WO2014122823A1 - 車両の制御装置 - Google Patents
車両の制御装置 Download PDFInfo
- Publication number
- WO2014122823A1 WO2014122823A1 PCT/JP2013/077991 JP2013077991W WO2014122823A1 WO 2014122823 A1 WO2014122823 A1 WO 2014122823A1 JP 2013077991 W JP2013077991 W JP 2013077991W WO 2014122823 A1 WO2014122823 A1 WO 2014122823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- injector
- combustion engine
- internal combustion
- automatic stop
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/047—Taking into account fuel evaporation or wall wetting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/021—Engine temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/05—Fuel-injection apparatus having means for preventing corrosion
Definitions
- the present invention relates to a vehicle control device.
- Patent Document 1 discloses that in a vehicle equipped with a diesel engine equipped with an injector that injects fuel into a cylinder, the fuel injection from the injector is stopped when a predetermined automatic stop condition such as when idling is satisfied. A technique for automatically stopping the engine is disclosed.
- An object of the present invention is to provide a vehicle control device capable of suppressing corrosion of an injector due to condensation.
- the temperature of an injector that injects fuel into a cylinder of an internal combustion engine mounted on the vehicle is equal to or lower than a predetermined temperature, and the temperature of a refrigerant that cools the internal combustion engine is present in the cylinder.
- a control unit that prohibits execution of the automatic stop of the internal combustion engine when the gas is within a predetermined temperature range including a dew point that is a temperature at which dew condensation occurs.
- a predetermined temperature including a dew point in which a temperature of an injector that injects fuel into a cylinder of an internal combustion engine mounted on a vehicle is equal to or lower than a predetermined temperature, and a temperature of a refrigerant that cools the internal combustion engine is a temperature at which a gas existing in the cylinder is condensed.
- a temperature of an injector that injects fuel into a cylinder of an internal combustion engine mounted on a vehicle is equal to or lower than a predetermined temperature
- a temperature of a refrigerant that cools the internal combustion engine is a temperature at which a gas existing in the cylinder is condensed.
- the predetermined temperature range may be within a temperature range not lower than a first temperature lower than the dew point and lower than a second temperature higher than the dew point.
- the predetermined temperature range is a temperature range not lower than a first temperature lower than the dew point and not higher than a second temperature higher than the dew point
- the control unit further includes a temperature of the injector. If the temperature of the refrigerant is within a temperature range that is greater than the second temperature and less than or equal to the third temperature when the temperature is less than or equal to a predetermined temperature, the rotational speed of the internal combustion engine may be increased.
- the temperature of the tip of the injector can be increased by increasing the rotational speed of the internal combustion engine. Therefore, it can suppress that dew condensation arises in the front-end
- FIG. 1A is a schematic diagram showing the overall configuration of the vehicle.
- FIG. 1B and FIG. 1C are schematic cross-sectional views in which the vicinity of the tip of the injector is enlarged.
- FIG. 2 is a diagram illustrating an example of a flowchart of automatic stop prohibition permission processing according to the first embodiment.
- FIG. 3A is a diagram for explaining the temperature P.
- FIG. 3B is a diagram for explaining the temperature Q.
- FIG. FIG. 4A is a schematic diagram of a change in the refrigerant temperature with time when the vehicle includes the control device according to Comparative Example 1 and the control device according to Comparative Example 2.
- FIG. 1A is a schematic diagram showing the overall configuration of the vehicle.
- FIG. 1B and FIG. 1C are schematic cross-sectional views in which the vicinity of the tip of the injector is enlarged.
- FIG. 2 is a diagram illustrating an example of a flowchart of automatic stop prohibition permission processing according to the first embodiment.
- FIG. 3A is a
- FIG. 4B is a schematic diagram of a change over time in the tip end temperature of the injector when the vehicle includes the control device according to Comparative Example 1 and the control device according to Comparative Example 2.
- FIG. 4C is a schematic diagram of a change over time in the temperature of the tip end of the injector and the temperature of the cylinder inner wall surface when the vehicle includes the control device according to the second comparative example.
- FIG. 5 is a flowchart illustrating an example of the automatic stop prohibition permission process according to the second embodiment.
- FIG. 6A is a schematic diagram of the change over time in the rotational speed of the internal combustion engine when step S45 is executed.
- FIG. 6B is a schematic diagram for explaining a temporal change in the tip end portion temperature of the injector according to the second embodiment.
- FIG. 1A is a schematic diagram showing the overall configuration of the vehicle 5.
- the vehicle 5 includes a control device 10 and an internal combustion engine 20.
- the control device 10 is a device that controls the internal combustion engine 20 of the vehicle 5.
- an electronic control unit Electronic Control Unit
- the CPU 11 has a function as a control unit that controls the internal combustion engine 20.
- the ROM 12 and the RAM 13 have a function as a storage unit that stores information necessary for the operation of the CPU 11.
- the internal combustion engine 20 is a compression ignition type internal combustion engine, specifically a diesel engine.
- the internal combustion engine 20 to which the control device 10 is applied is not limited to this, and may be a gasoline engine, for example.
- the internal combustion engine 20 includes a cylinder block 21, a cylinder head 22 disposed on the cylinder block 21, and a piston 24 disposed on the cylinder block 21 and a cylinder 23 formed on the cylinder head 22.
- the inner peripheral surface of the cylinder block 21 is referred to as a bore wall 25.
- the cylinder block 21 and the cylinder head 22 are formed with a water jacket 26 through which the refrigerant passes. A coolant is supplied to the water jacket 26 from a pump. The coolant of the water jacket 26 prevents the temperatures of the cylinder block 21, the cylinder head 22, and the piston 24 from becoming too high.
- the internal combustion engine 20 includes an injector 30 for injecting fuel into the cylinder 23 and a common rail 40 connected to the injector 30.
- the operation of the injector 30 is controlled by the control unit of the control device 10.
- the injector 30 is disposed on the cylinder head 22 and injects fuel from the lower surface side of the cylinder head 22 toward the top surface (upper surface) of the piston 24.
- the specific arrangement location of the injector 30 is not limited to the location illustrated in FIG. 1A as long as the fuel can be injected into the cylinder 23. Details of the injector 30 will be described later.
- the internal combustion engine 20 has a plurality of cylinders 23, and the injectors 30 are arranged in the cylinder heads 22 of the respective cylinders 23.
- the common rail 40 is a pressure accumulation pipe that accumulates high-pressure fuel.
- An injector 30 (a plurality of injectors 30 in this embodiment) is connected to the common rail 40, and the high-pressure fuel accumulated in the common rail 40 is supplied to each injector 30.
- the fuel is light oil.
- the internal combustion engine 20 includes an intake passage 50 through which intake air taken into the cylinder 23 passes and an exhaust passage 55 through which exhaust exhausted from the cylinder 23 passes.
- the intake air that flows into the intake passage 50 from the upstream end of the intake passage 50 is fresh air (air that does not include exhaust).
- a DPF diesel particulate filter
- Particulates contained in the exhaust are collected by the DPF.
- the internal combustion engine 20 includes an EGR (Exhaust Gas Recirculation) passage 60, an EGR cooler 61, and an EGR valve 62.
- the EGR passage 60 communicates between the passage of the intake passage 50 and the passage of the exhaust passage 55.
- the EGR passage 60 is a passage for recirculating a part of the exhaust discharged from the cylinder 23 to the cylinder 23. Thereafter, the exhaust gas that passes through the EGR passage 60 and is introduced into the cylinder 23 may be referred to as EGR gas.
- the EGR cooler 61 is disposed in the EGR passage 60.
- the EGR cooler 61 is a device that cools the EGR gas.
- coolant which passed the water jacket 26 flows in into the EGR cooler 61 which concerns on a present Example, and the EGR cooler 61 cools EGR gas with this refrigerant
- the refrigerant used for the EGR cooler 61 is not limited to the refrigerant that has passed through the water jacket 26.
- the EGR valve 62 is disposed in the EGR passage 60. Specifically, the EGR valve 62 according to this embodiment is disposed on the downstream side of the EGR cooler 61 in the EGR passage 60. However, the specific location in the EGR passage 60 of the EGR valve 62 is not limited to this.
- the EGR valve 62 adjusts the amount of EGR gas by opening and closing in response to an instruction from the control unit of the control device 10.
- the internal combustion engine 20 includes a temperature sensor 70a, a temperature sensor 70b, and a crank position sensor 71.
- the temperature sensor 70 a detects the temperature of the refrigerant that cools the internal combustion engine 20 and transmits the detection result to the control device 10.
- the temperature sensor 70a according to the present embodiment detects the temperature of the coolant in the water jacket 26.
- the specific refrigerant temperature detection location of the temperature sensor 70a is not limited to this.
- the temperature sensor 70 b detects the temperature of the fuel and transmits the detection result to the control device 10.
- the temperature sensor 70b according to the present embodiment detects the temperature of the fuel in the common rail 40.
- the specific fuel temperature detection location of the temperature sensor 70b is not limited to this.
- the crank position sensor 71 detects the position of the crankshaft of the internal combustion engine 20 (the crankshaft is connected to the piston 24 via a connecting rod) and transmits the detection result to the control device 10.
- the vehicle 5 has various types of sensors such as a brake opening sensor that detects the opening of the brake, an accelerator opening sensor that detects the opening of the accelerator, and a vehicle speed sensor that detects the vehicle speed of the vehicle 5. It has a sensor.
- FIG. 1B and FIG. 1C are schematic cross-sectional views in which the vicinity of the tip of the injector 30 is enlarged.
- the injector 30 includes a body 31 and a needle valve 32 disposed inside the body 31.
- the injector 30 is disposed on the cylinder head 22 so that the tip of the body 31 is exposed in the cylinder 23.
- the tip portion refers to a portion of the portion exposed in the cylinder 23 of the injector 30 that extends from the tip of the injector 30 to the rear end side of a predetermined distance. This refers to a portion having a shape (that is, a portion having a nozzle shape).
- the fuel that has passed through the common rail 40 is supplied to the rear end of the injector 30 (the end opposite to the front end).
- a nozzle hole 33 is formed at the tip of the body 31.
- the fuel is injected from the injection hole 33.
- the injector 30 has a plurality of injection holes 33.
- the number of nozzle holes 33 included in the injector 30 is not limited to a plurality, and may be one.
- the needle valve 32 is displaced in a direction along the shaft 34 of the needle valve 32 (hereinafter referred to as an axial direction, and is a vertical direction in FIGS. 1B and 1C), so that the injection hole 33. Start and stop fuel injection.
- the injector 30 includes an actuator (not shown) that drives the needle valve 32, and this actuator receives an instruction from the control unit of the control device 10 to displace the needle valve 32 in the axial direction. Yes.
- a suck chamber 35 is provided between the tip of the needle valve 32 and the body 31.
- An internal fuel passage 36 is provided between the outer peripheral surface of the needle valve 32 and the inner peripheral surface of the body 31.
- the internal fuel passage 36 is a fuel passage provided inside the injector 30.
- a portion having a truncated cone shape (a shape obtained by cutting the tip of the cone) is provided at the tip of the needle valve 32, and the surface of this portion is referred to as a seat surface 37.
- a tapered portion corresponding to the seat surface 37 is provided on the inner peripheral surface of the body 31, and this portion is referred to as a seat portion 38.
- the sac chamber 35 and the internal fuel passage 36 are in communication with each other.
- the fuel in the internal fuel passage 36 is supplied to the sac chamber 35 and then injected from the injection hole 33.
- FIG. 1C when the needle valve 32 is displaced to the distal end side, and as a result, the seat surface 37 is seated on the seat portion 38 (that is, when the seat surface 37 contacts the seat portion 38), The suck chamber 35 and the internal fuel passage 36 are cut off. In this case, fuel injection from the injection hole 33 is stopped.
- the fuel injection from the injection hole 33 stops when the seat surface 37 is seated on the seat portion 38, and the injection hole when the seat surface 37 is separated from the seat portion 38.
- the injector has a structure in which fuel injection from 33 starts.
- the specific structure of the injector 30 is not limited to the above-described structure as long as it has the injection hole 33 at the tip.
- control unit of the control device 10 controls the fuel injection amount and fuel injection timing from the injector 30 based on the operating state of the vehicle 5 after the internal combustion engine 20 is started. Further, the control unit controls the EGR valve 62 based on the driving state of the vehicle 5. Since the control of the injector 30 and the EGR valve 62 can be applied with a known control method, further detailed description is omitted.
- the control unit executes an automatic stop prohibition permission process for determining whether the automatic stop of the internal combustion engine 20 is prohibited or permitted. Details of the automatic stop prohibition permission process will be described later.
- the control unit executes automatic stop when the automatic stop is permitted as a result of the execution of the automatic stop prohibition permission process.
- the control unit according to the present embodiment automatically stops the internal combustion engine 20 by stopping the fuel injection from the injector 30.
- the specific method for automatically stopping the internal combustion engine 20 is not limited to the method for stopping the fuel injection from the injector 30, and various known automatic stop techniques can be applied.
- the control unit may execute the automatic stop when the automatic stop prohibition permitting process is executed and the automatic stop is permitted and the predetermined automatic stop condition is satisfied.
- the predetermined automatic stop condition for example, a condition that the idle operation state of the internal combustion engine 20 continues for a predetermined period after the internal combustion engine 20 is started can be used.
- an automatic stop condition when the brake of the vehicle 5 is operated for a predetermined period after the internal combustion engine 20 is started and the speed of the vehicle 5 becomes a predetermined value or less (that is, the idling operation state of the internal combustion engine 20 is a predetermined period). Can be used).
- a specific example of the automatic stop condition is not limited to this.
- the control unit automatically starts the internal combustion engine 20 by starting fuel injection from the injector 30 when a predetermined restart condition is satisfied after the automatic stop is executed.
- the restart condition is a condition that the brake of the vehicle 5 is released and the accelerator of the vehicle 5 is depressed.
- the specific content of the restart condition is not limited to this.
- the control part which concerns on a present Example judges whether the brake act
- the control unit determines whether or not the accelerator is depressed based on the detection result of the accelerator opening sensor.
- the controller of the control device 10 has a dew point in which the temperature of the injector 30 is equal to or lower than a predetermined temperature, and the temperature of the refrigerant that cools the internal combustion engine 20 is a temperature at which the gas existing in the cylinder 23 is condensed. Execution of automatic stop is prohibited when the temperature is within a predetermined temperature range.
- the control part which concerns on a present Example uses the inside of the temperature range below the temperature Q more than the temperature P lower than a dew point and higher than a dew point as this predetermined temperature range. Details of the automatic stop prohibition permission process according to the present embodiment will be described with reference to a flowchart.
- FIG. 2 is a diagram showing an example of a flowchart of automatic stop prohibition permission processing according to the present embodiment.
- the control unit of the control device 10 repeatedly executes the flowchart of FIG. 2 at a predetermined cycle after the internal combustion engine 20 is started.
- the control unit determines whether or not the temperature of the refrigerant that cools the internal combustion engine 20 is equal to or higher than the temperature P (step S10).
- the temperature P is not particularly limited as long as it is lower than the dew point, but in this embodiment, as an example of the temperature P, automatic stop is executed when the temperature of the refrigerant is lower than the temperature P.
- the temperature estimated that condensation does not occur at the tip of the injector 30 is used.
- the temperature P will be described with reference to the drawings as follows.
- FIG. 3A is a diagram for explaining the temperature P.
- FIG. 3A schematically shows the change before and after the automatic stop of the temperature of the tip of the injector 30 and the temperature of the cylinder inner wall surface when the temperature of the refrigerant is the temperature P.
- the vertical axis represents temperature
- the horizontal axis represents time.
- the dew point is indicated by C on the vertical axis of FIG.
- Time t 1 indicates the time the automatic stop is initiated.
- a curve 100 indicates the temperature of the tip of the injector 30 and a curve 101 indicates the temperature of the cylinder inner wall surface.
- the cylinder inner wall surface means the inner wall surface of the cylinder 23, specifically, the bore wall 25 and the inner wall surface of the cylinder head 22.
- the temperature P is a predetermined temperature lower than the dew point (C). Further, when the temperature of the refrigerant temperature P, before the automatic stop is performed (timing earlier than the time t 1), the temperature of the cylinder wall surface is in a lower temperature than the dew point (C). When the automatic stop is executed at time t 1 under such a situation, the temperature of the cylinder inner wall surface becomes equal to or lower than the dew point (C) before the temperature of the tip portion of the injector 30. In this case, since condensation occurs on the inner wall surface of the cylinder, it is possible to suppress the formation of condensation at the tip of the injector 30.
- step S10 in FIG. 2 the control unit according to the present embodiment determines whether or not the refrigerant temperature acquired based on the detection result of the temperature sensor 70a is equal to or higher than the temperature P stored in the storage unit. Step S10 is executed.
- step S50 the control unit permits automatic stop (step S50). Specifically, the control unit transmits a signal indicating that automatic stop is permitted. After step S50, the control unit ends the execution of the flowchart. In this case, even if the automatic stop is executed, since the temperature of the refrigerant is lower than the temperature P, the occurrence of dew condensation at the tip of the injector 30 is suppressed.
- the control unit determines whether or not the temperature of the refrigerant that cools the internal combustion engine 20 is equal to or lower than the temperature Q (step S20).
- the temperature Q is not particularly limited as long as it is higher than the dew point, but in this embodiment, as an example of the temperature Q, automatic stop is executed when the temperature of the refrigerant is higher than the temperature Q. However, the temperature estimated that condensation does not occur at the tip of the injector 30 is used. The temperature Q will be described with reference to the drawings.
- FIG. 3B is a diagram for explaining the temperature Q.
- FIG. 3B schematically shows a change before and after the automatic stop between the tip end temperature of the injector 30 and the temperature of the cylinder inner wall surface when the temperature of the refrigerant is the temperature Q.
- the vertical axis represents temperature
- the horizontal axis represents time.
- the dew point is indicated by C on the vertical axis of FIG. Figure 3
- Time t 1 in the horizontal axis (b) shows a time at which the automatic stop is initiated.
- a curve 100 indicates the temperature of the tip of the injector 30 and a curve 101 indicates the temperature of the cylinder inner wall surface.
- the temperature Q is a predetermined temperature higher than the dew point (C).
- the temperature of the cylinder inner wall surface indicated by the curve 101 in FIG. 3B is higher than the dew point (C) before execution of the automatic stop.
- the temperature at the tip of the injector 30 indicated by the curve 100 is also higher than the dew point (C) before the automatic stop is performed. Even if the automatic stop is executed at time t 1 under such circumstances, the temperature of the tip of the injector 30 and the temperature of the cylinder inner wall surface do not fall below the dew point. Therefore, no condensation occurs at the tip of the injector 30. In this case, no condensation occurs on the inner wall surface of the cylinder.
- the temperature of the refrigerant is higher than the temperature Q, it is presumed that no condensation occurs at the tip of the injector 30 even if the automatic stop is executed.
- This temperature Q is obtained in advance by experiments, simulations, etc., and is stored in the storage unit.
- the control unit according to the present embodiment determines whether or not the refrigerant temperature acquired based on the detection result of the temperature sensor 70a is equal to or higher than the temperature Q stored in the storage unit. Step S20 is executed.
- step S50 the control unit permits automatic stop (step S50).
- the temperature of the refrigerant is higher than the temperature Q, the occurrence of dew condensation at the tip of the injector 30 is suppressed even when the automatic stop is executed.
- a control part determines whether the temperature of the injector 30 is the temperature A or less (step S30).
- the temperature A a temperature that is estimated not to cause condensation at the tip of the injector 30 even when the automatic stop is performed in a state where the temperature of the injector 30 is higher than the temperature A is used.
- the temperature A it is estimated that even if the automatic stop is executed in a state where the temperature of the injector 30 is higher than the temperature A, the temperature of the cylinder inner wall surface becomes the dew point or less before the tip temperature of the injector 30. Is used.
- step S30 even if the automatic stop is executed when it is determined No in step S30, the occurrence of condensation at the tip of the injector 30 is suppressed.
- it is determined Yes in step S30 and if automatic stop is executed it is estimated with a high probability that the tip end temperature of the injector 30 will be below the dew point before the temperature of the cylinder inner wall surface. Is done.
- the control unit acquires the temperature A based on an index having a correlation with the temperature of the cylinder inner wall surface.
- the control unit uses the temperature of the refrigerant as an example of an index having a correlation with the temperature of the cylinder inner wall surface. The higher the refrigerant temperature, the higher the temperature of the cylinder inner wall surface, and the lower the refrigerant temperature, the lower the temperature of the cylinder inner wall surface. Therefore, the refrigerant temperature has a positive correlation with the temperature of the cylinder inner wall surface. Yes.
- a map that defines the temperature A in association with the temperature of the refrigerant (specifically, the temperature of the refrigerant in the water jacket 26) is stored in the storage unit of the control device 10 of the present embodiment.
- An example of this map is shown in Table 1 below.
- the refrigerant temperature satisfies the relationship of T a1 ⁇ T a2 ⁇ T a3 ⁇ T a4 ⁇ T a5 ⁇ T a6
- the temperature A satisfies T b1 ⁇ T b2 ⁇ T b3 ⁇ T b4 ⁇ T b5 ⁇ T b6 .
- the map according to the present embodiment is a map that defines the temperature A in association with the refrigerant temperature so that the temperature A increases as the refrigerant temperature increases. This map is obtained in advance by experiments, simulations, etc. and stored in the storage unit.
- the control unit according to the present embodiment extracts the temperature A corresponding to the temperature of the refrigerant acquired based on the detection result of the temperature sensor 70a from this map, and uses the extracted temperature A as the temperature A of step S30.
- the specific acquisition method of the temperature A used in step S30 is not limited to the acquisition method based only on the refrigerant temperature as described above.
- the temperature A can be acquired using, for example, the fuel injection history of the injector 30 (specifically, the heat energy input history of the injector 30) in addition to the refrigerant temperature.
- the control part which concerns on a present Example uses the temperature of the front-end
- the control unit acquires the tip end temperature by the following method.
- the tip end temperature (Tnzl) of the injector 30 is cooled by the amount of temperature rise (Qcomb) due to heat received from the combustion gas (gas burned in the cylinder 23) and the fuel injected from the injection hole 33. It can be expressed by the sum of the temperature drop amount ( ⁇ Qfuel). This is expressed by the following formula (1).
- Tnzl Qcomb ⁇ Qfuel (1)
- Qcomb in Expression (1) can be calculated based on the rotational speed (NE) of the internal combustion engine 20, the fuel injection timing (IT), and the torque (TQ) of the internal combustion engine 20.
- Qfuel can be calculated based on the refrigerant temperature (Tw) and the fuel temperature (Tf). Therefore, when equation (1) is rewritten using the rotational speed (NE), fuel injection timing (IT), torque (TQ), refrigerant temperature (Tw), and fuel temperature (Tf), equation (2) It becomes like this.
- Equation (2) a, b, c, d, and e are conformity coefficients (all positive), and various conditions such as the specifications of the internal combustion engine 20, individual differences of the internal combustion engine 20, the arrangement position of the cylinder 23, and the like.
- the control unit acquires the rotation speed (NE) and torque (TQ) based on the detection result of the crank position sensor 71.
- the control unit acquires the fuel injection timing (IT) based on a map of fuel injection timings stored in advance in the storage unit.
- the control unit acquires the refrigerant temperature (Tw) based on the detection result of the temperature sensor 70a, and acquires the fuel temperature (Tf) based on the detection result of the temperature sensor 70b.
- the control unit obtains the temperature of the injector 30 (specifically, the tip end temperature of the injector 30) according to step S30.
- the method for acquiring the tip end temperature of the injector 30 by the control unit is not limited to this.
- the control unit may acquire the tip end temperature based on the detection result of the temperature sensor. it can.
- step S50 the control unit permits automatic stop (step S50).
- the temperature of the injector 30 is higher than the temperature A, the occurrence of dew condensation at the tip of the injector 30 is suppressed even when the automatic stop is executed.
- step S30 When it is determined Yes in step S30 (that is, when the temperature of the refrigerant is within the temperature range of the temperature P to the temperature Q and the temperature of the injector 30 is the temperature A or less), the control unit prohibits the automatic stop. (Step S40). Specifically, the control unit transmits a signal prohibiting automatic stop. After step S40, the control unit ends the execution of the flowchart. Note that the control unit that has received the signal for prohibiting automatic stop transmitted in step S40 does not execute automatic stop even if the above-described automatic stop condition is satisfied.
- FIG. 4A is a schematic diagram illustrating a change in the refrigerant temperature with time when the vehicle 5 includes the control device according to the first comparative example and the control device according to the second comparative example.
- FIG. 4B is a schematic diagram showing a temporal change in the tip portion temperature of the injector 30 when the vehicle 5 includes the control device according to the first comparative example and the control device according to the second comparative example.
- the solid line indicates Comparative Example 1
- the dotted line indicates Comparative Example 2.
- the horizontal axis represents the elapsed time from the start of the internal combustion engine 20 (specifically, when the start switch of the internal combustion engine 20 is turned on and cranking is started). Is shown.
- shaft of Fig.4 (a) has shown the temperature of the refrigerant
- the vertical axis in FIG. 4B indicates the tip temperature of the injector 30.
- times t 1 , t 3 and t 5 are times when the automatic stop is executed, and times t 2 , t 4 and t 6 are times when the automatic start is executed. It is.
- the temperature of the refrigerant continues to rise with time. This is considered to be due to the fact that when the internal combustion engine 20 is started, the cylinder block 21 and the cylinder head 22 are warmed over time, and as a result, the temperature of the refrigerant has also increased.
- the refrigerant temperature decreases when the automatic stop is executed, and the refrigerant temperature increases when the automatic start is executed.
- the refrigerant temperature gradually increases while repeating the decrease and the increase.
- the time for which the temperature of the refrigerant is included in the range between the temperature P and the temperature Q is longer in Comparative Example 2 than in Comparative Example 1.
- the tip temperature of the injector 30 increases with time.
- the tip portion temperature of the injector 30 decreases when the automatic stop is executed, and increases when the automatic start is executed.
- the comparative example 2 requires a long time for the tip portion temperature of the injector 30 to become higher than the temperature A, as compared with the comparative example 1. That is, in Comparative Example 2, the time during which the tip temperature of the injector 30 is equal to or lower than the temperature A is longer than that in Comparative Example 1.
- the temperature of the refrigerant is between the temperature P and the temperature Q.
- the time included in the range is increased, and the time during which the tip end temperature of the injector 30 is equal to or lower than the temperature A is also increased. Therefore, it can be said that the comparative example 2 is more likely to cause dew condensation at the tip of the injector 30 than the comparative example 1.
- FIG. 4C is a schematic diagram showing temporal changes between the tip end temperature of the injector 30 and the temperature of the cylinder inner wall surface when the vehicle 5 includes the control device according to the comparative example 2. Specifically, a curve 102 in FIG. 4C shows an enlarged view of the vicinity of the time t 1 in the tip portion temperature of the injector 30 according to Comparative Example 2 in FIG.
- the dew condensation adhering to the tip of the injector 30 includes an acid component contained in the gas (residual gas) remaining in the cylinder 23. Therefore, when condensation occurs at the tip of the injector 30, the tip of the injector 30 may be corroded by the acid of condensation. In particular, when the nozzle hole 33 formed at the tip of the injector 30 corrodes, the hole diameter of the nozzle hole 33 (particularly, the hole diameter at the outlet of the nozzle hole 33) may increase. In this case, it becomes difficult to inject the fuel finely, and as a result, the exhaust emission may be deteriorated, or the DPF may be clogged.
- the control unit (CPU 11) is such that the temperature of the injector 30 is equal to or lower than the temperature A (which corresponds to a predetermined temperature). And the temperature of the refrigerant
- the temperature of the injector 30 is equal to or lower than the temperature A, and the temperature of the refrigerant that cools the internal combustion engine 20 is within a temperature range that is higher than the temperature P lower than the dew point and lower than the temperature Q higher than the dew point.
- automatic stop is executed in some cases, it is estimated that condensation occurs at the tip of the injector 30.
- automatic stop is prohibited in such a case. Therefore, it is possible to suppress dew condensation from occurring at the tip of the injector 30. Thereby, it can suppress that the injector 30 corrodes by dew condensation. As a result, corrosion of the injection hole 33 of the injector 30 due to condensation can be suppressed. Thereby, generation
- the hardware configuration of the control device 10 is the same as the hardware configuration of the control device 10 according to the first embodiment described with reference to FIG. 1A, but the content of the automatic stop prohibition permission process is the control according to the first embodiment. Different from the device 10. Specifically, the control unit of the control device 10 according to the present embodiment executes the flowchart of FIG. 5 described below instead of the flowchart of FIG. 2 according to the first embodiment as the automatic stop prohibition permission process. This is different from the control unit of the control device 10 according to the first embodiment.
- the hardware configuration of the vehicle 5 to which the control device 10 is applied is the same as that of the vehicle 5 according to the first embodiment described with reference to FIGS. 1 (a) to 1 (c).
- FIG. 5 is a diagram showing an example of a flowchart of automatic stop prohibition permission processing according to the present embodiment.
- the control unit of the control device 10 according to the present embodiment repeatedly executes the flowchart of FIG. 5 at a predetermined cycle after the internal combustion engine 20 is started.
- the control unit according to the present embodiment determines whether or not the temperature of the injector 30 is equal to or lower than the temperature A (step S5). Since step S5 according to the present embodiment is the same as step S30 according to the first embodiment, detailed description thereof is omitted.
- step S50 the control unit permits the automatic stop of the internal combustion engine 20 (step S50). Since step S50 according to the present embodiment is the same as step S50 according to the first embodiment, detailed description thereof is omitted. In this case, since the temperature of the injector 30 is higher than the temperature A, the occurrence of dew condensation at the tip of the injector 30 is suppressed even when the automatic stop is executed. After step S50, the control unit ends the execution of the flowchart.
- step S5 the control unit determines whether or not the temperature of the refrigerant that cools the internal combustion engine 20 is equal to or higher than the temperature P (step S10). Since step S10 according to the present embodiment is the same as step S10 according to the first embodiment, detailed description thereof is omitted. When it determines with No in step S10, a control part permits the automatic stop of the internal combustion engine 20 (step S50).
- step S10 determines whether or not the temperature of the refrigerant that cools the internal combustion engine 20 is equal to or lower than the temperature R (step S15).
- the temperature R is higher than the temperature P and lower than the temperature Q. In this embodiment, the temperature R is higher than the dew point. For this temperature R, an appropriate value is obtained in advance and stored in the storage unit.
- a control part performs step S15 by determining whether the temperature of the refrigerant
- step S40 the control unit prohibits the automatic stop of the internal combustion engine 20 (step S40). Since step S40 according to the present embodiment is the same as step S40 according to the first embodiment, detailed description thereof is omitted. That is, the control unit according to the present embodiment prohibits execution of automatic stop of the internal combustion engine 20 when the temperature of the injector 30 is equal to or lower than the temperature A and the temperature of the refrigerant is within a predetermined temperature range including the dew point. As a predetermined temperature range, a temperature range between a temperature P lower than the dew point and a temperature R lower than the dew point is used. After step S40, the control unit ends the execution of the flowchart.
- step S15 the control unit determines whether or not the temperature of the refrigerant is equal to or lower than the temperature Q (step S20). Since step S20 according to the present embodiment is the same as step S20 according to the first embodiment, detailed description thereof is omitted.
- a control part permits an automatic stop (step S50).
- a control part raises the rotation speed (rpm) of the internal combustion engine 20 (step S45).
- the control unit according to the present embodiment has a rotational speed higher than the rotational speed of the internal combustion engine 20 at the time when the rotational speed of the internal combustion engine 20 is determined as Yes in step S20 (this is referred to as X (rpm)).
- X rpm
- the control unit according to the present embodiment sets the rotational speed of the internal combustion engine 20 within a temperature range in which the temperature of the injector 30 is equal to or lower than the temperature A and the refrigerant temperature is higher than the temperature R and lower than the temperature Q.
- the rotational speed (X) is set to be higher than the rotational speed of the internal combustion engine 20 at the time when the condition is satisfied.
- control unit holds this high rotational speed (X) state for a predetermined time (referred to as N (s)).
- N predetermined time
- control unit specifically increases the fuel injection amount from the injector 30 when increasing the rotational speed of the internal combustion engine 20.
- the control unit permits automatic stop in step S50.
- the control unit ends the execution of the flowchart.
- FIG. 6A is a schematic diagram of a change over time in the rotational speed of the internal combustion engine 20 when step S45 is executed.
- the vertical axis indicates the rotational speed of the internal combustion engine 20
- the horizontal axis indicates time.
- Figure 6 time t 0 of (a) is a time at which the execution of the step S45 is started.
- Time t 1 is the time the automatic stop is performed automatically stopped is allowed in step S50.
- the rotational speed of the internal combustion engine 20 is Y (rpm), and when the automatic stop is permitted in step S50, the automatic stop is immediately performed.
- the change over time of the rotational speed of the internal combustion engine 20 is schematically illustrated on the assumption that it is executed.
- the rotational speed of the internal combustion engine 20 is a high X (rpm) to N (s) holding than Y (rpm).
- the automatic stop rotational speed of the execution engine 20 is set to 0 at time t 1.
- the control unit (CPU 11) cools the internal combustion engine 20 when the temperature of the injector 30 is equal to or lower than the temperature A (which corresponds to a predetermined temperature).
- the temperature of the refrigerant is within a temperature range of a temperature P lower than the dew point (which corresponds to the first temperature) and a temperature R higher than the dew point (which corresponds to the second temperature in this embodiment).
- step S40 automatic stop is prohibited.
- the control unit According to the control unit according to the present embodiment, the execution of the automatic stop can be prohibited in such a case. Thereby, it can suppress that dew condensation arises in the front-end
- the control unit further includes the temperature of the refrigerant that is higher than the temperature R and the temperature Q (in the present embodiment, this is the first If it is within the following temperature range (corresponding to 3 temperatures), the rotational speed of the internal combustion engine 20 is increased in step S45.
- the temperature of the injector 30 is equal to or lower than the temperature A and the temperature of the refrigerant is within the temperature range greater than the temperature R and equal to or lower than the temperature Q, if automatic stop is performed, condensation is formed on the tip of the injector 30.
- the temperature of the tip portion of the injector 30 can be increased by increasing the rotational speed of the internal combustion engine 20. it can.
- the rise in the tip end temperature of the injector 30 due to the increase in the rotational speed of the internal combustion engine 20 is illustrated as follows.
- FIG. 6B is a schematic diagram for explaining the temporal change in the tip temperature of the injector 30 according to the present embodiment.
- a curve 104 in FIG. 6B shows a time change of the tip end portion temperature of the injector 30 when Step S45 according to the present embodiment is executed.
- Time t 0 and time t 1 in FIG. 6B are the same time as time t 0 and time t 1 in FIG. 6A, respectively.
- a curve 105 in FIG. 6B shows a change over time of the tip end portion temperature of the injector 30 when step S45 is not executed.
- the curve 105 shows the time change of the tip portion temperature of the injector 30 when the automatic stop is permitted in step S50 without executing step S45.
- step S45 when the tip temperature of the injector 30 rises in step S45, it is possible to suppress the formation of condensation at the tip of the injector 30. As a result, corrosion of the injector 30 due to condensation can be suppressed.
- the control device 10 for example, when the temperature of the injector 30 is equal to or lower than the temperature A and the temperature of the refrigerant is within the temperature range from the temperature P to the temperature Q, the execution of the automatic stop is prohibited. Thus, the temperature range of the refrigerant for which the automatic stop is prohibited is narrowed. Therefore, according to the control apparatus 10 which concerns on a present Example, corrosion of the injector 30 by dew condensation can be suppressed, narrowing the temperature range of the refrigerant
- the control unit increases the rotational speed (X) of the internal combustion engine 20 according to step S45 as the difference between the temperature of the injector 30 and the temperature A increases.
- the greater the difference between the temperature of the injector 30 and the temperature A that is, the more likely condensation occurs at the tip of the injector 30 when it is automatically stopped, the more the rotation speed (X ) Can be increased, and the temperature of the tip of the injector 30 can be further increased. Thereby, corrosion of the injector 30 due to condensation can be effectively suppressed.
- step S45 when the rotational speed of the internal combustion engine 20 is increased in step S45 as described above, the temperature of the refrigerant can be increased by increasing the temperature of the internal combustion engine 20. As a result, it is possible to increase the possibility of being determined as No in step S15, thereby reducing the chance of executing step S40.
- the control unit sets the rotational speed of the internal combustion engine 20 according to step S45 to X.
- the predetermined time (N) held at the time may be lengthened. In this case as well, it is possible to effectively increase the temperature at the tip of the injector 30. However, in this case, as a result of the predetermined time (N) becoming longer, the period during which step S45 is executed becomes longer. As a result, the user of the vehicle 5 is forcibly forced while the step S45 is being executed. The risk of stopping driving increases.
- the rotation speed (X) of the internal combustion engine 20 according to step S45 is higher than when the predetermined time (N) is increased, It is preferable at the point which can reduce such a risk.
- the specific value of the temperature R used in the determination process of step S15 can be set from the following viewpoint, for example. Specifically, the lower the temperature R, the higher the possibility of being determined as No in step S15. As a result, the opportunity to execute step S45 increases, so that corrosion of the injector 30 due to condensation can be effectively suppressed. Is preferable. On the other hand, if there are too many opportunities to execute step S45, the fuel consumption may be deteriorated (because the rotational speed of the internal combustion engine 20 increases in step S45). Therefore, an appropriate value may be set as the temperature R in consideration of the balance between the merits and demerits resulting from the increased execution opportunity of step S45.
- the internal combustion engine 20 including the EGR device (EGR passage 60, EGR cooler 61, and EGR valve 62) is used as an example of the internal combustion engine 20 to which the control device 10 is applied.
- the internal combustion engine 20 to which the device 10 is applied is not limited to the one provided with the EGR device. Even when the internal combustion engine 20 is not equipped with an EGR device, there is a possibility that condensation including an acid component in the residual gas in the cylinder 23 adheres to the tip of the injector 30 when the automatic stop is executed. In this case, the tip of the injector 30 may corrode. Therefore, the control device 10 may be applied to the internal combustion engine 20 that does not include such an EGR device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
車両の制御装置(10)は、車両(5)に搭載された内燃機関(20)の気筒(23)に燃料を噴射するインジェクタ(30)の温度が所定温度以下であり、且つ内燃機関(20)を冷却する冷媒の温度が、気筒(23)に存在するガスが結露する温度である露点を含む所定の温度範囲内にある場合に、内燃機関(20)の自動停止の実行を禁止する制御部(11)を備えている。
Description
本発明は、車両の制御装置に関する。
従来、気筒に燃料を噴射するインジェクタを備える内燃機関が知られている。また従来、このような内燃機関を自動停止させる技術が知られている。例えば特許文献1には、気筒に燃料を噴射するインジェクタを備えたディーゼルエンジンを搭載した車両において、アイドル時等の所定の自動停止条件が成立した場合にインジェクタからの燃料噴射を停止させることでディーゼルエンジンを自動停止させる技術が開示されている。
特許文献1に例示されているような車両において、内燃機関が自動停止した場合に、インジェクタの噴孔が形成されている先端部に結露が生じる可能性がある。この場合、インジェクタが腐食する可能性がある。
本発明は、結露によってインジェクタが腐食することを抑制することができる車両の制御装置を提供することを目的とする。
本発明に係る車両の制御装置は、車両に搭載された内燃機関の気筒に燃料を噴射するインジェクタの温度が所定温度以下であり、且つ前記内燃機関を冷却する冷媒の温度が、前記気筒に存在するガスが結露する温度である露点を含む所定の温度範囲内にある場合に、前記内燃機関の自動停止の実行を禁止する制御部を備えている。
車両に搭載された内燃機関の気筒に燃料を噴射するインジェクタの温度が所定温度以下であり、且つ内燃機関を冷却する冷媒の温度が、気筒に存在するガスが結露する温度である露点を含む所定の温度範囲内にある場合において、仮に自動停止が実行された場合、インジェクタの先端部に結露が生じることが推定されるところ、本発明に係る車両の制御装置によれば、このような場合に自動停止の実行を禁止することができる。それにより、インジェクタの先端部に結露が生じることを抑制することができる。その結果、結露によってインジェクタが腐食することを抑制することができる。
上記構成において、前記所定の温度範囲内は、前記露点よりも低い第1温度以上且つ前記露点よりも高い第2温度以下の温度範囲内であってもよい。
上記構成において、前記所定の温度範囲内は、前記露点よりも低い第1温度以上且つ前記露点よりも高い第2温度以下の温度範囲内であり、前記制御部は、さらに、前記インジェクタの温度が所定温度以下である場合において前記冷媒の温度が前記第2温度より大きく且つ第3温度以下の温度範囲内にある場合には、前記内燃機関の回転数を上昇させてもよい。
この構成によれば、内燃機関の回転数を上昇させることで、インジェクタの先端部の温度を上昇させることができる。それにより、インジェクタの先端部に結露が生じることを抑制することができる。
本発明によれば、結露によってインジェクタが腐食することを抑制することができる車両の制御装置を提供することができる。
以下、本発明を実施するための形態を説明する。
本発明の実施例1に係る車両の制御装置10について説明する。まず制御装置10が適用される車両5の全体構成について説明し、次いで制御装置10の詳細について説明する。図1(a)は車両5の全体構成を示す模式図である。車両5は、制御装置10と内燃機関20とを備えている。制御装置10は車両5の内燃機関20を制御する装置である。本実施例においては、制御装置10の一例として、CPU(Central Processing Unit)11、ROM(Read Only Memory)12およびRAM(Random Access Memory)13を備える電子制御装置(Electronic Control Unit)を用いる。CPU11は、内燃機関20を制御する制御部としての機能を有している。ROM12およびRAM13は、CPU11の動作に必要な情報を記憶する記憶部としての機能を有している。
本実施例に係る内燃機関20は圧縮着火式の内燃機関であり、具体的にはディーゼルエンジンである。但し制御装置10が適用される内燃機関20はこれに限定されるものではなく、例えばガソリンエンジンであってもよい。内燃機関20は、シリンダブロック21と、シリンダブロック21の上部に配置されたシリンダヘッド22と、シリンダブロック21およびシリンダヘッド22に形成された気筒23に配置されたピストン24とを備えている。本実施例においてシリンダブロック21の内周面を、ボア壁25と称する。シリンダブロック21およびシリンダヘッド22には、冷媒が通過するウォータージャケット26が形成されている。ウォータージャケット26には、ポンプから冷媒が供給される。ウォータージャケット26の冷媒によって、シリンダブロック21、シリンダヘッド22およびピストン24の温度が高温になり過ぎることが抑制されている。
また内燃機関20は、気筒23に燃料を噴射するインジェクタ30と、インジェクタ30に接続したコモンレール40とを備えている。インジェクタ30の動作は制御装置10の制御部が制御する。本実施例においてインジェクタ30は、シリンダヘッド22に配置されており、シリンダヘッド22の下面側からピストン24の頂面(上面)に向けて燃料を噴射する。但しインジェクタ30の具体的な配置箇所は、気筒23に燃料を噴射できる箇所であれば、図1(a)に図示されている箇所に限定されるものではない。インジェクタ30の詳細は後述する。なお本実施例において内燃機関20は複数の気筒23を有しており、インジェクタ30は各々の気筒23のシリンダヘッド22に配置されている。コモンレール40は高圧化された燃料を蓄積する蓄圧パイプである。コモンレール40にはインジェクタ30(本実施例においては複数のインジェクタ30)が接続しており、コモンレール40に蓄積された高圧の燃料は各々のインジェクタ30に供給される。なお本実施例において、燃料は軽油である。
また内燃機関20は、気筒23に吸入される吸気が通過する吸気通路50と、気筒23から排出された排気が通過する排気通路55とを備えている。吸気通路50の上流端から吸気通路50に流入する吸気は、新気(排気を含まない空気)である。なお図1においては図示はされていないが、排気通路55の後述するEGR通路60が接続している箇所よりも排気流動方向で下流側にはDPF(ディーゼルパティキュレートフィルタ)が配置されている。排気に含まれるパティキュレートは、DPFによって捕集される。
また内燃機関20は、EGR(Exhaust Gas Recirculation)通路60と、EGRクーラ61と、EGRバルブ62とを備えている。EGR通路60は、吸気通路50の通路途中と排気通路55の通路途中とを連通している。EGR通路60は、気筒23から排出された排気の一部を気筒23に再循環させる通路である。これ以降、EGR通路60を通過して気筒23に導入される排気をEGRガスと称する場合がある。
EGRクーラ61はEGR通路60に配置されている。EGRクーラ61はEGRガスを冷却する装置である。なお本実施例に係るEGRクーラ61には、ウォータージャケット26を通過した冷媒が流入し、EGRクーラ61はこの冷媒によってEGRガスを冷却している。但しEGRクーラ61に用いられる冷媒は、このようなウォータージャケット26を通過した冷媒に限定されるものではない。EGRバルブ62はEGR通路60に配置されている。具体的には本実施例に係るEGRバルブ62はEGR通路60のEGRクーラ61よりも下流側に配置されている。但しEGRバルブ62のEGR通路60における具体的な配置箇所は、これに限定されるものではない。EGRバルブ62は制御装置10の制御部からの指示を受けて開閉することでEGRガスの量を調整する。
また内燃機関20は、温度センサ70aと、温度センサ70bと、クランクポジションセンサ71とを備えている。温度センサ70aは内燃機関20を冷却する冷媒の温度を検出し、検出結果を制御装置10に伝える。具体的には本実施例に係る温度センサ70aは、ウォータージャケット26の冷媒の温度を検出している。但し温度センサ70aの具体的な冷媒温度検出箇所はこれに限定されるものではない。温度センサ70bは、燃料の温度を検出し、検出結果を制御装置10に伝える。具体的には本実施例に係る温度センサ70bは、コモンレール40の燃料の温度を検出している。但し温度センサ70bの具体的な燃料温度検出箇所は、これに限定されるものではない。クランクポジションセンサ71は内燃機関20のクランクシャフト(クランクシャフトはピストン24にコンロッドを介して接続されている)の位置を検出し、検出結果を制御装置10に伝える。なお車両5は、これらのセンサ以外にも、例えばブレーキの開度を検出するブレーキ開度センサ、アクセルの開度を検出するアクセル開度センサ、車両5の車速を検出する車速センサ等、種々のセンサを備えている。
図1(b)および図1(c)は、インジェクタ30の先端部近傍を拡大した模式的断面図である。インジェクタ30は、ボディ31と、ボディ31の内部に配置されたニードル弁32とを備えている。インジェクタ30は、ボディ31の先端部が気筒23内に露出するようにシリンダヘッド22に配置されている。なお本実施例において先端部とは、インジェクタ30の気筒23内に露出した部分のうちインジェクタ30の先端から所定距離後端側に至る範囲の部分をいい、具体的にはボディ31の先端の円錐形状を呈している部分(すなわちノズル形状を有している部分)をいう。インジェクタ30の後端部(先端部とは反対側の端部である)には、コモンレール40を経由した燃料が供給される。
ボディ31の先端部には噴孔33が形成されている。燃料は噴孔33から噴射される。本実施例においてインジェクタ30は、複数の噴孔33を有している。但しインジェクタ30が有する噴孔33の数は複数に限定されるものではなく、1でもよい。ニードル弁32は、ニードル弁32の軸34に沿った方向(以下、軸線方向と称し、図1(b)および図1(c)においては上下方向である)に変位することで、噴孔33からの燃料の噴射の開始および停止を行う。具体的にはインジェクタ30は、ニードル弁32を駆動するアクチュエータ(図示せず)を備えており、このアクチュエータが制御装置10の制御部からの指示を受けてニードル弁32を軸線方向に変位させている。
ニードル弁32の先端とボディ31との間にはサック室35が設けられている。ニードル弁32の外周面とボディ31の内周面との間には内部燃料通路36が設けられている。内部燃料通路36はインジェクタ30の内部に設けられた燃料通路である。ニードル弁32の先端部には、円錐台形状(円錐の先端を切断したような形状)を呈する部分が設けられており、この部分の表面をシート面37と称する。ボディ31の内周面にはシート面37に対応したテーパ形状の部分が設けられており、この部分をシート部38と称する。
図1(b)に示すように、シート面37がシート部38に接触していない場合、サック室35と内部燃料通路36とは連通状態となっている。この場合、内部燃料通路36の燃料はサック室35に供給され、次いで噴孔33から噴射される。図1(c)に示すように、ニードル弁32が先端側に変位し、その結果、シート面37がシート部38に着座した場合(すなわち、シート面37がシート部38に接触した場合)、サック室35と内部燃料通路36とは遮断状態になる。この場合、噴孔33からの燃料噴射は停止される。このように本実施例に係るインジェクタ30は、シート面37がシート部38に着座した場合に噴孔33からの燃料噴射が停止し、シート面37がシート部38から離座した場合に噴孔33からの燃料噴射が開始する構造のインジェクタとなっている。但しインジェクタ30の具体的な構造は、先端部に噴孔33を有するものであれば、上述した構造に限定されるものではない。
続いて制御装置10の詳細について説明する。まず本実施例に係る制御装置10の制御部は、内燃機関20の始動後において、車両5の運転状態に基づいてインジェクタ30からの燃料噴射量および燃料噴射時期を制御する。また制御部は、車両5の運転状態に基づいてEGRバルブ62を制御する。このインジェクタ30およびEGRバルブ62の制御は、公知の制御手法を適用できるため、これ以上詳細な説明は省略する。
また制御部は、内燃機関20の始動後において、内燃機関20の自動停止を禁止するか許可するかを判断する自動停止禁止許可処理を実行する。自動停止禁止許可処理の詳細は後述する。制御部は、自動停止禁止許可処理が実行された結果、自動停止が許可された場合に自動停止を実行する。なお自動停止を実行するにあたり、具体的には本実施例に係る制御部は、インジェクタ30からの燃料噴射を停止させることで内燃機関20を自動停止させる。但し内燃機関20を自動停止させる具体的手法は、このようなインジェクタ30からの燃料噴射を停止させる手法に限定されるものではなく、公知の種々の自動停止技術を適用することができる。
なお制御部は、自動停止禁止許可処理が実行された結果、自動停止が許可された場合において、さらに所定の自動停止条件が満たされた場合に、自動停止を実行してもよい。なお所定の自動停止条件としては、例えば、内燃機関20の始動後において内燃機関20のアイドル運転状態が所定期間継続しているという条件を用いることができる。具体的には自動停止条件として、内燃機関20の始動後において車両5のブレーキが所定期間作動し且つ車両5の速度が所定値以下になった場合(つまり内燃機関20のアイドル運転状態が所定期間継続した場合)を用いることができる。但し自動停止条件の具体例はこれに限定されるものではない。
また制御部は、自動停止が実行された後に所定の再始動条件が満たされた場合に、インジェクタ30からの燃料噴射を開始させることで、内燃機関20を自動始動させる。本実施例においては再始動条件として、車両5のブレーキの作動が解除され、且つ車両5のアクセルが踏み込まれたとの条件を用いる。但し、再始動条件の具体的内容はこれに限定されるものではない。なお本実施例に係る制御部は、ブレーキが作動したか否かを、ブレーキ開度センサの検出結果に基づいて判断する。制御部は、アクセルが踏み込まれたか否かをアクセル開度センサの検出結果に基づいて判断する。制御部は、車両5の車速を車速センサの検出結果に基づいて取得する。
続いて自動停止禁止許可処理の詳細について説明する。本実施例に係る制御装置10の制御部は、インジェクタ30の温度が所定温度以下であり、且つ内燃機関20を冷却する冷媒の温度が、気筒23に存在するガスが結露する温度である露点を含む所定の温度範囲内にある場合に、自動停止の実行を禁止する。また本実施例に係る制御部は、この所定の温度範囲内として、露点よりも低い温度P以上且つ露点よりも高い温度Q以下の温度範囲内を用いる。本実施例に係る自動停止禁止許可処理の詳細についてフローチャートを用いて説明すると次のようになる。
図2は本実施例に係る自動停止禁止許可処理のフローチャートの一例を示す図である。制御装置10の制御部は、図2のフローチャートを内燃機関20の始動後に所定周期で繰り返し実行する。まず制御部は、内燃機関20を冷却する冷媒の温度が温度P以上であるか否かを判定する(ステップS10)。温度Pは、露点よりも低い温度であれば特に限定されるものではないが、本実施例においては、温度Pの一例として、冷媒の温度がこの温度Pよりも低い場合に自動停止が実行されてもインジェクタ30の先端部に結露が生じないと推定される温度を用いる。この温度Pについて図を用いて説明すると次のようになる。
図3(a)は温度Pを説明するための図である。具体的には図3(a)は、冷媒の温度が温度Pの場合におけるインジェクタ30の先端部温度と気筒内壁面の温度との自動停止前後の変化を模式的に図示している。図3(a)の縦軸は温度を示し、横軸は時間を示している。図3(a)の縦軸において露点がCで図示されている。時間t1は、自動停止が開始された時刻を示している。曲線100はインジェクタ30の先端部の温度を示し、曲線101は気筒内壁面の温度を示している。なお気筒内壁面とは、気筒23の内壁面を意味し、具体的にはボア壁25およびシリンダヘッド22の内壁面を意味している。
図3(a)に示すように、温度Pは露点(C)よりも所定温度低い温度になっている。また、冷媒の温度が温度Pの場合、自動停止が実行される前(時間t1よりも早い時期)において、気筒内壁面の温度は露点(C)よりも低温になっている。このような状況の下で時間t1において自動停止が実行された場合、気筒内壁面の温度はインジェクタ30の先端部の温度よりも先に露点(C)以下になる。この場合、気筒内壁面に結露が生じるため、インジェクタ30の先端部に結露が生じることが抑制される。したがって、冷媒の温度が温度Pよりも低い場合、自動停止が実行されてもインジェクタ30の先端部に結露は生じないと推定される。この温度Pは予め実験、シミュレーション等によって求めておき、記憶部に記憶させておく。本実施例に係る制御部は図2のステップS10において、温度センサ70aの検出結果に基づいて取得した冷媒の温度が記憶部に記憶されている温度P以上であるか否かを判定することで、ステップS10を実行している。
図2のステップS10でNoと判定された場合、制御部は、自動停止を許可する(ステップS50)。具体的には制御部は、自動停止を許可するとの信号を送信する。ステップS50の後に制御部はフローチャートの実行を終了する。なおこの場合、自動停止が実行されても、冷媒の温度が温度Pより低いため、インジェクタ30の先端部に結露が生じることは抑制されている。
ステップS10でYesと判定された場合、制御部は、内燃機関20を冷却する冷媒の温度が温度Q以下であるか否かを判定する(ステップS20)。温度Qは、露点よりも高い温度であれば特に限定されるものではないが、本実施例においては、温度Qの一例として、冷媒の温度がこの温度Qよりも高い場合に自動停止が実行されてもインジェクタ30の先端部に結露が生じないと推定される温度を用いる。この温度Qについて図を用いて説明すると次のようになる。
図3(b)は温度Qを説明するための図である。具体的には図3(b)は、冷媒の温度が温度Qの場合におけるインジェクタ30の先端部温度と気筒内壁面の温度との自動停止前後の変化を模式的に図示している。図3(b)の縦軸は温度を示し、横軸は時間を示している。図3(b)の縦軸において露点がCで図示されている。図3(b)の横軸において時間t1は、自動停止が開始された時刻を示している。曲線100はインジェクタ30の先端部の温度を示し、曲線101は気筒内壁面の温度を示している。図3(b)において、温度Qは露点(C)よりも所定温度高い温度になっている。
図3(b)の曲線101が示す気筒内壁面の温度は、自動停止の実行前において露点(C)よりも高温になっている。また曲線100が示すインジェクタ30の先端部の温度も、自動停止の実行前において露点(C)よりも高温になっている。このような状況の下で時間t1において自動停止が実行されても、インジェクタ30の先端部の温度および気筒内壁面の温度は露点以下にならない。したがって、インジェクタ30の先端部に結露は生じない。またこの場合、気筒内壁面にも結露は生じない。このように、冷媒の温度が温度Qよりも高い場合、自動停止が実行されてもインジェクタ30の先端部に結露は生じないと推定される。この温度Qは予め実験、シミュレーション等によって求めておき、記憶部に記憶させておく。本実施例に係る制御部は図2のステップS20において、温度センサ70aの検出結果に基づいて取得した冷媒の温度が記憶部に記憶されている温度Q以上であるか否かを判定することで、ステップS20を実行している。
図2のステップS20でNoと判定された場合、制御部は自動停止を許可する(ステップS50)。なおこの場合、冷媒の温度が温度Qよりも高いため、自動停止が実行されてもインジェクタ30の先端部に結露が生じることは抑制されている。
ステップS20でYesと判定された場合、制御部は、インジェクタ30の温度が温度A以下であるか否かを判定する(ステップS30)。本実施例においては、温度Aとして、インジェクタ30の温度がこの温度Aよりも高い状態で自動停止が実行されても、インジェクタ30の先端部に結露が生じないと推定される温度を用いる。具体的には温度Aとして、インジェクタ30の温度がこの温度Aよりも高い状態で自動停止が実行されても、気筒内壁面の温度がインジェクタ30の先端部温度よりも先に露点以下になると推定される温度を用いる。この場合、ステップS30でNoと判定された場合に自動停止が実行されても、インジェクタ30の先端部に結露が生じることは抑制される。逆に言えば、ステップS30でYesと判定された場合において仮に自動停止が実行された場合、インジェクタ30の先端部温度が気筒内壁面の温度よりも先に露点以下になることが高い確率で推定される。その結果、インジェクタ30の先端部に結露が生じることが高い確率で推定される。すなわち、本実施例において、冷媒温度が温度P以上温度Q以下の温度範囲内にあり且つインジェクタ30の温度が温度A以下である場合に自動停止が実行された場合、インジェクタ30の先端部に結露が生じる可能性が高いといえる。
本実施例に係る制御部は、温度Aを、気筒内壁面の温度と相関を有する指標に基づいて取得する。具体的には制御部は、気筒内壁面の温度と相関を有する指標の一例として、冷媒の温度を用いる。なお、冷媒の温度が高いほど気筒内壁面の温度は高くなり、冷媒の温度が低いほど気筒内壁面の温度は低くなるため、冷媒の温度は気筒内壁面の温度と正の相関を有している。より具体的には本実施例の制御装置10の記憶部には、温度Aを冷媒の温度(具体的にはウォータージャケット26の冷媒の温度)に関連付けて規定したマップが記憶されている。このマップの一例を示すと、次に示す表1のようになる。
表1において、冷媒温度はTa1<Ta2<Ta3<Ta4<Ta5<Ta6の関係を満たし、温度AはTb1<Tb2<Tb3<Tb4<Tb5<Tb6の関係を満たしている。すなわち、本実施例に係るマップは、冷媒温度が高くなるほど温度Aも高くなるように、温度Aを冷媒温度に関連付けて規定したマップとなっている。このマップは予め実験、シミュレーション等によって求めておき、記憶部に記憶させておく。本実施例に係る制御部は、温度センサ70aの検出結果に基づいて取得した冷媒の温度に対応する温度Aをこのマップから抽出し、抽出された温度AをステップS30の温度Aとして用いる。
なおステップS30で用いられる温度Aの具体的な取得手法は、上述したような冷媒温度のみに基づいて取得する手法に限定されるものではない。他の例を挙げると、例えば冷媒温度の他に、インジェクタ30の燃料噴射履歴(具体的にはインジェクタ30の熱エネルギ投入履歴)を用いて、温度Aを取得することも可能である。
また本実施例に係る制御部は、ステップS30で用いられるインジェクタ30の温度として、インジェクタ30の先端部の温度を用いる。具体的には制御部は次の手法によって先端部温度を取得する。まず、インジェクタ30の先端部温度(Tnzl)は、燃焼ガス(気筒23内で燃焼したガス)からの受熱による温度上昇量(Qcomb)と、噴孔33から噴射される燃料によって冷却されることによる温度低下量(-Qfuel)との和によって表すことができる。これを式で示すと下記式(1)のようになる。
Tnzl=Qcomb-Qfuel・・・(1)
Tnzl=Qcomb-Qfuel・・・(1)
式(1)のQcombは、内燃機関20の回転数(NE)、燃料噴射時期(IT)および内燃機関20のトルク(TQ)に基づいて算出することができる。Qfuelは、冷媒の温度(Tw)および燃料の温度(Tf)に基づいて算出することができる。したがって、式(1)を、回転数(NE)、燃料噴射時期(IT)、トルク(TQ)、冷媒の温度(Tw)および燃料の温度(Tf)を用いて書き換えると下記式(2)のようになる。なお式(2)においてa,b,c,d,eは適合係数(全て正である)であり、内燃機関20の仕様、内燃機関20の個体差、気筒23の配置位置等の種々の条件を考慮して式(2)で得られる先端部温度が実際の先端部温度に適合するように、実験、シミュレーション等によって求められる係数である。
Tnzl=Qcomb-Qfuel
=f(NE,IT,TQ)-f(Tw,Tf)
=(a×NE+b×IT+c×TQ)-(d×Tw+e×Tf)・・・(2)
Tnzl=Qcomb-Qfuel
=f(NE,IT,TQ)-f(Tw,Tf)
=(a×NE+b×IT+c×TQ)-(d×Tw+e×Tf)・・・(2)
制御部は、回転数(NE)およびトルク(TQ)をクランクポジションセンサ71の検出結果に基づいて取得する。制御部は燃料噴射時期(IT)を、予め記憶部に記憶されている燃料噴射時期のマップに基づいて取得する。制御部は、冷媒温度(Tw)を温度センサ70aの検出結果に基づいて取得し、燃料温度(Tf)を温度センサ70bの検出結果に基づいて取得する。このようにして本実施例に係る制御部は、ステップS30に係るインジェクタ30の温度(具体的にはインジェクタ30の先端部温度)を取得している。但し制御部によるインジェクタ30の先端部温度の取得手法は、これに限定されるものではない。他の例を挙げると、例えば車両5がインジェクタ30の先端部温度を直接検出可能な温度センサを備えている場合、制御部はこの温度センサの検出結果に基づいて先端部温度を取得することもできる。
図2のステップS30でNoと判定された場合、制御部は自動停止を許可する(ステップS50)。なおこの場合、前述したように、インジェクタ30の温度が温度Aより高いため、自動停止が実行されてもインジェクタ30の先端部に結露が生じることは抑制されている。
ステップS30でYesと判定された場合(すなわち、冷媒の温度が温度P以上温度Q以下の温度範囲内にあり且つインジェクタ30の温度が温度A以下である場合)、制御部は自動停止を禁止する(ステップS40)。具体的には制御部は、自動停止を禁止する信号を送信する。ステップS40の後に制御部はフローチャートの実行を終了する。なおステップS40で送信された自動停止を禁止する信号を受信した制御部は、仮に前述した自動停止条件が満たされた場合であっても自動停止を実行しない。
続いて本実施例に係る制御装置10の作用効果について、比較例に係る制御装置と比較しつつ説明する。まず、比較例1に係る制御装置として、自動停止および自動始動を実行しない制御装置を想定する。また比較例2に係る制御装置として、自動停止および自動始動は実行するが、本実施例に係る自動停止禁止許可処理(図2)は実行しない制御装置を想定する。図4(a)は、車両5が比較例1に係る制御装置および比較例2に係る制御装置を備えている場合の冷媒温度の時間変化を示す模式図である。図4(b)は、車両5が比較例1に係る制御装置および比較例2に係る制御装置を備えている場合のインジェクタ30の先端部温度の時間変化を示す模式図である。
図4(a)および図4(b)において、実線が比較例1を示し、点線が比較例2を示している。図4(a)および図4(b)において横軸は、内燃機関20の始動開始(具体的には内燃機関20の始動スイッチがONにされてクランキングが開始された時)からの経過時間を示している。図4(a)の縦軸は冷媒の温度を示している。図4(b)の縦軸はインジェクタ30の先端部温度を示している。図4(a)および図4(b)において、時間t1、t3およびt5は自動停止が実行された時間であり、時間t2、t4およびt6は自動始動が実行された時間である。
図4(a)を参照して、比較例1の場合、冷媒の温度は時間の経過とともに上昇し続けている。これは、内燃機関20が始動した場合、シリンダブロック21およびシリンダヘッド22が時間の経過とともに温まり、その結果、冷媒の温度も上昇したことによるものと考えられる。比較例2の場合、自動停止が実行されると冷媒温度は減少し、自動始動が実行されると冷媒温度は上昇していく。その結果、比較例2の場合、冷媒温度は低下と上昇とを繰り返しながら徐々に上昇している。その結果、比較例2は比較例1に比較して、冷媒の温度が温度Pから温度Qの間の範囲に含まれる時間が長くなっている。
図4(b)を参照して、比較例1の場合、インジェクタ30の先端部温度は時間の経過とともに上昇している。比較例2の場合、インジェクタ30の先端部温度は、自動停止が実行されると低下し、自動始動が実行されると上昇していく。その結果、比較例2は比較例1に比較して、インジェクタ30の先端部温度が温度Aよりも高くなるのに長時間を要している。すなわち比較例2は比較例1に比較して、インジェクタ30の先端部温度が温度A以下である時間が長くなっている。
以上のように、比較例1のように自動停止が実行されない場合に比較して、比較例2のように自動停止が実行される場合の方が、冷媒の温度が温度Pから温度Qの間の範囲に含まれる時間が長くなり且つインジェクタ30の先端部温度が温度A以下である時間も長くなっている。したがって、比較例2は比較例1に比較してインジェクタ30の先端部に結露が生じ易いといえる。
図4(b)を参照して、比較例2の場合、冷媒温度が温度P以上温度Q以下であり且つインジェクタ30の温度が温度A以下の領域のうち、特に先端部の温度が低温の場合(楕円で囲んだ領域)にインジェクタ30に結露が生じると考えられる。これを図を用いて説明すると次のようになる。図4(c)は、車両5が比較例2に係る制御装置を備えている場合のインジェクタ30の先端部温度と気筒内壁面の温度との時間変化を示す模式図である。具体的には図4(c)の曲線102は、図4(b)の比較例2に係るインジェクタ30の先端部温度のうち時間t1近傍を拡大して示しており、曲線103は、比較例2に係る気筒内壁面の温度を示している。時間t1において自動停止が実行された場合、比較例2に係るインジェクタ30の先端部の温度(曲線102)の方が気筒内壁面の温度(曲線103)よりも先に露点(C)になっている。この場合、時間t1において自動停止が実行された場合、インジェクタ30の先端部に結露が生じてしまう。
ここで、インジェクタ30の先端部に付着した結露は、気筒23内に残留したガス(残留ガス)に含まれる酸性分を含んでいる可能性が高い。したがって、インジェクタ30の先端部に結露が生じた場合、結露の酸によって、インジェクタ30の先端部が腐食する可能性がある。特にインジェクタ30の先端部に形成された噴孔33が腐食した場合、噴孔33の穴径(特に噴孔33の出口の穴径)が大きくなる可能性がある。この場合、燃料の微細な噴射が困難となり、ひいては排気エミッションが悪化する、DPFに詰りが生じる等、車両5に不具合が生じる可能性がある。
これに対して本実施例に係る制御装置10によれば、図2において説明したように、制御部(CPU11)は、インジェクタ30の温度が温度A(これが所定温度に相当する)以下であり、且つ内燃機関20を冷却する冷媒の温度が露点よりも低い温度P(これが第1温度に相当する)以上且つ露点よりも高い温度Q(これが第2温度に相当する)以下の温度範囲内にある場合に、ステップS40において自動停止を禁止している。ここで、前述したように、インジェクタ30の温度が温度A以下であり、且つ内燃機関20を冷却する冷媒の温度が露点よりも低い温度P以上且つ露点よりも高い温度Q以下の温度範囲内にある場合に仮に自動停止が実行された場合、インジェクタ30の先端部に結露が生じることが推定されるが、本実施例に係る制御装置10によれば、このような場合に自動停止を禁止することができることから、インジェクタ30の先端部に結露が生じることを抑制することができる。それにより、結露によってインジェクタ30が腐食することを抑制することができる。その結果、結露によるインジェクタ30の噴孔33の腐食も抑制することができる。それにより、排気エミッションの悪化、DPFの詰り等の車両5の不具合の発生を抑制することができる。
続いて本発明の実施例2に係る車両の制御装置10について説明する。制御装置10は、そのハードウエア構成は図1(a)で説明した実施例1に係る制御装置10のハードウエア構成と同じであるが、自動停止禁止許可処理の内容が実施例1に係る制御装置10と異なっている。具体的には本実施例に係る制御装置10の制御部は、自動停止禁止許可処理として、実施例1に係る図2のフローチャートに代えて、次に説明する図5のフローチャートを実行する点で、実施例1に係る制御装置10の制御部と異なっている。なお制御装置10が適用される車両5のハードウエア構成は、図1(a)~図1(c)で説明した実施例1に係る車両5と同じである。
図5は本実施例に係る自動停止禁止許可処理のフローチャートの一例を示す図である。本実施例に係る制御装置10の制御部は、図5のフローチャートを内燃機関20の始動後に所定周期で繰り返し実行する。まず本実施例に係る制御部は、インジェクタ30の温度が温度A以下であるか否かを判定する(ステップS5)。本実施例に係るステップS5は、実施例1に係るステップS30と同じため、詳細な説明は省略する。
ステップS5でNoと判定された場合、制御部は内燃機関20の自動停止を許可する(ステップS50)。本実施例に係るステップS50は実施例1に係るステップS50と同じため、詳細な説明は省略する。なお、この場合、インジェクタ30の温度が温度Aより高いため、自動停止が実行されてもインジェクタ30の先端部に結露が生じることは抑制されている。ステップS50の後に制御部はフローチャートの実行を終了する。
ステップS5でYesと判定された場合、制御部は、内燃機関20を冷却する冷媒の温度が温度P以上であるか否かを判定する(ステップS10)。本実施例に係るステップS10は、実施例1に係るステップS10と同じため、詳細な説明は省略する。ステップS10においてNoと判定された場合、制御部は内燃機関20の自動停止を許可する(ステップS50)。
ステップS10でYesと判定された場合、本実施例に係る制御部は内燃機関20を冷却する冷媒の温度が温度R以下であるか否かを判定する(ステップS15)。温度Rは、温度Pよりも高く且つ温度Qよりも低い温度である。また本実施例において温度Rは露点よりも高い温度である。この温度Rは適切な値を予め求めておき、記憶部に記憶させておく。制御部は、温度センサ70aの検出結果に基づいて取得した冷媒の温度が記憶部に記憶されている温度R以下であるか否かを判定することで、ステップS15を実行する。
ステップS15でYesと判定された場合、制御部は内燃機関20の自動停止を禁止する(ステップS40)。本実施例に係るステップS40は実施例1に係るステップS40と同じため、詳細な説明は省略する。すなわち本実施例に係る制御部は、インジェクタ30の温度が温度A以下であり且つ冷媒の温度が露点を含む所定の温度範囲内にある場合に内燃機関20の自動停止の実行を禁止するにあたり、所定の温度範囲内として、露点よりも低い温度P以上且つ露点よりも高い温度R以下の温度範囲内を用いている。ステップS40の後に制御部はフローチャートの実行を終了する。
ステップS15でNoと判定された場合、制御部は、冷媒の温度が温度Q以下であるか否かを判定する(ステップS20)。本実施例に係るステップS20は実施例1に係るステップS20と同じため、詳細な説明は省略する。ステップS20でNoと判定された場合、制御部は自動停止を許可する(ステップS50)。ステップS20でYesと判定された場合、制御部は、内燃機関20の回転数(rpm)を上昇させる(ステップS45)。具体的には本実施例に係る制御部は、内燃機関20の回転数をステップS20でYesと判定した時点における内燃機関20の回転数よりも高い回転数(これをX(rpm)と称する)にする。すなわち、本実施例に係る制御部はステップS45において、内燃機関20の回転数を、インジェクタ30の温度が温度A以下であり、且つ冷媒の温度が温度Rより大きく且つ温度Q以下の温度範囲内にあるという条件が満たされた時点における内燃機関20の回転数よりも高い回転数(X)にしている。また制御部は、この高い回転数(X)の状態を所定時間(これをN(s)と称する)保持する。なお本実施例に係る制御部は、内燃機関20の回転数を上昇させるにあたり、具体的にはインジェクタ30からの燃料噴射量を増大させている。ステップS45の後に制御部は、ステップS50において自動停止を許可する。次いで制御部はフローチャートの実行を終了する。
ステップS45が実行された場合の内燃機関20の回転数の時間変化を図示すると次のようになる。図6(a)は、ステップS45が実行された場合の内燃機関20の回転数の時間変化の模式図である。図6(a)の縦軸は内燃機関20の回転数を示し、横軸は時間を示している。図6(a)の時間t0はステップS45の実行が開始された時刻である。時間t1はステップS50で自動停止が許可されて自動停止が実行された時間である。なお図6(a)は、時間t0になるまでの間、内燃機関20の回転数がY(rpm)になっており、またステップS50において自動停止が許可された場合に自動停止が即座に実行された場合を想定して、内燃機関20の回転数の時間変化を模式的に図示している。図6(a)において、時間t0においてステップS45が実行されることで、内燃機関20の回転数はY(rpm)よりも高いX(rpm)にN(s)保持されている。その後、時間t1において自動停止が実行されて内燃機関20の回転数が0になっている。
以上説明したように本実施例に係る制御装置10によれば、制御部(CPU11)は、インジェクタ30の温度が温度A(これが所定温度に相当する)以下であり、且つ内燃機関20を冷却する冷媒の温度が露点よりも低い温度P(これが第1温度に相当する)以上且つ露点よりも高い温度R(本実施例において、これが第2温度に相当する)以下の温度範囲内にある場合に、ステップS40において自動停止を禁止している。ここで、インジェクタ30の温度が温度A以下であり、且つ内燃機関20を冷却する冷媒の温度が露点よりも低い温度P以上且つ露点よりも高い温度R以下の温度範囲内にある場合に仮に自動停止が実行された場合、インジェクタ30の先端部に結露が生じることが推定されるところ、本実施例に係る制御部によればこのような場合に自動停止の実行を禁止することができる。それにより、インジェクタ30の先端部に結露が生じることを抑制することができる。その結果、結露によってインジェクタ30が腐食することを抑制することができる。それにより、排気エミッションの悪化、DPFの詰り等の車両5の不具合の発生を抑制することができる。
また本実施例に係る制御装置10によれば、制御部は、さらに、インジェクタ30の温度が温度A以下である場合において冷媒の温度が温度Rより大きく且つ温度Q(本実施例において、これが第3温度に相当する)以下の温度範囲内にある場合には、ステップS45において内燃機関20の回転数を上昇させている。ここで、インジェクタ30の温度が温度A以下であり且つ冷媒の温度が温度Rより大きく温度Q以下の温度範囲内にある場合において、仮に自動停止が実行された場合、インジェクタ30の先端部に結露が生じることが推定されるところ、本実施例に係る制御装置10によれば、このような場合に、内燃機関20の回転数を上昇させることでインジェクタ30の先端部の温度を上昇させることができる。この内燃機関20の回転数上昇によるインジェクタ30の先端部温度の上昇を図示すると、次のようになる。
図6(b)は、本実施例に係るインジェクタ30の先端部温度の時間変化を説明するための模式図である。具体的には図6(b)の曲線104は、本実施例に係るステップS45が実行された場合のインジェクタ30の先端部温度の時間変化を示している。図6(b)の時間t0および時間t1は、それぞれ図6(a)の時間t0および時間t1と同じ時刻である。図6(b)の曲線105は、ステップS45が実行されない場合におけるインジェクタ30の先端部温度の時間変化を示している。具体的には曲線105は、ステップS45を実行せずにステップS50で自動停止が許可された場合のインジェクタ30の先端部温度の時間変化を示している。曲線105の場合、時間t0を経過してもインジェクタ30の先端部の温度は上昇していない。一方、曲線104が示す本実施例の場合、時間t0においてステップS45が実行されることで、インジェクタ30の先端部の温度は、時間t0より前の温度に比較して上昇している。
本実施例のようにステップS45においてインジェクタ30の先端部温度が上昇することによって、インジェクタ30の先端部に結露が生じることを抑制することができる。その結果、結露によるインジェクタ30の腐食を抑制することができる。また、制御装置10によれば、例えばインジェクタ30の温度が温度A以下であり且つ冷媒の温度が温度P以上温度Q以下の温度範囲内である場合に自動停止の実行を禁止する場合に比較して、自動停止の実行が禁止される冷媒の温度範囲が狭くなっている。したがって、本実施例に係る制御装置10によれば、自動停止の実行が禁止される冷媒の温度範囲を狭くしつつ、結露によるインジェクタ30の腐食を抑制することができる。
なおステップS45における上昇後の内燃機関20の回転数(X)は、ステップS5におけるインジェクタ30の温度と温度Aとの差に応じて変更されることが好ましい。具体的にはこの場合、制御部は、インジェクタ30の温度と温度Aとの差が大きいほど、ステップS45に係る内燃機関20の回転数(X)を高くする。この構成によれば、インジェクタ30の温度と温度Aとの差が大きいほど、すなわち自動停止された場合にインジェクタ30の先端部に結露が生じ易いほど、ステップS45において内燃機関20の回転数(X)を高くして、インジェクタ30の先端部の温度をより上昇させることができる。それにより、結露によるインジェクタ30の腐食を効果的に抑制することができる。また、このようにステップS45において内燃機関20の回転数を上昇させた場合、内燃機関20の温度が上昇することで冷媒の温度も上昇させることができる。その結果、ステップS15でNoと判定される可能性を高くすることができ、以ってステップS40が実行される機会を減少させることもできる。
なお制御部は、インジェクタ30の温度と温度Aとの差が大きいほどステップS45に係る内燃機関20の回転数(X)を高く制御する代わりに、ステップS45に係る内燃機関20の回転数をXに保持している所定時間(N)を長くしてもよい。この場合にも、インジェクタ30の先端部の温度を効果的に高くすることは可能である。しかしながら、この場合、所定時間(N)が長くなる結果、ステップS45が実行されている期間が長くなり、その結果、ステップS45が実行されている間に車両5のユーザが強制的に内燃機関20の運転を停止してしまうリスクが高くなってしまう。したがって、インジェクタ30の温度と温度Aとの差が大きいほどステップS45に係る内燃機関20の回転数(X)を高くする場合の方が、所定時間(N)を長くする場合に比較して、このようなリスクを低減できる点で好ましい。
また、ステップS15の判定処理で用いられる温度Rの具体的な値は、例えば次のような観点で設定することができる。具体的には、温度Rが低いほど、ステップS15でNoと判定される可能性が高くなる結果、ステップS45が実行される機会が増えるため、結露によるインジェクタ30の腐食を効果的に抑制できる点において好ましい。一方、ステップS45が実行される機会が多くなり過ぎた場合、燃費が悪化することも考えられる(ステップS45において内燃機関20の回転数が上昇するためである)。そのため、温度Rとしては、このようなステップS45の実行機会が増えることによるメリットおよびデメリットのバランスを考慮して適切な値を設定すればよい。
なお実施例1および実施例2において、制御装置10が適用される内燃機関20の一例としてEGR装置(EGR通路60、EGRクーラ61およびEGRバルブ62)を備える内燃機関20を用いているが、制御装置10が適用される内燃機関20は、EGR装置を備えるものに限定されるものではない。内燃機関20がEGR装置を備えていない場合であっても、自動停止が実行された場合に気筒23内の残留ガス中の酸成分を含んだ結露がインジェクタ30の先端部に付着する可能性があり、この場合、インジェクタ30の先端部が腐食する可能性がある。そのため、制御装置10は、このようなEGR装置を備えていない内燃機関20に適用されてもよい。
以上本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
5 車両
10 制御装置
11 CPU
20 内燃機関
23 気筒
30 インジェクタ
33 噴孔
40 コモンレール
60 EGR通路
62 EGRバルブ
70a,70b 温度センサ
71 クランクポジションセンサ
10 制御装置
11 CPU
20 内燃機関
23 気筒
30 インジェクタ
33 噴孔
40 コモンレール
60 EGR通路
62 EGRバルブ
70a,70b 温度センサ
71 クランクポジションセンサ
Claims (3)
- 車両に搭載された内燃機関の気筒に燃料を噴射するインジェクタの温度が所定温度以下であり、且つ前記内燃機関を冷却する冷媒の温度が、前記気筒に存在するガスが結露する温度である露点を含む所定の温度範囲内にある場合に、前記内燃機関の自動停止の実行を禁止する制御部を備える車両の制御装置。
- 前記所定の温度範囲内は、前記露点よりも低い第1温度以上且つ前記露点よりも高い第2温度以下の温度範囲内である請求項1記載の車両の制御装置。
- 前記所定の温度範囲内は、前記露点よりも低い第1温度以上且つ前記露点よりも高い第2温度以下の温度範囲内であり、
前記制御部は、さらに、前記インジェクタの温度が所定温度以下である場合において前記冷媒の温度が前記第2温度より大きく且つ第3温度以下の温度範囲内にある場合には、前記内燃機関の回転数を上昇させる請求項1記載の車両の制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013022668A JP2014152692A (ja) | 2013-02-07 | 2013-02-07 | 車両の制御装置 |
JP2013-022668 | 2013-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014122823A1 true WO2014122823A1 (ja) | 2014-08-14 |
Family
ID=51299432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/077991 WO2014122823A1 (ja) | 2013-02-07 | 2013-10-15 | 車両の制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014152692A (ja) |
WO (1) | WO2014122823A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3273043A4 (en) * | 2015-03-17 | 2019-01-23 | Yanmar Co., Ltd. | Engine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6481966B2 (ja) * | 2015-11-24 | 2019-03-13 | 株式会社デンソー | 制御装置 |
JP6597478B2 (ja) * | 2016-05-24 | 2019-10-30 | 株式会社豊田自動織機 | エンジンの冷却装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59200854A (ja) * | 1983-04-28 | 1984-11-14 | Mazda Motor Corp | 自動車の駆動制御装置 |
JPS64339A (en) * | 1987-06-23 | 1989-01-05 | Hitachi Ltd | Fuel control device for internal combustion engine |
JPH0932616A (ja) * | 1995-07-18 | 1997-02-04 | Unisia Jecs Corp | 燃料噴射弁の氷結防止装置 |
JP2000234578A (ja) * | 1999-02-16 | 2000-08-29 | Denso Corp | 燃料噴射弁の噴孔氷結防止装置 |
JP2001152971A (ja) * | 1999-11-19 | 2001-06-05 | Denso Corp | 内燃機関の排気還流制御装置 |
JP2002180892A (ja) * | 2000-12-12 | 2002-06-26 | Toyota Motor Corp | 内燃機関の吸入空気量演算装置 |
JP2003027984A (ja) * | 2001-07-16 | 2003-01-29 | Fujitsu Ten Ltd | 車両のアイドリングストップ制御装置 |
JP2010031693A (ja) * | 2008-07-25 | 2010-02-12 | Toyota Motor Corp | 内燃機関の始動制御装置 |
JP2012219645A (ja) * | 2011-04-05 | 2012-11-12 | Mazda Motor Corp | エンジンのブローバイガス制御装置 |
-
2013
- 2013-02-07 JP JP2013022668A patent/JP2014152692A/ja active Pending
- 2013-10-15 WO PCT/JP2013/077991 patent/WO2014122823A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59200854A (ja) * | 1983-04-28 | 1984-11-14 | Mazda Motor Corp | 自動車の駆動制御装置 |
JPS64339A (en) * | 1987-06-23 | 1989-01-05 | Hitachi Ltd | Fuel control device for internal combustion engine |
JPH0932616A (ja) * | 1995-07-18 | 1997-02-04 | Unisia Jecs Corp | 燃料噴射弁の氷結防止装置 |
JP2000234578A (ja) * | 1999-02-16 | 2000-08-29 | Denso Corp | 燃料噴射弁の噴孔氷結防止装置 |
JP2001152971A (ja) * | 1999-11-19 | 2001-06-05 | Denso Corp | 内燃機関の排気還流制御装置 |
JP2002180892A (ja) * | 2000-12-12 | 2002-06-26 | Toyota Motor Corp | 内燃機関の吸入空気量演算装置 |
JP2003027984A (ja) * | 2001-07-16 | 2003-01-29 | Fujitsu Ten Ltd | 車両のアイドリングストップ制御装置 |
JP2010031693A (ja) * | 2008-07-25 | 2010-02-12 | Toyota Motor Corp | 内燃機関の始動制御装置 |
JP2012219645A (ja) * | 2011-04-05 | 2012-11-12 | Mazda Motor Corp | エンジンのブローバイガス制御装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3273043A4 (en) * | 2015-03-17 | 2019-01-23 | Yanmar Co., Ltd. | Engine |
US10273887B2 (en) | 2015-03-17 | 2019-04-30 | Yanmar Co., Ltd. | Engine |
Also Published As
Publication number | Publication date |
---|---|
JP2014152692A (ja) | 2014-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2710454C2 (ru) | Способ управления системой рециркуляции отработавших газов (варианты) | |
JP2009121322A (ja) | ディーゼル機関の制御装置 | |
RU2719324C2 (ru) | Способ (варианты) и система для очистки свечи зажигания автомобильного двигателя | |
WO2014122823A1 (ja) | 車両の制御装置 | |
JP2008232007A (ja) | 内燃機関の始動制御装置 | |
JP5523082B2 (ja) | 内燃機関の早期暖機制御方法 | |
JP5035157B2 (ja) | 内燃機関 | |
US8000886B2 (en) | Control device for internal combustion engine | |
JP5790548B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP5029517B2 (ja) | 内燃機関の制御装置 | |
US10001068B2 (en) | Control apparatus for internal combustion engine | |
JP5409538B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP2007332832A (ja) | 内燃機関の排気温度低減装置 | |
JP6395025B2 (ja) | 内燃機関の燃料噴射装置 | |
US10161350B2 (en) | Internal-combustion engine | |
JP2009216040A (ja) | 内燃機関の制御装置 | |
JP2010071125A (ja) | 直接噴射式内燃機関の燃料噴射制御装置 | |
JP2010242689A (ja) | エンジンの燃料噴射制御装置 | |
JP5924258B2 (ja) | 燃料噴射装置の制御装置 | |
JP2007192081A (ja) | 内燃機関の制御装置 | |
JP2009216039A (ja) | 内燃機関の制御装置 | |
JP6011511B2 (ja) | 内燃機関の制御装置 | |
JP2009092006A (ja) | 内燃機関の潤滑油希釈抑制装置 | |
JP6244765B2 (ja) | 内燃機関の制御装置 | |
JP2010255512A (ja) | エンジン制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13874549 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13874549 Country of ref document: EP Kind code of ref document: A1 |