WO2014123088A1 - 軟質高炭素鋼板 - Google Patents

軟質高炭素鋼板 Download PDF

Info

Publication number
WO2014123088A1
WO2014123088A1 PCT/JP2014/052454 JP2014052454W WO2014123088A1 WO 2014123088 A1 WO2014123088 A1 WO 2014123088A1 JP 2014052454 W JP2014052454 W JP 2014052454W WO 2014123088 A1 WO2014123088 A1 WO 2014123088A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
excluding
steel
inclusions
amount
Prior art date
Application number
PCT/JP2014/052454
Other languages
English (en)
French (fr)
Inventor
梶原 桂
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2014123088A1 publication Critical patent/WO2014123088A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a soft high carbon steel sheet, and more particularly, to a soft high carbon steel sheet excellent in balance of workability, wear resistance, and fatigue resistance.
  • High carbon steel plates are widely used as materials for chains, gears, clutches, etc.
  • the softened high carbon steel plate is usually cured by heat treatment such as quenching and tempering after forming and punching. For this reason, high carbon steel sheets are required to have workability that can withstand complicated and severe processing.
  • steel materials that are hot-forged steel bars are used as steel materials that are generally used.
  • hot forging has been used so far.
  • the high carbon steel sheet used for gears and elements is processed into a part shape by cold working or cold rolling and subsequent punching after the cold-rolled material is spheroidized carbide contained therein, Furthermore, it is used by introducing a tempered martensite structure in which a certain amount of undissolved carbide is dispersed by quenching and tempering from a temperature equal to or higher than the Acm point on the equilibrium diagram. Since gears and elements are sliding parts, they are particularly required to be excellent in wear resistance and fatigue resistance.
  • Abrasion resistance is better as the hardness after quenching and tempering into the martensite structure is higher and contains more undissolved carbides, that is, as the amount of carbon is higher, but on the other hand, the amount of carbides during tempering increases, It is said that impact resistance and fatigue resistance are reduced by precipitation of carbides along the boundaries.
  • Patent Document 1 finds that the punchability is remarkably improved by introducing voids into the steel structure by a combination of annealing conditions and cooling conditions, mainly for the purpose of improving punchability.
  • C 0.70 to 0.95%
  • Si 0.05 to 0.4%
  • Mn 0.5 to 2.0%
  • P 0.005 to 0.03%
  • S 0.0001 to 0.006%
  • Al 0.005 to 0.10%
  • N 0.001 to 0.01%
  • Cr 0.05 to 1.0%
  • the balance being Fe and inevitable impurities
  • a soft high carbon steel sheet having an excellent punching property in which the structure has 100 or more voids per 1 mm 2 of the observed structure has been proposed.
  • Patent Document 2 for the purpose of improving punching burrs, C: 0.65 to 0.85%, Si: 0.05 to 0.4%, Mn: 0.5 to 2 in mass%. 0.0%, P: 0.005 to 0.03%, S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%. And the balance is Fe and inevitable impurities, (i) the hardness is 170 HV or less, and (ii) the area of carbide of 0.5 ⁇ m 2 or less in the plate thickness section of the structure before the final cold rolling There has been proposed a soft high carbon steel sheet with a small punching that is within 15% of the total area of carbide.
  • Patent Document 3 discloses a high-carbon steel sheet that is soft and has good formability before heat treatment and that has excellent wear resistance compared to hardness after heat treatment. And by controlling the size distribution of the spheroidized carbide, it has been found that it is possible to make the alloy softer than the content of the alloy element compared to the conventional material, and C: 0.50 to 1.00%, Si: 0.35% or less, Mn: 0.60 to 0.90%, P: 0.015% or less, S: 0.0030% or less, Cr: 0.30 to 0.60%, sol. Al: 0.005 to 0.080%, N: 0.0050% or less, balance Fe and impurities, and Cr content and Mn content satisfy the following formula (1).
  • Patent Document 4 aims to provide a steel material that is excellent in wear resistance even when the amount of undissolved carbide is reduced while improving fatigue resistance, in particular, fatigue resistance of low and medium cycles.
  • the mass% of the element M is [M], 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] ⁇ 13
  • references 1 to 4 do not disclose high-carbon steel sheets that take all of workability, wear resistance, and fatigue resistance into consideration.
  • Japanese Patent No. 4903839 Japanese Unexamined Patent Publication No. 2011-12317 Japanese Patent No. 4371072 Japanese Unexamined Patent Publication No. 2012-1794
  • the present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a soft high carbon steel sheet having an excellent balance of workability, wear resistance and fatigue resistance.
  • the invention described in claim 1 % By mass (hereinafter the same for chemical components) C: 0.65 to 1.0%, Si: 0.10 to 0.60%, Mn: 0.10 to 1.0%, Al: 0.01 to 0.1%, P: 0.03% or less (excluding 0%), S: 0.01% or less (excluding 0%),
  • Each having a component composition consisting of iron and inevitable impurities, Inclusions with a circle equivalent diameter of 30 ⁇ m or more are 10 or less per 1000 mm 2
  • the number of inclusions having an equivalent circle diameter of 10 ⁇ m to less than 30 ⁇ m is 30 or less per 1000 mm 2
  • 40% or more of the inclusions have a structure of Al—O-based oxide. It is a steel plate.
  • Ingredient composition further Ca: 0.05% or less (excluding 0%), REM: 0.05% or less (excluding 0%), Mg: 0.02% or less (excluding 0%), Li: 0.02% or less (excluding 0%), Pb: 0.5% or less (excluding 0%), Bi: 0.5% or less (excluding 0%), Cr: 0.05 to 1.0%, Cu: 0.2% or less (excluding 0%), Sn: 0.1% or less (excluding 0%), Ni: 0.2% or less (excluding 0%), Mo: 0.1% or less (excluding 0%), Nb: 0.1% or less (excluding 0%) V: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%) At least one selected from the group consisting of The soft high carbon steel sheet according to claim 1, comprising:
  • the steel sheet of the present invention the structure characterizing the steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention”) will be described.
  • the steel sheet of the present invention is characterized in that the form and size distribution of inclusions in the steel are more strictly controlled.
  • Conventional steel sheets include various forms of inclusions such as Al—Fe—Mg compounds, Ti compounds such as TiN, and Cr compounds.
  • the number of extremely coarse inclusions having an equivalent circle diameter of 30 ⁇ m or more is 10 or less per 1000 mm 2 , preferably 9 or less, more preferably 8 or less.
  • the number of relatively coarse inclusions having an equivalent circle diameter of 10 ⁇ m or more and less than 30 ⁇ m is 30 or less per 1000 mm 2 , preferably 25 or less, more preferably 20 or less.
  • the number ratio is 40% or more, preferably 45% or more, and more preferably 50% or more is Al—O-based oxide.
  • the Al-O-based oxide for example, consisting of Al 2 O 3, SiO 2, MnO, MgO, CaO, and one or more metal oxides Li 2 O, etc., Al 2 O 3 compounds, CaO—Al 2 O 3 —SiO 2 compounds, Li 2 O—Al 2 O 3 —4SiO 2 (spodumene) compounds, and the like are included.
  • these compounds include one or more of Fe, Cr, Mg, Ca, Mn, P, S, Li, Pb, Bi, which are acceptable components of the steel sheet of the present invention, without taking a compound form. However, some of them are contained in a trace amount (about several to 10% as a mass ratio in the Al—O-based oxide), but these are also included in the Al—O-based oxide. Since this Al—O-based oxide is finely dispersed and formed during deoxidation of the molten steel, inclusions of this size can have a size distribution with a higher proportion of fine parts, cold workability, Contributes to improved plate thickness accuracy and fatigue resistance.
  • inclusions in the present invention include nonmetallic inclusions as well as intermetallic compounds.
  • the size and number density of the inclusions were measured with the optical surface of the plate surface at the center of the plate width being 400 times magnification and the total area of the observation field being 1000 mm 2 .
  • the size of inclusions is obtained by converting the observed area of each inclusion into a circle equivalent diameter, and counting the number density by counting those with a circle equivalent diameter of 30 ⁇ m or more and 10 ⁇ m or more and less than 30 ⁇ m. It was.
  • Component composition of the steel sheet of the present invention C: 0.65 to 1.0% C is an important element for securing the strength of the steel sheet, and is contained by 0.65% or more to ensure the required strength. In the parts targeted in the present invention, if it is less than 0.65%, the hardenability is lowered and the strength as a high-strength steel sheet for machine structures cannot be obtained, so the lower limit is made 0.65%. If it exceeds 1.0%, it takes a long time for heat treatment to ensure toughness and workability, so the upper limit is made 1.0%. Preferably it is 0.68 to 0.95%, more preferably 0.70 to 0.90%.
  • Si 0.10 to 0.60% Si acts as a deoxidizer and is an effective element for improving hardenability.
  • the content is less than 0.10%, the effect of addition cannot be obtained, so the lower limit is made 0.10%. If it exceeds 0.60%, the surface properties will be deteriorated due to scale wrinkling during hot rolling, so the upper limit is made 0.60%.
  • the content is 0.15 to 0.55%, more preferably 0.20 to 0.50%.
  • Mn 0.10 to 1.0%
  • Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, it is an element effective for improving hardenability. If it is less than 0.10%, the effect of addition cannot be obtained, so the lower limit is made 0.10%. If it exceeds 1.0%, the impact properties after quenching and tempering will be promoted, and the amount of Mn-based inclusions will increase, resulting in deterioration of cold workability and fatigue resistance.
  • the upper limit is 1.0%. Preferably, it is 0.15 to 0.9%, more preferably 0.2 to 0.85%.
  • Al 0.01 to 0.1%
  • Al is an element effective for deoxidation in the steelmaking process, and is an element effective for fixing N. Moreover, it is an additive substance required in order to control the form of the inclusion in this invention.
  • the Al content in the steel material must be 0.01% by mass or more, preferably 0.015% by mass or more, and more preferably 0.02% by mass or more. Further, if the Al content exceeds 0.1% by mass, the toughness is reduced and cracking is likely to occur, which is unsuitable, preferably 0.09% by mass or less, more preferably 0.08% by mass or less. is there.
  • P 0.03% or less (excluding 0%)
  • P is an inevitable impurity element, and segregates at the grain boundaries to deteriorate the cold workability. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking cost, considering the process capability, it is 0.03% or less (0%). Not contained), preferably 0.02% by mass or less (excluding 0%).
  • S 0.01% or less (excluding 0%) S, like P, is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. Moreover, S forms a nonmetallic inclusion and becomes a cause of inhibiting workability and toughness after heat treatment. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is 0.01% by mass or less, preferably 0.005% by mass or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S also has the effect of improving punching workability and machinability, it is preferable to contain 0.0003 mass% or more from that viewpoint, More preferably, it is 0.0005 mass% or more.
  • the steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
  • At least one selected from the group consisting of Ca, REM, Mg, Li, Pb and Bi These elements all have the effect of making inclusions spheroidized and reducing the deterioration of cold workability and fatigue resistance. is there.
  • the steel materials of the present invention contain these elements, each of them may contain one kind alone or two or more kinds at the same time. The content of these elements is selected within the following range.
  • Ca 0.05% or less (excluding 0%) Ca is an element that spheroidizes sulfide compound inclusions such as MnS to improve the deformability of steel and contribute to the improvement of punching workability and machinability.
  • the Ca content is preferably 0.0005% or more, and more preferably 0.001% by mass or more.
  • the upper limit is preferably 0.05%, more preferably 0.03%, particularly preferably 0.8. 01%.
  • REM 0.05% or less (excluding 0%) REM is an element that contributes to the improvement of punching workability and machinability as well as Ca by spheroidizing sulfide compound inclusions such as MnS to improve the deformability of steel.
  • content of REM shall be 0.0005% or more, More preferably, it is 0.001% or more.
  • the upper limit is preferably 0.05%, more preferably 0.03%, particularly preferably 0.8. 01%.
  • REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).
  • Y yttrium
  • Mg 0.02% or less (excluding 0%) Mg, like Ca, is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of punching workability and machinability.
  • content of Mg shall be 0.0002% or more, More preferably, it is 0.0005% or more.
  • the upper limit is preferably 0.02%, more preferably 0.015%, particularly preferably 0.8. 01%.
  • Li 0.02% or less (excluding 0%) Li, like Ca, can spheroidize sulfide compound inclusions such as MnS to improve the deformability of steel, and lower the melting point of Al-based oxides to make them harmless. It is an element that contributes to improved machinability.
  • the Li content is preferably 0.0002% or more, and more preferably 0.0005% or more.
  • the upper limit is preferably 0.02%, more preferably 0.015%, particularly preferably 0.8. 01%.
  • Pb 0.5% or less (excluding 0%)
  • Pb is an effective element for improving machinability.
  • the steel material of this invention contains Pb, Preferably it is 0.005% or more, More preferably, 0.01% or more can be contained. However, if it is contained excessively, production problems such as generation of rolling defects occur, so the upper limit is preferably made 0.5%, preferably 0.4%, more preferably 0.3%. .
  • Bi 0.5% or less (excluding 0%) Bi, like Pb, is an effective element for improving the punching workability and machinability.
  • the steel material of this invention contains Bi, Preferably it is 0.005% or more, More preferably, 0.01% or more can be contained.
  • the upper limit is preferably 0.5%, preferably 0.4%, and more preferably 0.3%.
  • the steel material of the present invention may further contain at least one selected from the following groups (a) to (d) as necessary, in addition to the above essential components and allowable components.
  • Cr 0.05 to 1.0% Cr is an element effective for improving hardenability, and is an element having an action of improving the deformability of steel by increasing the strength of the grain boundary. As needed, Preferably it is 0.05% or more, More preferably, it can be made to contain 0.06% or more. However, when Cr is excessively contained, deformation resistance increases and cold workability may be lowered. Therefore, the content is preferably 1.0% or less, and more preferably 0.9%. % Or less, particularly preferably 0.8% or less.
  • Cu 0.2% or less (excluding 0%) Cu is an element effective for ensuring hardenability, but the smaller the better in the present invention. If it exceeds 0.2%, it becomes too hard and the cold workability deteriorates, so the upper limit is made 0.2%. Preferably, it is 0.19% or less, more preferably 0.18% or less.
  • Sn 0.1% or less (excluding 0%) Sn is an inevitable impurity, and the smaller the better in the present invention. If it exceeds 0.1%, it becomes too hard and the cold workability deteriorates, so the upper limit is made 0.1%. Preferably, it is 0.09% or less, more preferably 0.08% or less.
  • Ni 0.2% or less (excluding 0%) Ni is an element effective in improving toughness and hardenability, but the smaller the better in the present invention, the better. If it exceeds 0.2%, the number of inclusions increases and the performance deteriorates.
  • a more preferable upper limit value is 0.18% or less, and more preferably 0.15% or less.
  • Mo content 0.1% or less (excluding 0%) Mo is an effective element having the effects of improving hardenability, improving temper softening resistance, and increasing the hardness and deformability of the steel material after processing, but the smaller the better in the present invention. If Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is preferably 0.1% or less (excluding 0%), more preferably 0.09% or less, and particularly preferably 0. 0.08% or less.
  • Nb 0.1% or less (excluding 0%) Nb is an element that forms carbonitride and is effective in preventing coarsening of crystal grains and improving toughness, but the smaller the better in the present invention. If it exceeds 0.1%, the cold workability and fatigue resistance are deteriorated, so the upper limit is made 0.1%. Preferably, it is 0.08% or less.
  • V 0.01% or less (excluding 0%)
  • V is an element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving toughness, but the smaller the better in the present invention, the better. If it exceeds 0.01%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.01%. Preferably, it is 0.009% or less.
  • B 0.005% or less (excluding 0%)
  • B has a strong affinity with N, coexists with N to form an N compound, refines the crystal grains of steel, improves the toughness of the processed product obtained after cold working, and Although it is an element having a role of improving crack resistance, it is necessary to reduce the amount of the compound in the present invention. Therefore, it is better that the amount is less, and 0.005% or less (not including 0%) is preferable. More preferably, the content is 0.0001 to 0.0035%, and particularly preferably 0.0002 to 0.002%.
  • N 0.01% or less (excluding 0%)
  • N is an element that forms a nitride.
  • N is an unavoidable impurity, but it is necessary to reduce it as much as possible.
  • the slab may be cracked, so the upper limit is made 0.01%.
  • a smaller amount is preferable, but a reduction to less than 0.001% leads to an increase in refining costs, so the substantial lower limit is 0.001%.
  • it is 0.004 to 0.007%.
  • Ti, Co, and the like may be inevitably included, but in the present invention, all are elements that generate inclusions, and it is preferable that they are not added or reduced as much as possible. .
  • the total amount is preferably 0.01% or less, and more preferably 0.005% or less.
  • a desired oxide can be generated by adding a predetermined alloy element in a predetermined order to molten steel in which the dissolved oxygen amount and the total oxygen amount are adjusted. Particularly in the present invention, it is extremely important to adjust the total oxygen amount after adjusting the dissolved oxygen amount so that coarse oxides are not formed.
  • Dissolved oxygen means oxygen in a free state that does not form oxides and exists in molten steel. Total oxygen means the sum of all oxygen contained in molten steel, that is, free oxygen and oxygen forming oxides.
  • the dissolved oxygen content of the molten steel is adjusted to a range of 0.0010 to 0.0060%.
  • the amount of dissolved oxygen in the molten steel is less than 0.0010%, the amount of dissolved oxygen in the molten steel is insufficient, so that a predetermined amount of Al—O-based oxide cannot be secured, and a desired size distribution cannot be obtained.
  • the amount of dissolved oxygen is set to 0.0010% or more.
  • the dissolved oxygen is preferably 0.0013% or more, more preferably 0.0020% or more.
  • the amount of dissolved oxygen should be suppressed to 0.0060% or less.
  • the amount of dissolved oxygen is preferably 0.0055% or less, more preferably 0.0053% or less.
  • the amount of dissolved oxygen in molten steel primarily refined in a converter or electric furnace usually exceeds 0.010%. Therefore, in the production method of the present invention, it is necessary to adjust the amount of dissolved oxygen in the molten steel to the above range by some method.
  • Examples of the method for adjusting the amount of dissolved oxygen in the molten steel include a method of vacuum C deoxidation using an RH type degassing refining device, a method of adding a deacidifying element such as Si, Mn, and Al.
  • the amount of dissolved oxygen may be adjusted by appropriately combining these methods.
  • a method of adding a deacidifying element such as Si may be adopted to adjust the amount of dissolved oxygen.
  • the deoxidizing element may be added when steel is removed from the converter to the ladle.
  • the molten steel is stirred, and the oxides in the molten steel are floated and separated so that the total oxygen content in the molten steel is 0.0010 to 0.00. Adjust to 0070%.
  • the molten steel in which the amount of dissolved oxygen is appropriately controlled is stirred to remove unnecessary oxides, and then generation of coarse oxides, that is, coarse inclusions can be prevented.
  • the total oxygen amount is set to 0.0010% or more.
  • the total oxygen amount is preferably 0.0015% or more, more preferably 0.0018% or more.
  • the total oxygen amount should be suppressed to 0.0070% or less.
  • the total oxygen amount is preferably 0.0060% or less, more preferably 0.0050% or less.
  • the total amount of oxygen in the molten steel changes generally in correlation with the stirring time of the molten steel, it can be controlled by adjusting the stirring time. Specifically, the total amount of oxygen in the molten steel is appropriately controlled while appropriately measuring the total amount of oxygen in the molten steel after stirring the molten steel and removing the floating oxide.
  • the desired oxide can be obtained by adding the above elements to the molten steel with the total oxygen content adjusted.
  • the form of REM added to the molten steel is not particularly limited.
  • REM pure La, pure Ce, pure Y, or the like
  • Fe—Si—La alloy, Fe—Si—Ce alloy, Fe—Si—La—Ce are used.
  • An alloy, an Fe—Ce alloy, a Ni—Ce alloy, or the like may be added.
  • Misch metal is a mixture of cerium group rare earth elements, and specifically contains about 40 to 50% Ce and about 20 to 40% La.
  • misch metal often contains Ca as an impurity, when the misch metal contains Ca, it is necessary to satisfy the preferred range defined in the present invention.
  • the stirring time is preferably within 40 minutes.
  • the stirring time is more preferably within 35 minutes, and further preferably within 30 minutes.
  • the lower limit of the stirring time of the molten steel is not particularly limited, but if the stirring time is too short, the concentration of the additive element becomes non-uniform, and the desired effect cannot be obtained as a whole steel material. Accordingly, a desired stirring time corresponding to the container size is required.
  • molten steel with an adjusted composition can be obtained. It casts using the obtained molten steel, and obtains a steel piece.
  • manufacturing is performed by heating, hot rolling including finish rolling, rapid cooling after hot rolling, slow cooling after quenching stop, rapid cooling after slow cooling, and winding.
  • Heating before hot rolling is performed at 1150 to 1300 ° C.
  • An austenite single phase is obtained by this heating.
  • solid solution elements including impurities such as V and Nb
  • the heating temperature is less than 1150 ° C., it cannot be dissolved in austenite, and coarse carbides are formed, so that the effect of improving fatigue characteristics cannot be obtained.
  • temperatures exceeding 1300 ° C. are difficult to operate.
  • TiC solution solution temperature or higher and 1300 ° C. or lower are necessary also in terms of solid solution of Ti having the highest solution temperature among carbides.
  • the preferable lower limit of the heating temperature is 1150 ° C, and the more preferable lower limit is 1200 ° C.
  • Hot rolling is performed so that the finish rolling temperature is 800 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation occurs at a high temperature and the precipitated carbides in the ferrite are coarsened, so that a certain finish rolling temperature is required.
  • the finish rolling temperature is more preferably 850 ° C. or higher in order to coarsen austenite grains and increase the grain size of bainite.
  • the upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
  • quenching is performed at a cooling rate (first quenching rate) of 20 ° C./s or more within 5 s, and quenching is stopped at a temperature of 580 ° C. or more and less than 670 ° C. (quenching stop temperature).
  • first quenching rate a cooling rate of 20 ° C./s or more within 5 s
  • quenching stop temperature a temperature of 580 ° C. or more and less than 670 ° C.
  • the quenching stop temperature is preferably 600 to 650 ° C, more preferably 610 to 640 ° C.
  • annealing is performed for softening and carbide spheroidization before cold rolling.
  • Softening annealing is performed by heating the steel sheet from room temperature to Ac1 to Ac1 + 50 ° C. in an atmosphere of H 2 : 15 to 20% by volume and holding for 10 hours or more. This holding for 10 hours or more promotes the spheroidization of carbides and dissolves the fine lamellae in austenite. After holding for 10 hours or more, the steel sheet is cooled to about 400 ° C. at 10 ° C./h or more.
  • Softening (spheroidizing) annealing After cold rolling, annealing is performed for softening and carbide spheroidization. Softening annealing is performed in an atmosphere of H 2 : 15 to 20% by volume, after heating the steel sheet from room temperature to Ac1 to Ac1-50 ° C. and holding for 10 hours or more, or after heating to Ac1 to Ac1 + 50 ° C. Hold for 5 hours or more. Depending on the plate thickness and the size of the coil, it is selected depending on the required spheroidization, softening degree, and uniformity in the coil. This heat treatment promotes spheroidization of carbides and dissolves fine lamellae in austenite.
  • the steel sheet After holding for 10 hours or more, the steel sheet is cooled to 600 ° C. at a rate of 10 ° C./h or less. In this way, spheroidization of carbide is promoted, and cooling is performed at a rate of 15 ° C./h or less to 600 to 400 ° C. This is to stabilize the shape such as coil collapse by cooling the inside of the coil uniformly. Thereafter, at a temperature of 400 ° C. or lower, cooling can be performed at a high cooling rate (such as about 50 ° C. to 100 ° C./h or higher) by water cooling or the like if the temperature distribution in the coil can be uniformly cooled.
  • a high cooling rate such as about 50 ° C. to 100 ° C./h or higher
  • a test steel containing chemical components shown in Table 1 was melted, cast into a 150 kg ingot, and cooled.
  • the components are adjusted for elements other than Al, REM, and Ca, and deoxidized using at least one element selected from C, Si, and Mn.
  • the amount of dissolved oxygen in the molten steel was adjusted.
  • the total amount of oxygen in the molten steel was adjusted by stirring the molten steel in which the amount of dissolved oxygen was adjusted for about 1 to 10 minutes to float and separate oxides in the molten steel.
  • the molten steel which adjusted the component was obtained by adding to the molten steel which adjusted the total amount of added oxygen.
  • REM was added in the form of a misch metal containing about 25% La and about 50% Ce
  • Ca was added in the form of a Ni—Ca alloy, a Ca—Si alloy, or a Fe—Ca compact. .
  • the obtained ingot was heated at a heating rate of 60 ° C./h, held at 1250 ° C. ⁇ 10 h, and hot-rolled under conditions of finish rolling end temperature of 870 to 900 ° C. and winding temperature of 610 to 650 ° C.
  • a hot rolled sheet having a thickness of 4 mm was manufactured.
  • the hot rolled material is heated from room temperature to 700 ° C. in 20 hours, maintained at 700 ° C. ⁇ 25 hours, and annealed in a pattern of cooling from 700 ° C. to 500 ° C. in 10 hours, followed by cold rolling.
  • a cold-rolled sheet having a thickness of 2 mm was manufactured.
  • ⁇ Surface hardness> Using a Vickers hardness tester, the load is 1000 g, the measurement position is the surface of the steel sheet, the number of measurements is 5 times, and the Vickers hardness (Hv) is measured. When the hardness deteriorates and the hardness becomes too high, the workability deteriorates.
  • ⁇ Punching workability> Perform a shearing test of the steel sheet, and ⁇ when the crack occurs on the fracture surface, ⁇ when a visible crack of about 1 mm is seen, no crack is generated, but a burr exceeding 30 ⁇ m is generated The case where the occurrence of burr was small (30 ⁇ m or less) was evaluated as “ ⁇ ”, and the case where “ ⁇ ” or “ ⁇ ” was passed.
  • SK75 defined in JIS G4401: 2009 carbon tool steel as a conventional steel, C: 0.7 to 0.8%), SK85 (0.8 to 0.9%), and SK95 (0.9 to 1.0%) were evaluated as 1. One or more were considered acceptable.
  • sample no. Reference numerals 1, 6, 11, and 15 to 22 are comparative steels that do not satisfy at least one of the component composition and the structure requirements defined in the present invention, and have surface hardness, punching workability and fatigue strength after spheroidizing annealing. At least one of them does not meet the acceptance criteria.
  • sample no. Inventive steels 2-5, 7-10, and 12-14 all satisfy the requirements of the structure regulations of the present invention as a result of being manufactured under the recommended manufacturing conditions using steel types that satisfy the range of the component composition of the present invention.
  • the surface hardness, punching workability and fatigue strength after spheroidizing annealing all meet the acceptance criteria, and a softened high carbon steel sheet with an excellent balance of workability, wear resistance and fatigue resistance properties is obtained. It was confirmed that
  • the soft high carbon steel plate of the present invention is a steel plate for vehicles such as chains, gears, clutches, automobiles (eg, manual transmission (MT), automatic transmission (AT), planetary gears used in parts of CVT units, clutches, cases, etc.). It is suitable for element steel for manufacturing elements to be incorporated into steel belts, gears, plates, cases, etc., which are components in engine and hybrid motor / transmission gear units, etc. It has sufficient strength and is excellent in workability.

Abstract

 本発明の軟質高炭素鋼板は、質量%で、C:0.65~1.0%、Si:0.10~0.60%、Mn:0.10~1.0%、Al:0.01~0.1%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、をそれぞれ含み、残部が鉄および不可避的不純物からなる成分組成を有するとともに、円相当直径30μm以上の介在物は、1000mm当り10個以下であり、円相当直径10μm以上30μm未満の介在物は、1000mm当り30個以下であるとともに、そのうち、個数割合で40%以上がAl-O系酸化物である組織を有する。

Description

軟質高炭素鋼板
 本発明は、軟質高炭素鋼板に関し、特に、加工性と耐磨耗性と耐疲労特性のバランスに優れた軟質高炭素鋼板に関する。
 高炭素鋼板は、チェーン、ギア、クラッチ等の素材として広く用いられている。高炭素鋼板から製品を製造する場合、軟質化処理を施した高炭素鋼板を、通常、成形および打抜き加工後に焼入れ焼戻し等の熱処理を施して硬化させている。そのため、高炭素鋼板には、複雑で過酷な加工に耐える加工性が要求される。
 また、近年、環境保護の観点から、自動車などの車両の燃費向上を目的として、自動車用の各種部品の軽量化に対する要求がますます高まっている。例えば、マニュアルトランスミッション(MT)、オートマティックトランスミッション(AT)、CVTユニットの部品で用いられるプラネタリギア、クラッチ、ケース等、あるいは、スチールベルトに組み込まれるエレメントを製造するためのエレメント用鋼材、あるいは、エンジンやハイブリッドのモーター・変速ギアユニット等での構成部品であるギア、プレート、ケース等の冷間加工用鋼材(機械構造用鋼材)に対して軽量化(すなわち、高強度化)に対する要求がますます高まっている。
 この種の軽量化に応えるために、一般に用いられる鋼材としては、棒鋼を熱間鍛造した鋼材が用いられているが、部品製造工程におけるCOの排出量削減のため、これまで熱間鍛造によって加工されていたトランスミッションギア等の部品を、鋼板を用いて製造する要求も高まっている。
 ここで、ギアやエレメントに用いられる高炭素鋼板は、冷間圧延材をこれに含まれる炭化物を球状化処理した後、冷間加工や冷間圧延およびその後の打抜き加工により部品形状に加工し、さらに、平衡状態図上でAcm点以上の温度から焼入れ焼戻しして、一定量の未固溶炭化物を分散させた焼戻しマルテンサイト組織を導入して使用される。ギアやエレメントは摺動部品であるため、耐摩耗性および耐疲労特性に優れることを特に要求される。耐摩耗性は、マルテンサイト組織への焼入れ・焼戻し後の硬さが高く未固溶炭化物を多く含むほど、すなわち炭素量が多いほど優れるが、一方で、焼戻し時に炭化物量が増加し、結晶粒界に沿った炭化物のフィルム状析出によって、耐衝撃性や耐疲労性が低下するといわれている。
 ここで、軟質高炭素鋼板に関する従来技術については、以下のように種々の提案がなされている。
 例えば、特許文献1には、打抜き性の改善を主目的として、焼鈍条件と冷却条件の組合せにより鋼組織にボイドを導入することで、打抜き性が格段に向上することを見いだし、質量%で、C:0.70~0.95%、Si:0.05~0.4%、Mn:0.5~2.0%、P:0.005~0.03%、S:0.0001~0.006%、Al:0.005~0.10%、N:0.001~0.01%、及びCr:0.05~1.0%を含有し、残部がFe及び不可避的不純物からなり、かつ、組織が、観察組織1mm当り100個以上のボイドを有する、打抜き性に優れた軟質高炭素鋼板が提案されている。 
 また、特許文献2には、打抜きカエリの改善を主目的として、質量%で、C:0.65~0.85%、Si:0.05~0.4%、Mn:0.5~2.0%、P:0.005~0.03%、S:0.0001~0.006%、Al:0.005~0.10%、及び、N:0.001~0.01%を含有し、残部がFe及び不可避的不純物からなり、(i)硬さが170HV以下であり、かつ(ii)最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内である、打抜きカエリの小さい軟質高炭素鋼板が提案されている。 
 また、特許文献3には、熱処理前においては軟質で良好な成形性を備え、かつ熱処理後においては硬度に比して優れた耐摩耗性に優れる高炭素鋼板を提供することを目的として、フェライトおよび球状化炭化物のサイズ分布を制御することで、従来材よりも合金元素の含有量に比してより軟質化させることを可能とすることを見いだし、C:0.50~1.00%、Si:0.35%以下、Mn:0.60~0.90%、P:0.015%以下、S:0.0030%以下、Cr:0.30~0.60%、sol.Al:0.005~0.080%、N:0.0050%以下、残部Feおよび不純物からなり、さらに、Cr含有量およびMn含有量が下記(1)式を満足し、フェライトの平均結晶粒径が10μm以上であるとともに、球状化炭化物のうち粒径が1.0μm以上であるものの個数比率が50%以上である高炭素鋼板が提案されている。 
  1.2≦(Mn/55)/(Cr/52)≦2.0・・・・・・・(1)
 ただし、(1)式における符号MnおよびCrは、いずれも、鋼中における各元素の含有量(質量%)を示す。 
 また、特許文献4には、耐疲労性、特に、低・中サイクルの耐疲労性を高めつつ未固溶炭化物量を減じても耐摩耗性にも優れた鋼材を提供することを目的として、少なくともC、Si、Mn、Crを含み、元素Mの質量%を[M]とすると、10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]≦13を満たす成分組成を有する鋼からなるベルト式CVTのエレメント用鋼であって、前記鋼は、質量%で、必須添加元素として、C:0.50~0.70%、Si:0.10~0.60%、Mn:0.50~1.50%、Cr:0.20~1.00%を含むとともに、任意添加元素として、P:≦0.025%、S:≦0.015%を含み得る残部Fe及び不可避的不純物からなり、軟化熱処理を行うことにより88HRB以下の硬さを有するベルト式CVTのエレメント用鋼が提案されている。 
 しかしながら、上記引用文献1~4には、加工性、耐磨耗性、耐疲労性のすべてを考慮した高炭素鋼板については、開示されていない。
日本国特許4903839号公報 日本国特開2011-12317号公報 日本国特許4371072号公報 日本国特開2012-1794号公報
 本発明は上記事情に着目してなされたものであり、その目的は、加工性と耐磨耗性と耐疲労性のバランスに優れた軟質高炭素鋼板を提供することにある。
 請求項1に記載の発明は、 
 質量%で(以下、化学成分について同じ。)、
 C :0.65~1.0%、
 Si:0.10~0.60%、 
 Mn:0.10~1.0%、 
 Al:0.01~0.1%、
 P :0.03%以下(0%を含まない)、 
 S :0.01%以下(0%を含まない)、 
をそれぞれ含み、残部が鉄および不可避的不純物からなる成分組成を有するとともに、
 円相当直径30μm以上の介在物は、1000mm当り10個以下であり、
 円相当直径10μm以上30μm未満の介在物は、1000mm当り30個以下であるとともに、そのうち、個数割合で40%以上がAl-O系酸化物である組織を有する
 ことを特徴とする軟質高炭素鋼板である。 
 請求項2に記載の発明は、
 成分組成が、さらに、 
 Ca :0.05%以下(0%を含まない)、 
 REM:0.05%以下(0%を含まない)、 
 Mg :0.02%以下(0%を含まない)、 
 Li :0.02%以下(0%を含まない)、 
 Pb :0.5%以下(0%を含まない)、 
 Bi :0.5%以下(0%を含まない)、
 Cr:0.05~1.0%、 
 Cu:0.2%以下(0%を含まない)、
 Sn:0.1%以下(0%を含まない)、
 Ni:0.2%以下(0%を含まない)、
 Mo:0.1%以下(0%を含まない)、
 Nb:0.1%以下(0%を含まない)
 V :0.01%以下(0%を含まない)、
 B :0.005%以下(0%を含まない)
よりなる群から選ばれる少なくとも1種 
を含むものである請求項1に記載の軟質高炭素鋼板である。 
 本発明によれば、鋼中の介在物の形態およびサイズ分布をより厳密に制御することで、加工性、耐磨耗性、耐疲労性のバランスに優れた軟質高炭素鋼板を提供できるようになった。
 以下、本発明をさらに詳細に説明する。 
 まず、本発明に係る鋼板(以下、「本発明鋼板」ともいう。)を特徴づける組織について説明する。 
〔本発明鋼板の組織〕 
 上述したとおり、本発明鋼板は、鋼中の介在物の形態およびサイズ分布をより厳密に制御することを特徴とする。
<円相当直径30μm以上の介在物:1000mm当り10個以下、
円相当直径10μm以上30μm未満の介在物:1000mm当り30個以下であるとともに、そのうち、個数割合で40%以上がAl-O系酸化物>
 従来鋼板では、Al-Fe-Mg系化合物、TiN等のTi系化合物、Cr系化合物など、さまざまな形態の介在物が含まれる。また、円相当直径30μm以上の非常に粗大な介在物は、1000mm当り、少なくとも数10個程度、円相当直径10μm以上30μm未満の比較的粗大な介在物は、1000mm当り、少なくとも50個程度含まれる。これら非常に粗大ないし比較的粗大なサイズの介在物の量が増えると、冷間加工や冷間圧延時において微小割れが発生したり、板厚精度が低下したり、耐疲労特性を劣化させたりする。 
 本発明鋼板では、上記のような問題の発生を防止するため、円相当直径30μm以上の非常に粗大な介在物は、1000mm当り10個以下、好ましくは9個以下、より好ましくは8個以下とし、円相当直径10μm以上30μm未満の比較的粗大な介在物は、1000mm当り30個以下、好ましくは25個以下、より好ましくは20個以下とする。 
 さらに、円相当直径10μm以上30μm未満の比較的粗大な介在物のうち、個数割合で40%以上、好ましくは45%以上、より好ましくは50%以上をAl-O系酸化物とする。ここに、Al-O系酸化物には、例えば、Alと、SiO、MnO、MgO、CaO、LiO等の金属酸化物の1種または2種以上とからなる、Al系化合物、CaO-Al-SiO系化合物、LiO-Al-4SiO(spodumen;スポジュメン)化合物等が包含されるものとする。また、これらの化合物には、本発明鋼板の許容成分であるFe、Cr、Mg、Ca、Mn、P、S、Li、Pb、Biの1種または2種以上を、化合物形態をとることなく、微量(Al-O系酸化物中の質量割合として数%~10%以内程度)含有するものも存在するが、これらもAl-O系酸化物に包含されるものとする。このAl-O系酸化物は、溶鋼の脱酸時において細かく分散して形成されるため、このサイズの介在物をより微細部分の割合が高いサイズ分布とすることができ、冷間加工性、板厚精度の向上、耐疲労特性の向上に寄与する。 
 なお、本発明における「介在物」には、非金属介在物の他、金属間化合物を含むものとする。 
〔介在物のサイズおよび個数密度の測定方法〕
 介在物のサイズおよび個数密度の測定は、板幅中心部の板表面を光学顕微鏡により倍率400倍で観察視野の総面積が1000mmになるようにして行った。介在物のサイズは、観察された個々の介在物の面積を円相当直径に換算して求め、円相当直径が30μm以上のものと、10μm以上30μm未満のものをそれぞれカウントして個数密度を求めた。 
〔円相当直径が10μm以上30μm未満の介在物の形態および個数割合の測定方法〕
 円相当直径が10μm以上30μm未満の介在物の形態および個数割合については、EPMA分析により、このサイズ範囲の介在物を50個選択して個々に構成元素を同定して、化合物中のAlおよびOの構成元素の割合が合計で30質量%以上あるものをAl-O系酸化物と判別し、その個数をカウントして個数割合を求めた。 
 次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。
〔本発明鋼板の成分組成〕
C:0.65~1.0% 
 Cは、鋼板の強度を確保するうえで重要な元素であり、0.65%以上含有させ、所要の強度を確保する。本発明で対象とする部品では、0.65%未満では、焼入れ性が低下し、機械構造用高強度鋼板としての強度が得られないので、下限を0.65%とする。1.0%を超えると、靭性や加工性を確保する熱処理に長時間を要することになるので、上限を1.0%とする。好ましくは0.68~0.95%、より好ましくは、0.70~0.90%である。 
Si:0.10~0.60%
 Siは、脱酸剤として作用し、また焼入れ性の向上に有効な元素である。本発明で対象とする部品では、0.10%未満では、添加効果が得られないので、下限を0.10%とする。0.60%を超えると、熱間圧延時のスケール疵に起因する表面性状の劣化を招くので、上限を0.60%とする。好ましくは、0.15~0.55%、より好ましくは0.20~0.50%である。 
Mn:0.10~1.0%
 Mnは、製鋼過程において脱酸および脱硫の作用を有する元素である。さらに、焼入れ性の向上に有効な元素である。0.10%未満では、添加効果が得られないので、下限を0.10%とする。1.0%を超えると、焼入れ、焼戻し後の衝撃特性を助長するとともに、Mn系の介在物量が増加し、冷間加工性、耐疲労特性を劣化させる。上限を1.0%とする。好ましくは、0.15~0.9%、より好ましくは、0.2~0.85%である。 
Al:0.01~0.1%
 Alは、製鋼過程において脱酸に有効な元素であり、またNの固定に有効な元素である。また本発明における介在物の形態を制御するために必要な添加物質である。これらの効果を得るために、鋼材中のAl含有量は0.01質量%以上とすることが必須であり、好ましくは0.015質量%以上、さらに好ましくは0.02質量%以上である。また、Alの含有量が0.1質量%を超えると靭性を低下させ、割れが発生しやすくなるので不適であり、好ましくは0.09質量%以下、さらに好ましくは0.08質量%以下である。
P:0.03%以下(0%を含まない) 
 Pは不可避の不純物元素であり、結晶粒界に偏析して冷間加工性を劣化させる。そこで、Pの含有量は冷間加工性の観点から極力低減することが望ましいが、極端な低減は製鋼コストの増加を招くため、工程能力を考慮して、0.03%以下(0%を含まない)、好ましくは0.02質量%以下(0%を含まない)である。 
S:0.01%以下(0%を含まない) 
 SもPと同様に不可避的不純物であり、FeSとして結晶粒界に膜状に析出し、加工性を劣化させる元素である。また、Sは、非金属介在物を形成し、加工性や、熱処理後の靭性を阻害する原因となる。さらに熱間脆性を引き起こす作用もある。そこで、変形能を向上させる観点から、本発明ではS含有量を0.01質量%以下、好ましくは0.005質量%以下とする。ただし、S含有量を0にすることは工業上困難である。なお、Sは、打抜き加工性、被削性を向上させる効果も有するため、その観点からは、0.0003質量%以上含有させることが好ましく、より好ましくは0.0005質量%以上である。
 本発明の鋼は上記成分を基本的に含有し、残部が鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。
Ca、REM、Mg、Li、PbおよびBiよりなる群から選ばれる少なくとも1種
 これらの元素は、いずれも、介在物を球状化させ、冷間加工性、耐疲労特性の劣化を低減させる効果がある。本発明の鋼材が、これらの元素を含有する場合、それぞれ1種を単独で含有してもよいし、2種以上を同時に含有していてもよい。これらの元素の含有量は、下記の範囲で選択される。 
Ca:0.05%以下(0%を含まない)
 Caは、MnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、打抜き加工性、被削性の向上に寄与する元素である。本発明の鋼材が、Caを含有する場合、Caの含有量は、0.0005%以上とすることが好ましく、さらに好ましくは0.001質量%以上である。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、上限を0.05%とすることが好ましく、さらに好ましくは0.03%、特に好ましくは0.01%である。 
REM:0.05%以下(0%を含まない)
 REMは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、打抜き加工性、被削性の向上に寄与する元素である。本発明の鋼材が、REMを含有する場合、REMの含有量は、0.0005%以上とすることが好ましく、さらに好ましくは0.001%以上である。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、上限を0.05%とすることが好ましく、さらに好ましくは0.03%、特に好ましくは0.01%である。 
 なお、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。
Mg:0.02%以下(0%を含まない)
 Mgは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、打抜き加工性、被削性の向上に寄与する元素である。本発明の鋼材が、Mgを含有する場合、Mgの含有量は、0.0002%以上とすることが好ましく、さらに好ましくは0.0005%以上である。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、上限を0.02%とすることが好ましく、さらに好ましくは0.015%、特に好ましくは0.01%である。 
Li:0.02%以下(0%を含まない)
 Liは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めることができ、また、Al系酸化物を低融点化して無害化して、打抜き加工性、被削性の向上に寄与する元素である。本発明の鋼材が、Liを含有する場合、Liの含有量は、0.0002%以上とすることが好ましく、さらに好ましくは0.0005%以上である。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、上限を0.02%とすることが好ましく、さらに好ましくは0.015%、特に好ましくは0.01%である。 
Pb:0.5%以下(0%を含まない)
 Pbは、被削性を向上させるために有効な元素である。本発明の鋼材が、Pbを含有する場合、好ましくは0.005%以上、さらに好ましくは0.01%以上を含有させることができる。しかし、過剰に含有させると、圧延疵の発生等の製造上の問題を生じるため、上限を0.5%とすることが好ましく、好ましくは0.4%、さらに好ましくは0.3%である。 
Bi:0.5%以下(0%を含まない) 
 Biは、Pbと同様に、打抜き加工性、被削性を向上させるために有効な元素である。本発明の鋼材が、Biを含有する場合、好ましくは0.005%以上、さらに好ましくは0.01%以上を含有させることができる。しかし、過剰に含有させても被削性向上の効果が飽和するため、上限を0.5%とすることが好ましく、好ましくは0.4%、さらに好ましくは0.3%である。 
その他の合金元素 
 本発明の鋼材は、上記必須の成分および許容成分に加えて、さらに必要に応じて、下記の(a)~(d)のグループから選ばれる少なくとも1種を含有することができる。
(a)Cr
(b)Cu、Snから選ばれる少なくとも1種
(c)Ni、Mo、Nb、Vよりなる群から選ばれる少なくとも1種
(d)B
 これらの元素の含有量は、下記の範囲で選択される。 
Cr:0.05~1.0%
 Crは、焼入れ性の向上に有効な元素であり、結晶粒界の強度を高めることにより鋼の変形能を向上させる作用を有する元素である。必要に応じて、好ましくは0.05%以上、さらに好ましくは0.06%以上含有させることができる。しかし、Crを過剰に含有させると、変形抵抗が増大し、冷間加工性が低下する虞があるため、その含有量は、1.0%以下とすることが好ましく、さらに好ましくは0.9%以下、特に好ましくは0.8%以下である。 
Cu:0.2%以下(0%を含まない)
 Cuは、焼入れ性の確保に有効な元素であるが、本発明では少ないほどよい。0.2%を超えると、硬くなり過ぎ、冷間加工性が劣化するので、上限を0.2%とする。好ましくは、0.19%以下、より好ましくは0.18%以下である。 
Sn:0.1%以下(0%を含まない)
 Snは、不可避不純物であり、本発明では少ないほどよい。0.1%を超えると、硬くなり過ぎ、冷間加工性が劣化するので、上限を0.1%とする。好ましくは、0.09%以下、より好ましくは0.08%以下である。 
Ni:0.2%以下(0%を含まない)
 Niは、靭性の向上や、焼入れ性の向上に有効な元素であるが、本発明では少ないほどよい。0.2%を超えると、介在物も多くなり、性能を劣化させる。より好ましい上限値は0.18%以下、より好ましくは、0.15%以下である。 
Mo含有量:0.1%以下(0%を含まない)
 Moは、焼入れ性の向上と、焼戻し軟化抵抗性の向上、加工後の鋼材の硬さおよび変形能を増加させる作用を有する有効な元素であるが、本発明では、少ないほどよい。Moが過剰に含有すると、冷間加工性が劣化するおそれがあるため、0.1%以下(0%を含まない)とすることが好ましく、さらに好ましくは0.09%以下、特に好ましくは0.08%以下である。 
Nb:0.1%以下(0%を含まない)
 Nbは、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素であるが、本発明では、少ないほどよい。0.1%を超えると、冷間加工性、耐疲労特性を劣化させるので、上限を0.1%とする。好ましくは、0.08%以下である。 
V:0.01%以下(0%を含まない)
 Vは、Nbと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素であるが、本発明では、少ないほどよい。0.01%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.01%とする。好ましくは、0.009%以下である。
B:0.005%以下(0%を含まない) 
 Bを含有する場合、Bは、Nとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素であるが、本発明では化合物量を低減させる必要があることから、少ないほどよく、0.005%以下(0%を含まない)とすることが好ましく、さらに好ましくは0.0001~0.0035%、特に好ましくは0.0002~0.002%である。 
N:0.01%以下(0%を含まない) 
 Nは、窒化物を形成する元素であり、本発明では、Nは不可避的に含有される不純物であるが、極力低減させることが必要である。また連続鋳造における鋳片曲げ矯正時に窒化物が析出すると、鋳片が割れることがあるので、上限を0.01%とする。少ないほど好ましいが、0.001%未満に低減するのは、精錬コストの増加を招くので、実質的な下限は0.001%である。好ましくは、0.004~0.007%である。 
 上記以外のその他の元素として、Ti、Coなども不可避的に含まれることがあるが、本発明では、いずれも介在物を生成する元素であり、極力、添加しない、または、低減させることが好ましい。総量として、好ましくは、0.01%以下であり、さらに好ましくは0.005%以下である。 
 次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。
〔本発明鋼板の好ましい製造方法〕
[溶鋼の調製]
 まず、溶存酸素量と全酸素量を調整した溶鋼に、所定の順番で所定の合金元素を添加することによって、所望の酸化物を生成させることができる。特に本発明では、粗大な酸化物が生成しないように、溶存酸素量を調整した後、全酸素量を調整することが極めて重要である。 
 溶存酸素とは、酸化物を形成しておらず、溶鋼中に存在するフリーな状態の酸素を意味する。全酸素とは、溶鋼に含まれる全ての酸素、すなわち、フリー酸素と酸化物を形成している酸素の総和を意味する。 
 まず、溶鋼の溶存酸素量を0.0010~0.0060%の範囲に調整する。溶鋼の溶存酸素量が0.0010%未満では、溶鋼中の溶存酸素量が不足するため、Al-O系酸化物を所定量確保することができず、所望のサイズ分布が得られない。また、溶存酸素量が不足すると、REMを添加する場合は、REMが硫化物を形成するため、介在物が粗大となり特性を劣化させる原因となる。したがって、上記溶存酸素量は0.0010%以上とする。上記溶存酸素は、好ましくは0.0013%以上、より好ましくは0.0020%以上である。 
 一方、上記溶存酸素量が0.0060%を超えると、溶鋼中の酸素量が多くなりすぎるため、溶鋼中の酸素と上記元素の反応が激しくなって溶製作業上好ましくないばかりか、粗大な酸化物を生成して却って特性を劣化させる。したがって、上記溶存酸素量は0.0060%以下に抑えるべきである。上記溶存酸素量は、好ましくは0.0055%以下、より好ましくは0.0053%以下とする。 
 ところで、転炉や電気炉で一次精錬された溶鋼中の溶存酸素量は、通常0.010%を超えている。そこで本発明の製法では、溶鋼中の溶存酸素量を何らかの方法で上記範囲に調整する必要がある。 
 溶鋼中の溶存酸素量を調整する方法としては、例えばRH式脱ガス精錬装置を用いて真空C脱酸する方法や、SiやMn、Alなどの脱酸性元素を添加する方法などが挙げられ、これらの方法を適宜組み合わせて溶存酸素量を調整してもよい。また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて溶存酸素量を調整してもよい。この場合、真空C脱酸による溶存酸素量の調整はできないため、溶存酸素量の調整にはSi等の脱酸性元素を添加する方法を採用すればよい。Si等の脱酸性元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸性元素を添加しても構わない。 
 溶鋼の溶存酸素量を0.0010~0.0060%の範囲に調整した後は溶鋼を攪拌し、溶鋼中の酸化物を浮上分離することによって溶鋼中の全酸素量を0.0010~0.0070%に調整する。このように本発明では、溶存酸素量が適切に制御された溶鋼を撹拌し、不要な酸化物を除去してから、粗大な酸化物、すなわち、粗大な介在物の生成を防止できる。 
 上記全酸素量が0.0010%未満では、所望の酸化物量不足になるため、介在物の微細なサイズ分布に寄与する酸化物量を確保することができない。したがって、上記全酸素量は0.0010%以上とする。上記全酸素量は、好ましくは0.0015%以上、より好ましくは0.0018%以上である。 
 一方、上記全酸素量が0.0070%を超えると、溶鋼中の酸化物量が過剰となり、粗大な酸化物、すなわち、粗大な介在物が生成して特性が劣化する。したがって、上記全酸素量は0.0070%以下に抑えるべきである。上記全酸素量は、好ましくは0.0060%以下、より好ましくは0.0050%以下とする。 
 溶鋼中の全酸素量は、概ね溶鋼の攪拌時間に相関して変化することから、撹拌時間を調整するなどして制御することができる。具体的には、溶鋼を撹拌し、浮上してきた酸化物を除去した後の溶鋼中の全酸素量を適宜測定しながら、溶鋼中の全酸素量を適切に制御する。 
 鋼材にREMを添加する場合は、溶鋼中の全酸素量を上記範囲に調整した後に、REMを添加してから鋳造する。全酸素量を調整した溶鋼へ上記の元素を添加することによって所望とする酸化物が得られる。 
 溶鋼へ添加するREMの形態は特に限定されず、例えば、REMとして、純Laや純Ce、純Yなど、あるいはFe-Si-La合金、Fe-Si-Ce合金、Fe-Si-La-Ce合金、Fe-Ce合金、Ni-Ce合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、セリウム族希土類元素の混合物であり、具体的には、Ceを40~50%程度,Laを20~40%程度含有している。ただし、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は、本発明で規定する好適範囲を満足する必要がある。 
 本発明でREMを添加した場合は、粗大な酸化物の除去を促進する目的で、REMを添加した後は、40分を超えない範囲で溶鋼を攪拌することが好ましい。攪拌時間が40分を超えると、微細な酸化物が溶鋼中で凝集・合体するため酸化物が粗大化し、特性が劣化する。したがって、攪拌時間は40分以内とすることが好ましい。攪拌時間は、より好ましくは35分以内であり、さらに好ましくは30分以内である。溶鋼の攪拌時間の下限値は特に限定されないが、攪拌時間が短過ぎると添加元素の濃度が不均一となり、鋼材全体として所望の効果が得られない。したがって、容器サイズに応じた所望の攪拌時間が必要となる。 
 以上のようにして、成分組成が調整された溶鋼が得られる。得られた溶鋼を用いて鋳造し、鋼片を得る。
 次に、加熱、仕上げ圧延を含む熱間圧延、熱延後の急冷、急冷停止後の緩冷、緩冷後の急冷、巻取りを行って製造する。 
[加熱]
 熱間圧延前の加熱は1150~1300℃で行う。この加熱によりオーステナイト単相とする。これにより固溶元素(V、Nbなどの不純物含む)は、オーステナイトに固溶させる。加熱温度が1150℃未満ではオーステナイトに固溶できず、粗大な炭化物が形成されるため疲労特性改善効果が得られない。一方、1300℃を超える温度は操業上困難である。また、不純物としてTiが含まれる場合、炭化物のうち最も溶体化温度の高いTiを固溶させる点でも、TiCの溶体化温度以上1300℃以下が必要である。加熱温度の好ましい下限は1150℃、さらに好ましい下限は1200℃である。 
[熱間圧延]
 熱間圧延は、仕上げ圧延温度が800℃以上になるように行う。仕上げ圧延温度を低温化しすぎるとフェライト変態が高温で起るようになり、フェライト中の析出炭化物が粗大化するため、一定以上の仕上げ圧延温度が必要である。仕上げ圧延温度は、オーステナイト粒を粗大化してベイナイトの粒径を大きくするため、850℃以上とするのがより好ましい。なお、仕上げ圧延温度の上限は温度確保が難しいため、1000℃とする。 
[熱延後の急冷]
 上記仕上げ圧延終了後、5s以内に20℃/s以上の冷却速度(第1急冷速度)で急冷し、580℃以上670℃未満の温度(急冷停止温度)で急冷を停止する。フェライト変態の開始温度を低温化することによりフェライト中に形成される析出炭化物を微細化するためである。冷却速度(第1急冷速度)が20℃/s未満ではパーライト変態が促進され、または、急冷停止温度が580℃未満ではパーライト変態またはベイナイト変態が促進され、冷間加工性が低下する。一方、急冷停止温度が670℃以上になるとフェライト中の析出炭化物が粗大化してしまい、耐疲労特性が確保できない。急冷停止温度は、好ましくは600~650℃、さらに好ましくは610~640℃である。 
[急冷停止後の緩冷]
 上記急冷停止後、放冷または空冷により10℃/s以下の冷却速度(緩冷速度)で5~20s緩冷する。これによりフェライトの形成を十分に進行させつつ、フェライト中の析出炭化物を適度に微細化させる。冷却速度が10℃/sを超え、または、緩冷時間が5s未満では、フェライトの形成量が不足する。一方、緩冷時間が20sを超えると析出炭化物が粗大化せず、耐疲労特性が確保できない。 
[緩冷後の急冷、巻取り]
 上記緩冷後、550℃超650℃以下で巻き取る。巻取り温度が650℃超では、パーライト量が多くなり、一方550℃未満では、マルテンサイトが多く形成され、冷間加工性が低下する。 
[熱延後の焼鈍]
 上記の熱間圧延後、冷間圧延前に軟質化と炭化物の球状化を目的に焼鈍を行う。軟質化焼鈍は、H:15~20容積%雰囲気で、鋼板を室温からAc1~Ac1+50℃まで加熱した後、10時間以上保持して行う。この10時間以上の保持により、炭化物の球状化を促進するとともに、微細ラメラを、オーステナイト中に溶解させる。上記10時間以上の保持後、鋼板は、400℃程度まで10℃/h以上で冷却する。 
[酸洗-冷間圧延]
 上記の鋼板を酸洗し、その後、30%以上の圧下率で冷間圧延を施す。冷間加工率(冷延率)が高いほど、炭化物が球状化しやすくなる。 
[軟質化(球状化)焼鈍]
 冷間圧延後、軟質化と炭化物の球状化を目的に焼鈍を行う。軟質化焼鈍は、H:15~20容積%雰囲気で、鋼板を室温からAc1~Ac1-50℃まで加熱した後、10時間以上保持して行うか、または、Ac1~Ac1+50℃まで加熱した後、5時間以上保持して行う。Ac1点の下で行うか、上で行うかは、板厚、コイルのサイズにより異なるが、要求される球状化、軟質化度合い、およびコイル内の均一性によって選択される。この熱処理により炭化物の球状化を促進するとともに、微細ラメラを、オーステナイト中に溶解させる。上記10時間以上の保持後、鋼板は、600℃まで10℃/h以下の速度で冷却する。これにより炭化物の球状化を促進させる、600~400℃までは、15℃/h以下の速度で冷却する。これは、コイル内を均一に冷却することによりコイルつぶれなどの形状を安定化させるためである。その後、400℃以下では、コイル内の温度分布が均一に冷却できるのであれば、水冷等により高い冷却速度(50℃~100℃/h程度以上など)で冷却してよい。
 以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 真空溶解炉(容量150kg)を用い、表1に示した化学成分を含有する供試鋼を溶製し、150kgのインゴットに鋳造して冷却した。真空溶解炉で供試鋼を溶製するに当っては、Al、REM、Ca以外の元素について成分調整するとともに、C,SiおよびMnから選ばれる少なくとも1種の元素を用いて脱酸して溶鋼の溶存酸素量を調整した。溶存酸素量を調整した溶鋼を1~10分程度攪拌して溶鋼中の酸化物を浮上分離させることによって溶鋼の全酸素量を調整した。 
 なお、REMおよびCaを添加する場合は、添加全酸素量を調整した溶鋼に添加することによって成分調整した溶鋼を得た。なお、REMはLaを約25%とCeを約50%含有するミッシュメタルの形態で、CaはNi-Ca合金、またはCa-Si合金、またはFe-Ca圧粉体の形態で、それぞれ添加した。 
 得られたインゴットを、60℃/hの加熱速度で昇温した後、1250℃×10h保持し、仕上げ圧延終了温度870~900℃、巻取り温度610~650℃の条件にて熱間圧延して板厚が4mmの熱延板を製造した。 
 その後、上記熱延材を、室温~700℃までを20hで昇温し、700℃×25h保持し、700℃→500℃までを10hで冷却するパターンで焼鈍を施した後、冷間圧延を行い、板厚2mmの冷延板を製造した。 
 さらに、上記冷延板を、H=15~20容量%、60Nm/hの雰囲気で、室温~700℃までを25hで昇温し、700℃×25h保持し、700℃→500℃までを20hで冷却するパターンで球状化焼鈍を施して焼鈍板(軟質高炭素鋼板)を製造した。
 このようにして得られた各焼鈍板(軟質高炭素鋼板)について、上記[発明を実施するための形態]の項で説明した測定方法により、鋼板中の介在物のサイズ・個数密度・形態等を調査した。
 さらに、上記各焼鈍板(軟質高炭素鋼板)について、耐摩耗性、加工性、耐疲労特性を評価するため、以下に説明する方法により、表面硬さ、打抜き加工性、疲労強度をそれぞれ測定した。
<表面硬さ>
 ビッカース硬さ試験機を用いて、荷重:1000g、測定位置:鋼板表面部を測定回数:5回の条件で、ビッカース硬さ(Hv)を測定し、硬さが低くなりすぎると耐摩耗性が劣化し、硬さが高くなりすぎると加工性が劣化することから、160~200Hvのものを合格とした。 
<打抜き加工性>
 鋼板のせん断加工試験を行い、その破断面で、割れが発生した場合を×、目視できる1mm程度のクラックが見られる場合を△、クラックは発生していないが、30μmを超えるバリが発生しているものを○、バリの発生が小さいもの(30μm以下)を◎とし、◎または○のものを合格とした。 
<疲労強度>
 上記各焼鈍板をさらに焼入れ焼戻しした試料を作製し、耐疲労特性を評価した。焼入れ焼戻しの熱処理条件としては、上記球状化(軟質化)処理後の焼鈍板を、炭化物が溶解するAcm点以上(およそ800℃)の温度で30分保持後、70℃の油焼き入れを行い、200℃で100分の焼戻しを行った。このようにして得た試料を、JIS Z2275に記載の平面曲げ試験によりS-N曲線を作成して疲労限度を求め、それを疲労強度とした。ここで、高炭素鋼板の耐疲労特性は、基本的には、添加される炭素量でその値は大きく異なることから、従来鋼として、JIS G4401:2009炭素工具鋼鋼材で規定される、SK75(C:0.7~0.8%)、SK85(0.8~0.9%)、SK95(0.9~1.0%)の疲労強度をそれぞれ1として相対的に評価し、1.1以上のものを合格とした。 
 これらの測定結果を下記表2に示す。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、試料No.1、6、11、15~22は本発明で規定する成分組成および組織の要件のうち少なくともいずれかを満足しない比較鋼であり、球状化焼鈍後の表面硬さ、打抜き加工性および疲労強度のうち少なくともいずれかが合格基準を満たしていない。
 これに対し、試料No.2~5、7~10、12~14はいずれも、本発明の成分組成の範囲を満足する鋼種を用い、推奨の製造条件で製造した結果、本発明の組織規定の要件を充足する発明鋼であり、球状化焼鈍後の表面硬さ、打抜き加工性および疲労強度は全て合格基準を満たしており、加工性と耐磨耗性と耐疲労特性のバランスに優れた軟質化高炭素鋼板が得られることが確認できた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年2月5日出願の日本特許出願(特願2013-020637)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の軟質高炭素鋼板は、チェーン、ギア、クラッチ、自動車等の車両用鋼板(例えば、マニュアルトランスミッション(MT)、オートマティックトランスミッション(AT)、CVTユニットの部品で用いられるプラネタリギア、クラッチ、ケース等、スチールベルトに組み込まれるエレメントを製造するためのエレメント用鋼材、エンジンやハイブリッドのモーター・変速ギアユニット等での構成部品であるギア、プレート、ケース等)に好適であり、軽量でありながらも、十分な強度を有し、更には加工性にも優れる。

Claims (2)

  1.  質量%で(以下、化学成分について同じ。)、
     C :0.65~1.0%、 
     Si:0.10~0.60%、 
     Mn:0.10~1.0%、 
     Al:0.01~0.1%、 
     P :0.03%以下(0%を含まない)、 
     S :0.01%以下(0%を含まない)、 
    をそれぞれ含み、残部が鉄および不可避的不純物からなる成分組成を有するとともに、
     円相当直径30μm以上の介在物は、1000mm当り10個以下であり、 
     円相当直径10μm以上30μm未満の介在物は、1000mm当り30個以下であるとともに、そのうち、個数割合で40%以上がAl-O系酸化物である組織を有する 
     ことを特徴とする軟質高炭素鋼板。
  2.  成分組成が、さらに、 
     Ca :0.05%以下(0%を含まない)、 
     REM:0.05%以下(0%を含まない)、 
     Mg :0.02%以下(0%を含まない)、 
     Li :0.02%以下(0%を含まない)、 
     Pb :0.5%以下(0%を含まない)、 
     Bi :0.5%以下(0%を含まない)、
     Cr:0.05~1.0%、 
     Cu:0.2%以下(0%を含まない)、
     Sn:0.1%以下(0%を含まない)、
     Ni:0.2%以下(0%を含まない)、
     Mo:0.1%以下(0%を含まない)、
     Nb:0.1%以下(0%を含まない)、
     V :0.01%以下(0%を含まない)、
     B :0.005%以下(0%を含まない)
    よりなる群から選ばれる少なくとも1種 
    を含むものである請求項1に記載の軟質高炭素鋼板。
     
     
PCT/JP2014/052454 2013-02-05 2014-02-03 軟質高炭素鋼板 WO2014123088A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-020637 2013-02-05
JP2013020637A JP6068172B2 (ja) 2013-02-05 2013-02-05 軟質高炭素鋼板

Publications (1)

Publication Number Publication Date
WO2014123088A1 true WO2014123088A1 (ja) 2014-08-14

Family

ID=51299682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052454 WO2014123088A1 (ja) 2013-02-05 2014-02-03 軟質高炭素鋼板

Country Status (2)

Country Link
JP (1) JP6068172B2 (ja)
WO (1) WO2014123088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299199A (zh) * 2017-07-26 2017-10-27 柳州金特新型耐磨材料股份有限公司 易加工耐磨钢板及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7229827B2 (ja) * 2018-03-26 2023-02-28 株式会社神戸製鋼所 高炭素鋼板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117804A (ja) * 1991-10-24 1993-05-14 Kobe Steel Ltd 加工性および転動疲労性に優れた軸受用鋼
JPH05311225A (ja) * 1991-11-28 1993-11-22 Nippon Steel Corp 溶鋼中Al2O3の凝集防止方法
JPH08193245A (ja) * 1995-01-18 1996-07-30 Nippon Steel Corp 軸受鋼およびその製造方法
JP2004323938A (ja) * 2003-04-25 2004-11-18 Daido Steel Co Ltd 転動寿命特性に優れる軸受鋼とその製造方法
JP2013001940A (ja) * 2011-06-15 2013-01-07 Jfe Steel Corp 軸受材料
JP2013023739A (ja) * 2011-07-22 2013-02-04 Nippon Steel & Sumitomo Metal Corp 高清浄度軸受鋼およびその溶製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696853B2 (ja) * 2005-10-31 2011-06-08 Jfeスチール株式会社 加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
JP6004698B2 (ja) * 2011-03-30 2016-10-12 日新製鋼株式会社 転がり軸受の軌道輪製造法および転がり軸受製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117804A (ja) * 1991-10-24 1993-05-14 Kobe Steel Ltd 加工性および転動疲労性に優れた軸受用鋼
JPH05311225A (ja) * 1991-11-28 1993-11-22 Nippon Steel Corp 溶鋼中Al2O3の凝集防止方法
JPH08193245A (ja) * 1995-01-18 1996-07-30 Nippon Steel Corp 軸受鋼およびその製造方法
JP2004323938A (ja) * 2003-04-25 2004-11-18 Daido Steel Co Ltd 転動寿命特性に優れる軸受鋼とその製造方法
JP2013001940A (ja) * 2011-06-15 2013-01-07 Jfe Steel Corp 軸受材料
JP2013023739A (ja) * 2011-07-22 2013-02-04 Nippon Steel & Sumitomo Metal Corp 高清浄度軸受鋼およびその溶製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299199A (zh) * 2017-07-26 2017-10-27 柳州金特新型耐磨材料股份有限公司 易加工耐磨钢板及其制备方法

Also Published As

Publication number Publication date
JP2014152342A (ja) 2014-08-25
JP6068172B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6068314B2 (ja) 冷間加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP6143355B2 (ja) 絞り加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP5093422B2 (ja) 高強度鋼板及びその製造方法
JP6293997B2 (ja) 伸びフランジ性、曲げ加工性に優れた高強度鋼板およびその鋼板用の溶鋼の溶製方法
WO2016148037A1 (ja) 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板
CN109072371B (zh) 温加工用高强度钢板及其制造方法
JP6058439B2 (ja) 冷間加工性と加工後の表面硬さに優れる熱延鋼板
JP5206910B1 (ja) 鋼板
WO2015129403A1 (ja) 高強度ばね用圧延材および高強度ばね用ワイヤ
EP2312004B1 (en) High-strength steel sheet and process for producing molten steel for high-strength steel sheet
JP2005290547A (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
WO2015098531A1 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
JP2016003389A (ja) 熱間プレス用鋼板、並びに該鋼板を用いた熱間プレス成形品及びその製造方法
KR20110102436A (ko) 내사워 라인 파이프용 강판의 제조 방법
WO2015146174A1 (ja) 高炭素熱延鋼板およびその製造方法
KR20090018167A (ko) 연신 플랜지성과 피로 특성이 우수한 고강도 강판
CN107208207B (zh) 高强度钢板及其制造方法
JP6068291B2 (ja) 軟質高炭素鋼板
JP2012188745A (ja) 伸びフランジ性と曲げ加工性に優れた高強度鋼板およびその溶鋼の溶製方法
JP4901346B2 (ja) 伸びフランジ性と疲労特性に優れた高強度鋼板
JP6068172B2 (ja) 軟質高炭素鋼板
JP2008274336A (ja) 伸びフランジ性と疲労特性に優れた高強度鋼板およびその溶鋼の溶製方法
JP2019011510A (ja) 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板
JP3894429B2 (ja) 耐摩耗性及び打抜き加工性に優れたatプレート用冷延鋼板及び製造方法
JP4319940B2 (ja) 加工性と、焼入れ性、熱処理後の靭性の優れた高炭素鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749517

Country of ref document: EP

Kind code of ref document: A1