US10559504B2 (en) High mobility semiconductor fins on insulator
WO2014126055A1 (ja) 半導体集積回路基板およびその製造方法
TW201935527A (zh) 由下而上的鰭片結構形成方法
EP3008751B1 (en) Method of forming an integrated silicon and iii-n semiconductor device
US20230136949A1 (en) Method of vertical growth of a iii-v material
JP4943172B2 (ja) シリコンエピタキシャル膜を有するsos基板の形成法
KR20090022767A (ko) Soi 웨이퍼 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751654

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP